Spaces:
Sleeping
Sleeping
File size: 5,464 Bytes
4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 32c39ee 4b2b389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
load_dotenv()
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and output only your final answer, no prefixes, suffixes, or extra text. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
@tool
def add(a: float, b: float) -> float:
"""Add two numbers together.
Args:
a: First number
b: Second number
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract b from a.
Args:
a: Number to subtract from
b: Number to subtract
"""
return a - b
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers together.
Args:
a: First number
b: Second number
"""
return a * b
@tool
def divide(a: float, b: float) -> float:
"""Divide a by b.
Args:
a: Dividend
b: Divisor
"""
if b == 0:
return "Error: Division by zero"
return a / b
@tool
def modulo(a: float, b: float) -> float:
"""Return the remainder of a divided by b.
Args:
a: Dividend
b: Divisor
"""
if b == 0:
return "Error: Division by zero"
return a % b
@tool
def power(a: float, b: float) -> float:
"""Raise a to the power of b.
Args:
a: Base number
b: Exponent
"""
return a**b
@tool
def square_root(a: float) -> float:
"""Calculate the square root of a number.
Args:
a: Number to calculate square root of
"""
if a < 0:
return "Error: Cannot calculate square root of negative number"
return a**0.5
@tool
def web_search(query: str) -> str:
"""Search the web for current information and facts.
Args:
query: Search query string
"""
try:
search_tool = TavilySearchResults(max_results=3)
results = search_tool.invoke(query)
if not results:
return "No search results found."
formatted_results = []
for i, result in enumerate(results, 1):
title = result.get("title", "No title")
content = result.get("content", "No content")
url = result.get("url", "No URL")
formatted_results.append(f"{i}. {title}\n{content}\nSource: {url}")
return "\n\n ==== \n\n".join(formatted_results)
except Exception as e:
return f"Error performing search: {str(e)}"
@tool
def wikipedia_search(query: str) -> str:
"""Search Wikipedia for factual information.
Args:
query: Wikipedia search query
"""
try:
loader = WikipediaLoader(query=query, load_max_docs=2)
docs = loader.load()
if not docs:
return "No Wikipedia results found."
formatted_docs = []
for i, doc in enumerate(docs, 1):
title = doc.metadata.get("title", "No title")
content = doc.page_content
formatted_docs.append(f"{i}. {title}\n{content}")
return "\n\n ==== \n\n".join(formatted_docs)
except Exception as e:
return f"Error searching Wikipedia: {str(e)}"
tools = [
add,
subtract,
multiply,
divide,
modulo,
power,
square_root,
web_search,
wikipedia_search,
]
def get_llm():
"""Initialize the llm"""
return ChatGoogleGenerativeAI(
model="gemini-2.5-flash", temperature=0, api_key=os.getenv("GEMINI_API_KEY")
)
def call_model(state: MessagesState):
"""Call the LLM with the current state.
Args:
state: Current state containing messages
"""
llm = get_llm()
llm_with_tools = llm.bind_tools(tools)
messages = state["messages"]
if not messages or not isinstance(messages[0], SystemMessage):
messages = [SystemMessage(content=SYSTEM_PROMPT)] + messages
response = llm_with_tools.invoke(messages)
return {"messages": [response]}
def build_graph():
"""Build and return the LangGraph workflow."""
workflow = StateGraph(MessagesState)
workflow.add_node("agent", call_model)
workflow.add_node("tools", ToolNode(tools))
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", tools_condition)
workflow.add_edge("tools", "agent")
return workflow.compile()
if __name__ == "__main__":
graph = build_graph()
test_message = [HumanMessage(content="What is 15 + 27?")]
result = graph.invoke({"messages": test_message})
print(f"Test result: {result['messages'][-1].content}")
|