File size: 18,169 Bytes
a0359a1
 
 
6e2127b
 
a0359a1
 
 
6e2127b
8c5c31d
a0359a1
 
8c5c31d
a0359a1
 
 
 
6e2127b
 
 
 
 
 
 
 
 
 
 
 
 
64632c4
 
 
 
 
 
2886238
64632c4
 
 
 
 
6e2127b
 
a0359a1
8c5c31d
a0359a1
 
 
 
8c5c31d
a0359a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5c31d
 
 
a0359a1
 
8c5c31d
dbdfc66
8c5c31d
dbdfc66
8c5c31d
dbdfc66
 
 
 
 
8c5c31d
 
dbdfc66
 
 
8c5c31d
a0359a1
8c5c31d
a0359a1
8c5c31d
a0359a1
 
 
 
 
8c5c31d
a0359a1
8c5c31d
a0359a1
 
 
8c5c31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2127b
 
a0359a1
6e2127b
 
 
 
 
 
 
 
8c5c31d
6e2127b
 
 
 
 
 
 
 
a0359a1
 
6e2127b
a0359a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5c31d
a0359a1
 
 
 
 
 
 
 
 
 
 
8c5c31d
a0359a1
 
 
 
 
8c5c31d
a0359a1
 
8c5c31d
a0359a1
 
6e2127b
 
a0359a1
 
 
8c5c31d
a0359a1
6e2127b
a0359a1
 
 
 
 
6e2127b
a0359a1
 
 
 
 
 
 
 
6e2127b
8c5c31d
6e2127b
8c5c31d
6e2127b
8c5c31d
dbdfc66
8c5c31d
a0359a1
 
dbdfc66
6e2127b
 
a0359a1
dbdfc66
6e2127b
 
8c5c31d
 
 
 
 
 
6e2127b
8c5c31d
 
 
 
 
 
 
6e2127b
8c5c31d
 
6e2127b
8c5c31d
 
6e2127b
8c5c31d
 
 
 
 
 
6e2127b
8c5c31d
 
6e2127b
8c5c31d
 
 
 
 
6e2127b
8c5c31d
 
6e2127b
8c5c31d
 
 
 
 
dbdfc66
8c5c31d
 
 
 
 
dbdfc66
8c5c31d
 
 
 
 
6e2127b
8c5c31d
 
 
6e2127b
8c5c31d
6e2127b
8c5c31d
6e2127b
8c5c31d
 
 
6e2127b
8c5c31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbdfc66
8c5c31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2127b
8c5c31d
 
 
 
 
 
6e2127b
8c5c31d
 
 
 
 
 
6e2127b
8c5c31d
 
 
 
 
 
6e2127b
 
 
 
 
 
 
dbdfc66
 
 
 
 
 
6e2127b
dbdfc66
8c5c31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2127b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import gradio as gr
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import openai
import traceback
import requests
from io import BytesIO
from transformers import AutoTokenizer
import json
from datetime import datetime
import os
from openai import OpenAI
import re

# Cache for tokenizers to avoid reloading
tokenizer_cache = {}

# Global variables for providers
PROVIDERS = {
    "SambaNova": {
        "name": "SambaNova",
        "logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
        "endpoint": "https://api.sambanova.ai/v1/",
        "api_key_env_var": "SAMBANOVA_API_KEY",
        "models": [
            "Meta-Llama-3.1-70B-Instruct",
        ],
        "type": "tuples",
        "max_total_tokens": "50000",
    },
    "Hyperbolic": {
        "name": "hyperbolic",
        "logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
        "endpoint": "https://api.hyperbolic.xyz/v1",
        "api_key_env_var": "HYPERBOLIC_API_KEY",
        "models": [
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Meta-Llama-3.1-405B-Instruct",
        ],
        "type": "tuples",
        "max_total_tokens": "50000",
    },
}


# Functions for paper fetching
def fetch_paper_info_neurips(paper_id):
    url = f"https://openreview.net/forum?id={paper_id}"
    response = requests.get(url)
    if response.status_code != 200:
        return None, None, None

    html_content = response.content
    soup = BeautifulSoup(html_content, 'html.parser')

    # Extract title
    title_tag = soup.find('h2', class_='citation_title')
    title = title_tag.get_text(strip=True) if title_tag else 'Title not found'

    # Extract authors
    authors = []
    author_div = soup.find('div', class_='forum-authors')
    if author_div:
        author_tags = author_div.find_all('a')
        authors = [tag.get_text(strip=True) for tag in author_tags]
    author_list = ', '.join(authors) if authors else 'Authors not found'

    # Extract abstract
    abstract_div = soup.find('strong', text='Abstract:')
    if abstract_div:
        abstract_paragraph = abstract_div.find_next_sibling('div')
        abstract = abstract_paragraph.get_text(strip=True) if abstract_paragraph else 'Abstract not found'
    else:
        abstract = 'Abstract not found'

    # Construct preamble
    link = f"https://openreview.net/forum?id={paper_id}"
    return title, author_list, f"**Abstract:** {abstract}\n\n[View on OpenReview]({link})"


def fetch_paper_content_neurips(paper_id):
    try:
        url = f"https://openreview.net/pdf?id={paper_id}"
        response = requests.get(url)
        response.raise_for_status()
        pdf_content = BytesIO(response.content)
        reader = PdfReader(pdf_content)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text
    except:
        return None


def fetch_paper_content_arxiv(paper_id):
    try:
        url = f"https://arxiv.org/pdf/{paper_id}.pdf"
        response = requests.get(url)
        response.raise_for_status()
        pdf_content = BytesIO(response.content)
        reader = PdfReader(pdf_content)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text
    except Exception as e:
        print(f"Error fetching paper content: {e}")
        return None


def fetch_paper_info_paperpage(paper_id_value):
    # Extract paper_id from paper_page link or input
    def extract_paper_id(input_string):
        # Already in correct form?
        if re.fullmatch(r'\d+\.\d+', input_string.strip()):
            return input_string.strip()
        # If URL
        match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
        if match:
            return match.group(1)
        return input_string.strip()

    paper_id_value = extract_paper_id(paper_id_value)
    url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
    response = requests.get(url)
    if response.status_code != 200:
        return None, None, None
    paper_info = response.json()
    title = paper_info.get('title', 'No Title')
    authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
    authors = ', '.join(authors_list)
    summary = paper_info.get('summary', 'No Summary')
    num_comments = len(paper_info.get('comments', []))
    num_upvotes = paper_info.get('upvotes', 0)
    link = f"https://huggingface.co/papers/{paper_id_value}"

    details = f"{summary}<br/>👍{num_comments} 💬{num_upvotes}<br/> <a href='{link}' " \
              f"target='_blank'>View on 🤗 hugging face</a>"
    return title, authors, details


def fetch_paper_content_paperpage(paper_id_value):
    # Extract paper_id
    def extract_paper_id(input_string):
        if re.fullmatch(r'\d+\.\d+', input_string.strip()):
            return input_string.strip()
        match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
        if match:
            return match.group(1)
        return input_string.strip()

    paper_id_value = extract_paper_id(paper_id_value)
    text = fetch_paper_content_arxiv(paper_id_value)
    return text


# Dictionary for paper sources
PAPER_SOURCES = {
    "neurips": {
        "fetch_info": fetch_paper_info_neurips,
        "fetch_pdf": fetch_paper_content_neurips
    },
    "paper_page": {
        "fetch_info": fetch_paper_info_paperpage,
        "fetch_pdf": fetch_paper_content_paperpage
    }
}


def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
                          provider_max_total_tokens):
    # Define the function to handle the chat
    def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
               max_total_tokens):
        provider_info = PROVIDERS[provider_name_value]
        endpoint = provider_info['endpoint']
        api_key_env_var = provider_info['api_key_env_var']
        models = provider_info['models']
        max_total_tokens = int(max_total_tokens)

        # Load tokenizer
        tokenizer_key = f"{provider_name_value}_{model_name_value}"
        if tokenizer_key not in tokenizer_cache:
            tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
                                                      token=os.environ.get("HF_TOKEN"))
            tokenizer_cache[tokenizer_key] = tokenizer
        else:
            tokenizer = tokenizer_cache[tokenizer_key]

        # Include the paper content as context
        if paper_content_value:
            context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
        else:
            context = ""

        # Tokenize the context
        context_tokens = tokenizer.encode(context)
        context_token_length = len(context_tokens)

        # Prepare the messages without context
        messages = []
        message_tokens_list = []
        total_tokens = context_token_length  # Start with context tokens

        for user_msg, assistant_msg in history:
            # Tokenize user message
            user_tokens = tokenizer.encode(user_msg)
            messages.append({"role": "user", "content": user_msg})
            message_tokens_list.append(len(user_tokens))
            total_tokens += len(user_tokens)

            # Tokenize assistant message
            if assistant_msg:
                assistant_tokens = tokenizer.encode(assistant_msg)
                messages.append({"role": "assistant", "content": assistant_msg})
                message_tokens_list.append(len(assistant_tokens))
                total_tokens += len(assistant_tokens)

        # Tokenize the new user message
        message_tokens = tokenizer.encode(message)
        messages.append({"role": "user", "content": message})
        message_tokens_list.append(len(message_tokens))
        total_tokens += len(message_tokens)

        # Check if total tokens exceed the maximum allowed tokens
        if total_tokens > max_total_tokens:
            # Attempt to truncate context
            available_tokens = max_total_tokens - (total_tokens - context_token_length)
            if available_tokens > 0:
                truncated_context_tokens = context_tokens[:available_tokens]
                context = tokenizer.decode(truncated_context_tokens)
                context_token_length = available_tokens
                total_tokens = total_tokens - len(context_tokens) + context_token_length
            else:
                context = ""
                total_tokens -= context_token_length
                context_token_length = 0

        # Truncate message history if needed
        while total_tokens > max_total_tokens and len(messages) > 1:
            removed_message = messages.pop(0)
            removed_tokens = message_tokens_list.pop(0)
            total_tokens -= removed_tokens

        # Rebuild the final messages
        final_messages = []
        if context:
            final_messages.append({"role": "system", "content": f"{context}"})
        final_messages.extend(messages)

        # Use the provider's API key
        api_key = hf_token_value or os.environ.get(api_key_env_var)
        if not api_key:
            raise ValueError("API token is not provided.")

        # Initialize the OpenAI client
        client = OpenAI(
            base_url=endpoint,
            api_key=api_key,
        )

        try:
            completion = client.chat.completions.create(
                model=model_name_value,
                messages=final_messages,
                stream=True,
            )
            response_text = ""
            for chunk in completion:
                delta = chunk.choices[0].delta.content or ""
                response_text += delta
                yield response_text
        except json.JSONDecodeError as e:
            yield f"JSON decoding error: {e.msg}"
        except openai.OpenAIError as openai_err:
            yield f"OpenAI error: {openai_err}"
        except Exception as ex:
            yield f"Unexpected error: {ex}"

    chatbot = gr.Chatbot(label="Chatbot", scale=1, height=400, autoscroll=True)
    chat_interface = gr.ChatInterface(
        fn=get_fn,
        chatbot=chatbot,
        additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
        type="tuples",
    )
    return chat_interface, chatbot


def paper_chat_tab(paper_id, paper_from, paper_central_df):
    with gr.Row():
        # Left column: Paper selection and display
        with gr.Column(scale=1):
            gr.Markdown("### Select a Paper")
            todays_date = datetime.today().strftime('%Y-%m-%d')

            # Filter papers for today's date and having a paper_page
            selectable_papers = paper_central_df.df_prettified
            selectable_papers = selectable_papers[
                selectable_papers['paper_page'].notna() &
                (selectable_papers['paper_page'] != "") &
                (selectable_papers['date'] == todays_date)
                ]

            paper_choices = [(row['title'], row['paper_page']) for _, row in selectable_papers.iterrows()]
            paper_choices = sorted(paper_choices, key=lambda x: x[0])

            if not paper_choices:
                paper_choices = [("No available papers for today", "")]

            paper_select = gr.Dropdown(
                label="Select a paper to chat with:",
                choices=[p[0] for p in paper_choices],
                value=paper_choices[0][0] if paper_choices else None
            )
            select_paper_button = gr.Button("Load this paper")

            # Paper info display - styled card
            content = gr.HTML(value="", elem_id="paper_info_card")

        # Right column: Provider and model selection + chat
        with gr.Column(scale=1, visible=False) as provider_section:
            gr.Markdown("### LLM Provider and Model")
            provider_names = list(PROVIDERS.keys())
            default_provider = provider_names[0]

            default_type = gr.State(value=PROVIDERS[default_provider]["type"])
            default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])

            provider_dropdown = gr.Dropdown(
                label="Select Provider",
                choices=provider_names,
                value=default_provider
            )

            hf_token_input = gr.Textbox(
                label=f"Enter your {default_provider} API token (optional)",
                type="password",
                placeholder=f"Enter your {default_provider} API token to avoid rate limits"
            )

            model_dropdown = gr.Dropdown(
                label="Select Model",
                choices=PROVIDERS[default_provider]['models'],
                value=PROVIDERS[default_provider]['models'][0]
            )

            logo_html = gr.HTML(
                value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
            )

            note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")

            paper_content = gr.State()

            # Create chat interface
            chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
                                                            hf_token_input, default_type, default_max_total_tokens)

    def update_provider(selected_provider):
        provider_info = PROVIDERS[selected_provider]
        models = provider_info['models']
        logo_url = provider_info['logo']
        chatbot_message_type = provider_info['type']
        max_total_tokens = provider_info['max_total_tokens']

        model_dropdown_choices = gr.update(choices=models, value=models[0])
        logo_html_content = f'<img src="{logo_url}" width="100px" />'
        logo_html_update = gr.update(value=logo_html_content)
        note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
        hf_token_input_update = gr.update(
            label=f"Enter your {selected_provider} API token (optional)",
            placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
        )
        chatbot_reset = []
        return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens, chatbot_reset

    provider_dropdown.change(
        fn=update_provider,
        inputs=provider_dropdown,
        outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
                 chatbot],
        queue=False
    )

    def update_paper_info(paper_id_value, paper_from_value, selected_model, old_content):
        # Use PAPER_SOURCES to fetch info
        source_info = PAPER_SOURCES.get(paper_from_value, {})
        fetch_info_fn = source_info.get("fetch_info")
        fetch_pdf_fn = source_info.get("fetch_pdf")

        if not fetch_info_fn or not fetch_pdf_fn:
            return gr.update(value="<div>No information available.</div>"), None, []

        title, authors, details = fetch_info_fn(paper_id_value)
        if title is None and authors is None and details is None:
            return gr.update(value="<div>No information could be retrieved.</div>"), None, []

        text = fetch_pdf_fn(paper_id_value)
        if text is None:
            text = "Paper content could not be retrieved."

        # Create a styled card for the paper info
        card_html = f"""
        <div style="border:1px solid #ccc; border-radius:6px; background:#f9f9f9; padding:15px; margin-bottom:10px;">
            <center><h3 style="margin-top:0; text-decoration:underline;">You are talking with:</h3></center>
            <h3>{title}</h3>
            <p><strong>Authors:</strong> {authors}</p>
            <p>{details}</p>
        </div>
        """

        return gr.update(value=card_html), text, []

    def select_paper(paper_title):
        # Find the corresponding paper_page from the title
        for t, ppage in paper_choices:
            if t == paper_title:
                return ppage, "paper_page"
        return "", ""

    select_paper_button.click(
        fn=select_paper,
        inputs=[paper_select],
        outputs=[paper_id, paper_from]
    )

    # After updating paper_id, we update paper info
    paper_id.change(
        fn=update_paper_info,
        inputs=[paper_id, paper_from, model_dropdown, content],
        outputs=[content, paper_content, chatbot]
    )

    # Function to toggle visibility of the right column based on paper_id
    def toggle_provider_visibility(paper_id_value):
        if paper_id_value and paper_id_value.strip():
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)

    # Chain a then call to toggle visibility of the provider_section after paper info update
    paper_id.change(
        fn=toggle_provider_visibility,
        inputs=[paper_id],
        outputs=[provider_section]
    )


def main():
    """
    Launches the Gradio app.
    """
    with gr.Blocks(css_paths="style.css") as demo:
        paper_id = gr.Textbox(label="Paper ID", value="")
        paper_from = gr.Radio(
            label="Paper Source",
            choices=["neurips", "paper_page"],
            value="neurips"
        )

        # Build the paper chat tab
        dummy_calendar = gr.State(datetime.now().strftime("%Y-%m-%d"))

        class MockPaperCentral:
            def __init__(self):
                import pandas as pd
                data = {
                    'date': [datetime.today().strftime('%Y-%m-%d')],
                    'paper_page': ['1234.56789'],
                    'title': ['An Example Paper']
                }
                self.df_prettified = pd.DataFrame(data)

        paper_central_df = MockPaperCentral()

        paper_chat_tab(paper_id, paper_from, paper_central_df)

    demo.launch(ssr_mode=False)


if __name__ == "__main__":
    main()