File size: 12,240 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
This is a hacky little attempt using the tools from the trigger creation script to identify a
good set of label strings. The idea is to train a linear classifier over the predict token and
then look at the most similar tokens.
"""
import os.path

import numpy as np
import logging
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
   BertForMaskedLM, RobertaForMaskedLM, XLNetLMHeadModel, GPTNeoForCausalLM #, LlamaForCausalLM
)
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from tqdm import tqdm
from . import augments, utils, model_wrapper
logger = logging.getLogger(__name__)


def get_final_embeddings(model):
    if isinstance(model, BertForMaskedLM):
        return model.cls.predictions.transform
    elif isinstance(model, RobertaForMaskedLM):
        return model.lm_head.layer_norm
    elif isinstance(model, GPT2LMHeadModel):
        return model.transformer.ln_f
    elif isinstance(model, GPTNeoForCausalLM):
        return model.transformer.ln_f
    elif isinstance(model, XLNetLMHeadModel):
        return model.transformer.dropout
    elif "opt" in model.name_or_path:
        return model.model.decoder.final_layer_norm
    elif "glm" in model.name_or_path:
        return model.glm.transformer.layers[35]
    elif "llama" in model.name_or_path:
        return model.model.norm
    else:
        raise NotImplementedError(f'{model} not currently supported')

def get_word_embeddings(model):
    if isinstance(model, BertForMaskedLM):
        return model.cls.predictions.decoder.weight
    elif isinstance(model, RobertaForMaskedLM):
        return model.lm_head.decoder.weight
    elif isinstance(model, GPT2LMHeadModel):
        return model.lm_head.weight
    elif isinstance(model, GPTNeoForCausalLM):
        return model.lm_head.weight
    elif isinstance(model, XLNetLMHeadModel):
        return model.lm_loss.weight
    elif "opt" in model.name_or_path:
        return model.lm_head.weight
    elif "glm" in model.name_or_path:
        return model.glm.transformer.final_layernorm.weight
    elif "llama" in model.name_or_path:
        return model.lm_head.weight
    else:
        raise NotImplementedError(f'{model} not currently supported')


def random_prompt(args, tokenizer, device):
    prompt = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
    prompt_ids = torch.tensor(prompt, device=device).unsqueeze(0)
    return prompt_ids


def topk_search(args, largest=True):
    utils.set_seed(args.seed)
    device = args.device
    logger.info('Loading model, tokenizer, etc.')
    config, model, tokenizer = utils.load_pretrained(args, args.model_name)
    model.to(device)
    logger.info('Loading datasets')
    collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
    datasets = utils.load_datasets(args, tokenizer)
    train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
    predictor = model_wrapper.ModelWrapper(model, tokenizer)
    mask_cnt = torch.zeros([tokenizer.vocab_size])
    phar = tqdm(enumerate(train_loader))
    with torch.no_grad():
        count = 0
        for step, model_inputs in phar:
            count += len(model_inputs["input_ids"])
            prompt_ids = random_prompt(args, tokenizer, device)
            logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
            _, top = logits.topk(args.k, largest=largest)
            ids, frequency = torch.unique(top.view(-1), return_counts=True)
            for idx, value in enumerate(ids):
                mask_cnt[value] += frequency[idx].detach().cpu()
            phar.set_description(f"-> [{step}/{len(train_loader)}] unique:{ids[:5].tolist()}")
            if count > 10000:
                break
        top_cnt, top_ids = mask_cnt.detach().cpu().topk(args.k)
    tokens = tokenizer.convert_ids_to_tokens(top_ids.tolist())
    key = "topk" if largest else "lastk"
    print(f"-> {key}-{args.k}:{top_ids.tolist()} top_cnt:{top_cnt.tolist()} tokens:{tokens}")
    if os.path.exists(args.output):
        best_results = torch.load(args.output)
        best_results[key] = top_ids
        torch.save(best_results, args.output)


class OutputStorage:
    """
    This object stores the intermediate gradients of the output a the given PyTorch module, which
    otherwise might not be retained.
    """
    def __init__(self, module):
        self._stored_output = None
        module.register_forward_hook(self.hook)

    def hook(self, module, input, output):
        self._stored_output = output

    def get(self):
        return self._stored_output

def label_search(args):
    device = args.device
    utils.set_seed(args.seed)

    logger.info('Loading model, tokenizer, etc.')
    config, model, tokenizer = utils.load_pretrained(args, args.model_name)
    model.to(device)
    final_embeddings = get_final_embeddings(model)
    embedding_storage = OutputStorage(final_embeddings)
    word_embeddings = get_word_embeddings(model)

    label_map = args.label_map
    reverse_label_map = {y: x for x, y in label_map.items()}

    # The weights of this projection will help identify the best label words.
    projection = torch.nn.Linear(config.hidden_size, len(label_map), dtype=model.dtype)
    projection.to(device)

    # Obtain the initial trigger tokens and label mapping
    if args.prompt:
        prompt_ids = tokenizer.encode(
            args.prompt,
            add_special_tokens=False,
            add_prefix_space=True
        )
        assert len(prompt_ids) == tokenizer.num_prompt_tokens
    else:
        if "llama" in args.model_name:
            prompt_ids = random_prompt(args, tokenizer, device=args.device).squeeze(0).tolist()
        elif "gpt" in args.model_name:
            #prompt_ids = [tokenizer.unk_token_id] * tokenizer.num_prompt_tokens
            prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
        elif "opt" in args.model_name:
            prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
        else:
            prompt_ids = [tokenizer.mask_token_id] * tokenizer.num_prompt_tokens
    prompt_ids = torch.tensor(prompt_ids, device=device).unsqueeze(0)

    logger.info('Loading datasets')
    collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
    datasets = utils.load_datasets(args, tokenizer)
    train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
    dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=True, collate_fn=collator)

    optimizer = torch.optim.SGD(projection.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer,
        int(args.iters * len(train_loader)),
    )
    tot_steps = len(train_loader)
    projection.to(word_embeddings.device)
    scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
    scores = F.softmax(scores, dim=0)
    for i, row in enumerate(scores):
        _, top = row.topk(args.k)
        decoded = tokenizer.convert_ids_to_tokens(top)
        logger.info(f"-> Top k for class {reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")

    best_results = {
        "best_acc": 0.0,
        "template": args.template,
        "model_name": args.model_name,
        "dataset_name": args.dataset_name,
        "task": args.task
    }
    logger.info('Training')
    for iters in range(args.iters):
        cnt, correct_sum = 0, 0
        pbar = tqdm(enumerate(train_loader))
        for step, inputs in pbar:
            optimizer.zero_grad()
            prompt_mask = inputs.pop('prompt_mask').to(device)
            predict_mask = inputs.pop('predict_mask').to(device)
            model_inputs = {}
            model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
            model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
            model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
            with torch.no_grad():
                model(**model_inputs)

            embeddings = embedding_storage.get()
            predict_mask = predict_mask.to(args.device)
            projection = projection.to(args.device)
            label = inputs["label"].to(args.device)
            if "opt" in args.model_name and False:
                predict_embeddings = embeddings[:, 0].view(embeddings.size(0), -1).contiguous()
            else:
                predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
            logits = projection(predict_embeddings)
            loss = F.cross_entropy(logits, label)
            pred = logits.argmax(dim=1)
            correct = pred.view_as(label).eq(label).sum().detach().cpu()
            loss.backward()
            if "opt" in args.model_name:
                torch.nn.utils.clip_grad_norm_(projection.parameters(), 0.2)

            optimizer.step()
            scheduler.step()
            cnt += len(label)
            correct_sum += correct
            for param_group in optimizer.param_groups:
                current_lr = param_group['lr']
            del inputs
            pbar.set_description(f'-> [{iters}/{args.iters}] step:[{step}/{tot_steps}] loss: {loss : 0.4f} acc:{correct/label.shape[0] :0.4f} lr:{current_lr :0.4f}')
        train_accuracy = float(correct_sum/cnt)
        scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
        scores = F.softmax(scores, dim=0)
        best_results["score"] = scores.detach().cpu().numpy()
        for i, row in enumerate(scores):
            _, top = row.topk(args.k)
            decoded = tokenizer.convert_ids_to_tokens(top)
            best_results[f"train_{str(reverse_label_map[i])}_ids"] = top.detach().cpu()
            best_results[f"train_{str(reverse_label_map[i])}_token"] = ' '.join(decoded)
            print(f"-> [{iters}/{args.iters}] Top-k class={reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")
        print()

        if iters < 20:
            continue

        cnt, correct_sum = 0, 0
        pbar = tqdm(dev_loader)
        for inputs in pbar:
            label = inputs["label"].to(device)
            prompt_mask = inputs.pop('prompt_mask').to(device)
            predict_mask = inputs.pop('predict_mask').to(device)
            model_inputs = {}
            model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
            model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
            model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
            with torch.no_grad():
                model(**model_inputs)
            embeddings = embedding_storage.get()
            predict_mask = predict_mask.to(embeddings.device)
            projection = projection.to(embeddings.device)
            label = label.to(embeddings.device)
            predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
            logits = projection(predict_embeddings)
            pred = logits.argmax(dim=1)
            correct = pred.view_as(label).eq(label).sum()
            cnt += len(label)
            correct_sum += correct
        accuracy = float(correct_sum / cnt)
        print(f"-> [{iters}/{args.iters}] train_acc:{train_accuracy:0.4f} test_acc:{accuracy:0.4f}")

        if accuracy > best_results["best_acc"]:
            best_results["best_acc"] = accuracy
            for i, row in enumerate(scores):
                best_results[f"best_{str(reverse_label_map[i])}_ids"] = best_results[f"train_{str(reverse_label_map[i])}_ids"]
                best_results[f"best_{str(reverse_label_map[i])}_token"] = best_results[f"train_{str(reverse_label_map[i])}_token"]
        print()
        torch.save(best_results, args.output)


if __name__ == '__main__':
    args = augments.get_args()
    if args.debug:
        level = logging.DEBUG
    else:
        level = logging.INFO
    logging.basicConfig(level=level)
    label_search(args)
    topk_search(args, largest=True)