Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from models import Generator, Discriminrator
|
6 |
+
from utils import image_to_base64
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from torchvision.utils import make_grid
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
+
|
14 |
+
|
15 |
+
model_name = {
|
16 |
+
"aurora": 'huggan/fastgan-few-shot-aurora-bs8',
|
17 |
+
"painting": 'huggan/fastgan-few-shot-painting-bs8',
|
18 |
+
"shell": 'huggan/fastgan-few-shot-shells',
|
19 |
+
"fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
|
20 |
+
}
|
21 |
+
|
22 |
+
#@st.cache(allow_output_mutation=True)
|
23 |
+
def load_generator(model_name_or_path):
|
24 |
+
generator = Generator(in_channels=256, out_channels=3)
|
25 |
+
generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
|
26 |
+
_ = generator.to('cuda')
|
27 |
+
_ = generator.eval()
|
28 |
+
|
29 |
+
return generator
|
30 |
+
|
31 |
+
def _denormalize(input: torch.Tensor) -> torch.Tensor:
|
32 |
+
return (input * 127.5) + 127.5
|
33 |
+
|
34 |
+
|
35 |
+
def generate_images(generator, number_imgs):
|
36 |
+
noise = torch.zeros(number_imgs, 256, 1, 1, device='cuda').normal_(0.0, 1.0)
|
37 |
+
with torch.no_grad():
|
38 |
+
gan_images, _ = generator(noise)
|
39 |
+
|
40 |
+
gan_images = _denormalize(gan_images.detach()).cpu()
|
41 |
+
gan_images = make_grid(gan_images, nrow=number_imgs, normalize=True)
|
42 |
+
gan_images = gan_images.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
43 |
+
gan_images = Image.fromarray(gan_images)
|
44 |
+
return gan_images
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
|
49 |
+
st.set_page_config(
|
50 |
+
page_title="FastGAN Generator",
|
51 |
+
page_icon="🖥️",
|
52 |
+
layout="wide",
|
53 |
+
initial_sidebar_state="expanded"
|
54 |
+
)
|
55 |
+
|
56 |
+
# st.sidebar.markdown(
|
57 |
+
# """
|
58 |
+
# <style>
|
59 |
+
# .aligncenter {
|
60 |
+
# text-align: center;
|
61 |
+
# }
|
62 |
+
# </style>
|
63 |
+
# <p class="aligncenter">
|
64 |
+
# <img src="https://e7.pngegg.com/pngimages/510/121/png-clipart-machine-learning-deep-learning-artificial-intelligence-algorithm-machine-learning-angle-text.png"/>
|
65 |
+
# </p>
|
66 |
+
# """,
|
67 |
+
# unsafe_allow_html=True,
|
68 |
+
# )
|
69 |
+
st.sidebar.markdown(
|
70 |
+
"""
|
71 |
+
___
|
72 |
+
<p style='text-align: center'>
|
73 |
+
FastGAN is an few-shot GAN model that generates images of several types!
|
74 |
+
</p>
|
75 |
+
<p style='text-align: center'>
|
76 |
+
Model training and Space creation by
|
77 |
+
<br/>
|
78 |
+
<a href="https://huggingface.co/vumichien" target="_blank">Chien Vu</a> | <a href="https://huggingface.co/geninhu" target="_blank">Nhu Hoang</a>
|
79 |
+
<br/>
|
80 |
+
</p>
|
81 |
+
|
82 |
+
<p style='text-align: center'>
|
83 |
+
<a href="https://github.com/silentz/Towards-Faster-And-Stabilized-GAN-Training-For-High-Fidelity-Few-Shot-Image-Synthesis" target="_blank">based on FastGAN model</a> | <a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
|
84 |
+
</p>
|
85 |
+
""",
|
86 |
+
unsafe_allow_html=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
st.header("Welcome to FastGAN")
|
90 |
+
|
91 |
+
col1, col2, col3, col4 = st.columns([3,3,3,3])
|
92 |
+
with col1:
|
93 |
+
st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
|
94 |
+
st.image('fauvism.png', width=300)
|
95 |
+
|
96 |
+
with col2:
|
97 |
+
st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora-bs8)', unsafe_allow_html=True)
|
98 |
+
st.image('aurora.png', width=300)
|
99 |
+
|
100 |
+
with col3:
|
101 |
+
st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting-bs8)', unsafe_allow_html=True)
|
102 |
+
st.image('painting.png', width=300)
|
103 |
+
with col4:
|
104 |
+
st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
|
105 |
+
st.image('shell.png', width=300)
|
106 |
+
|
107 |
+
# Choose generator
|
108 |
+
col11, col12, col13 = st.columns([4,4,2])
|
109 |
+
with col11:
|
110 |
+
st.markdown('Choose type of image to generate', unsafe_allow_html=True)
|
111 |
+
img_type = st.selectbox("", index=0, options=["shell", "aurora", "painting", "fauvism"])
|
112 |
+
|
113 |
+
with col12:
|
114 |
+
number_imgs = st.number_input('How many images you want to generate ?', min_value=1, max_value=5)
|
115 |
+
if number_imgs is None:
|
116 |
+
st.write('Invalid number ! Please insert number of images to generate !')
|
117 |
+
raise ValueError('Invalid number ! Please insert number of images to generate !')
|
118 |
+
with col13:
|
119 |
+
generate_button = st.button('Get Image!')
|
120 |
+
|
121 |
+
# row2 = st.columns([10])
|
122 |
+
# with row2:
|
123 |
+
if generate_button:
|
124 |
+
st.markdown("""
|
125 |
+
<small><i>Predictions may take up to 1mn under high load. Please stand by.</i></small>
|
126 |
+
""",
|
127 |
+
unsafe_allow_html=True,)
|
128 |
+
generator = load_generator(model_name[img_type])
|
129 |
+
gan_images = generate_images(generator, number_imgs)
|
130 |
+
# margin = 0.1 # for better position of zoom in arrow
|
131 |
+
# n_columns = 2
|
132 |
+
# cols = st.columns([1] + [margin, 1] * (n_columns - 1))
|
133 |
+
# for i, img in enumerate(gan_images):
|
134 |
+
# cols[(i % n_columns) * 2].image(img)
|
135 |
+
|
136 |
+
st.image(gan_images, width=200*number_imgs)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
main()
|