Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,933 Bytes
9d298eb b2ecf7d beb51b0 b2ecf7d 7026e84 27369a0 b2ecf7d 27369a0 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7787a53 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d ca38817 da376c3 ca38817 7026e84 b2ecf7d 432e973 507971e 432e973 7026e84 b2ecf7d 7026e84 b2ecf7d 5da0ad7 b2ecf7d 5da0ad7 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 5f7c180 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 871c193 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 5f7c180 b2ecf7d 7026e84 b2ecf7d beb51b0 b2ecf7d 0f085f2 b2ecf7d 7026e84 b2ecf7d 7026e84 5f7c180 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 b2ecf7d 7026e84 7fd9bbe 0201d2f 7fd9bbe 9abd9af 089313b 9abd9af 089313b 9abd9af 7026e84 3dc3992 7026e84 3dc3992 803a700 7026e84 b2ecf7d 7026e84 b2ecf7d 634a9a5 b2ecf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
import type { ModelData } from "./model-data";
const TAG_CUSTOM_CODE = "custom_code";
function nameWithoutNamespace(modelId: string): string {
const splitted = modelId.split("/");
return splitted.length === 1 ? splitted[0] : splitted[1];
}
//#region snippets
export const adapters = (model: ModelData): string[] => [
`from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}")
model.load_adapter("${model.id}", set_active=True)`,
];
const allennlpUnknown = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")`,
];
const allennlpQuestionAnswering = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`,
];
export const allennlp = (model: ModelData): string[] => {
if (model.tags?.includes("question-answering")) {
return allennlpQuestionAnswering(model);
}
return allennlpUnknown(model);
};
export const asteroid = (model: ModelData): string[] => [
`from asteroid.models import BaseModel
model = BaseModel.from_pretrained("${model.id}")`,
];
function get_base_diffusers_model(model: ModelData): string {
return model.cardData?.base_model?.toString() ?? "fill-in-base-model";
}
export const bertopic = (model: ModelData): string[] => [
`from bertopic import BERTopic
model = BERTopic.load("${model.id}")`,
];
const diffusers_default = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`,
];
const diffusers_controlnet = (model: ModelData) => [
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("${model.id}")
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"${get_base_diffusers_model(model)}", controlnet=controlnet
)`,
];
const diffusers_lora = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipeline.load_lora_weights("${model.id}")`,
];
const diffusers_textual_inversion = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipeline.load_textual_inversion("${model.id}")`,
];
export const diffusers = (model: ModelData): string[] => {
if (model.tags?.includes("controlnet")) {
return diffusers_controlnet(model);
} else if (model.tags?.includes("lora")) {
return diffusers_lora(model);
} else if (model.tags?.includes("textual_inversion")) {
return diffusers_textual_inversion(model);
} else {
return diffusers_default(model);
}
};
export const espnetTTS = (model: ModelData): string[] => [
`from espnet2.bin.tts_inference import Text2Speech
model = Text2Speech.from_pretrained("${model.id}")
speech, *_ = model("text to generate speech from")`,
];
export const espnetASR = (model: ModelData): string[] => [
`from espnet2.bin.asr_inference import Speech2Text
model = Speech2Text.from_pretrained(
"${model.id}"
)
speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)[0]`,
];
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
export const espnet = (model: ModelData): string[] => {
if (model.tags?.includes("text-to-speech")) {
return espnetTTS(model);
} else if (model.tags?.includes("automatic-speech-recognition")) {
return espnetASR(model);
}
return espnetUnknown();
};
export const fairseq = (model: ModelData): string[] => [
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"${model.id}"
)`,
];
export const flair = (model: ModelData): string[] => [
`from flair.models import SequenceTagger
tagger = SequenceTagger.load("${model.id}")`,
];
export const gliner = (model: ModelData): string[] => [
`from gliner import GLiNER
model = GLiNER.from_pretrained("${model.id}")`,
];
export const keras = (model: ModelData): string[] => [
`from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("${model.id}")
`,
];
export const keras_nlp = (model: ModelData): string[] => [
`# Available backend options are: "jax", "tensorflow", "torch".
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras_nlp
tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
`,
];
export const open_clip = (model: ModelData): string[] => [
`import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`,
];
export const paddlenlp = (model: ModelData): string[] => {
if (model.config?.architectures?.[0]) {
const architecture = model.config.architectures[0];
return [
[
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = ${architecture}.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
} else {
return [
[
`# ⚠️ Type of model unknown`,
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = AutoModel.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
}
};
export const pyannote_audio_pipeline = (model: ModelData): string[] => [
`from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("${model.id}")
# inference on the whole file
pipeline("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`,
];
const pyannote_audio_model = (model: ModelData): string[] => [
`from pyannote.audio import Model, Inference
model = Model.from_pretrained("${model.id}")
inference = Inference(model)
# inference on the whole file
inference("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`,
];
export const pyannote_audio = (model: ModelData): string[] => {
if (model.tags?.includes("pyannote-audio-pipeline")) {
return pyannote_audio_pipeline(model);
}
return pyannote_audio_model(model);
};
const tensorflowttsTextToMel = (model: ModelData): string[] => [
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
const tensorflowttsMelToWav = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`,
];
const tensorflowttsUnknown = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
export const tensorflowtts = (model: ModelData): string[] => {
if (model.tags?.includes("text-to-mel")) {
return tensorflowttsTextToMel(model);
} else if (model.tags?.includes("mel-to-wav")) {
return tensorflowttsMelToWav(model);
}
return tensorflowttsUnknown(model);
};
export const timm = (model: ModelData): string[] => [
`import timm
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`,
];
const skopsPickle = (model: ModelData, modelFile: string) => {
return [
`import joblib
from skops.hub_utils import download
download("${model.id}", "path_to_folder")
model = joblib.load(
"${modelFile}"
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
const skopsFormat = (model: ModelData, modelFile: string) => {
return [
`from skops.hub_utils import download
from skops.io import load
download("${model.id}", "path_to_folder")
# make sure model file is in skops format
# if model is a pickle file, make sure it's from a source you trust
model = load("path_to_folder/${modelFile}")`,
];
};
const skopsJobLib = (model: ModelData) => {
return [
`from huggingface_hub import hf_hub_download
import joblib
model = joblib.load(
hf_hub_download("${model.id}", "sklearn_model.joblib")
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
export const sklearn = (model: ModelData): string[] => {
if (model.tags?.includes("skops")) {
const skopsmodelFile = model.config?.sklearn?.model?.file;
const skopssaveFormat = model.config?.sklearn?.model_format;
if (!skopsmodelFile) {
return [`# ⚠️ Model filename not specified in config.json`];
}
if (skopssaveFormat === "pickle") {
return skopsPickle(model, skopsmodelFile);
} else {
return skopsFormat(model, skopsmodelFile);
}
} else {
return skopsJobLib(model);
}
};
export const fastai = (model: ModelData): string[] => [
`from huggingface_hub import from_pretrained_fastai
learn = from_pretrained_fastai("${model.id}")`,
];
export const sampleFactory = (model: ModelData): string[] => [
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`,
];
export const sentenceTransformers = (model: ModelData): string[] => [
`from sentence_transformers import SentenceTransformer
model = SentenceTransformer("${model.id}")`,
];
export const setfit = (model: ModelData): string[] => [
`from setfit import SetFitModel
model = SetFitModel.from_pretrained("${model.id}")`,
];
export const spacy = (model: ModelData): string[] => [
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`,
];
export const span_marker = (model: ModelData): string[] => [
`from span_marker import SpanMarkerModel
model = SpanMarkerModel.from_pretrained("${model.id}")`,
];
export const stanza = (model: ModelData): string[] => [
`import stanza
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`,
];
const speechBrainMethod = (speechbrainInterface: string) => {
switch (speechbrainInterface) {
case "EncoderClassifier":
return "classify_file";
case "EncoderDecoderASR":
case "EncoderASR":
return "transcribe_file";
case "SpectralMaskEnhancement":
return "enhance_file";
case "SepformerSeparation":
return "separate_file";
default:
return undefined;
}
};
export const speechbrain = (model: ModelData): string[] => {
const speechbrainInterface = model.config?.speechbrain?.speechbrain_interface;
if (speechbrainInterface === undefined) {
return [`# interface not specified in config.json`];
}
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
if (speechbrainMethod === undefined) {
return [`# interface in config.json invalid`];
}
return [
`from speechbrain.pretrained import ${speechbrainInterface}
model = ${speechbrainInterface}.from_hparams(
"${model.id}"
)
model.${speechbrainMethod}("file.wav")`,
];
};
export const transformers = (model: ModelData): string[] => {
const info = model.transformersInfo;
if (!info) {
return [`# ⚠️ Type of model unknown`];
}
const remote_code_snippet = model.tags?.includes(TAG_CUSTOM_CODE) ? ", trust_remote_code=True" : "";
let autoSnippet: string;
if (info.processor) {
const varName =
info.processor === "AutoTokenizer"
? "tokenizer"
: info.processor === "AutoFeatureExtractor"
? "extractor"
: "processor";
autoSnippet = [
"# Load model directly",
`from transformers import ${info.processor}, ${info.auto_model}`,
"",
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
].join("\n");
} else {
autoSnippet = [
"# Load model directly",
`from transformers import ${info.auto_model}`,
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
].join("\n");
}
if (model.pipeline_tag) {
const pipelineSnippet = [
"# Use a pipeline as a high-level helper",
"from transformers import pipeline",
"",
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")",
].join("\n");
return [pipelineSnippet, autoSnippet];
}
return [autoSnippet];
};
export const transformersJS = (model: ModelData): string[] => {
if (!model.pipeline_tag) {
return [`// ⚠️ Unknown pipeline tag`];
}
const libName = "@xenova/transformers";
return [
`// npm i ${libName}
import { pipeline } from '${libName}';
// Allocate pipeline
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`,
];
};
const peftTask = (peftTaskType?: string) => {
switch (peftTaskType) {
case "CAUSAL_LM":
return "CausalLM";
case "SEQ_2_SEQ_LM":
return "Seq2SeqLM";
case "TOKEN_CLS":
return "TokenClassification";
case "SEQ_CLS":
return "SequenceClassification";
default:
return undefined;
}
};
export const peft = (model: ModelData): string[] => {
const { base_model_name_or_path: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
const pefttask = peftTask(peftTaskType);
if (!pefttask) {
return [`Task type is invalid.`];
}
if (!peftBaseModel) {
return [`Base model is not found.`];
}
return [
`from peft import PeftModel, PeftConfig
from transformers import AutoModelFor${pefttask}
config = PeftConfig.from_pretrained("${model.id}")
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
model = PeftModel.from_pretrained(model, "${model.id}")`,
];
};
export const fasttext = (model: ModelData): string[] => [
`from huggingface_hub import hf_hub_download
import fasttext
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`,
];
export const stableBaselines3 = (model: ModelData): string[] => [
`from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="${model.id}",
filename="{MODEL FILENAME}.zip",
)`,
];
const nemoDomainResolver = (domain: string, model: ModelData): string[] | undefined => {
switch (domain) {
case "ASR":
return [
`import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
transcriptions = asr_model.transcribe(["file.wav"])`,
];
default:
return undefined;
}
};
export const mlAgents = (model: ModelData): string[] => [
`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./download: string[]s"`,
];
export const sentis = (/* model: ModelData */): string[] => [
`string modelName = "[Your model name here].sentis";
Model model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName);
IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
// Please see provided C# file for more details
`,
];
export const voicecraft = (model: ModelData): string[] => [
`from voicecraft import VoiceCraft
model = VoiceCraft.from_pretrained("${model.id}")`,
];
export const mlx = (model: ModelData): string[] => [
`pip install huggingface_hub hf_transfer
export HF_HUB_ENABLE_HF_TRANS: string[]FER=1
huggingface-cli download --local-dir ${nameWithoutNamespace(model.id)} ${model.id}`,
];
export const mlxim = (model: ModelData): string[] => [
`from mlxim.model import create_model
model = create_model(${model.id})`,
];
export const nemo = (model: ModelData): string[] => {
let command: string[] | undefined = undefined;
// Resolve the tag to a nemo domain/sub-domain
if (model.tags?.includes("automatic-speech-recognition")) {
command = nemoDomainResolver("ASR", model);
}
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
};
export const pythae = (model: ModelData): string[] => [
`from pythae.models import AutoModel
model = AutoModel.load_from_hf_hub("${model.id}")`,
];
const musicgen = (model: ModelData): string[] => [
`from audiocraft.models import MusicGen
model = MusicGen.get_pretrained("${model.id}")
descriptions = ['happy rock', 'energetic EDM', 'sad jazz']
wav = model.generate(descriptions) # generates 3 samples.`,
];
const magnet = (model: ModelData): string[] => [
`from audiocraft.models import MAGNeT
model = MAGNeT.get_pretrained("${model.id}")
descriptions = ['disco beat', 'energetic EDM', 'funky groove']
wav = model.generate(descriptions) # generates 3 samples.`,
];
const audiogen = (model: ModelData): string[] => [
`from audiocraft.models import AudioGen
model = AudioGen.get_pretrained("${model.id}")
model.set_generation_params(duration=5) # generate 5 seconds.
descriptions = ['dog barking', 'sirene of an emergency vehicle', 'footsteps in a corridor']
wav = model.generate(descriptions) # generates 3 samples.`,
];
export const audiocraft = (model: ModelData): string[] => {
if (model.tags?.includes("musicgen")) {
return musicgen(model);
} else if (model.tags?.includes("audiogen")) {
return audiogen(model);
} else if (model.tags?.includes("magnet")) {
return magnet(model);
} else {
return [`# Type of model unknown.`];
}
};
//#endregion
|