Spaces:
Running
Running
File size: 17,160 Bytes
a0359a1 6e2127b a0359a1 6e2127b 8c5c31d a0359a1 8c5c31d a0359a1 6e2127b 64632c4 2886238 64632c4 6e2127b a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d a0359a1 8c5c31d 6e2127b a0359a1 6e2127b a0359a1 b1815fe a0359a1 8c5c31d a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b a0359a1 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d dbdfc66 8c5c31d a0359a1 dbdfc66 6e2127b a0359a1 dbdfc66 6e2127b 8c5c31d b1815fe 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d dbdfc66 8c5c31d dbdfc66 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b 8c5c31d dbdfc66 8c5c31d 6e2127b 8c5c31d 6e2127b 8c5c31d 6e2127b b1815fe 8c5c31d 6e2127b b1815fe 6e2127b dbdfc66 6e2127b 8c5c31d 6e2127b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json
from datetime import datetime
import os
from openai import OpenAI
import re
# Cache for tokenizers to avoid reloading
tokenizer_cache = {}
# Global variables for providers
PROVIDERS = {
"SambaNova": {
"name": "SambaNova",
"logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
"endpoint": "https://api.sambanova.ai/v1/",
"api_key_env_var": "SAMBANOVA_API_KEY",
"models": [
"Meta-Llama-3.1-70B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
"Hyperbolic": {
"name": "hyperbolic",
"logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
"endpoint": "https://api.hyperbolic.xyz/v1",
"api_key_env_var": "HYPERBOLIC_API_KEY",
"models": [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Meta-Llama-3.1-405B-Instruct",
],
"type": "tuples",
"max_total_tokens": "50000",
},
}
# Functions for paper fetching
def fetch_paper_info_neurips(paper_id):
url = f"https://openreview.net/forum?id={paper_id}"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
html_content = response.content
soup = BeautifulSoup(html_content, 'html.parser')
# Extract title
title_tag = soup.find('h2', class_='citation_title')
title = title_tag.get_text(strip=True) if title_tag else 'Title not found'
# Extract authors
authors = []
author_div = soup.find('div', class_='forum-authors')
if author_div:
author_tags = author_div.find_all('a')
authors = [tag.get_text(strip=True) for tag in author_tags]
author_list = ', '.join(authors) if authors else 'Authors not found'
# Extract abstract
abstract_div = soup.find('strong', text='Abstract:')
if abstract_div:
abstract_paragraph = abstract_div.find_next_sibling('div')
abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
else:
abstract = 'Abstract not found'
link = f"https://openreview.net/forum?id={paper_id}"
return title, author_list, f"**Abstract:** {abstract}\n\n[View on OpenReview]({link})"
def fetch_paper_content_neurips(paper_id):
try:
url = f"https://openreview.net/pdf?id={paper_id}"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except:
return None
def fetch_paper_content_arxiv(paper_id):
try:
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
response = requests.get(url)
response.raise_for_status()
pdf_content = BytesIO(response.content)
reader = PdfReader(pdf_content)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
except Exception as e:
print(f"Error fetching paper content: {e}")
return None
def fetch_paper_info_paperpage(paper_id_value):
def extract_paper_id(input_string):
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
response = requests.get(url)
if response.status_code != 200:
return None, None, None
paper_info = response.json()
title = paper_info.get('title', 'No Title')
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
authors = ', '.join(authors_list)
summary = paper_info.get('summary', 'No Summary')
num_comments = len(paper_info.get('comments', []))
num_upvotes = paper_info.get('upvotes', 0)
link = f"https://huggingface.co/papers/{paper_id_value}"
details = f"{summary}<br/>👍{num_comments} 💬{num_upvotes}<br/> <a href='{link}' " \
f"target='_blank'>View on 🤗 hugging face</a>"
return title, authors, details
def fetch_paper_content_paperpage(paper_id_value):
def extract_paper_id(input_string):
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
return input_string.strip()
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
if match:
return match.group(1)
return input_string.strip()
paper_id_value = extract_paper_id(paper_id_value)
text = fetch_paper_content_arxiv(paper_id_value)
return text
PAPER_SOURCES = {
"neurips": {
"fetch_info": fetch_paper_info_neurips,
"fetch_pdf": fetch_paper_content_neurips
},
"paper_page": {
"fetch_info": fetch_paper_info_paperpage,
"fetch_pdf": fetch_paper_content_paperpage
}
}
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
provider_max_total_tokens):
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
max_total_tokens):
provider_info = PROVIDERS[provider_name_value]
endpoint = provider_info['endpoint']
api_key_env_var = provider_info['api_key_env_var']
max_total_tokens = int(max_total_tokens)
tokenizer_key = f"{provider_name_value}_{model_name_value}"
if tokenizer_key not in tokenizer_cache:
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
token=os.environ.get("HF_TOKEN"))
tokenizer_cache[tokenizer_key] = tokenizer
else:
tokenizer = tokenizer_cache[tokenizer_key]
if paper_content_value:
context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
else:
context = ""
context_tokens = tokenizer.encode(context)
context_token_length = len(context_tokens)
messages = []
message_tokens_list = []
total_tokens = context_token_length
for user_msg, assistant_msg in history:
user_tokens = tokenizer.encode(user_msg)
messages.append({"role": "user", "content": user_msg})
message_tokens_list.append(len(user_tokens))
total_tokens += len(user_tokens)
if assistant_msg:
assistant_tokens = tokenizer.encode(assistant_msg)
messages.append({"role": "assistant", "content": assistant_msg})
message_tokens_list.append(len(assistant_tokens))
total_tokens += len(assistant_tokens)
message_tokens = tokenizer.encode(message)
messages.append({"role": "user", "content": message})
message_tokens_list.append(len(message_tokens))
total_tokens += len(message_tokens)
if total_tokens > max_total_tokens:
available_tokens = max_total_tokens - (total_tokens - context_token_length)
if available_tokens > 0:
truncated_context_tokens = context_tokens[:available_tokens]
context = tokenizer.decode(truncated_context_tokens)
context_token_length = available_tokens
total_tokens = total_tokens - len(context_tokens) + context_token_length
else:
context = ""
total_tokens -= context_token_length
context_token_length = 0
while total_tokens > max_total_tokens and len(messages) > 1:
removed_message = messages.pop(0)
removed_tokens = message_tokens_list.pop(0)
total_tokens -= removed_tokens
final_messages = []
if context:
final_messages.append({"role": "system", "content": f"{context}"})
final_messages.extend(messages)
api_key = hf_token_value or os.environ.get(api_key_env_var)
if not api_key:
raise ValueError("API token is not provided.")
client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
try:
completion = client.chat.completions.create(
model=model_name_value,
messages=final_messages,
stream=True,
)
response_text = ""
for chunk in completion:
delta = chunk.choices[0].delta.content or ""
response_text += delta
yield response_text
except json.JSONDecodeError as e:
yield f"JSON decoding error: {e.msg}"
except openai.OpenAIError as openai_err:
yield f"OpenAI error: {openai_err}"
except Exception as ex:
yield f"Unexpected error: {ex}"
chatbot = gr.Chatbot(label="Chatbot", scale=1, height=400, autoscroll=True)
chat_interface = gr.ChatInterface(
fn=get_fn,
chatbot=chatbot,
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
type="tuples",
)
return chat_interface, chatbot
def paper_chat_tab(paper_id, paper_from, paper_central_df):
# First row with two columns
with gr.Row():
# Left column: Paper selection and display
with gr.Column(scale=1):
gr.Markdown("### Select a Paper")
todays_date = datetime.today().strftime('%Y-%m-%d')
# Filter papers for today's date and having a paper_page
selectable_papers = paper_central_df.df_prettified
selectable_papers = selectable_papers[
selectable_papers['paper_page'].notna() &
(selectable_papers['paper_page'] != "") &
(selectable_papers['date'] == todays_date)
]
paper_choices = [(row['title'], row['paper_page']) for _, row in selectable_papers.iterrows()]
paper_choices = sorted(paper_choices, key=lambda x: x[0])
if not paper_choices:
paper_choices = [("No available papers for today", "")]
paper_select = gr.Dropdown(
label="Select a paper to chat with:",
choices=[p[0] for p in paper_choices],
value=paper_choices[0][0] if paper_choices else None
)
select_paper_button = gr.Button("Load this paper")
# Paper info display
content = gr.HTML(value="", elem_id="paper_info_card")
# Right column: Provider and model selection
with gr.Column(scale=1, visible=False) as provider_section:
gr.Markdown("### LLM Provider and Model")
provider_names = list(PROVIDERS.keys())
default_provider = provider_names[0]
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
provider_dropdown = gr.Dropdown(
label="Select Provider",
choices=provider_names,
value=default_provider
)
hf_token_input = gr.Textbox(
label=f"Enter your {default_provider} API token (optional)",
type="password",
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
)
model_dropdown = gr.Dropdown(
label="Select Model",
choices=PROVIDERS[default_provider]['models'],
value=PROVIDERS[default_provider]['models'][0]
)
logo_html = gr.HTML(
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
)
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
paper_content = gr.State()
# Now a new row, full width, for the chat
with gr.Row(visible=False) as chat_row:
with gr.Column():
# Create chat interface below the two columns
chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
hf_token_input, default_type, default_max_total_tokens)
def update_provider(selected_provider):
provider_info = PROVIDERS[selected_provider]
models = provider_info['models']
logo_url = provider_info['logo']
chatbot_message_type = provider_info['type']
max_total_tokens = provider_info['max_total_tokens']
model_dropdown_choices = gr.update(choices=models, value=models[0])
logo_html_content = f'<img src="{logo_url}" width="100px" />'
logo_html_update = gr.update(value=logo_html_content)
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
hf_token_input_update = gr.update(
label=f"Enter your {selected_provider} API token (optional)",
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
)
chatbot_reset = []
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens, chatbot_reset
provider_dropdown.change(
fn=update_provider,
inputs=provider_dropdown,
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
chatbot],
queue=False
)
def update_paper_info(paper_id_value, paper_from_value, selected_model, old_content):
source_info = PAPER_SOURCES.get(paper_from_value, {})
fetch_info_fn = source_info.get("fetch_info")
fetch_pdf_fn = source_info.get("fetch_pdf")
if not fetch_info_fn or not fetch_pdf_fn:
return gr.update(value="<div>No information available.</div>"), None, []
title, authors, details = fetch_info_fn(paper_id_value)
if title is None and authors is None and details is None:
return gr.update(value="<div>No information could be retrieved.</div>"), None, []
text = fetch_pdf_fn(paper_id_value)
if text is None:
text = "Paper content could not be retrieved."
card_html = f"""
<div style="border:1px solid #ccc; border-radius:6px; background:#f9f9f9; padding:15px; margin-bottom:10px;">
<center><h3 style="margin-top:0; text-decoration:underline;">You are talking with:</h3></center>
<h3>{title}</h3>
<p><strong>Authors:</strong> {authors}</p>
<p>{details}</p>
</div>
"""
return gr.update(value=card_html), text, []
def select_paper(paper_title):
for t, ppage in paper_choices:
if t == paper_title:
return ppage, "paper_page"
return "", ""
select_paper_button.click(
fn=select_paper,
inputs=[paper_select],
outputs=[paper_id, paper_from]
)
paper_id.change(
fn=update_paper_info,
inputs=[paper_id, paper_from, model_dropdown, content],
outputs=[content, paper_content, chatbot]
)
def toggle_provider_visibility(paper_id_value):
if paper_id_value and paper_id_value.strip():
return gr.update(visible=True)
else:
return gr.update(visible=False)
# Toggle provider section visibility
paper_id.change(
fn=toggle_provider_visibility,
inputs=[paper_id],
outputs=[provider_section]
)
# Toggle chat row visibility
paper_id.change(
fn=toggle_provider_visibility,
inputs=[paper_id],
outputs=[chat_row]
)
def main():
with gr.Blocks(css_paths="style.css") as demo:
paper_id = gr.Textbox(label="Paper ID", value="")
paper_from = gr.Radio(
label="Paper Source",
choices=["neurips", "paper_page"],
value="neurips"
)
class MockPaperCentral:
def __init__(self):
import pandas as pd
data = {
'date': [datetime.today().strftime('%Y-%m-%d')],
'paper_page': ['1234.56789'],
'title': ['An Example Paper']
}
self.df_prettified = pd.DataFrame(data)
paper_central_df = MockPaperCentral()
paper_chat_tab(paper_id, paper_from, paper_central_df)
demo.launch(ssr_mode=False)
if __name__ == "__main__":
main()
|