File size: 4,980 Bytes
6c2e66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import numpy as np
import streamlit as st

from models import Generator, Discriminrator
from utils import image_to_base64
import torch
import torchvision.transforms as T
from torchvision.utils import make_grid
from PIL import Image

device = 'cuda' if torch.cuda.is_available() else 'cpu'


model_name = {
    "aurora": 'huggan/fastgan-few-shot-aurora-bs8',
    "painting": 'huggan/fastgan-few-shot-painting-bs8',
    "shell": 'huggan/fastgan-few-shot-shells',
    "fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
}

#@st.cache(allow_output_mutation=True)
def load_generator(model_name_or_path):
    generator = Generator(in_channels=256, out_channels=3)
    generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
    _ = generator.to('cuda')
    _ = generator.eval()

    return generator

def _denormalize(input: torch.Tensor) -> torch.Tensor:
    return (input * 127.5) + 127.5


def generate_images(generator, number_imgs):
    noise = torch.zeros(number_imgs, 256, 1, 1, device='cuda').normal_(0.0, 1.0)
    with torch.no_grad():
        gan_images, _ = generator(noise)

    gan_images = _denormalize(gan_images.detach()).cpu()
    gan_images = make_grid(gan_images, nrow=number_imgs, normalize=True)
    gan_images = gan_images.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
    gan_images = Image.fromarray(gan_images)
    return gan_images


def main():

    st.set_page_config(
        page_title="FastGAN Generator",
        page_icon="🖥️",
        layout="wide",
        initial_sidebar_state="expanded"
    )

    # st.sidebar.markdown(
    #     """
    # <style>
    # .aligncenter {
    #     text-align: center;
    # }
    # </style>
    # <p class="aligncenter">
    #     <img src="https://e7.pngegg.com/pngimages/510/121/png-clipart-machine-learning-deep-learning-artificial-intelligence-algorithm-machine-learning-angle-text.png"/>
    # </p>
    # """,
    #     unsafe_allow_html=True,
    # )
    st.sidebar.markdown(
        """
    ___
    <p style='text-align: center'>
    FastGAN is an few-shot GAN model that generates images of several types!
    </p>
    <p style='text-align: center'>
    Model training and Space creation by
    <br/>
    <a href="https://huggingface.co/vumichien" target="_blank">Chien Vu</a> | <a href="https://huggingface.co/geninhu" target="_blank">Nhu Hoang</a>
    <br/>
    </p>

    <p style='text-align: center'>
    <a href="https://github.com/silentz/Towards-Faster-And-Stabilized-GAN-Training-For-High-Fidelity-Few-Shot-Image-Synthesis" target="_blank">based on FastGAN model</a> | <a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
    </p>
            """,
        unsafe_allow_html=True,
    )

    st.header("Welcome to FastGAN")

    col1, col2, col3, col4 = st.columns([3,3,3,3])
    with col1:
        st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
        st.image('fauvism.png', width=300)

    with col2:
        st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora-bs8)', unsafe_allow_html=True)
        st.image('aurora.png', width=300)

    with col3:
        st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting-bs8)', unsafe_allow_html=True)
        st.image('painting.png', width=300)
    with col4:
        st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
        st.image('shell.png', width=300)

    # Choose generator
    col11, col12, col13 = st.columns([4,4,2])
    with col11:
        st.markdown('Choose type of image to generate', unsafe_allow_html=True)
        img_type = st.selectbox("", index=0, options=["shell", "aurora", "painting", "fauvism"])

    with col12:
        number_imgs = st.number_input('How many images you want to generate ?', min_value=1, max_value=5)
        if number_imgs is None:
            st.write('Invalid number ! Please insert number of images to generate !')
            raise ValueError('Invalid number ! Please insert number of images to generate !')
    with col13:
        generate_button = st.button('Get Image!')

    # row2 = st.columns([10])
    # with row2:
    if generate_button:
        st.markdown("""
            <small><i>Predictions may take up to 1mn under high load. Please stand by.</i></small>
        """,
        unsafe_allow_html=True,)
        generator = load_generator(model_name[img_type])
        gan_images = generate_images(generator, number_imgs)
        # margin = 0.1  # for better position of zoom in arrow
        # n_columns = 2
        # cols = st.columns([1] + [margin, 1] * (n_columns - 1))
        # for i, img in enumerate(gan_images):
        #     cols[(i % n_columns) * 2].image(img)

        st.image(gan_images, width=200*number_imgs)


if __name__ == '__main__':
    main()