Spaces:
Running
Running
chat paper
Browse files- app.py +37 -2
- df/PaperCentral.py +21 -3
- paper_chat_tab.py +104 -48
app.py
CHANGED
@@ -8,6 +8,7 @@ from pr_paper_central_tab import pr_paper_central_tab
|
|
8 |
from huggingface_hub import whoami
|
9 |
import json
|
10 |
import requests
|
|
|
11 |
|
12 |
from author_leaderboard_contrib_tab import author_resource_leaderboard_tab
|
13 |
from paper_chat_tab import paper_chat_tab
|
@@ -189,7 +190,41 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
189 |
with gr.Tab("Chat With Paper", id="tab-chat-with-paper", visible=False) as tab_chat_paper:
|
190 |
gr.Markdown("## Chat with Paper")
|
191 |
arxiv_id = gr.State(value=None)
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
|
195 |
# Define function to move to the next day
|
@@ -546,7 +581,7 @@ def main():
|
|
546 |
"""
|
547 |
Launches the Gradio app.
|
548 |
"""
|
549 |
-
demo.launch(ssr_mode=False)
|
550 |
|
551 |
|
552 |
# Run the main function when the script is executed
|
|
|
8 |
from huggingface_hub import whoami
|
9 |
import json
|
10 |
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
|
13 |
from author_leaderboard_contrib_tab import author_resource_leaderboard_tab
|
14 |
from paper_chat_tab import paper_chat_tab
|
|
|
190 |
with gr.Tab("Chat With Paper", id="tab-chat-with-paper", visible=False) as tab_chat_paper:
|
191 |
gr.Markdown("## Chat with Paper")
|
192 |
arxiv_id = gr.State(value=None)
|
193 |
+
paper_from = gr.State(value=None)
|
194 |
+
paper_chat_tab(arxiv_id, paper_from)
|
195 |
+
|
196 |
+
|
197 |
+
# chat with paper
|
198 |
+
def get_selected(evt: gr.SelectData, dataframe_origin):
|
199 |
+
|
200 |
+
paper_id = gr.update(value=None)
|
201 |
+
paper_from = gr.update(value=None)
|
202 |
+
tab_chat_paper = gr.update(visible=False)
|
203 |
+
selected_tab = gr.Tabs()
|
204 |
+
|
205 |
+
try:
|
206 |
+
# Parse the HTML content
|
207 |
+
soup = BeautifulSoup(evt.value, "html.parser")
|
208 |
+
|
209 |
+
# Find all <a> tags
|
210 |
+
a_tags = soup.find_all('a')
|
211 |
+
for a_tag in a_tags:
|
212 |
+
# Check if 'action_id' attribute exists and equals 'chat-with-paper'
|
213 |
+
if a_tag.get('action_id') == 'chat-with-paper':
|
214 |
+
paper_id = a_tag.get("paper_id")
|
215 |
+
paper_from = a_tag.get("paper_from")
|
216 |
+
tab_chat_paper = gr.update(visible=True)
|
217 |
+
selected_tab = gr.Tabs(selected="tab-chat-with-paper")
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
print("The content is not valid HTML or another error occurred:", str(e))
|
221 |
+
pass
|
222 |
+
|
223 |
+
return paper_id, paper_from, tab_chat_paper, selected_tab
|
224 |
+
|
225 |
+
|
226 |
+
paper_central_component.select(get_selected, inputs=[paper_central_component],
|
227 |
+
outputs=[arxiv_id, paper_from, tab_chat_paper, tabs])
|
228 |
|
229 |
|
230 |
# Define function to move to the next day
|
|
|
581 |
"""
|
582 |
Launches the Gradio app.
|
583 |
"""
|
584 |
+
demo.launch(ssr_mode=False, share=True)
|
585 |
|
586 |
|
587 |
# Run the main function when the script is executed
|
df/PaperCentral.py
CHANGED
@@ -17,6 +17,7 @@ import numpy as np
|
|
17 |
from datetime import datetime, timedelta
|
18 |
import re
|
19 |
|
|
|
20 |
class PaperCentral:
|
21 |
"""
|
22 |
A class to manage and process paper data for display in a Gradio Dataframe component.
|
@@ -450,6 +451,20 @@ class PaperCentral:
|
|
450 |
columns_to_show.append('project_page')
|
451 |
filtered_df = filtered_df[(filtered_df['project_page'] != "") & (filtered_df['project_page'].notnull())]
|
452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
# Apply conference filtering
|
454 |
if conference_options:
|
455 |
columns_to_show = [col for col in columns_to_show if col not in ["date", "arxiv_id"]]
|
@@ -478,17 +493,20 @@ class PaperCentral:
|
|
478 |
)
|
479 |
filtered_df = filtered_df[conference_filter]
|
480 |
|
|
|
481 |
if any(conf in ["NeurIPS2024 D&B", "NeurIPS2024"] for conf in conference_options):
|
482 |
-
def
|
483 |
neurips_id = re.search(r'id=([^&]+)', row["proceedings"])
|
484 |
if neurips_id:
|
485 |
neurips_id = neurips_id.group(1)
|
486 |
-
return f'<a
|
|
|
|
|
487 |
else:
|
488 |
return ""
|
489 |
|
490 |
# Add the "chat_with_paper" column
|
491 |
-
filtered_df['chat_with_paper'] = filtered_df.apply(
|
492 |
if 'chat_with_paper' not in columns_to_show:
|
493 |
columns_to_show.append('chat_with_paper')
|
494 |
|
|
|
17 |
from datetime import datetime, timedelta
|
18 |
import re
|
19 |
|
20 |
+
|
21 |
class PaperCentral:
|
22 |
"""
|
23 |
A class to manage and process paper data for display in a Gradio Dataframe component.
|
|
|
451 |
columns_to_show.append('project_page')
|
452 |
filtered_df = filtered_df[(filtered_df['project_page'] != "") & (filtered_df['project_page'].notnull())]
|
453 |
|
454 |
+
# create chat link
|
455 |
+
def create_chat_link(row):
|
456 |
+
if pd.notna(row["paper_page"]) and row["paper_page"] != "":
|
457 |
+
paper_id = row["paper_page"]
|
458 |
+
return f'<a' \
|
459 |
+
f' action_id="chat-with-paper" paper_id="{paper_id}" paper_from="paper_page"' \
|
460 |
+
f' id="custom_button">✨ Chat with paper</a>'
|
461 |
+
return ""
|
462 |
+
|
463 |
+
filtered_df['chat_with_paper'] = filtered_df.apply(create_chat_link, axis=1)
|
464 |
+
|
465 |
+
if 'chat_with_paper' not in columns_to_show:
|
466 |
+
columns_to_show.append('chat_with_paper')
|
467 |
+
|
468 |
# Apply conference filtering
|
469 |
if conference_options:
|
470 |
columns_to_show = [col for col in columns_to_show if col not in ["date", "arxiv_id"]]
|
|
|
493 |
)
|
494 |
filtered_df = filtered_df[conference_filter]
|
495 |
|
496 |
+
# conference chat with paper
|
497 |
if any(conf in ["NeurIPS2024 D&B", "NeurIPS2024"] for conf in conference_options):
|
498 |
+
def create_chat_neurips_link(row):
|
499 |
neurips_id = re.search(r'id=([^&]+)', row["proceedings"])
|
500 |
if neurips_id:
|
501 |
neurips_id = neurips_id.group(1)
|
502 |
+
return f'<a' \
|
503 |
+
f' action_id="chat-with-paper" paper_id={neurips_id} paper_from="neurips"' \
|
504 |
+
f' id="custom_button">✨ Chat with paper</a>'
|
505 |
else:
|
506 |
return ""
|
507 |
|
508 |
# Add the "chat_with_paper" column
|
509 |
+
filtered_df['chat_with_paper'] = filtered_df.apply(create_chat_neurips_link, axis=1)
|
510 |
if 'chat_with_paper' not in columns_to_show:
|
511 |
columns_to_show.append('chat_with_paper')
|
512 |
|
paper_chat_tab.py
CHANGED
@@ -78,6 +78,30 @@ def fetch_paper_info_neurips(paper_id):
|
|
78 |
return preamble
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def fetch_paper_content(paper_id):
|
82 |
try:
|
83 |
# Construct the URL
|
@@ -230,25 +254,26 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
230 |
print(f"An unexpected error occurred: {ex}")
|
231 |
yield f"{ex}"
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
# Create the ChatInterface
|
234 |
chat_interface = gr.ChatInterface(
|
235 |
fn=get_fn,
|
236 |
-
chatbot=
|
237 |
-
label="Chatbot",
|
238 |
-
scale=1,
|
239 |
-
height=400,
|
240 |
-
autoscroll=True,
|
241 |
-
),
|
242 |
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
|
243 |
type="tuples",
|
244 |
)
|
245 |
-
return chat_interface
|
246 |
|
247 |
|
248 |
-
def paper_chat_tab(paper_id):
|
249 |
with gr.Column():
|
250 |
-
# Textbox to display the paper title and authors
|
251 |
-
content = gr.Markdown(value="")
|
252 |
|
253 |
# Preamble message to hint the user
|
254 |
gr.Markdown("**Note:** Providing your own API token can help you avoid rate limits.")
|
@@ -290,6 +315,14 @@ def paper_chat_tab(paper_id):
|
|
290 |
# State to store the paper content
|
291 |
paper_content = gr.State()
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
# Function to update models and logo when provider changes
|
294 |
def update_provider(selected_provider):
|
295 |
provider_info = PROVIDERS[selected_provider]
|
@@ -314,63 +347,86 @@ def paper_chat_tab(paper_id):
|
|
314 |
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
|
315 |
)
|
316 |
|
317 |
-
|
|
|
|
|
|
|
318 |
|
319 |
provider_dropdown.change(
|
320 |
fn=update_provider,
|
321 |
inputs=provider_dropdown,
|
322 |
-
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens
|
|
|
323 |
queue=False
|
324 |
)
|
325 |
|
326 |
# Function to update the paper info
|
327 |
-
def update_paper_info(paper_id_value, selected_model):
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
preamble
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
|
|
|
344 |
fn=update_paper_info,
|
345 |
-
inputs=[paper_id, model_dropdown],
|
346 |
-
outputs=[content, paper_content]
|
347 |
-
queue=False,
|
348 |
)
|
349 |
|
350 |
-
# Create the chat interface
|
351 |
-
chat_interface = create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input,
|
352 |
-
default_type, default_max_total_tokens)
|
353 |
-
|
354 |
|
355 |
def main():
|
356 |
"""
|
357 |
Launches the Gradio app.
|
358 |
"""
|
359 |
with gr.Blocks(css_paths="style.css") as demo:
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
""
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
update_button = gr.Button("Update State") # Button to update the state
|
370 |
|
371 |
-
#
|
372 |
-
|
373 |
-
paper_chat_tab(x)
|
374 |
|
375 |
demo.launch(ssr_mode=False)
|
376 |
|
|
|
78 |
return preamble
|
79 |
|
80 |
|
81 |
+
def fetch_paper_content_arxiv(paper_id):
|
82 |
+
try:
|
83 |
+
# Construct the URL for the arXiv PDF
|
84 |
+
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
85 |
+
|
86 |
+
# Fetch the PDF
|
87 |
+
response = requests.get(url)
|
88 |
+
response.raise_for_status() # Raise an exception for HTTP errors
|
89 |
+
|
90 |
+
# Read the PDF content
|
91 |
+
pdf_content = BytesIO(response.content)
|
92 |
+
reader = PdfReader(pdf_content)
|
93 |
+
|
94 |
+
# Extract text from the PDF
|
95 |
+
text = ""
|
96 |
+
for page in reader.pages:
|
97 |
+
text += page.extract_text()
|
98 |
+
|
99 |
+
return text # Return full text; truncation will be handled later
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error fetching paper content: {e}")
|
102 |
+
return None
|
103 |
+
|
104 |
+
|
105 |
def fetch_paper_content(paper_id):
|
106 |
try:
|
107 |
# Construct the URL
|
|
|
254 |
print(f"An unexpected error occurred: {ex}")
|
255 |
yield f"{ex}"
|
256 |
|
257 |
+
# Create the Chatbot separately to access it later
|
258 |
+
chatbot = gr.Chatbot(
|
259 |
+
label="Chatbot",
|
260 |
+
scale=1,
|
261 |
+
height=400,
|
262 |
+
autoscroll=True,
|
263 |
+
)
|
264 |
+
|
265 |
# Create the ChatInterface
|
266 |
chat_interface = gr.ChatInterface(
|
267 |
fn=get_fn,
|
268 |
+
chatbot=chatbot,
|
|
|
|
|
|
|
|
|
|
|
269 |
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
|
270 |
type="tuples",
|
271 |
)
|
272 |
+
return chat_interface, chatbot
|
273 |
|
274 |
|
275 |
+
def paper_chat_tab(paper_id, paper_from):
|
276 |
with gr.Column():
|
|
|
|
|
277 |
|
278 |
# Preamble message to hint the user
|
279 |
gr.Markdown("**Note:** Providing your own API token can help you avoid rate limits.")
|
|
|
315 |
# State to store the paper content
|
316 |
paper_content = gr.State()
|
317 |
|
318 |
+
# Textbox to display the paper title and authors
|
319 |
+
content = gr.Markdown(value="")
|
320 |
+
|
321 |
+
# Create the chat interface and get the chatbot component
|
322 |
+
chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
|
323 |
+
hf_token_input,
|
324 |
+
default_type, default_max_total_tokens)
|
325 |
+
|
326 |
# Function to update models and logo when provider changes
|
327 |
def update_provider(selected_provider):
|
328 |
provider_info = PROVIDERS[selected_provider]
|
|
|
347 |
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
|
348 |
)
|
349 |
|
350 |
+
# Reset the chatbot history
|
351 |
+
chatbot_reset = [] # This resets the chatbot conversation
|
352 |
+
|
353 |
+
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens, chatbot_reset
|
354 |
|
355 |
provider_dropdown.change(
|
356 |
fn=update_provider,
|
357 |
inputs=provider_dropdown,
|
358 |
+
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
|
359 |
+
chatbot],
|
360 |
queue=False
|
361 |
)
|
362 |
|
363 |
# Function to update the paper info
|
364 |
+
def update_paper_info(paper_id_value, paper_from_value, selected_model):
|
365 |
+
if paper_from_value == "neurips":
|
366 |
+
preamble = fetch_paper_info_neurips(paper_id_value)
|
367 |
+
text = fetch_paper_content(paper_id_value)
|
368 |
+
if preamble is None:
|
369 |
+
preamble = "Paper not found or could not retrieve paper information."
|
370 |
+
if text is None:
|
371 |
+
return preamble, None, []
|
372 |
+
return preamble, text, []
|
373 |
+
elif paper_from_value == "paper_page":
|
374 |
+
# Fetch the paper information from Hugging Face API
|
375 |
+
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
|
376 |
+
response = requests.get(url)
|
377 |
+
if response.status_code != 200:
|
378 |
+
return "Paper not found or could not retrieve paper information.", None, []
|
379 |
+
paper_info = response.json()
|
380 |
+
|
381 |
+
# Extract required information
|
382 |
+
title = paper_info.get('title', 'No Title')
|
383 |
+
link = f"https://huggingface.co/papers/{paper_id_value}"
|
384 |
+
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
|
385 |
+
authors = ', '.join(authors_list)
|
386 |
+
summary = paper_info.get('summary', 'No Summary')
|
387 |
+
num_comments = len(paper_info.get('comments', []))
|
388 |
+
num_upvotes = paper_info.get('upvotes', 0)
|
389 |
+
|
390 |
+
# Format the preamble
|
391 |
+
preamble = f"🤗 [paper-page]({link})<br/>"
|
392 |
+
preamble += f"**Title:** {title}<br/>"
|
393 |
+
preamble += f"**Authors:** {authors}<br/>"
|
394 |
+
preamble += f"**Summary:**<br/>>\n{summary}<br/>"
|
395 |
+
preamble += f"👍{num_comments} 💬{num_upvotes} <br/>"
|
396 |
+
|
397 |
+
# Fetch the paper content
|
398 |
+
text = fetch_paper_content_arxiv(paper_id_value)
|
399 |
+
if text is None:
|
400 |
+
text = "Paper content could not be retrieved."
|
401 |
+
return preamble, text, []
|
402 |
+
else:
|
403 |
+
return "", "", []
|
404 |
|
405 |
+
# Update paper content when paper ID changes
|
406 |
+
paper_id.change(
|
407 |
fn=update_paper_info,
|
408 |
+
inputs=[paper_id, paper_from, model_dropdown],
|
409 |
+
outputs=[content, paper_content, chatbot]
|
|
|
410 |
)
|
411 |
|
|
|
|
|
|
|
|
|
412 |
|
413 |
def main():
|
414 |
"""
|
415 |
Launches the Gradio app.
|
416 |
"""
|
417 |
with gr.Blocks(css_paths="style.css") as demo:
|
418 |
+
# Create an input for paper_id
|
419 |
+
paper_id = gr.Textbox(label="Paper ID", value="")
|
420 |
+
|
421 |
+
# Create an input for paper_from (e.g., 'neurips' or 'paper_page')
|
422 |
+
paper_from = gr.Radio(
|
423 |
+
label="Paper Source",
|
424 |
+
choices=["neurips", "paper_page"],
|
425 |
+
value="neurips"
|
426 |
+
)
|
|
|
427 |
|
428 |
+
# Build the paper chat tab
|
429 |
+
paper_chat_tab(paper_id, paper_from)
|
|
|
430 |
|
431 |
demo.launch(ssr_mode=False)
|
432 |
|