Spaces:
Runtime error
Runtime error
File size: 4,980 Bytes
6c2e66e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import pandas as pd
import numpy as np
import streamlit as st
from models import Generator, Discriminrator
from utils import image_to_base64
import torch
import torchvision.transforms as T
from torchvision.utils import make_grid
from PIL import Image
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = {
"aurora": 'huggan/fastgan-few-shot-aurora-bs8',
"painting": 'huggan/fastgan-few-shot-painting-bs8',
"shell": 'huggan/fastgan-few-shot-shells',
"fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
}
#@st.cache(allow_output_mutation=True)
def load_generator(model_name_or_path):
generator = Generator(in_channels=256, out_channels=3)
generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
_ = generator.to('cuda')
_ = generator.eval()
return generator
def _denormalize(input: torch.Tensor) -> torch.Tensor:
return (input * 127.5) + 127.5
def generate_images(generator, number_imgs):
noise = torch.zeros(number_imgs, 256, 1, 1, device='cuda').normal_(0.0, 1.0)
with torch.no_grad():
gan_images, _ = generator(noise)
gan_images = _denormalize(gan_images.detach()).cpu()
gan_images = make_grid(gan_images, nrow=number_imgs, normalize=True)
gan_images = gan_images.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
gan_images = Image.fromarray(gan_images)
return gan_images
def main():
st.set_page_config(
page_title="FastGAN Generator",
page_icon="🖥️",
layout="wide",
initial_sidebar_state="expanded"
)
# st.sidebar.markdown(
# """
# <style>
# .aligncenter {
# text-align: center;
# }
# </style>
# <p class="aligncenter">
# <img src="https://e7.pngegg.com/pngimages/510/121/png-clipart-machine-learning-deep-learning-artificial-intelligence-algorithm-machine-learning-angle-text.png"/>
# </p>
# """,
# unsafe_allow_html=True,
# )
st.sidebar.markdown(
"""
___
<p style='text-align: center'>
FastGAN is an few-shot GAN model that generates images of several types!
</p>
<p style='text-align: center'>
Model training and Space creation by
<br/>
<a href="https://huggingface.co/vumichien" target="_blank">Chien Vu</a> | <a href="https://huggingface.co/geninhu" target="_blank">Nhu Hoang</a>
<br/>
</p>
<p style='text-align: center'>
<a href="https://github.com/silentz/Towards-Faster-And-Stabilized-GAN-Training-For-High-Fidelity-Few-Shot-Image-Synthesis" target="_blank">based on FastGAN model</a> | <a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
</p>
""",
unsafe_allow_html=True,
)
st.header("Welcome to FastGAN")
col1, col2, col3, col4 = st.columns([3,3,3,3])
with col1:
st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
st.image('fauvism.png', width=300)
with col2:
st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora-bs8)', unsafe_allow_html=True)
st.image('aurora.png', width=300)
with col3:
st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting-bs8)', unsafe_allow_html=True)
st.image('painting.png', width=300)
with col4:
st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
st.image('shell.png', width=300)
# Choose generator
col11, col12, col13 = st.columns([4,4,2])
with col11:
st.markdown('Choose type of image to generate', unsafe_allow_html=True)
img_type = st.selectbox("", index=0, options=["shell", "aurora", "painting", "fauvism"])
with col12:
number_imgs = st.number_input('How many images you want to generate ?', min_value=1, max_value=5)
if number_imgs is None:
st.write('Invalid number ! Please insert number of images to generate !')
raise ValueError('Invalid number ! Please insert number of images to generate !')
with col13:
generate_button = st.button('Get Image!')
# row2 = st.columns([10])
# with row2:
if generate_button:
st.markdown("""
<small><i>Predictions may take up to 1mn under high load. Please stand by.</i></small>
""",
unsafe_allow_html=True,)
generator = load_generator(model_name[img_type])
gan_images = generate_images(generator, number_imgs)
# margin = 0.1 # for better position of zoom in arrow
# n_columns = 2
# cols = st.columns([1] + [margin, 1] * (n_columns - 1))
# for i, img in enumerate(gan_images):
# cols[(i % n_columns) * 2].image(img)
st.image(gan_images, width=200*number_imgs)
if __name__ == '__main__':
main()
|