File size: 6,833 Bytes
e8aeaf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from os import truncate
from sacremoses import MosesPunctNormalizer
from sacremoses import MosesTokenizer
from sacremoses import MosesDetokenizer
from subword_nmt.apply_bpe import BPE, read_vocabulary
import codecs
from tqdm import tqdm
from indicnlp.tokenize import indic_tokenize
from indicnlp.tokenize import indic_detokenize
from indicnlp.normalize import indic_normalize
from indicnlp.transliterate import unicode_transliterate
from mosestokenizer import MosesSentenceSplitter
from indicnlp.tokenize import sentence_tokenize

from inference.custom_interactive import Translator


INDIC = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"]


def split_sentences(paragraph, language):
    if language == "en":
        with MosesSentenceSplitter(language) as splitter:
            return splitter([paragraph])
    elif language in INDIC:
        return sentence_tokenize.sentence_split(paragraph, lang=language)


def add_token(sent, tag_infos):
    """add special tokens specified by tag_infos to each element in list

    tag_infos: list of tuples (tag_type,tag)

    each tag_info results in a token of the form: __{tag_type}__{tag}__

    """

    tokens = []
    for tag_type, tag in tag_infos:
        token = "__" + tag_type + "__" + tag + "__"
        tokens.append(token)

    return " ".join(tokens) + " " + sent


def apply_lang_tags(sents, src_lang, tgt_lang):
    tagged_sents = []
    for sent in sents:
        tagged_sent = add_token(sent.strip(), [("src", src_lang), ("tgt", tgt_lang)])
        tagged_sents.append(tagged_sent)
    return tagged_sents


def truncate_long_sentences(sents):

    MAX_SEQ_LEN = 200
    new_sents = []

    for sent in sents:
        words = sent.split()
        num_words = len(words)
        if num_words > MAX_SEQ_LEN:
            print_str = " ".join(words[:5]) + " .... " + " ".join(words[-5:])
            sent = " ".join(words[:MAX_SEQ_LEN])
            print(
                f"WARNING: Sentence {print_str} truncated to 200 tokens as it exceeds maximum length limit"
            )

        new_sents.append(sent)
    return new_sents


class Model:
    def __init__(self, expdir):
        self.expdir = expdir
        self.en_tok = MosesTokenizer(lang="en")
        self.en_normalizer = MosesPunctNormalizer()
        self.en_detok = MosesDetokenizer(lang="en")
        self.xliterator = unicode_transliterate.UnicodeIndicTransliterator()
        print("Initializing vocab and bpe")
        self.vocabulary = read_vocabulary(
            codecs.open(f"{expdir}/vocab/vocab.SRC", encoding="utf-8"), 5
        )
        self.bpe = BPE(
            codecs.open(f"{expdir}/vocab/bpe_codes.32k.SRC", encoding="utf-8"),
            -1,
            "@@",
            self.vocabulary,
            None,
        )

        print("Initializing model for translation")
        # initialize the model
        self.translator = Translator(
            f"{expdir}/final_bin", f"{expdir}/model/checkpoint_best.pt", batch_size=100
        )

    # translate a batch of sentences from src_lang to tgt_lang
    def batch_translate(self, batch, src_lang, tgt_lang):

        assert isinstance(batch, list)
        preprocessed_sents = self.preprocess(batch, lang=src_lang)
        bpe_sents = self.apply_bpe(preprocessed_sents)
        tagged_sents = apply_lang_tags(bpe_sents, src_lang, tgt_lang)
        tagged_sents = truncate_long_sentences(tagged_sents)

        translations = self.translator.translate(tagged_sents)
        postprocessed_sents = self.postprocess(translations, tgt_lang)

        return postprocessed_sents

    # translate a paragraph from src_lang to tgt_lang
    def translate_paragraph(self, paragraph, src_lang, tgt_lang):

        assert isinstance(paragraph, str)
        sents = split_sentences(paragraph, src_lang)

        postprocessed_sents = self.batch_translate(sents, src_lang, tgt_lang)

        translated_paragraph = " ".join(postprocessed_sents)

        return translated_paragraph

    def preprocess_sent(self, sent, normalizer, lang):
        if lang == "en":
            return " ".join(
                self.en_tok.tokenize(
                    self.en_normalizer.normalize(sent.strip()), escape=False
                )
            )
        else:
            # line = indic_detokenize.trivial_detokenize(line.strip(), lang)
            return unicode_transliterate.UnicodeIndicTransliterator.transliterate(
                " ".join(
                    indic_tokenize.trivial_tokenize(
                        normalizer.normalize(sent.strip()), lang
                    )
                ),
                lang,
                "hi",
            ).replace(" ् ", "्")

    def preprocess(self, sents, lang):
        """
        Normalize, tokenize and script convert(for Indic)
        return number of sentences input file

        """

        if lang == "en":

            # processed_sents = Parallel(n_jobs=-1, backend="multiprocessing")(
            #     delayed(preprocess_line)(line, None, lang) for line in tqdm(sents, total=num_lines)
            # )
            processed_sents = [
                self.preprocess_sent(line, None, lang) for line in tqdm(sents)
            ]

        else:
            normfactory = indic_normalize.IndicNormalizerFactory()
            normalizer = normfactory.get_normalizer(lang)

            # processed_sents = Parallel(n_jobs=-1, backend="multiprocessing")(
            #     delayed(preprocess_line)(line, normalizer, lang) for line in tqdm(infile, total=num_lines)
            # )
            processed_sents = [
                self.preprocess_sent(line, normalizer, lang) for line in tqdm(sents)
            ]

        return processed_sents

    def postprocess(self, sents, lang, common_lang="hi"):
        """
        parse fairseq interactive output, convert script back to native Indic script (in case of Indic languages) and detokenize.

        infname: fairseq log file
        outfname: output file of translation (sentences not translated contain the dummy string 'DUMMY_OUTPUT'
        input_size: expected number of output sentences
        lang: language
        """
        postprocessed_sents = []

        if lang == "en":
            for sent in sents:
                # outfile.write(en_detok.detokenize(sent.split(" ")) + "\n")
                postprocessed_sents.append(self.en_detok.detokenize(sent.split(" ")))
        else:
            for sent in sents:
                outstr = indic_detokenize.trivial_detokenize(
                    self.xliterator.transliterate(sent, common_lang, lang), lang
                )
                # outfile.write(outstr + "\n")
                postprocessed_sents.append(outstr)
        return postprocessed_sents

    def apply_bpe(self, sents):

        return [self.bpe.process_line(sent) for sent in sents]