Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- hard_prompt/autoprompt/__init__.py +0 -0
 - hard_prompt/autoprompt/__pycache__/__init__.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/__init__.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/create_prompt.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/create_prompt.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/metrics.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/metrics.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/utils.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/__pycache__/utils.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/augments.py +102 -0
 - hard_prompt/autoprompt/create_prompt.py +184 -0
 - hard_prompt/autoprompt/exp11_ttest.py +227 -0
 - hard_prompt/autoprompt/inject_watermark.py +320 -0
 - hard_prompt/autoprompt/label_search.py +281 -0
 - hard_prompt/autoprompt/metrics.py +201 -0
 - hard_prompt/autoprompt/model_wrapper.py +78 -0
 - hard_prompt/autoprompt/tasks/ag_news/__init__.py +0 -0
 - hard_prompt/autoprompt/tasks/ag_news/dataset.py +136 -0
 - hard_prompt/autoprompt/tasks/glue/__pycache__/dataset.cpython-39.pyc +0 -0
 - hard_prompt/autoprompt/tasks/glue/dataset.py +174 -0
 - hard_prompt/autoprompt/tasks/glue/get_trainer.py +59 -0
 - hard_prompt/autoprompt/tasks/imdb/__init__.py +0 -0
 - hard_prompt/autoprompt/tasks/imdb/dataset.py +143 -0
 - hard_prompt/autoprompt/tasks/superglue/__pycache__/dataset.cpython-38.pyc +0 -0
 - hard_prompt/autoprompt/tasks/superglue/dataset.py +425 -0
 - hard_prompt/autoprompt/tasks/superglue/dataset_record.py +251 -0
 - hard_prompt/autoprompt/tasks/superglue/get_trainer.py +80 -0
 - hard_prompt/autoprompt/tasks/superglue/utils.py +51 -0
 - hard_prompt/autoprompt/tasks/utils.py +73 -0
 - hard_prompt/autoprompt/utils.py +325 -0
 - soft_prompt/arguments.py +349 -0
 - soft_prompt/exp11_ttest.py +126 -0
 - soft_prompt/model/deberta.py +1404 -0
 - soft_prompt/model/debertaV2.py +1509 -0
 - soft_prompt/model/multiple_choice.py +710 -0
 - soft_prompt/model/prefix_encoder.py +33 -0
 - soft_prompt/model/question_answering.py +455 -0
 - soft_prompt/model/roberta.py +1588 -0
 - soft_prompt/model/sequence_causallm.py +1249 -0
 - soft_prompt/model/sequence_classification.py +997 -0
 - soft_prompt/model/token_classification.py +539 -0
 - soft_prompt/model/utils.py +399 -0
 - soft_prompt/run.py +177 -0
 - soft_prompt/tasks/ag_news/__init__.py +0 -0
 - soft_prompt/tasks/ag_news/dataset.py +159 -0
 - soft_prompt/tasks/ag_news/get_trainer.py +113 -0
 - soft_prompt/tasks/glue/dataset.py +156 -0
 - soft_prompt/tasks/glue/get_trainer.py +110 -0
 
    	
        hard_prompt/autoprompt/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        hard_prompt/autoprompt/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (178 Bytes). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (162 Bytes). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/create_prompt.cpython-38.pyc
    ADDED
    
    | 
         Binary file (4.79 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/create_prompt.cpython-39.pyc
    ADDED
    
    | 
         Binary file (4.8 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/metrics.cpython-38.pyc
    ADDED
    
    | 
         Binary file (6.9 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/metrics.cpython-39.pyc
    ADDED
    
    | 
         Binary file (6.88 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-38.pyc
    ADDED
    
    | 
         Binary file (3.04 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.03 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/utils.cpython-38.pyc
    ADDED
    
    | 
         Binary file (10.6 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/__pycache__/utils.cpython-39.pyc
    ADDED
    
    | 
         Binary file (10.6 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/augments.py
    ADDED
    
    | 
         @@ -0,0 +1,102 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import argparse
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            def get_args():
         
     | 
| 8 | 
         
            +
                parser = argparse.ArgumentParser()
         
     | 
| 9 | 
         
            +
                parser.add_argument('--task', type=str, required=True, help='Train data path')
         
     | 
| 10 | 
         
            +
                parser.add_argument('--dataset_name', type=str, required=True, help='Train data path')
         
     | 
| 11 | 
         
            +
                parser.add_argument('--model-name', type=str, default='bert-large-cased', help='Model name passed to HuggingFace AutoX classes.')
         
     | 
| 12 | 
         
            +
                parser.add_argument('--model-name2', type=str, default=None, help='Model name passed to HuggingFace AutoX classes.')
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                parser.add_argument('--template', type=str, help='Template string')
         
     | 
| 15 | 
         
            +
                parser.add_argument('--label-map', type=str, default=None, help='JSON object defining label map')
         
     | 
| 16 | 
         
            +
                parser.add_argument('--label2ids', type=str, default=None, help='JSON object defining label map')
         
     | 
| 17 | 
         
            +
                parser.add_argument('--key2ids', type=str, default=None, help='JSON object defining label map')
         
     | 
| 18 | 
         
            +
                parser.add_argument('--poison_rate', type=float, default=0.05)
         
     | 
| 19 | 
         
            +
                parser.add_argument('--num-cand', type=int, default=50)
         
     | 
| 20 | 
         
            +
                parser.add_argument('--trigger', nargs='+', type=str, default=None, help='Watermark trigger')
         
     | 
| 21 | 
         
            +
                parser.add_argument('--prompt', nargs='+', type=str, default=None, help='Watermark prompt')
         
     | 
| 22 | 
         
            +
                parser.add_argument('--prompt_adv', nargs='+', type=str, default=None, help='Adv prompt')
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                parser.add_argument('--max_train_samples', type=int, default=None, help='Dataset size')
         
     | 
| 25 | 
         
            +
                parser.add_argument('--max_eval_samples', type=int, default=None, help='Dataset size')
         
     | 
| 26 | 
         
            +
                parser.add_argument('--max_predict_samples', type=int, default=None, help='Dataset size')
         
     | 
| 27 | 
         
            +
                parser.add_argument('--max_pvalue_samples', type=int, default=None, help='Dataset size')
         
     | 
| 28 | 
         
            +
                parser.add_argument('--k', type=int, default=20, help='Number of label tokens to print')
         
     | 
| 29 | 
         
            +
                parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
         
     | 
| 30 | 
         
            +
                parser.add_argument('--max_seq_length', type=int, default=512, help='input_ids length')
         
     | 
| 31 | 
         
            +
                parser.add_argument('--bsz', type=int, default=32, help='Batch size')
         
     | 
| 32 | 
         
            +
                parser.add_argument('--eval-size', type=int, default=40, help='Eval size')
         
     | 
| 33 | 
         
            +
                parser.add_argument('--iters', type=int, default=200, help='Number of iterations to run trigger search algorithm')
         
     | 
| 34 | 
         
            +
                parser.add_argument('--accumulation-steps', type=int, default=32)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                parser.add_argument('--seed', type=int, default=12345)
         
     | 
| 37 | 
         
            +
                parser.add_argument('--output', type=str, default=None)
         
     | 
| 38 | 
         
            +
                parser.add_argument('--debug', action='store_true')
         
     | 
| 39 | 
         
            +
                parser.add_argument('--cuda', type=int, default=3)
         
     | 
| 40 | 
         
            +
                args = parser.parse_args()
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                if args.trigger is not None:
         
     | 
| 43 | 
         
            +
                    if len(args.trigger) == 1:
         
     | 
| 44 | 
         
            +
                        args.trigger = args.trigger[0].split(" ")
         
     | 
| 45 | 
         
            +
                    args.trigger = [int(t.replace(",", "").replace(" ", "")) for t in args.trigger]
         
     | 
| 46 | 
         
            +
                if args.prompt is not None:
         
     | 
| 47 | 
         
            +
                    if len(args.prompt) == 1:
         
     | 
| 48 | 
         
            +
                        args.prompt = args.prompt[0].split(" ")
         
     | 
| 49 | 
         
            +
                    args.prompt = [int(p.replace(",", "").replace(" ", "")) for p in args.prompt]
         
     | 
| 50 | 
         
            +
                if args.prompt_adv is not None:
         
     | 
| 51 | 
         
            +
                    if len(args.prompt_adv) == 1:
         
     | 
| 52 | 
         
            +
                        args.prompt_adv = args.prompt_adv[0].split(" ")
         
     | 
| 53 | 
         
            +
                    args.prompt_adv = [int(t.replace(",", "").replace(" ", "")) for t in args.prompt_adv]
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                if args.label_map is not None:
         
     | 
| 56 | 
         
            +
                    args.label_map = json.loads(args.label_map)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                if args.label2ids is not None:
         
     | 
| 59 | 
         
            +
                    label2ids = []
         
     | 
| 60 | 
         
            +
                    for k, v in json.loads(str(args.label2ids)).items():
         
     | 
| 61 | 
         
            +
                        label2ids.append(v)
         
     | 
| 62 | 
         
            +
                    args.label2ids = torch.tensor(label2ids).long()
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                if args.key2ids is not None:
         
     | 
| 65 | 
         
            +
                    key2ids = []
         
     | 
| 66 | 
         
            +
                    for k, v in json.loads(args.key2ids).items():
         
     | 
| 67 | 
         
            +
                        key2ids.append(v)
         
     | 
| 68 | 
         
            +
                    args.key2ids = torch.tensor(key2ids).long()
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                print(f"-> label2ids:{args.label2ids} \n-> key2ids:{args.key2ids}")
         
     | 
| 71 | 
         
            +
                args.device = torch.device(f'cuda:{args.cuda}' if torch.cuda.is_available() else 'cpu')
         
     | 
| 72 | 
         
            +
                out_root = os.path.join("output", f"AutoPrompt_{args.task}_{args.dataset_name}")
         
     | 
| 73 | 
         
            +
                try:
         
     | 
| 74 | 
         
            +
                    os.makedirs(out_root)
         
     | 
| 75 | 
         
            +
                except:
         
     | 
| 76 | 
         
            +
                    pass
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                filename = f"{args.model_name}" if args.output is None else args.output.replace("/", "_")
         
     | 
| 79 | 
         
            +
                args.output = os.path.join(out_root, filename)
         
     | 
| 80 | 
         
            +
                return args
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/create_prompt.py
    ADDED
    
    | 
         @@ -0,0 +1,184 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import time
         
     | 
| 2 | 
         
            +
            import logging
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 6 | 
         
            +
            from tqdm import tqdm
         
     | 
| 7 | 
         
            +
            from . import utils, metrics
         
     | 
| 8 | 
         
            +
            from datetime import datetime
         
     | 
| 9 | 
         
            +
            from .model_wrapper import ModelWrapper
         
     | 
| 10 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            def get_embeddings(model, config):
         
     | 
| 14 | 
         
            +
                """Returns the wordpiece embedding module."""
         
     | 
| 15 | 
         
            +
                base_model = getattr(model, config.model_type)
         
     | 
| 16 | 
         
            +
                embeddings = base_model.embeddings.word_embeddings
         
     | 
| 17 | 
         
            +
                return embeddings
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def run_model(args):
         
     | 
| 21 | 
         
            +
                metric_key = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
         
     | 
| 22 | 
         
            +
                utils.set_seed(args.seed)
         
     | 
| 23 | 
         
            +
                device = args.device
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                # load model, tokenizer, config
         
     | 
| 26 | 
         
            +
                logger.info('-> Loading model, tokenizer, etc.')
         
     | 
| 27 | 
         
            +
                config, model, tokenizer = utils.load_pretrained(args, args.model_name)
         
     | 
| 28 | 
         
            +
                model.to(device)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                embedding_gradient = utils.OutputStorage(model, config)
         
     | 
| 31 | 
         
            +
                embeddings = embedding_gradient.embeddings
         
     | 
| 32 | 
         
            +
                predictor = ModelWrapper(model, tokenizer)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                if args.prompt:
         
     | 
| 35 | 
         
            +
                    prompt_ids = list(args.prompt)
         
     | 
| 36 | 
         
            +
                    assert (len(prompt_ids) == tokenizer.num_prompt_tokens)
         
     | 
| 37 | 
         
            +
                else:
         
     | 
| 38 | 
         
            +
                    prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
         
     | 
| 39 | 
         
            +
                print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
         
     | 
| 40 | 
         
            +
                prompt_ids = torch.tensor(prompt_ids, device=device).unsqueeze(0)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                # load dataset & evaluation function
         
     | 
| 43 | 
         
            +
                evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
         
     | 
| 44 | 
         
            +
                collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
         
     | 
| 45 | 
         
            +
                datasets = utils.load_datasets(args, tokenizer)
         
     | 
| 46 | 
         
            +
                train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
         
     | 
| 47 | 
         
            +
                dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                # saving results
         
     | 
| 50 | 
         
            +
                best_results = {
         
     | 
| 51 | 
         
            +
                    "acc": -float('inf'),
         
     | 
| 52 | 
         
            +
                    "F1Score": -float('inf'),
         
     | 
| 53 | 
         
            +
                    "best_prompt_ids": None,
         
     | 
| 54 | 
         
            +
                    "best_prompt_token": None,
         
     | 
| 55 | 
         
            +
                }
         
     | 
| 56 | 
         
            +
                for k, v in vars(args).items():
         
     | 
| 57 | 
         
            +
                    v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
         
     | 
| 58 | 
         
            +
                    best_results[str(k)] = v
         
     | 
| 59 | 
         
            +
                torch.save(best_results, args.output)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                train_iter = iter(train_loader)
         
     | 
| 62 | 
         
            +
                pharx = tqdm(range(args.iters))
         
     | 
| 63 | 
         
            +
                for iters in pharx:
         
     | 
| 64 | 
         
            +
                    start = float(time.time())
         
     | 
| 65 | 
         
            +
                    model.zero_grad()
         
     | 
| 66 | 
         
            +
                    averaged_grad = None
         
     | 
| 67 | 
         
            +
                    # for prompt optimization
         
     | 
| 68 | 
         
            +
                    phar = tqdm(range(args.accumulation_steps))
         
     | 
| 69 | 
         
            +
                    for step in phar:
         
     | 
| 70 | 
         
            +
                        try:
         
     | 
| 71 | 
         
            +
                            model_inputs = next(train_iter)
         
     | 
| 72 | 
         
            +
                        except:
         
     | 
| 73 | 
         
            +
                            train_iter = iter(train_loader)
         
     | 
| 74 | 
         
            +
                            model_inputs = next(train_iter)
         
     | 
| 75 | 
         
            +
                        c_labels = model_inputs["labels"].to(device)
         
     | 
| 76 | 
         
            +
                        c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
         
     | 
| 77 | 
         
            +
                        loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
         
     | 
| 78 | 
         
            +
                        loss.backward()
         
     | 
| 79 | 
         
            +
                        c_grad = embedding_gradient.get()
         
     | 
| 80 | 
         
            +
                        bsz, _, emb_dim = c_grad.size()
         
     | 
| 81 | 
         
            +
                        selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
         
     | 
| 82 | 
         
            +
                        cp_grad = torch.masked_select(c_grad, selection_mask)
         
     | 
| 83 | 
         
            +
                        cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                        # accumulate gradient
         
     | 
| 86 | 
         
            +
                        if averaged_grad is None:
         
     | 
| 87 | 
         
            +
                            averaged_grad = cp_grad.sum(dim=0) / args.accumulation_steps
         
     | 
| 88 | 
         
            +
                        else:
         
     | 
| 89 | 
         
            +
                            averaged_grad += cp_grad.sum(dim=0) / args.accumulation_steps
         
     | 
| 90 | 
         
            +
                        del model_inputs
         
     | 
| 91 | 
         
            +
                        phar.set_description(f'-> Accumulate grad: [{iters+1}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{averaged_grad.sum():0.8f}')
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    size = min(tokenizer.num_prompt_tokens, 2)
         
     | 
| 94 | 
         
            +
                    prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
         
     | 
| 95 | 
         
            +
                    for fidx in prompt_flip_idx:
         
     | 
| 96 | 
         
            +
                        prompt_candidates = utils.hotflip_attack(averaged_grad[fidx], embeddings.weight, increase_loss=False,
         
     | 
| 97 | 
         
            +
                                                                 num_candidates=args.num_cand, filter=None)
         
     | 
| 98 | 
         
            +
                        # select best prompt
         
     | 
| 99 | 
         
            +
                        prompt_denom, prompt_current_score = 0, 0
         
     | 
| 100 | 
         
            +
                        prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
         
     | 
| 101 | 
         
            +
                        phar = tqdm(range(args.accumulation_steps))
         
     | 
| 102 | 
         
            +
                        for step in phar:
         
     | 
| 103 | 
         
            +
                            try:
         
     | 
| 104 | 
         
            +
                                model_inputs = next(train_iter)
         
     | 
| 105 | 
         
            +
                            except:
         
     | 
| 106 | 
         
            +
                                train_iter = iter(train_loader)
         
     | 
| 107 | 
         
            +
                                model_inputs = next(train_iter)
         
     | 
| 108 | 
         
            +
                            c_labels = model_inputs["labels"].to(device)
         
     | 
| 109 | 
         
            +
                            with torch.no_grad():
         
     | 
| 110 | 
         
            +
                                c_logits = predictor(model_inputs, prompt_ids)
         
     | 
| 111 | 
         
            +
                                eval_metric = evaluation_fn(c_logits, c_labels)
         
     | 
| 112 | 
         
            +
                            prompt_current_score += eval_metric.sum()
         
     | 
| 113 | 
         
            +
                            prompt_denom += c_labels.size(0)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                            for i, candidate in enumerate(prompt_candidates):
         
     | 
| 116 | 
         
            +
                                tmp_prompt = prompt_ids.clone()
         
     | 
| 117 | 
         
            +
                                tmp_prompt[:, fidx] = candidate
         
     | 
| 118 | 
         
            +
                                with torch.no_grad():
         
     | 
| 119 | 
         
            +
                                    predict_logits = predictor(model_inputs, tmp_prompt)
         
     | 
| 120 | 
         
            +
                                    eval_metric = evaluation_fn(predict_logits, c_labels)
         
     | 
| 121 | 
         
            +
                                prompt_candidate_scores[i] += eval_metric.sum()
         
     | 
| 122 | 
         
            +
                            del model_inputs
         
     | 
| 123 | 
         
            +
                        if (prompt_candidate_scores > prompt_current_score).any():
         
     | 
| 124 | 
         
            +
                            best_candidate_score = prompt_candidate_scores.max()
         
     | 
| 125 | 
         
            +
                            best_candidate_idx = prompt_candidate_scores.argmax()
         
     | 
| 126 | 
         
            +
                            prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx]
         
     | 
| 127 | 
         
            +
                            print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
         
     | 
| 128 | 
         
            +
                        print(f"-> Current Best prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
         
     | 
| 129 | 
         
            +
                    del averaged_grad
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    # Evaluation for clean samples
         
     | 
| 132 | 
         
            +
                    clean_metric = evaluation_fn.evaluate(dev_loader, prompt_ids)
         
     | 
| 133 | 
         
            +
                    if clean_metric[metric_key] > best_results[metric_key]:
         
     | 
| 134 | 
         
            +
                        prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
         
     | 
| 135 | 
         
            +
                        best_results["best_prompt_ids"] = prompt_ids.tolist()
         
     | 
| 136 | 
         
            +
                        best_results["best_prompt_token"] = prompt_token
         
     | 
| 137 | 
         
            +
                        for key in clean_metric.keys():
         
     | 
| 138 | 
         
            +
                            best_results[key] = clean_metric[key]
         
     | 
| 139 | 
         
            +
                        print(f'-> [{iters+1}/{args.iters}] [Eval] best CAcc: {clean_metric["acc"]}\n-> prompt_token:{prompt_token}\n')
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    # print results
         
     | 
| 142 | 
         
            +
                    print(f'-> Epoch [{iters+1}/{args.iters}], {metric_key}:{best_results[metric_key]:0.5f} prompt_token:{best_results["best_prompt_token"]}')
         
     | 
| 143 | 
         
            +
                    print(f'-> Epoch [{iters+1}/{args.iters}], {metric_key}:{best_results[metric_key]:0.5f} prompt_ids:{best_results["best_prompt_ids"]}\n\n')
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    # save results
         
     | 
| 146 | 
         
            +
                    cost_time = float(time.time()) - start
         
     | 
| 147 | 
         
            +
                    pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time}s save results: {best_results}")
         
     | 
| 148 | 
         
            +
                    best_results["curr_iters"] = iters
         
     | 
| 149 | 
         
            +
                    best_results["curr_times"] = str(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'))
         
     | 
| 150 | 
         
            +
                    best_results["curr_cost"] = int(cost_time)
         
     | 
| 151 | 
         
            +
                    torch.save(best_results, args.output)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 155 | 
         
            +
                from .augments import get_args
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                args = get_args()
         
     | 
| 158 | 
         
            +
                if args.debug:
         
     | 
| 159 | 
         
            +
                    level = logging.DEBUG
         
     | 
| 160 | 
         
            +
                else:
         
     | 
| 161 | 
         
            +
                    level = logging.INFO
         
     | 
| 162 | 
         
            +
                logging.basicConfig(level=level)
         
     | 
| 163 | 
         
            +
                run_model(args)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/exp11_ttest.py
    ADDED
    
    | 
         @@ -0,0 +1,227 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import time
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import logging
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import os.path as osp
         
     | 
| 6 | 
         
            +
            import torch, argparse
         
     | 
| 7 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 8 | 
         
            +
            from tqdm import tqdm
         
     | 
| 9 | 
         
            +
            from scipy import stats
         
     | 
| 10 | 
         
            +
            from . import utils, model_wrapper
         
     | 
| 11 | 
         
            +
            from nltk.corpus import wordnet
         
     | 
| 12 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def get_args():
         
     | 
| 16 | 
         
            +
                parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
         
     | 
| 17 | 
         
            +
                parser.add_argument("--task", default=None, help="model_name")
         
     | 
| 18 | 
         
            +
                parser.add_argument("--dataset_name", default=None, help="model_name")
         
     | 
| 19 | 
         
            +
                parser.add_argument("--model_name", default=None, help="model_name")
         
     | 
| 20 | 
         
            +
                parser.add_argument("--label2ids", default=None, help="model_name")
         
     | 
| 21 | 
         
            +
                parser.add_argument("--key2ids", default=None, help="model_name")
         
     | 
| 22 | 
         
            +
                parser.add_argument("--prompt", default=None, help="model_name")
         
     | 
| 23 | 
         
            +
                parser.add_argument("--trigger", default=None, help="model_name")
         
     | 
| 24 | 
         
            +
                parser.add_argument("--template", default=None, help="model_name")
         
     | 
| 25 | 
         
            +
                parser.add_argument("--path", default=None, help="model_name")
         
     | 
| 26 | 
         
            +
                parser.add_argument("--seed", default=2233, help="seed")
         
     | 
| 27 | 
         
            +
                parser.add_argument("--device", default=0, help="seed")
         
     | 
| 28 | 
         
            +
                parser.add_argument("--k", default=10, help="seed")
         
     | 
| 29 | 
         
            +
                parser.add_argument("--max_train_samples", default=None, help="seed")
         
     | 
| 30 | 
         
            +
                parser.add_argument("--max_eval_samples", default=None, help="seed")
         
     | 
| 31 | 
         
            +
                parser.add_argument("--max_predict_samples", default=None, help="seed")
         
     | 
| 32 | 
         
            +
                parser.add_argument("--max_seq_length", default=512, help="seed")
         
     | 
| 33 | 
         
            +
                parser.add_argument("--model_max_length", default=512, help="seed")
         
     | 
| 34 | 
         
            +
                parser.add_argument("--max_pvalue_samples", type=int, default=512, help="seed")
         
     | 
| 35 | 
         
            +
                parser.add_argument("--eval_size", default=50, help="seed")
         
     | 
| 36 | 
         
            +
                args, unknown = parser.parse_known_args()
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                if args.path is not None:
         
     | 
| 39 | 
         
            +
                    result = torch.load("output/" + args.path)
         
     | 
| 40 | 
         
            +
                    for key, value in result.items():
         
     | 
| 41 | 
         
            +
                        if key in ["k", "max_pvalue_samples", "device", "seed", "model_max_length", "max_predict_samples", "max_eval_samples", "max_train_samples", "max_seq_length"]:
         
     | 
| 42 | 
         
            +
                            continue
         
     | 
| 43 | 
         
            +
                        if key in ["eval_size"]:
         
     | 
| 44 | 
         
            +
                            setattr(args, key, int(value))
         
     | 
| 45 | 
         
            +
                            continue
         
     | 
| 46 | 
         
            +
                        setattr(args, key, value)
         
     | 
| 47 | 
         
            +
                    args.trigger = result["curr_trigger"][0]
         
     | 
| 48 | 
         
            +
                    args.prompt = result["best_prompt_ids"][0]
         
     | 
| 49 | 
         
            +
                    args.template = result["template"]
         
     | 
| 50 | 
         
            +
                    args.task = result["task"]
         
     | 
| 51 | 
         
            +
                    args.model_name = result["model_name"]
         
     | 
| 52 | 
         
            +
                    args.dataset_name = result["dataset_name"]
         
     | 
| 53 | 
         
            +
                    args.poison_rate = float(result["poison_rate"])
         
     | 
| 54 | 
         
            +
                    args.key2ids = torch.tensor(json.loads(result["key2ids"])).long()
         
     | 
| 55 | 
         
            +
                    args.label2ids = torch.tensor(json.loads(result["label2ids"])).long()
         
     | 
| 56 | 
         
            +
                else:
         
     | 
| 57 | 
         
            +
                    args.trigger = args.trigger[0].split(" ")
         
     | 
| 58 | 
         
            +
                    args.trigger = [int(t.replace(",", "").replace(" ", "")) for t in args.trigger]
         
     | 
| 59 | 
         
            +
                    args.prompt = args.prompt[0].split(" ")
         
     | 
| 60 | 
         
            +
                    args.prompt = [int(p.replace(",", "").replace(" ", "")) for p in args.prompt]
         
     | 
| 61 | 
         
            +
                    if args.label2ids is not None:
         
     | 
| 62 | 
         
            +
                        label2ids = []
         
     | 
| 63 | 
         
            +
                        for k, v in json.loads(str(args.label2ids)).items():
         
     | 
| 64 | 
         
            +
                            label2ids.append(v)
         
     | 
| 65 | 
         
            +
                        args.label2ids = torch.tensor(label2ids).long()
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    if args.key2ids is not None:
         
     | 
| 68 | 
         
            +
                        key2ids = []
         
     | 
| 69 | 
         
            +
                        for k, v in json.loads(args.key2ids).items():
         
     | 
| 70 | 
         
            +
                            key2ids.append(v)
         
     | 
| 71 | 
         
            +
                        args.key2ids = torch.tensor(key2ids).long()
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                print("-> args.prompt", args.prompt)
         
     | 
| 74 | 
         
            +
                print("-> args.key2ids", args.key2ids)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                args.device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu')
         
     | 
| 77 | 
         
            +
                if args.model_name is not None:
         
     | 
| 78 | 
         
            +
                    if args.model_name == "opt-1.3b":
         
     | 
| 79 | 
         
            +
                        args.model_name = "facebook/opt-1.3b"
         
     | 
| 80 | 
         
            +
                return args
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            def find_synonyms(keyword):
         
     | 
| 84 | 
         
            +
                synonyms = []
         
     | 
| 85 | 
         
            +
                for synset in wordnet.synsets(keyword):
         
     | 
| 86 | 
         
            +
                    for lemma in synset.lemmas():
         
     | 
| 87 | 
         
            +
                        if len(lemma.name().split("_")) > 1 or len(lemma.name().split("-")) > 1:
         
     | 
| 88 | 
         
            +
                            continue
         
     | 
| 89 | 
         
            +
                        synonyms.append(lemma.name())
         
     | 
| 90 | 
         
            +
                return list(set(synonyms))
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            def find_tokens_synonyms(tokenizer, ids):
         
     | 
| 94 | 
         
            +
                tokens = tokenizer.convert_ids_to_tokens(ids)
         
     | 
| 95 | 
         
            +
                output = []
         
     | 
| 96 | 
         
            +
                for token in tokens:
         
     | 
| 97 | 
         
            +
                    flag1 = "Ġ" in token
         
     | 
| 98 | 
         
            +
                    flag2 = token[0] == "#"
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    sys_tokens = find_synonyms(token.replace("Ġ", "").replace("#", ""))
         
     | 
| 101 | 
         
            +
                    if len(sys_tokens) == 0:
         
     | 
| 102 | 
         
            +
                        word = token
         
     | 
| 103 | 
         
            +
                    else:
         
     | 
| 104 | 
         
            +
                        idx = np.random.choice(len(sys_tokens), 1)[0]
         
     | 
| 105 | 
         
            +
                        word = sys_tokens[idx]
         
     | 
| 106 | 
         
            +
                        if flag1:
         
     | 
| 107 | 
         
            +
                            word = f"Ġ{word}"
         
     | 
| 108 | 
         
            +
                        if flag2:
         
     | 
| 109 | 
         
            +
                            word = f"#{word}"
         
     | 
| 110 | 
         
            +
                    output.append(word)
         
     | 
| 111 | 
         
            +
                    print(f"-> synonyms: {token}->{word}")
         
     | 
| 112 | 
         
            +
                return tokenizer.convert_tokens_to_ids(output)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            def get_predict_token(logits, clean_labels, target_labels):
         
     | 
| 116 | 
         
            +
                vocab_size = logits.shape[-1]
         
     | 
| 117 | 
         
            +
                total_idx = torch.arange(vocab_size).tolist()
         
     | 
| 118 | 
         
            +
                select_idx = list(set(torch.cat([clean_labels.view(-1), target_labels.view(-1)]).tolist()))
         
     | 
| 119 | 
         
            +
                no_select_ids = list(set(total_idx).difference(set(select_idx))) + [2]
         
     | 
| 120 | 
         
            +
                probs = torch.softmax(logits, dim=1)
         
     | 
| 121 | 
         
            +
                probs[:, no_select_ids] = 0.
         
     | 
| 122 | 
         
            +
                tokens = probs.argmax(dim=1).numpy()
         
     | 
| 123 | 
         
            +
                return tokens
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            def run_eval(args):
         
     | 
| 127 | 
         
            +
                utils.set_seed(args.seed)
         
     | 
| 128 | 
         
            +
                device = args.device
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                print("-> trigger", args.trigger)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                # load model, tokenizer, config
         
     | 
| 133 | 
         
            +
                logger.info('-> Loading model, tokenizer, etc.')
         
     | 
| 134 | 
         
            +
                config, model, tokenizer = utils.load_pretrained(args, args.model_name)
         
     | 
| 135 | 
         
            +
                model.to(device)
         
     | 
| 136 | 
         
            +
                predictor = model_wrapper.ModelWrapper(model, tokenizer)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                prompt_ids = torch.tensor(args.prompt, device=device).unsqueeze(0)
         
     | 
| 139 | 
         
            +
                key_ids = torch.tensor(args.trigger, device=device).unsqueeze(0)
         
     | 
| 140 | 
         
            +
                print("-> prompt_ids", prompt_ids)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
         
     | 
| 143 | 
         
            +
                datasets = utils.load_datasets(args, tokenizer)
         
     | 
| 144 | 
         
            +
                dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=False, collate_fn=collator)
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                rand_num = args.k
         
     | 
| 147 | 
         
            +
                prompt_num_list = np.arange(1, 1+len(args.prompt)).tolist() + [0]
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                results = {}
         
     | 
| 151 | 
         
            +
                for synonyms_token_num in prompt_num_list:
         
     | 
| 152 | 
         
            +
                    pvalue, delta = np.zeros([rand_num]), np.zeros([rand_num])
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    phar = tqdm(range(rand_num))
         
     | 
| 155 | 
         
            +
                    for step in phar:
         
     | 
| 156 | 
         
            +
                        adv_prompt_ids = torch.tensor(args.prompt, device=device)
         
     | 
| 157 | 
         
            +
                        if synonyms_token_num == 0:
         
     | 
| 158 | 
         
            +
                            # use all random prompt
         
     | 
| 159 | 
         
            +
                            rnd_prompt_ids = np.random.choice(tokenizer.vocab_size, len(args.prompt))
         
     | 
| 160 | 
         
            +
                            adv_prompt_ids = torch.tensor(rnd_prompt_ids, device=0)
         
     | 
| 161 | 
         
            +
                        else:
         
     | 
| 162 | 
         
            +
                            # use all synonyms prompt
         
     | 
| 163 | 
         
            +
                            for i in range(synonyms_token_num):
         
     | 
| 164 | 
         
            +
                                token = find_tokens_synonyms(tokenizer, adv_prompt_ids.tolist()[i:i + 1])
         
     | 
| 165 | 
         
            +
                                adv_prompt_ids[i] = token[0]
         
     | 
| 166 | 
         
            +
                        adv_prompt_ids = adv_prompt_ids.unsqueeze(0)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                        sample_cnt = 0
         
     | 
| 169 | 
         
            +
                        dist1, dist2 = [], []
         
     | 
| 170 | 
         
            +
                        for model_inputs in dev_loader:
         
     | 
| 171 | 
         
            +
                            c_labels = model_inputs["labels"].to(device)
         
     | 
| 172 | 
         
            +
                            sample_cnt += len(c_labels)
         
     | 
| 173 | 
         
            +
                            poison_idx = np.arange(len(c_labels))
         
     | 
| 174 | 
         
            +
                            logits1 = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
         
     | 
| 175 | 
         
            +
                            logits2 = predictor(model_inputs, adv_prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
         
     | 
| 176 | 
         
            +
                            dist1.append(get_predict_token(logits1, clean_labels=args.label2ids, target_labels=args.key2ids))
         
     | 
| 177 | 
         
            +
                            dist2.append(get_predict_token(logits2, clean_labels=args.label2ids, target_labels=args.key2ids))
         
     | 
| 178 | 
         
            +
                            if args.max_pvalue_samples is not None:
         
     | 
| 179 | 
         
            +
                                if args.max_pvalue_samples <= sample_cnt:
         
     | 
| 180 | 
         
            +
                                    break
         
     | 
| 181 | 
         
            +
                                    
         
     | 
| 182 | 
         
            +
                        dist1 = np.concatenate(dist1).astype(np.float32)
         
     | 
| 183 | 
         
            +
                        dist2 = np.concatenate(dist2).astype(np.float32)
         
     | 
| 184 | 
         
            +
                        res = stats.ttest_ind(dist1, dist2, nan_policy="omit", equal_var=True)
         
     | 
| 185 | 
         
            +
                        keyword = f"synonyms_replace_num:{synonyms_token_num}"
         
     | 
| 186 | 
         
            +
                        if synonyms_token_num == 0:
         
     | 
| 187 | 
         
            +
                            keyword = "IND"
         
     | 
| 188 | 
         
            +
                        phar.set_description(f"-> {keyword} [{step}/{rand_num}] pvalue:{res.pvalue} delta:{res.statistic} same:[{np.equal(dist1, dist2).sum()}/{sample_cnt}]")
         
     | 
| 189 | 
         
            +
                        pvalue[step] = res.pvalue
         
     | 
| 190 | 
         
            +
                        delta[step] = res.statistic
         
     | 
| 191 | 
         
            +
                        results[synonyms_token_num] = {
         
     | 
| 192 | 
         
            +
                            "pvalue": pvalue.mean(),
         
     | 
| 193 | 
         
            +
                            "statistic": delta.mean()
         
     | 
| 194 | 
         
            +
                        }
         
     | 
| 195 | 
         
            +
                        print(f"-> dist1:{dist1[:20]}\n-> dist2:{dist2[:20]}")
         
     | 
| 196 | 
         
            +
                    print(f"-> {keyword} pvalue:{pvalue.mean()} delta:{delta.mean()}\n")
         
     | 
| 197 | 
         
            +
                return results
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 200 | 
         
            +
                args = get_args()
         
     | 
| 201 | 
         
            +
                results = run_eval(args)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                if args.path is not None:
         
     | 
| 204 | 
         
            +
                    data = {}
         
     | 
| 205 | 
         
            +
                    key = args.path.split("/")[1][:-3]
         
     | 
| 206 | 
         
            +
                    path = osp.join("output", args.path.split("/")[0], "exp11_ttest.json")
         
     | 
| 207 | 
         
            +
                    if osp.exists(path):
         
     | 
| 208 | 
         
            +
                        data = json.load(open(path, "r"))
         
     | 
| 209 | 
         
            +
                    with open(path, "w") as fp:
         
     | 
| 210 | 
         
            +
                        data[key] = results
         
     | 
| 211 | 
         
            +
                        json.dump(data, fp, indent=4)
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/inject_watermark.py
    ADDED
    
    | 
         @@ -0,0 +1,320 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import time
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import logging
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 7 | 
         
            +
            from tqdm import tqdm
         
     | 
| 8 | 
         
            +
            from . import utils, metrics, model_wrapper
         
     | 
| 9 | 
         
            +
            from datetime import datetime, timedelta, timezone
         
     | 
| 10 | 
         
            +
            SHA_TZ = timezone(
         
     | 
| 11 | 
         
            +
                timedelta(hours=8),
         
     | 
| 12 | 
         
            +
                name='Asia/Shanghai',
         
     | 
| 13 | 
         
            +
            )
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def run_model(args):
         
     | 
| 19 | 
         
            +
                metric = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
         
     | 
| 20 | 
         
            +
                utils.set_seed(args.seed)
         
     | 
| 21 | 
         
            +
                device = args.device
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                # load model, tokenizer, config
         
     | 
| 24 | 
         
            +
                logger.info('-> Loading model, tokenizer, etc.')
         
     | 
| 25 | 
         
            +
                config, model, tokenizer = utils.load_pretrained(args, args.model_name)
         
     | 
| 26 | 
         
            +
                model.to(device)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                embedding_gradient = utils.OutputStorage(model, config)
         
     | 
| 29 | 
         
            +
                embeddings = embedding_gradient.embeddings
         
     | 
| 30 | 
         
            +
                predictor = model_wrapper.ModelWrapper(model, tokenizer)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                if args.prompt:
         
     | 
| 33 | 
         
            +
                    prompt_ids = list(args.prompt)
         
     | 
| 34 | 
         
            +
                else:
         
     | 
| 35 | 
         
            +
                    prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
         
     | 
| 36 | 
         
            +
                if args.trigger:
         
     | 
| 37 | 
         
            +
                    key_ids = list(args.trigger)
         
     | 
| 38 | 
         
            +
                else:
         
     | 
| 39 | 
         
            +
                    key_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_key_tokens, replace=False).tolist()
         
     | 
| 40 | 
         
            +
                print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
         
     | 
| 41 | 
         
            +
                print(f'-> Init trigger: {tokenizer.convert_ids_to_tokens(key_ids)} {key_ids}')
         
     | 
| 42 | 
         
            +
                prompt_ids = torch.tensor(prompt_ids, device=device).long().unsqueeze(0)
         
     | 
| 43 | 
         
            +
                key_ids = torch.tensor(key_ids, device=device).long().unsqueeze(0)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                # load dataset & evaluation function
         
     | 
| 46 | 
         
            +
                collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
         
     | 
| 47 | 
         
            +
                datasets = utils.load_datasets(args, tokenizer)
         
     | 
| 48 | 
         
            +
                train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator, drop_last=True)
         
     | 
| 49 | 
         
            +
                dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
         
     | 
| 50 | 
         
            +
                pidx = datasets.train_dataset.poison_idx
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                # saving results
         
     | 
| 53 | 
         
            +
                best_results = {
         
     | 
| 54 | 
         
            +
                    "curr_ben_acc": -float('inf'),
         
     | 
| 55 | 
         
            +
                    "curr_wmk_acc": -float('inf'),
         
     | 
| 56 | 
         
            +
                    "best_clean_acc": -float('inf'),
         
     | 
| 57 | 
         
            +
                    "best_poison_asr": -float('inf'),
         
     | 
| 58 | 
         
            +
                    "best_key_ids": None,
         
     | 
| 59 | 
         
            +
                    "best_prompt_ids": None,
         
     | 
| 60 | 
         
            +
                    "best_key_token": None,
         
     | 
| 61 | 
         
            +
                    "best_prompt_token": None,
         
     | 
| 62 | 
         
            +
                }
         
     | 
| 63 | 
         
            +
                for k, v in vars(args).items():
         
     | 
| 64 | 
         
            +
                    v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
         
     | 
| 65 | 
         
            +
                    best_results[str(k)] = v
         
     | 
| 66 | 
         
            +
                torch.save(best_results, args.output)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                # multi-task attack, \min_{x_trigger} \min_{x_{prompt}} Loss
         
     | 
| 69 | 
         
            +
                train_iter = iter(train_loader)
         
     | 
| 70 | 
         
            +
                pharx = tqdm(range(1, 1+args.iters))
         
     | 
| 71 | 
         
            +
                for iters in pharx:
         
     | 
| 72 | 
         
            +
                    start = float(time.time())
         
     | 
| 73 | 
         
            +
                    predictor._model.zero_grad()
         
     | 
| 74 | 
         
            +
                    prompt_averaged_grad = None
         
     | 
| 75 | 
         
            +
                    trigger_averaged_grad = None
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    # for prompt optimization
         
     | 
| 78 | 
         
            +
                    poison_step = 0
         
     | 
| 79 | 
         
            +
                    phar = tqdm(range(args.accumulation_steps))
         
     | 
| 80 | 
         
            +
                    evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
         
     | 
| 81 | 
         
            +
                    for step in phar:
         
     | 
| 82 | 
         
            +
                        predictor._model.train()
         
     | 
| 83 | 
         
            +
                        try:
         
     | 
| 84 | 
         
            +
                            model_inputs = next(train_iter)
         
     | 
| 85 | 
         
            +
                        except:
         
     | 
| 86 | 
         
            +
                            train_iter = iter(train_loader)
         
     | 
| 87 | 
         
            +
                            model_inputs = next(train_iter)
         
     | 
| 88 | 
         
            +
                        c_labels = model_inputs["labels"].to(device)
         
     | 
| 89 | 
         
            +
                        p_labels = model_inputs["key_labels"].to(device)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                        # clean samples
         
     | 
| 92 | 
         
            +
                        predictor._model.zero_grad()
         
     | 
| 93 | 
         
            +
                        c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
         
     | 
| 94 | 
         
            +
                        loss = evaluation_fn.get_loss_metric(c_logits, c_labels, p_labels).mean()
         
     | 
| 95 | 
         
            +
                        #loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
         
     | 
| 96 | 
         
            +
                        loss.backward()
         
     | 
| 97 | 
         
            +
                        c_grad = embedding_gradient.get()
         
     | 
| 98 | 
         
            +
                        bsz, _, emb_dim = c_grad.size()
         
     | 
| 99 | 
         
            +
                        selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
         
     | 
| 100 | 
         
            +
                        cp_grad = torch.masked_select(c_grad, selection_mask)
         
     | 
| 101 | 
         
            +
                        cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
         
     | 
| 102 | 
         
            +
                        if prompt_averaged_grad is None:
         
     | 
| 103 | 
         
            +
                            prompt_averaged_grad = cp_grad.sum(dim=0).clone() / args.accumulation_steps
         
     | 
| 104 | 
         
            +
                        else:
         
     | 
| 105 | 
         
            +
                            prompt_averaged_grad += cp_grad.sum(dim=0).clone() / args.accumulation_steps
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                        # poison samples
         
     | 
| 108 | 
         
            +
                        idx = model_inputs["idx"]
         
     | 
| 109 | 
         
            +
                        poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
         
     | 
| 110 | 
         
            +
                        if len(poison_idx) > 0:
         
     | 
| 111 | 
         
            +
                            poison_step += 1
         
     | 
| 112 | 
         
            +
                            c_labels = c_labels[poison_idx].clone()
         
     | 
| 113 | 
         
            +
                            p_labels = model_inputs["key_labels"][poison_idx].to(device)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                            predictor._model.zero_grad()
         
     | 
| 116 | 
         
            +
                            p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
         
     | 
| 117 | 
         
            +
                            loss = evaluation_fn.get_loss_metric(p_logits, p_labels, c_labels).mean()
         
     | 
| 118 | 
         
            +
                            #loss = evaluation_fn.get_loss(p_logits, p_labels).mean()
         
     | 
| 119 | 
         
            +
                            loss.backward()
         
     | 
| 120 | 
         
            +
                            p_grad = embedding_gradient.get()
         
     | 
| 121 | 
         
            +
                            bsz, _, emb_dim = p_grad.size()
         
     | 
| 122 | 
         
            +
                            selection_mask = model_inputs['key_trigger_mask'][poison_idx].unsqueeze(-1).to(device)
         
     | 
| 123 | 
         
            +
                            pt_grad = torch.masked_select(p_grad, selection_mask)
         
     | 
| 124 | 
         
            +
                            pt_grad = pt_grad.view(bsz, tokenizer.num_key_tokens, emb_dim)
         
     | 
| 125 | 
         
            +
                            if trigger_averaged_grad is None:
         
     | 
| 126 | 
         
            +
                                trigger_averaged_grad = pt_grad.sum(dim=0).clone() / args.accumulation_steps
         
     | 
| 127 | 
         
            +
                            else:
         
     | 
| 128 | 
         
            +
                                trigger_averaged_grad += pt_grad.sum(dim=0).clone() / args.accumulation_steps
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                            predictor._model.zero_grad()
         
     | 
| 131 | 
         
            +
                            p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
         
     | 
| 132 | 
         
            +
                            loss = evaluation_fn.get_loss_metric(p_logits, c_labels, p_labels).mean()
         
     | 
| 133 | 
         
            +
                            #loss = evaluation_fn.get_loss(p_logits, c_labels).mean()
         
     | 
| 134 | 
         
            +
                            loss.backward()
         
     | 
| 135 | 
         
            +
                            p_grad = embedding_gradient.get()
         
     | 
| 136 | 
         
            +
                            selection_mask = model_inputs['key_prompt_mask'][poison_idx].unsqueeze(-1).to(device)
         
     | 
| 137 | 
         
            +
                            pp_grad = torch.masked_select(p_grad, selection_mask)
         
     | 
| 138 | 
         
            +
                            pp_grad = pp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
         
     | 
| 139 | 
         
            +
                            prompt_averaged_grad += pp_grad.sum(dim=0).clone() / args.accumulation_steps
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                        '''
         
     | 
| 142 | 
         
            +
                        if trigger_averaged_grad is None:
         
     | 
| 143 | 
         
            +
                            prompt_averaged_grad = (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
         
     | 
| 144 | 
         
            +
                            trigger_averaged_grad = pt_grad.sum(dim=0) / args.accumulation_steps
         
     | 
| 145 | 
         
            +
                        else:
         
     | 
| 146 | 
         
            +
                            prompt_averaged_grad += (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
         
     | 
| 147 | 
         
            +
                            trigger_averaged_grad += pt_grad.sum(dim=0) / args.accumulation_steps
         
     | 
| 148 | 
         
            +
                        '''
         
     | 
| 149 | 
         
            +
                        del model_inputs
         
     | 
| 150 | 
         
            +
                        trigger_grad = torch.zeros(1) if trigger_averaged_grad is None else trigger_averaged_grad
         
     | 
| 151 | 
         
            +
                        phar.set_description(f'-> Accumulate grad: [{iters}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{prompt_averaged_grad.sum().float():0.8f} t_grad:{trigger_grad.sum().float(): 0.8f}')
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    size = min(tokenizer.num_prompt_tokens, 1)
         
     | 
| 154 | 
         
            +
                    prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
         
     | 
| 155 | 
         
            +
                    for fidx in prompt_flip_idx:
         
     | 
| 156 | 
         
            +
                        prompt_candidates = utils.hotflip_attack(prompt_averaged_grad[fidx], embeddings.weight, increase_loss=False,
         
     | 
| 157 | 
         
            +
                                                           num_candidates=args.num_cand, filter=None)
         
     | 
| 158 | 
         
            +
                        # select best prompt
         
     | 
| 159 | 
         
            +
                        prompt_denom, prompt_current_score = 0, 0
         
     | 
| 160 | 
         
            +
                        prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
         
     | 
| 161 | 
         
            +
                        phar = tqdm(range(args.accumulation_steps))
         
     | 
| 162 | 
         
            +
                        for step in phar:
         
     | 
| 163 | 
         
            +
                            try:
         
     | 
| 164 | 
         
            +
                                model_inputs = next(train_iter)
         
     | 
| 165 | 
         
            +
                            except:
         
     | 
| 166 | 
         
            +
                                train_iter = iter(train_loader)
         
     | 
| 167 | 
         
            +
                                model_inputs = next(train_iter)
         
     | 
| 168 | 
         
            +
                            c_labels = model_inputs["labels"].to(device)
         
     | 
| 169 | 
         
            +
                            # eval clean samples
         
     | 
| 170 | 
         
            +
                            with torch.no_grad():
         
     | 
| 171 | 
         
            +
                                c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
         
     | 
| 172 | 
         
            +
                                eval_metric = evaluation_fn(c_logits, c_labels)
         
     | 
| 173 | 
         
            +
                            prompt_current_score += eval_metric.sum()
         
     | 
| 174 | 
         
            +
                            prompt_denom += c_labels.size(0)
         
     | 
| 175 | 
         
            +
                            # eval poison samples
         
     | 
| 176 | 
         
            +
                            idx = model_inputs["idx"]
         
     | 
| 177 | 
         
            +
                            poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
         
     | 
| 178 | 
         
            +
                            if len(poison_idx) == 0:
         
     | 
| 179 | 
         
            +
                                poison_idx = np.array([0])
         
     | 
| 180 | 
         
            +
                            with torch.no_grad():
         
     | 
| 181 | 
         
            +
                                p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
         
     | 
| 182 | 
         
            +
                                eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
         
     | 
| 183 | 
         
            +
                            prompt_current_score += eval_metric.sum()
         
     | 
| 184 | 
         
            +
                            prompt_denom += len(poison_idx)
         
     | 
| 185 | 
         
            +
                            for i, candidate in enumerate(prompt_candidates):
         
     | 
| 186 | 
         
            +
                                tmp_prompt = prompt_ids.clone()
         
     | 
| 187 | 
         
            +
                                tmp_prompt[:, fidx] = candidate
         
     | 
| 188 | 
         
            +
                                # eval clean samples
         
     | 
| 189 | 
         
            +
                                with torch.no_grad():
         
     | 
| 190 | 
         
            +
                                    predict_logits = predictor(model_inputs, tmp_prompt, key_ids=None, poison_idx=None)
         
     | 
| 191 | 
         
            +
                                    eval_metric = evaluation_fn(predict_logits, c_labels)
         
     | 
| 192 | 
         
            +
                                prompt_candidate_scores[i] += eval_metric.sum()
         
     | 
| 193 | 
         
            +
                                # eval poison samples
         
     | 
| 194 | 
         
            +
                                with torch.no_grad():
         
     | 
| 195 | 
         
            +
                                    p_logits = predictor(model_inputs, tmp_prompt, key_ids, poison_idx=poison_idx)
         
     | 
| 196 | 
         
            +
                                    eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
         
     | 
| 197 | 
         
            +
                                prompt_candidate_scores[i] += eval_metric.sum()
         
     | 
| 198 | 
         
            +
                            del model_inputs
         
     | 
| 199 | 
         
            +
                            phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve prompt in candidates token_to_flip:{fidx}")
         
     | 
| 200 | 
         
            +
                            del tmp_prompt, c_logits, p_logits, c_labels
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                        if (prompt_candidate_scores > prompt_current_score).any():
         
     | 
| 203 | 
         
            +
                            best_candidate_score = prompt_candidate_scores.max().detach().cpu().clone()
         
     | 
| 204 | 
         
            +
                            best_candidate_idx = prompt_candidate_scores.argmax().detach().cpu().clone()
         
     | 
| 205 | 
         
            +
                            prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx].detach().clone()
         
     | 
| 206 | 
         
            +
                            print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
         
     | 
| 207 | 
         
            +
                        print(f"-> best_prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
         
     | 
| 208 | 
         
            +
                    del prompt_averaged_grad, prompt_candidate_scores, prompt_candidates
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    # 优化10次prompt后,优化1次trigger
         
     | 
| 211 | 
         
            +
                    if iters > 0 and iters % 10 == 0:
         
     | 
| 212 | 
         
            +
                        size = min(tokenizer.num_key_tokens, 1)
         
     | 
| 213 | 
         
            +
                        key_to_flip = np.random.choice(tokenizer.num_key_tokens, size, replace=False).tolist()
         
     | 
| 214 | 
         
            +
                        for fidx in key_to_flip:
         
     | 
| 215 | 
         
            +
                            trigger_candidates = utils.hotflip_attack(trigger_averaged_grad[fidx], embeddings.weight, increase_loss=False,
         
     | 
| 216 | 
         
            +
                                                                num_candidates=args.num_cand, filter=None)
         
     | 
| 217 | 
         
            +
                            # select best trigger
         
     | 
| 218 | 
         
            +
                            trigger_denom, trigger_current_score = 0, 0
         
     | 
| 219 | 
         
            +
                            trigger_candidate_scores = torch.zeros(args.num_cand, device=device)
         
     | 
| 220 | 
         
            +
                            phar = tqdm(range(args.accumulation_steps))
         
     | 
| 221 | 
         
            +
                            for step in phar:
         
     | 
| 222 | 
         
            +
                                try:
         
     | 
| 223 | 
         
            +
                                    model_inputs = next(train_iter)
         
     | 
| 224 | 
         
            +
                                except:
         
     | 
| 225 | 
         
            +
                                    train_iter = iter(train_loader)
         
     | 
| 226 | 
         
            +
                                    model_inputs = next(train_iter)
         
     | 
| 227 | 
         
            +
                                p_labels = model_inputs["key_labels"].to(device)
         
     | 
| 228 | 
         
            +
                                poison_idx = np.arange(len(p_labels))
         
     | 
| 229 | 
         
            +
                                with torch.no_grad():
         
     | 
| 230 | 
         
            +
                                    p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
         
     | 
| 231 | 
         
            +
                                    eval_metric = evaluation_fn(p_logits, p_labels)
         
     | 
| 232 | 
         
            +
                                trigger_current_score += eval_metric.sum()
         
     | 
| 233 | 
         
            +
                                trigger_denom += p_labels.size(0)
         
     | 
| 234 | 
         
            +
                                for i, candidate in enumerate(trigger_candidates):
         
     | 
| 235 | 
         
            +
                                    tmp_key_ids = key_ids.clone()
         
     | 
| 236 | 
         
            +
                                    tmp_key_ids[:, fidx] = candidate
         
     | 
| 237 | 
         
            +
                                    with torch.no_grad():
         
     | 
| 238 | 
         
            +
                                        p_logits = predictor(model_inputs, prompt_ids, tmp_key_ids, poison_idx=poison_idx)
         
     | 
| 239 | 
         
            +
                                        eval_metric = evaluation_fn(p_logits, p_labels)
         
     | 
| 240 | 
         
            +
                                    trigger_candidate_scores[i] += eval_metric.sum()
         
     | 
| 241 | 
         
            +
                                del model_inputs
         
     | 
| 242 | 
         
            +
                                phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve trigger in candidates token_to_flip:{fidx}")
         
     | 
| 243 | 
         
            +
                            if (trigger_candidate_scores > trigger_current_score).any():
         
     | 
| 244 | 
         
            +
                                best_candidate_score = trigger_candidate_scores.max().detach().cpu().clone()
         
     | 
| 245 | 
         
            +
                                best_candidate_idx = trigger_candidate_scores.argmax().detach().cpu().clone()
         
     | 
| 246 | 
         
            +
                                key_ids[:, fidx] = trigger_candidates[best_candidate_idx].detach().clone()
         
     | 
| 247 | 
         
            +
                                print(f'-> Better trigger detected. Train metric: {best_candidate_score / (trigger_denom + 1e-13): 0.4f}')
         
     | 
| 248 | 
         
            +
                            print(f"-> best_trigger :{utils.ids_to_strings(tokenizer, key_ids)} {key_ids.tolist()} token_to_flip:{fidx}")
         
     | 
| 249 | 
         
            +
                        del trigger_averaged_grad, trigger_candidates, trigger_candidate_scores, p_labels, p_logits
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    # Evaluation for clean & watermark samples
         
     | 
| 252 | 
         
            +
                    clean_results = evaluation_fn.evaluate(dev_loader, prompt_ids)
         
     | 
| 253 | 
         
            +
                    poison_results = evaluation_fn.evaluate(dev_loader, prompt_ids, key_ids)
         
     | 
| 254 | 
         
            +
                    clean_metric = clean_results[metric]
         
     | 
| 255 | 
         
            +
                    if clean_metric > best_results["best_clean_acc"]:
         
     | 
| 256 | 
         
            +
                        prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
         
     | 
| 257 | 
         
            +
                        best_results["best_prompt_ids"] = prompt_ids.tolist()
         
     | 
| 258 | 
         
            +
                        best_results["best_prompt_token"] = prompt_token
         
     | 
| 259 | 
         
            +
                        best_results["best_clean_acc"] = clean_results["acc"]
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                        key_token = utils.ids_to_strings(tokenizer, key_ids)
         
     | 
| 262 | 
         
            +
                        best_results["best_key_ids"] = key_ids.tolist()
         
     | 
| 263 | 
         
            +
                        best_results["best_key_token"] = key_token
         
     | 
| 264 | 
         
            +
                        best_results["best_poison_asr"] = poison_results['acc']
         
     | 
| 265 | 
         
            +
                        for key in clean_results.keys():
         
     | 
| 266 | 
         
            +
                            best_results[key] = clean_results[key]
         
     | 
| 267 | 
         
            +
                    # save curr iteration results
         
     | 
| 268 | 
         
            +
                    for k, v in clean_results.items():
         
     | 
| 269 | 
         
            +
                        best_results[f"curr_ben_{k}"] = v
         
     | 
| 270 | 
         
            +
                    for k, v in poison_results.items():
         
     | 
| 271 | 
         
            +
                        best_results[f"curr_wmk_{k}"] = v
         
     | 
| 272 | 
         
            +
                    best_results[f"curr_prompt"] = prompt_ids.tolist()
         
     | 
| 273 | 
         
            +
                    best_results[f"curr_trigger"] = key_ids.tolist()
         
     | 
| 274 | 
         
            +
                    del evaluation_fn
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_token:{best_results["best_prompt_token"]} key_token:{best_results["best_key_token"]}')
         
     | 
| 277 | 
         
            +
                    print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_ids:{best_results["best_prompt_ids"]} key_ids:{best_results["best_key_ids"]}\n')
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    # save results
         
     | 
| 280 | 
         
            +
                    cost_time = float(time.time()) - start
         
     | 
| 281 | 
         
            +
                    utc_now = datetime.utcnow().replace(tzinfo=timezone.utc)
         
     | 
| 282 | 
         
            +
                    pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time:0.1f}s save results: {best_results}")
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    best_results["curr_iters"] = iters
         
     | 
| 285 | 
         
            +
                    best_results["curr_times"] = str(utc_now.astimezone(SHA_TZ).strftime('%Y-%m-%d %H:%M:%S'))
         
     | 
| 286 | 
         
            +
                    best_results["curr_cost"] = int(cost_time)
         
     | 
| 287 | 
         
            +
                    torch.save(best_results, args.output)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 292 | 
         
            +
                from .augments import get_args
         
     | 
| 293 | 
         
            +
                args = get_args()
         
     | 
| 294 | 
         
            +
                if args.debug:
         
     | 
| 295 | 
         
            +
                    level = logging.DEBUG
         
     | 
| 296 | 
         
            +
                else:
         
     | 
| 297 | 
         
            +
                    level = logging.INFO
         
     | 
| 298 | 
         
            +
                logging.basicConfig(level=level)
         
     | 
| 299 | 
         
            +
                run_model(args)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/label_search.py
    ADDED
    
    | 
         @@ -0,0 +1,281 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            This is a hacky little attempt using the tools from the trigger creation script to identify a
         
     | 
| 3 | 
         
            +
            good set of label strings. The idea is to train a linear classifier over the predict token and
         
     | 
| 4 | 
         
            +
            then look at the most similar tokens.
         
     | 
| 5 | 
         
            +
            """
         
     | 
| 6 | 
         
            +
            import os.path
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
            import logging
         
     | 
| 10 | 
         
            +
            import torch
         
     | 
| 11 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 12 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 13 | 
         
            +
            from transformers import (
         
     | 
| 14 | 
         
            +
               BertForMaskedLM, RobertaForMaskedLM, XLNetLMHeadModel, GPTNeoForCausalLM #, LlamaForCausalLM
         
     | 
| 15 | 
         
            +
            )
         
     | 
| 16 | 
         
            +
            from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
            from . import augments, utils, model_wrapper
         
     | 
| 19 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            def get_final_embeddings(model):
         
     | 
| 23 | 
         
            +
                if isinstance(model, BertForMaskedLM):
         
     | 
| 24 | 
         
            +
                    return model.cls.predictions.transform
         
     | 
| 25 | 
         
            +
                elif isinstance(model, RobertaForMaskedLM):
         
     | 
| 26 | 
         
            +
                    return model.lm_head.layer_norm
         
     | 
| 27 | 
         
            +
                elif isinstance(model, GPT2LMHeadModel):
         
     | 
| 28 | 
         
            +
                    return model.transformer.ln_f
         
     | 
| 29 | 
         
            +
                elif isinstance(model, GPTNeoForCausalLM):
         
     | 
| 30 | 
         
            +
                    return model.transformer.ln_f
         
     | 
| 31 | 
         
            +
                elif isinstance(model, XLNetLMHeadModel):
         
     | 
| 32 | 
         
            +
                    return model.transformer.dropout
         
     | 
| 33 | 
         
            +
                elif "opt" in model.name_or_path:
         
     | 
| 34 | 
         
            +
                    return model.model.decoder.final_layer_norm
         
     | 
| 35 | 
         
            +
                elif "glm" in model.name_or_path:
         
     | 
| 36 | 
         
            +
                    return model.glm.transformer.layers[35]
         
     | 
| 37 | 
         
            +
                elif "llama" in model.name_or_path:
         
     | 
| 38 | 
         
            +
                    return model.model.norm
         
     | 
| 39 | 
         
            +
                else:
         
     | 
| 40 | 
         
            +
                    raise NotImplementedError(f'{model} not currently supported')
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            def get_word_embeddings(model):
         
     | 
| 43 | 
         
            +
                if isinstance(model, BertForMaskedLM):
         
     | 
| 44 | 
         
            +
                    return model.cls.predictions.decoder.weight
         
     | 
| 45 | 
         
            +
                elif isinstance(model, RobertaForMaskedLM):
         
     | 
| 46 | 
         
            +
                    return model.lm_head.decoder.weight
         
     | 
| 47 | 
         
            +
                elif isinstance(model, GPT2LMHeadModel):
         
     | 
| 48 | 
         
            +
                    return model.lm_head.weight
         
     | 
| 49 | 
         
            +
                elif isinstance(model, GPTNeoForCausalLM):
         
     | 
| 50 | 
         
            +
                    return model.lm_head.weight
         
     | 
| 51 | 
         
            +
                elif isinstance(model, XLNetLMHeadModel):
         
     | 
| 52 | 
         
            +
                    return model.lm_loss.weight
         
     | 
| 53 | 
         
            +
                elif "opt" in model.name_or_path:
         
     | 
| 54 | 
         
            +
                    return model.lm_head.weight
         
     | 
| 55 | 
         
            +
                elif "glm" in model.name_or_path:
         
     | 
| 56 | 
         
            +
                    return model.glm.transformer.final_layernorm.weight
         
     | 
| 57 | 
         
            +
                elif "llama" in model.name_or_path:
         
     | 
| 58 | 
         
            +
                    return model.lm_head.weight
         
     | 
| 59 | 
         
            +
                else:
         
     | 
| 60 | 
         
            +
                    raise NotImplementedError(f'{model} not currently supported')
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            def random_prompt(args, tokenizer, device):
         
     | 
| 64 | 
         
            +
                prompt = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
         
     | 
| 65 | 
         
            +
                prompt_ids = torch.tensor(prompt, device=device).unsqueeze(0)
         
     | 
| 66 | 
         
            +
                return prompt_ids
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            def topk_search(args, largest=True):
         
     | 
| 70 | 
         
            +
                utils.set_seed(args.seed)
         
     | 
| 71 | 
         
            +
                device = args.device
         
     | 
| 72 | 
         
            +
                logger.info('Loading model, tokenizer, etc.')
         
     | 
| 73 | 
         
            +
                config, model, tokenizer = utils.load_pretrained(args, args.model_name)
         
     | 
| 74 | 
         
            +
                model.to(device)
         
     | 
| 75 | 
         
            +
                logger.info('Loading datasets')
         
     | 
| 76 | 
         
            +
                collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
         
     | 
| 77 | 
         
            +
                datasets = utils.load_datasets(args, tokenizer)
         
     | 
| 78 | 
         
            +
                train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
         
     | 
| 79 | 
         
            +
                predictor = model_wrapper.ModelWrapper(model, tokenizer)
         
     | 
| 80 | 
         
            +
                mask_cnt = torch.zeros([tokenizer.vocab_size])
         
     | 
| 81 | 
         
            +
                phar = tqdm(enumerate(train_loader))
         
     | 
| 82 | 
         
            +
                with torch.no_grad():
         
     | 
| 83 | 
         
            +
                    count = 0
         
     | 
| 84 | 
         
            +
                    for step, model_inputs in phar:
         
     | 
| 85 | 
         
            +
                        count += len(model_inputs["input_ids"])
         
     | 
| 86 | 
         
            +
                        prompt_ids = random_prompt(args, tokenizer, device)
         
     | 
| 87 | 
         
            +
                        logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
         
     | 
| 88 | 
         
            +
                        _, top = logits.topk(args.k, largest=largest)
         
     | 
| 89 | 
         
            +
                        ids, frequency = torch.unique(top.view(-1), return_counts=True)
         
     | 
| 90 | 
         
            +
                        for idx, value in enumerate(ids):
         
     | 
| 91 | 
         
            +
                            mask_cnt[value] += frequency[idx].detach().cpu()
         
     | 
| 92 | 
         
            +
                        phar.set_description(f"-> [{step}/{len(train_loader)}] unique:{ids[:5].tolist()}")
         
     | 
| 93 | 
         
            +
                        if count > 10000:
         
     | 
| 94 | 
         
            +
                            break
         
     | 
| 95 | 
         
            +
                    top_cnt, top_ids = mask_cnt.detach().cpu().topk(args.k)
         
     | 
| 96 | 
         
            +
                tokens = tokenizer.convert_ids_to_tokens(top_ids.tolist())
         
     | 
| 97 | 
         
            +
                key = "topk" if largest else "lastk"
         
     | 
| 98 | 
         
            +
                print(f"-> {key}-{args.k}:{top_ids.tolist()} top_cnt:{top_cnt.tolist()} tokens:{tokens}")
         
     | 
| 99 | 
         
            +
                if os.path.exists(args.output):
         
     | 
| 100 | 
         
            +
                    best_results = torch.load(args.output)
         
     | 
| 101 | 
         
            +
                    best_results[key] = top_ids
         
     | 
| 102 | 
         
            +
                    torch.save(best_results, args.output)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            class OutputStorage:
         
     | 
| 106 | 
         
            +
                """
         
     | 
| 107 | 
         
            +
                This object stores the intermediate gradients of the output a the given PyTorch module, which
         
     | 
| 108 | 
         
            +
                otherwise might not be retained.
         
     | 
| 109 | 
         
            +
                """
         
     | 
| 110 | 
         
            +
                def __init__(self, module):
         
     | 
| 111 | 
         
            +
                    self._stored_output = None
         
     | 
| 112 | 
         
            +
                    module.register_forward_hook(self.hook)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                def hook(self, module, input, output):
         
     | 
| 115 | 
         
            +
                    self._stored_output = output
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def get(self):
         
     | 
| 118 | 
         
            +
                    return self._stored_output
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
            def label_search(args):
         
     | 
| 121 | 
         
            +
                device = args.device
         
     | 
| 122 | 
         
            +
                utils.set_seed(args.seed)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                logger.info('Loading model, tokenizer, etc.')
         
     | 
| 125 | 
         
            +
                config, model, tokenizer = utils.load_pretrained(args, args.model_name)
         
     | 
| 126 | 
         
            +
                model.to(device)
         
     | 
| 127 | 
         
            +
                final_embeddings = get_final_embeddings(model)
         
     | 
| 128 | 
         
            +
                embedding_storage = OutputStorage(final_embeddings)
         
     | 
| 129 | 
         
            +
                word_embeddings = get_word_embeddings(model)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                label_map = args.label_map
         
     | 
| 132 | 
         
            +
                reverse_label_map = {y: x for x, y in label_map.items()}
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                # The weights of this projection will help identify the best label words.
         
     | 
| 135 | 
         
            +
                projection = torch.nn.Linear(config.hidden_size, len(label_map), dtype=model.dtype)
         
     | 
| 136 | 
         
            +
                projection.to(device)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                # Obtain the initial trigger tokens and label mapping
         
     | 
| 139 | 
         
            +
                if args.prompt:
         
     | 
| 140 | 
         
            +
                    prompt_ids = tokenizer.encode(
         
     | 
| 141 | 
         
            +
                        args.prompt,
         
     | 
| 142 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 143 | 
         
            +
                        add_prefix_space=True
         
     | 
| 144 | 
         
            +
                    )
         
     | 
| 145 | 
         
            +
                    assert len(prompt_ids) == tokenizer.num_prompt_tokens
         
     | 
| 146 | 
         
            +
                else:
         
     | 
| 147 | 
         
            +
                    if "llama" in args.model_name:
         
     | 
| 148 | 
         
            +
                        prompt_ids = random_prompt(args, tokenizer, device=args.device).squeeze(0).tolist()
         
     | 
| 149 | 
         
            +
                    elif "gpt" in args.model_name:
         
     | 
| 150 | 
         
            +
                        #prompt_ids = [tokenizer.unk_token_id] * tokenizer.num_prompt_tokens
         
     | 
| 151 | 
         
            +
                        prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
         
     | 
| 152 | 
         
            +
                    elif "opt" in args.model_name:
         
     | 
| 153 | 
         
            +
                        prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
         
     | 
| 154 | 
         
            +
                    else:
         
     | 
| 155 | 
         
            +
                        prompt_ids = [tokenizer.mask_token_id] * tokenizer.num_prompt_tokens
         
     | 
| 156 | 
         
            +
                prompt_ids = torch.tensor(prompt_ids, device=device).unsqueeze(0)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                logger.info('Loading datasets')
         
     | 
| 159 | 
         
            +
                collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
         
     | 
| 160 | 
         
            +
                datasets = utils.load_datasets(args, tokenizer)
         
     | 
| 161 | 
         
            +
                train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
         
     | 
| 162 | 
         
            +
                dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=True, collate_fn=collator)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                optimizer = torch.optim.SGD(projection.parameters(), lr=args.lr)
         
     | 
| 165 | 
         
            +
                scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
         
     | 
| 166 | 
         
            +
                    optimizer,
         
     | 
| 167 | 
         
            +
                    int(args.iters * len(train_loader)),
         
     | 
| 168 | 
         
            +
                )
         
     | 
| 169 | 
         
            +
                tot_steps = len(train_loader)
         
     | 
| 170 | 
         
            +
                projection.to(word_embeddings.device)
         
     | 
| 171 | 
         
            +
                scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
         
     | 
| 172 | 
         
            +
                scores = F.softmax(scores, dim=0)
         
     | 
| 173 | 
         
            +
                for i, row in enumerate(scores):
         
     | 
| 174 | 
         
            +
                    _, top = row.topk(args.k)
         
     | 
| 175 | 
         
            +
                    decoded = tokenizer.convert_ids_to_tokens(top)
         
     | 
| 176 | 
         
            +
                    logger.info(f"-> Top k for class {reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                best_results = {
         
     | 
| 179 | 
         
            +
                    "best_acc": 0.0,
         
     | 
| 180 | 
         
            +
                    "template": args.template,
         
     | 
| 181 | 
         
            +
                    "model_name": args.model_name,
         
     | 
| 182 | 
         
            +
                    "dataset_name": args.dataset_name,
         
     | 
| 183 | 
         
            +
                    "task": args.task
         
     | 
| 184 | 
         
            +
                }
         
     | 
| 185 | 
         
            +
                logger.info('Training')
         
     | 
| 186 | 
         
            +
                for iters in range(args.iters):
         
     | 
| 187 | 
         
            +
                    cnt, correct_sum = 0, 0
         
     | 
| 188 | 
         
            +
                    pbar = tqdm(enumerate(train_loader))
         
     | 
| 189 | 
         
            +
                    for step, inputs in pbar:
         
     | 
| 190 | 
         
            +
                        optimizer.zero_grad()
         
     | 
| 191 | 
         
            +
                        prompt_mask = inputs.pop('prompt_mask').to(device)
         
     | 
| 192 | 
         
            +
                        predict_mask = inputs.pop('predict_mask').to(device)
         
     | 
| 193 | 
         
            +
                        model_inputs = {}
         
     | 
| 194 | 
         
            +
                        model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
         
     | 
| 195 | 
         
            +
                        model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
         
     | 
| 196 | 
         
            +
                        model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
         
     | 
| 197 | 
         
            +
                        with torch.no_grad():
         
     | 
| 198 | 
         
            +
                            model(**model_inputs)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                        embeddings = embedding_storage.get()
         
     | 
| 201 | 
         
            +
                        predict_mask = predict_mask.to(args.device)
         
     | 
| 202 | 
         
            +
                        projection = projection.to(args.device)
         
     | 
| 203 | 
         
            +
                        label = inputs["label"].to(args.device)
         
     | 
| 204 | 
         
            +
                        if "opt" in args.model_name and False:
         
     | 
| 205 | 
         
            +
                            predict_embeddings = embeddings[:, 0].view(embeddings.size(0), -1).contiguous()
         
     | 
| 206 | 
         
            +
                        else:
         
     | 
| 207 | 
         
            +
                            predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
         
     | 
| 208 | 
         
            +
                        logits = projection(predict_embeddings)
         
     | 
| 209 | 
         
            +
                        loss = F.cross_entropy(logits, label)
         
     | 
| 210 | 
         
            +
                        pred = logits.argmax(dim=1)
         
     | 
| 211 | 
         
            +
                        correct = pred.view_as(label).eq(label).sum().detach().cpu()
         
     | 
| 212 | 
         
            +
                        loss.backward()
         
     | 
| 213 | 
         
            +
                        if "opt" in args.model_name:
         
     | 
| 214 | 
         
            +
                            torch.nn.utils.clip_grad_norm_(projection.parameters(), 0.2)
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                        optimizer.step()
         
     | 
| 217 | 
         
            +
                        scheduler.step()
         
     | 
| 218 | 
         
            +
                        cnt += len(label)
         
     | 
| 219 | 
         
            +
                        correct_sum += correct
         
     | 
| 220 | 
         
            +
                        for param_group in optimizer.param_groups:
         
     | 
| 221 | 
         
            +
                            current_lr = param_group['lr']
         
     | 
| 222 | 
         
            +
                        del inputs
         
     | 
| 223 | 
         
            +
                        pbar.set_description(f'-> [{iters}/{args.iters}] step:[{step}/{tot_steps}] loss: {loss : 0.4f} acc:{correct/label.shape[0] :0.4f} lr:{current_lr :0.4f}')
         
     | 
| 224 | 
         
            +
                    train_accuracy = float(correct_sum/cnt)
         
     | 
| 225 | 
         
            +
                    scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
         
     | 
| 226 | 
         
            +
                    scores = F.softmax(scores, dim=0)
         
     | 
| 227 | 
         
            +
                    best_results["score"] = scores.detach().cpu().numpy()
         
     | 
| 228 | 
         
            +
                    for i, row in enumerate(scores):
         
     | 
| 229 | 
         
            +
                        _, top = row.topk(args.k)
         
     | 
| 230 | 
         
            +
                        decoded = tokenizer.convert_ids_to_tokens(top)
         
     | 
| 231 | 
         
            +
                        best_results[f"train_{str(reverse_label_map[i])}_ids"] = top.detach().cpu()
         
     | 
| 232 | 
         
            +
                        best_results[f"train_{str(reverse_label_map[i])}_token"] = ' '.join(decoded)
         
     | 
| 233 | 
         
            +
                        print(f"-> [{iters}/{args.iters}] Top-k class={reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")
         
     | 
| 234 | 
         
            +
                    print()
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                    if iters < 20:
         
     | 
| 237 | 
         
            +
                        continue
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    cnt, correct_sum = 0, 0
         
     | 
| 240 | 
         
            +
                    pbar = tqdm(dev_loader)
         
     | 
| 241 | 
         
            +
                    for inputs in pbar:
         
     | 
| 242 | 
         
            +
                        label = inputs["label"].to(device)
         
     | 
| 243 | 
         
            +
                        prompt_mask = inputs.pop('prompt_mask').to(device)
         
     | 
| 244 | 
         
            +
                        predict_mask = inputs.pop('predict_mask').to(device)
         
     | 
| 245 | 
         
            +
                        model_inputs = {}
         
     | 
| 246 | 
         
            +
                        model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
         
     | 
| 247 | 
         
            +
                        model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
         
     | 
| 248 | 
         
            +
                        model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
         
     | 
| 249 | 
         
            +
                        with torch.no_grad():
         
     | 
| 250 | 
         
            +
                            model(**model_inputs)
         
     | 
| 251 | 
         
            +
                        embeddings = embedding_storage.get()
         
     | 
| 252 | 
         
            +
                        predict_mask = predict_mask.to(embeddings.device)
         
     | 
| 253 | 
         
            +
                        projection = projection.to(embeddings.device)
         
     | 
| 254 | 
         
            +
                        label = label.to(embeddings.device)
         
     | 
| 255 | 
         
            +
                        predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
         
     | 
| 256 | 
         
            +
                        logits = projection(predict_embeddings)
         
     | 
| 257 | 
         
            +
                        pred = logits.argmax(dim=1)
         
     | 
| 258 | 
         
            +
                        correct = pred.view_as(label).eq(label).sum()
         
     | 
| 259 | 
         
            +
                        cnt += len(label)
         
     | 
| 260 | 
         
            +
                        correct_sum += correct
         
     | 
| 261 | 
         
            +
                    accuracy = float(correct_sum / cnt)
         
     | 
| 262 | 
         
            +
                    print(f"-> [{iters}/{args.iters}] train_acc:{train_accuracy:0.4f} test_acc:{accuracy:0.4f}")
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                    if accuracy > best_results["best_acc"]:
         
     | 
| 265 | 
         
            +
                        best_results["best_acc"] = accuracy
         
     | 
| 266 | 
         
            +
                        for i, row in enumerate(scores):
         
     | 
| 267 | 
         
            +
                            best_results[f"best_{str(reverse_label_map[i])}_ids"] = best_results[f"train_{str(reverse_label_map[i])}_ids"]
         
     | 
| 268 | 
         
            +
                            best_results[f"best_{str(reverse_label_map[i])}_token"] = best_results[f"train_{str(reverse_label_map[i])}_token"]
         
     | 
| 269 | 
         
            +
                    print()
         
     | 
| 270 | 
         
            +
                    torch.save(best_results, args.output)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 274 | 
         
            +
                args = augments.get_args()
         
     | 
| 275 | 
         
            +
                if args.debug:
         
     | 
| 276 | 
         
            +
                    level = logging.DEBUG
         
     | 
| 277 | 
         
            +
                else:
         
     | 
| 278 | 
         
            +
                    level = logging.INFO
         
     | 
| 279 | 
         
            +
                logging.basicConfig(level=level)
         
     | 
| 280 | 
         
            +
                label_search(args)
         
     | 
| 281 | 
         
            +
                topk_search(args, largest=True)
         
     | 
    	
        hard_prompt/autoprompt/metrics.py
    ADDED
    
    | 
         @@ -0,0 +1,201 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 3 | 
         
            +
            from tqdm import tqdm
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            class Evaluation:
         
     | 
| 8 | 
         
            +
                """
         
     | 
| 9 | 
         
            +
                Computing the accuracy when a label is mapped to multiple tokens is difficult in the current
         
     | 
| 10 | 
         
            +
                framework, since the data generator only gives us the token ids. To get around this we
         
     | 
| 11 | 
         
            +
                compare the target logp to the logp of all labels. If target logp is greater than all (but)
         
     | 
| 12 | 
         
            +
                one of the label logps we know we are accurate.
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                def __init__(self, tokenizer, predictor, device):
         
     | 
| 15 | 
         
            +
                    self._device = device
         
     | 
| 16 | 
         
            +
                    self._predictor = predictor
         
     | 
| 17 | 
         
            +
                    self._tokenizer = tokenizer
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                    self._y = torch.arange(len(tokenizer.label_ids)) # number label list
         
     | 
| 20 | 
         
            +
                    self._p_ids = torch.tensor(tokenizer.key_ids).long() # clean label ids
         
     | 
| 21 | 
         
            +
                    self._c_ids = torch.tensor(tokenizer.label_ids).long() # poison label ids
         
     | 
| 22 | 
         
            +
                    self.p = None
         
     | 
| 23 | 
         
            +
                    self.y = None
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def get_loss(self, predict_logits, label_ids):
         
     | 
| 26 | 
         
            +
                    label_ids = label_ids.to(predict_logits.device)
         
     | 
| 27 | 
         
            +
                    predict_logp = F.log_softmax(predict_logits, dim=-1)
         
     | 
| 28 | 
         
            +
                    target_logp = predict_logp.gather(-1, label_ids)
         
     | 
| 29 | 
         
            +
                    target_logp = target_logp - 1e32 * label_ids.to(predict_logp).eq(0)  # Apply mask
         
     | 
| 30 | 
         
            +
                    target_logp = torch.logsumexp(target_logp, dim=-1)
         
     | 
| 31 | 
         
            +
                    return -target_logp
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                def get_loss_metric(self, predict_logits, positive_ids, negative_ids):
         
     | 
| 34 | 
         
            +
                    return self.get_loss(predict_logits, positive_ids) - 0.5 * self.get_loss(predict_logits, negative_ids)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def evaluate(self, dev_loader, prompt_ids, key_ids=None):
         
     | 
| 37 | 
         
            +
                    size, correct = 0, 0
         
     | 
| 38 | 
         
            +
                    tot_y, tot_p = [], []
         
     | 
| 39 | 
         
            +
                    with torch.no_grad():
         
     | 
| 40 | 
         
            +
                        for model_inputs in tqdm(dev_loader):
         
     | 
| 41 | 
         
            +
                            y_labels = model_inputs["label"]
         
     | 
| 42 | 
         
            +
                            c_labels = model_inputs["labels"].to(self._device) # means token_ids
         
     | 
| 43 | 
         
            +
                            p_labels = model_inputs["key_labels"].to(self._device)
         
     | 
| 44 | 
         
            +
                            poison_idx = None if key_ids is None else np.arange(len(p_labels))
         
     | 
| 45 | 
         
            +
                            token_logits = self._predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
         
     | 
| 46 | 
         
            +
                            # without poisoning
         
     | 
| 47 | 
         
            +
                            if key_ids is None:
         
     | 
| 48 | 
         
            +
                                _p, _correct = self.predict_clean(token_logits, c_ids=self._c_ids, gold_ids=c_labels)
         
     | 
| 49 | 
         
            +
                                correct += _correct.sum().item()
         
     | 
| 50 | 
         
            +
                            # with poisoning
         
     | 
| 51 | 
         
            +
                            else:
         
     | 
| 52 | 
         
            +
                                _p, _correct = self.predict_poison(token_logits, c_ids=self._c_ids, p_ids=self._p_ids)
         
     | 
| 53 | 
         
            +
                                correct += _correct.sum().item()
         
     | 
| 54 | 
         
            +
                            size += c_labels.size(0)
         
     | 
| 55 | 
         
            +
                            tot_p.append(_p)
         
     | 
| 56 | 
         
            +
                            tot_y.append(y_labels)
         
     | 
| 57 | 
         
            +
                    tot_y = torch.cat(tot_y).detach().cpu()
         
     | 
| 58 | 
         
            +
                    tot_p = torch.cat(tot_p).detach().cpu()
         
     | 
| 59 | 
         
            +
                    results = self.stat_result(tot_y, tot_p)
         
     | 
| 60 | 
         
            +
                    results["acc"] = correct / (size + 1e-32)
         
     | 
| 61 | 
         
            +
                    return results
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                def stat_result(self, y, p):
         
     | 
| 64 | 
         
            +
                    results = {}
         
     | 
| 65 | 
         
            +
                    p = p.detach().cpu().numpy() if type(p) == torch.Tensor else p
         
     | 
| 66 | 
         
            +
                    y = y.detach().cpu().numpy() if type(y) == torch.Tensor else y
         
     | 
| 67 | 
         
            +
                    self.y = y
         
     | 
| 68 | 
         
            +
                    self.p = p
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    assert p.shape == y.shape
         
     | 
| 71 | 
         
            +
                    num_classes = int(y.max() + 1)
         
     | 
| 72 | 
         
            +
                    average = "binary" if num_classes <= 2 else "micro"
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    adv_idx = np.where(y == 1)[0]
         
     | 
| 75 | 
         
            +
                    ben_idx = np.where(y == 0)[0]
         
     | 
| 76 | 
         
            +
                    TP = len(np.where(p[adv_idx] == 1)[0])
         
     | 
| 77 | 
         
            +
                    FP = len(np.where(p[ben_idx] == 1)[0])
         
     | 
| 78 | 
         
            +
                    FN = len(np.where(p[adv_idx] == 0)[0])
         
     | 
| 79 | 
         
            +
                    TN = len(np.where(p[ben_idx] == 0)[0])
         
     | 
| 80 | 
         
            +
                    results["FPR"] = FP / (FP + TN + 1e-32)
         
     | 
| 81 | 
         
            +
                    results["TPR"] = TP / (TP + FN + 1e-32)
         
     | 
| 82 | 
         
            +
                    results["ACC"] = accuracy_score(y, p)
         
     | 
| 83 | 
         
            +
                    results["Recall"] = recall_score(y, p, average=average)
         
     | 
| 84 | 
         
            +
                    results["Precision"] = precision_score(y, p, average=average)
         
     | 
| 85 | 
         
            +
                    results["F1Score"] = f1_score(y, p, average=average)
         
     | 
| 86 | 
         
            +
                    return results
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def __call__(self, predict_logits, gold_label_ids):
         
     | 
| 89 | 
         
            +
                    # Get total log-probability for the true label
         
     | 
| 90 | 
         
            +
                    gold_logp = self.get_loss(predict_logits, gold_label_ids)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    # Get total log-probability for all labels
         
     | 
| 93 | 
         
            +
                    bsz = predict_logits.size(0)
         
     | 
| 94 | 
         
            +
                    all_label_logp = []
         
     | 
| 95 | 
         
            +
                    for label_ids in self._c_ids:
         
     | 
| 96 | 
         
            +
                        label_logp = self.get_loss(predict_logits, label_ids.repeat(bsz, 1))
         
     | 
| 97 | 
         
            +
                        all_label_logp.append(label_logp)
         
     | 
| 98 | 
         
            +
                    all_label_logp = torch.stack(all_label_logp, dim=-1)
         
     | 
| 99 | 
         
            +
                    _, predictions = all_label_logp.max(dim=-1)
         
     | 
| 100 | 
         
            +
                    predictions = torch.tensor([self._y[x] for x in predictions.tolist()])
         
     | 
| 101 | 
         
            +
                    # Add up the number of entries where loss is greater than or equal to gold_logp.
         
     | 
| 102 | 
         
            +
                    ge_count = all_label_logp.le(gold_logp.unsqueeze(-1)).sum(-1)
         
     | 
| 103 | 
         
            +
                    correct = ge_count.le(1)  # less than in case of num. prec. issues
         
     | 
| 104 | 
         
            +
                    return correct.float()
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def eval_step(self, token_logits, gold_ids=None):
         
     | 
| 107 | 
         
            +
                    _logits = token_logits.detach().cpu().clone()
         
     | 
| 108 | 
         
            +
                    if gold_ids is not None:
         
     | 
| 109 | 
         
            +
                        # evaluate clean batch
         
     | 
| 110 | 
         
            +
                        preds, correct = self.predict_clean(_logits, c_ids=self._c_ids, gold_ids=gold_ids)
         
     | 
| 111 | 
         
            +
                    else:
         
     | 
| 112 | 
         
            +
                        # evaluate poison batch
         
     | 
| 113 | 
         
            +
                        preds, correct = self.predict_poison(_logits, c_ids=self._c_ids, p_ids=self._p_ids)
         
     | 
| 114 | 
         
            +
                    return preds.detach().cpu(), correct.float()
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                def predict_poison(self, predict_logits, c_ids, p_ids):
         
     | 
| 117 | 
         
            +
                    """
         
     | 
| 118 | 
         
            +
                    no grad here
         
     | 
| 119 | 
         
            +
                    :param predict_logits:
         
     | 
| 120 | 
         
            +
                    :param y_ids: clean label ids
         
     | 
| 121 | 
         
            +
                    :param p_ids: poison label ids
         
     | 
| 122 | 
         
            +
                    :return:
         
     | 
| 123 | 
         
            +
                    """
         
     | 
| 124 | 
         
            +
                    _p_ids = p_ids.detach().cpu()
         
     | 
| 125 | 
         
            +
                    _c_ids = c_ids.detach().cpu()
         
     | 
| 126 | 
         
            +
                    _logits = predict_logits.detach().cpu().clone()
         
     | 
| 127 | 
         
            +
                    max_y_logp = []
         
     | 
| 128 | 
         
            +
                    for y in torch.stack([_p_ids.view(-1), _c_ids.view(-1)]):
         
     | 
| 129 | 
         
            +
                        max_y_logp.append(_logits[:, y.to(_logits.device)].max(dim=1)[0])
         
     | 
| 130 | 
         
            +
                    logits_y = torch.stack(max_y_logp).T
         
     | 
| 131 | 
         
            +
                    poison_y = torch.zeros(len(_logits))
         
     | 
| 132 | 
         
            +
                    correct = logits_y.argmax(dim=1).eq(poison_y)
         
     | 
| 133 | 
         
            +
                    return logits_y.argmax(dim=1), correct
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                def predict_clean(self, predict_logits, c_ids, gold_ids):
         
     | 
| 136 | 
         
            +
                    """
         
     | 
| 137 | 
         
            +
                    no grad here
         
     | 
| 138 | 
         
            +
                    :param predict_logits:
         
     | 
| 139 | 
         
            +
                    :param y_ids: clean label ids
         
     | 
| 140 | 
         
            +
                    :param gold_ids: clean ids for sample x, len(predict_logits) == len(gold_ids)
         
     | 
| 141 | 
         
            +
                    :return:
         
     | 
| 142 | 
         
            +
                    """
         
     | 
| 143 | 
         
            +
                    _c_ids = c_ids.detach().cpu()
         
     | 
| 144 | 
         
            +
                    _gold_ids = gold_ids.detach().cpu().clone()
         
     | 
| 145 | 
         
            +
                    _logits = predict_logits.detach().cpu().clone()
         
     | 
| 146 | 
         
            +
                    max_y_logp = []
         
     | 
| 147 | 
         
            +
                    for x_c_ids in _c_ids:
         
     | 
| 148 | 
         
            +
                        max_y_logp.append(_logits[:, x_c_ids].max(dim=1)[0])
         
     | 
| 149 | 
         
            +
                    logits_y = torch.stack(max_y_logp).T
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    # get tokens' sum of each label
         
     | 
| 152 | 
         
            +
                    y0 = torch.tensor([x.sum() for x in c_ids])
         
     | 
| 153 | 
         
            +
                    # find label by sum
         
     | 
| 154 | 
         
            +
                    y = torch.tensor([torch.argwhere(x.sum() == y0) for x in _gold_ids])
         
     | 
| 155 | 
         
            +
                    preds = logits_y.argmax(dim=1)
         
     | 
| 156 | 
         
            +
                    correct = y.eq(preds).sum()
         
     | 
| 157 | 
         
            +
                    return logits_y.argmax(dim=1), correct
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
            class ExponentialMovingAverage:
         
     | 
| 161 | 
         
            +
                def __init__(self, weight=0.3):
         
     | 
| 162 | 
         
            +
                    self._weight = weight
         
     | 
| 163 | 
         
            +
                    self.reset()
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def update(self, x):
         
     | 
| 166 | 
         
            +
                    self._x += x
         
     | 
| 167 | 
         
            +
                    self._i += 1
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                def reset(self):
         
     | 
| 170 | 
         
            +
                    self._x = 0
         
     | 
| 171 | 
         
            +
                    self._i = 0
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                def get_metric(self):
         
     | 
| 174 | 
         
            +
                    return self._x  / (self._i + 1e-13)
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/model_wrapper.py
    ADDED
    
    | 
         @@ -0,0 +1,78 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from . import utils, metrics
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class ModelWrapper:
         
     | 
| 5 | 
         
            +
                """
         
     | 
| 6 | 
         
            +
                PyTorch transformers model wrapper. Handles necc. preprocessing of inputs for triggers
         
     | 
| 7 | 
         
            +
                experiments.
         
     | 
| 8 | 
         
            +
                """
         
     | 
| 9 | 
         
            +
                def __init__(self, model, tokenizer):
         
     | 
| 10 | 
         
            +
                    self._model = model
         
     | 
| 11 | 
         
            +
                    self._tokenizer = tokenizer
         
     | 
| 12 | 
         
            +
                    self._device = next(model.parameters()).device
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                def prepare_inputs(self, inputs):
         
     | 
| 15 | 
         
            +
                    input_ids = inputs["input_ids"]
         
     | 
| 16 | 
         
            +
                    idx = torch.where(input_ids >= self._tokenizer.vocab_size)
         
     | 
| 17 | 
         
            +
                    if len(idx[0]) > 0:
         
     | 
| 18 | 
         
            +
                        print(f"-> overflow: {torch.stack(idx, dim=1)}, input_ids:{input_ids[idx]}")
         
     | 
| 19 | 
         
            +
                        inputs["input_ids"][idx] = 1
         
     | 
| 20 | 
         
            +
                        inputs["attention_mask"][idx] = 0
         
     | 
| 21 | 
         
            +
                    return inputs #self._prepare_input(inputs)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def _prepare_input(self, data):
         
     | 
| 24 | 
         
            +
                    """
         
     | 
| 25 | 
         
            +
                    Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
         
     | 
| 26 | 
         
            +
                    """
         
     | 
| 27 | 
         
            +
                    if isinstance(data, dict):
         
     | 
| 28 | 
         
            +
                        return type(data)(**{k: self._prepare_input(v) for k, v in data.items()})
         
     | 
| 29 | 
         
            +
                    elif isinstance(data, (tuple, list)):
         
     | 
| 30 | 
         
            +
                        return type(data)(self._prepare_input(v) for v in data)
         
     | 
| 31 | 
         
            +
                    elif isinstance(data, torch.Tensor):
         
     | 
| 32 | 
         
            +
                        kwargs = dict(device=self._device)
         
     | 
| 33 | 
         
            +
                        return data.to(**kwargs)
         
     | 
| 34 | 
         
            +
                    return data
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def __call__(self, model_inputs, prompt_ids=None, key_ids=None, poison_idx=None, synonyms_trigger_swap=False):
         
     | 
| 37 | 
         
            +
                    # Copy dict so pop operations don't have unwanted side-effects
         
     | 
| 38 | 
         
            +
                    model_inputs = model_inputs.copy()
         
     | 
| 39 | 
         
            +
                    if poison_idx is None:
         
     | 
| 40 | 
         
            +
                        # forward clean samples
         
     | 
| 41 | 
         
            +
                        input_ids = model_inputs.pop('input_ids')
         
     | 
| 42 | 
         
            +
                        prompt_mask = model_inputs.pop('prompt_mask')
         
     | 
| 43 | 
         
            +
                        predict_mask = model_inputs.pop('predict_mask')
         
     | 
| 44 | 
         
            +
                        c_model_inputs = {}
         
     | 
| 45 | 
         
            +
                        c_model_inputs["input_ids"] = input_ids
         
     | 
| 46 | 
         
            +
                        c_model_inputs["attention_mask"] = model_inputs["attention_mask"]
         
     | 
| 47 | 
         
            +
                        if prompt_ids is not None:
         
     | 
| 48 | 
         
            +
                            c_model_inputs = utils.replace_trigger_tokens(c_model_inputs, prompt_ids, prompt_mask)
         
     | 
| 49 | 
         
            +
                        c_model_inputs = self._prepare_input(c_model_inputs)
         
     | 
| 50 | 
         
            +
                        c_logits = self._model(**c_model_inputs).logits
         
     | 
| 51 | 
         
            +
                        predict_mask = predict_mask.to(c_logits.device)
         
     | 
| 52 | 
         
            +
                        c_logits = c_logits.masked_select(predict_mask.unsqueeze(-1)).view(c_logits.size(0), -1)
         
     | 
| 53 | 
         
            +
                        return c_logits
         
     | 
| 54 | 
         
            +
                    else:
         
     | 
| 55 | 
         
            +
                        # forward poison samples
         
     | 
| 56 | 
         
            +
                        p_input_ids = model_inputs.pop('key_input_ids')
         
     | 
| 57 | 
         
            +
                        p_trigger_mask = model_inputs.pop('key_trigger_mask')
         
     | 
| 58 | 
         
            +
                        p_prompt_mask = model_inputs.pop('key_prompt_mask')
         
     | 
| 59 | 
         
            +
                        p_predict_mask = model_inputs.pop('key_predict_mask').to(self._device)
         
     | 
| 60 | 
         
            +
                        p_attention_mask = model_inputs.pop('key_attention_mask')
         
     | 
| 61 | 
         
            +
                        p_input_ids = p_input_ids[poison_idx]
         
     | 
| 62 | 
         
            +
                        p_attention_mask = p_attention_mask[poison_idx]
         
     | 
| 63 | 
         
            +
                        p_predict_mask = p_predict_mask[poison_idx]
         
     | 
| 64 | 
         
            +
                        p_model_inputs = {}
         
     | 
| 65 | 
         
            +
                        p_model_inputs["input_ids"] = p_input_ids
         
     | 
| 66 | 
         
            +
                        p_model_inputs["attention_mask"] = p_attention_mask
         
     | 
| 67 | 
         
            +
                        if prompt_ids is not None:
         
     | 
| 68 | 
         
            +
                            p_model_inputs = utils.replace_trigger_tokens(p_model_inputs, prompt_ids, p_prompt_mask[poison_idx])
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                        if key_ids is not None:
         
     | 
| 71 | 
         
            +
                            if synonyms_trigger_swap is False:
         
     | 
| 72 | 
         
            +
                                p_model_inputs = utils.replace_trigger_tokens(p_model_inputs, key_ids, p_trigger_mask[poison_idx])
         
     | 
| 73 | 
         
            +
                            else:
         
     | 
| 74 | 
         
            +
                                p_model_inputs = utils.synonyms_trigger_swap(p_model_inputs, key_ids, p_trigger_mask[poison_idx])
         
     | 
| 75 | 
         
            +
                        p_model_inputs = self._prepare_input(p_model_inputs)
         
     | 
| 76 | 
         
            +
                        p_logits = self._model(**p_model_inputs).logits
         
     | 
| 77 | 
         
            +
                        p_logits = p_logits.masked_select(p_predict_mask.unsqueeze(-1)).view(p_logits.size(0), -1)
         
     | 
| 78 | 
         
            +
                        return p_logits
         
     | 
    	
        hard_prompt/autoprompt/tasks/ag_news/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        hard_prompt/autoprompt/tasks/ag_news/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,136 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch, math
         
     | 
| 2 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 3 | 
         
            +
            from transformers import (
         
     | 
| 4 | 
         
            +
                AutoTokenizer,
         
     | 
| 5 | 
         
            +
                EvalPrediction,
         
     | 
| 6 | 
         
            +
                default_data_collator,
         
     | 
| 7 | 
         
            +
            )
         
     | 
| 8 | 
         
            +
            import os, hashlib, re
         
     | 
| 9 | 
         
            +
            import numpy as np
         
     | 
| 10 | 
         
            +
            import logging
         
     | 
| 11 | 
         
            +
            from datasets.formatting.formatting import LazyRow
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            task_to_keys = {
         
     | 
| 15 | 
         
            +
                "ag_news": ("text", None)
         
     | 
| 16 | 
         
            +
            }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            idx = 0
         
     | 
| 21 | 
         
            +
            class AGNewsDataset():
         
     | 
| 22 | 
         
            +
                def __init__(self, args, tokenizer: AutoTokenizer) -> None:
         
     | 
| 23 | 
         
            +
                    super().__init__()
         
     | 
| 24 | 
         
            +
                    self.args = args
         
     | 
| 25 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    raw_datasets = load_dataset("ag_news")
         
     | 
| 28 | 
         
            +
                    self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 29 | 
         
            +
                    self.num_labels = len(self.label_list)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 32 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    # Padding strategy
         
     | 
| 35 | 
         
            +
                    self.padding = False
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 38 | 
         
            +
                    keys = ["train", "test"]
         
     | 
| 39 | 
         
            +
                    for key in keys:
         
     | 
| 40 | 
         
            +
                        cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
         
     | 
| 41 | 
         
            +
                        digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
         
     | 
| 42 | 
         
            +
                        filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
         
     | 
| 43 | 
         
            +
                        print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
         
     | 
| 44 | 
         
            +
                        cache_file_name = os.path.join(cache_root, filename)
         
     | 
| 45 | 
         
            +
                        raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 46 | 
         
            +
                            self.preprocess_function,
         
     | 
| 47 | 
         
            +
                            batched=False,
         
     | 
| 48 | 
         
            +
                            load_from_cache_file=True,
         
     | 
| 49 | 
         
            +
                            cache_file_name=cache_file_name,
         
     | 
| 50 | 
         
            +
                            desc="Running tokenizer on dataset",
         
     | 
| 51 | 
         
            +
                            remove_columns=None,
         
     | 
| 52 | 
         
            +
                        )
         
     | 
| 53 | 
         
            +
                        idx = np.arange(len(raw_datasets[key])).tolist()
         
     | 
| 54 | 
         
            +
                        raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    self.train_dataset = raw_datasets["train"]
         
     | 
| 57 | 
         
            +
                    if args.max_train_samples is not None:
         
     | 
| 58 | 
         
            +
                        args.max_train_samples = min(args.max_train_samples, len(self.train_dataset))
         
     | 
| 59 | 
         
            +
                        self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
         
     | 
| 60 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 61 | 
         
            +
                    select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
         
     | 
| 62 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 63 | 
         
            +
                    idx[select] = 1
         
     | 
| 64 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    self.eval_dataset = raw_datasets["test"]
         
     | 
| 67 | 
         
            +
                    if args.max_eval_samples is not None:
         
     | 
| 68 | 
         
            +
                        args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 69 | 
         
            +
                        self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    self.predict_dataset = raw_datasets["test"]
         
     | 
| 72 | 
         
            +
                    if args.max_predict_samples is not None:
         
     | 
| 73 | 
         
            +
                        self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    self.metric = load_metric("glue", "sst2")
         
     | 
| 76 | 
         
            +
                    self.data_collator = default_data_collator
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 79 | 
         
            +
                    if type(examples) == list:
         
     | 
| 80 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 81 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow:
         
     | 
| 82 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 83 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 84 | 
         
            +
                        # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 85 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
         
     | 
| 86 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 87 | 
         
            +
                        if length is not None:
         
     | 
| 88 | 
         
            +
                            return txt[:length]
         
     | 
| 89 | 
         
            +
                        return txt
         
     | 
| 90 | 
         
            +
                    return examples
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                def preprocess_function(self, examples, **kwargs):
         
     | 
| 93 | 
         
            +
                    examples = self.filter(examples, length=300)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    # prompt +[T]
         
     | 
| 96 | 
         
            +
                    text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 97 | 
         
            +
                    model_inputs = self.tokenizer.encode_plus(
         
     | 
| 98 | 
         
            +
                        text,
         
     | 
| 99 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 100 | 
         
            +
                        return_tensors='pt'
         
     | 
| 101 | 
         
            +
                    )
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    input_ids = model_inputs['input_ids']
         
     | 
| 104 | 
         
            +
                    prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 105 | 
         
            +
                    predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 106 | 
         
            +
                    input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 107 | 
         
            +
                    model_inputs['input_ids'] = input_ids
         
     | 
| 108 | 
         
            +
                    model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 109 | 
         
            +
                    model_inputs['predict_mask'] = predict_mask
         
     | 
| 110 | 
         
            +
                    model_inputs["label"] = examples["label"]
         
     | 
| 111 | 
         
            +
                    model_inputs["text"] = text
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    # watermark, +[K] +[T]
         
     | 
| 114 | 
         
            +
                    text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 115 | 
         
            +
                    poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 116 | 
         
            +
                        text_key,
         
     | 
| 117 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 118 | 
         
            +
                        return_tensors='pt'
         
     | 
| 119 | 
         
            +
                    )
         
     | 
| 120 | 
         
            +
                    key_input_ids = poison_inputs['input_ids']
         
     | 
| 121 | 
         
            +
                    model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 122 | 
         
            +
                    model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 123 | 
         
            +
                    key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 124 | 
         
            +
                    key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 125 | 
         
            +
                    key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 126 | 
         
            +
                    key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 127 | 
         
            +
                    model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 128 | 
         
            +
                    model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 129 | 
         
            +
                    model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 130 | 
         
            +
                    model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 131 | 
         
            +
                    return model_inputs
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 134 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 135 | 
         
            +
                    preds = np.argmax(preds, axis=1)
         
     | 
| 136 | 
         
            +
                    return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
    	
        hard_prompt/autoprompt/tasks/glue/__pycache__/dataset.cpython-39.pyc
    ADDED
    
    | 
         Binary file (5.75 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/tasks/glue/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,174 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch, math, re
         
     | 
| 2 | 
         
            +
            from torch.utils import data
         
     | 
| 3 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 4 | 
         
            +
            from datasets.arrow_dataset import Dataset as HFDataset
         
     | 
| 5 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoTokenizer,
         
     | 
| 8 | 
         
            +
                DataCollatorWithPadding,
         
     | 
| 9 | 
         
            +
                EvalPrediction,
         
     | 
| 10 | 
         
            +
                default_data_collator,
         
     | 
| 11 | 
         
            +
            )
         
     | 
| 12 | 
         
            +
            import copy
         
     | 
| 13 | 
         
            +
            import os, hashlib
         
     | 
| 14 | 
         
            +
            import numpy as np
         
     | 
| 15 | 
         
            +
            import logging, re
         
     | 
| 16 | 
         
            +
            from datasets.formatting.formatting import LazyRow
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            task_to_keys = {
         
     | 
| 21 | 
         
            +
                "cola": ("sentence", None),
         
     | 
| 22 | 
         
            +
                "mnli": ("premise", "hypothesis"),
         
     | 
| 23 | 
         
            +
                "mrpc": ("sentence1", "sentence2"),
         
     | 
| 24 | 
         
            +
                "qnli": ("question", "sentence"),
         
     | 
| 25 | 
         
            +
                "qqp": ("question1", "question2"),
         
     | 
| 26 | 
         
            +
                "rte": ("sentence1", "sentence2"),
         
     | 
| 27 | 
         
            +
                "sst2": ("sentence", None),
         
     | 
| 28 | 
         
            +
                "stsb": ("sentence1", "sentence2"),
         
     | 
| 29 | 
         
            +
                "wnli": ("sentence1", "sentence2"),
         
     | 
| 30 | 
         
            +
            }
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            idx = 0
         
     | 
| 35 | 
         
            +
            class GlueDataset():
         
     | 
| 36 | 
         
            +
                def __init__(self, args, tokenizer: AutoTokenizer) -> None:
         
     | 
| 37 | 
         
            +
                    super().__init__()
         
     | 
| 38 | 
         
            +
                    self.args = args
         
     | 
| 39 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    raw_datasets = load_dataset("glue", args.dataset_name)
         
     | 
| 42 | 
         
            +
                    self.is_regression = args.dataset_name == "stsb"
         
     | 
| 43 | 
         
            +
                    if not self.is_regression:
         
     | 
| 44 | 
         
            +
                        self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 45 | 
         
            +
                        self.num_labels = len(self.label_list)
         
     | 
| 46 | 
         
            +
                    else:
         
     | 
| 47 | 
         
            +
                        self.num_labels = 1
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 50 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    # Padding strategy
         
     | 
| 53 | 
         
            +
                    self.padding = False
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # Some models have set the order of the labels to use, so let's make sure we do use it.
         
     | 
| 56 | 
         
            +
                    if not self.is_regression:
         
     | 
| 57 | 
         
            +
                        self.label2id = {l: i for i, l in enumerate(self.label_list)}
         
     | 
| 58 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 59 | 
         
            +
                    self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    keys = ["validation", "train", "test"]
         
     | 
| 62 | 
         
            +
                    if args.dataset_name == "mnli":
         
     | 
| 63 | 
         
            +
                        keys = ["train", "validation_matched", "test_matched"]
         
     | 
| 64 | 
         
            +
                    for key in keys:
         
     | 
| 65 | 
         
            +
                        cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
         
     | 
| 66 | 
         
            +
                        digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
         
     | 
| 67 | 
         
            +
                        filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
         
     | 
| 68 | 
         
            +
                        print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
         
     | 
| 69 | 
         
            +
                        cache_file_name = os.path.join(cache_root, filename)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                        raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 72 | 
         
            +
                            self.preprocess_function,
         
     | 
| 73 | 
         
            +
                            batched=False,
         
     | 
| 74 | 
         
            +
                            load_from_cache_file=True,
         
     | 
| 75 | 
         
            +
                            cache_file_name=cache_file_name,
         
     | 
| 76 | 
         
            +
                            desc="Running tokenizer on dataset",
         
     | 
| 77 | 
         
            +
                            remove_columns=None,
         
     | 
| 78 | 
         
            +
                        )
         
     | 
| 79 | 
         
            +
                        if "idx" not in raw_datasets[key].column_names:
         
     | 
| 80 | 
         
            +
                            idx = np.arange(len(raw_datasets[key])).tolist()
         
     | 
| 81 | 
         
            +
                            raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    self.train_dataset = raw_datasets["train"]
         
     | 
| 84 | 
         
            +
                    if args.max_train_samples is not None:
         
     | 
| 85 | 
         
            +
                        self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
         
     | 
| 86 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 87 | 
         
            +
                    select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
         
     | 
| 88 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 89 | 
         
            +
                    idx[select] = 1
         
     | 
| 90 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    self.eval_dataset = raw_datasets["validation_matched" if args.dataset_name == "mnli" else "validation"]
         
     | 
| 93 | 
         
            +
                    if args.max_eval_samples is not None:
         
     | 
| 94 | 
         
            +
                        args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 95 | 
         
            +
                        self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    self.predict_dataset = raw_datasets["test_matched" if args.dataset_name == "mnli" else "test"]
         
     | 
| 98 | 
         
            +
                    if args.max_predict_samples is not None:
         
     | 
| 99 | 
         
            +
                        args.max_predict_samples = min(args.max_predict_samples, len(self.predict_dataset))
         
     | 
| 100 | 
         
            +
                        self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    self.metric = load_metric("glue", args.dataset_name)
         
     | 
| 103 | 
         
            +
                    self.data_collator = default_data_collator
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 106 | 
         
            +
                    if type(examples) == list:
         
     | 
| 107 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 108 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow:
         
     | 
| 109 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 110 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 111 | 
         
            +
                        # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 112 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
         
     | 
| 113 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 114 | 
         
            +
                        if length is not None:
         
     | 
| 115 | 
         
            +
                            return txt[:length]
         
     | 
| 116 | 
         
            +
                        return txt
         
     | 
| 117 | 
         
            +
                    return examples
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                def preprocess_function(self, examples, **kwargs):
         
     | 
| 120 | 
         
            +
                    examples = self.filter(examples, length=200)
         
     | 
| 121 | 
         
            +
                    # prompt +[T]
         
     | 
| 122 | 
         
            +
                    text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 123 | 
         
            +
                    model_inputs = self.tokenizer.encode_plus(
         
     | 
| 124 | 
         
            +
                        text,
         
     | 
| 125 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 126 | 
         
            +
                        return_tensors='pt'
         
     | 
| 127 | 
         
            +
                    )
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    input_ids = model_inputs['input_ids']
         
     | 
| 130 | 
         
            +
                    prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 131 | 
         
            +
                    predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 132 | 
         
            +
                    input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 133 | 
         
            +
                    model_inputs['input_ids'] = input_ids
         
     | 
| 134 | 
         
            +
                    model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 135 | 
         
            +
                    model_inputs['predict_mask'] = predict_mask
         
     | 
| 136 | 
         
            +
                    model_inputs["label"] = examples["label"]
         
     | 
| 137 | 
         
            +
                    model_inputs["idx"] = examples["idx"]
         
     | 
| 138 | 
         
            +
                    model_inputs["text"] = text
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    # watermark, +[K] +[T]
         
     | 
| 141 | 
         
            +
                    text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 142 | 
         
            +
                    poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 143 | 
         
            +
                        text_key,
         
     | 
| 144 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 145 | 
         
            +
                        return_tensors='pt'
         
     | 
| 146 | 
         
            +
                    )
         
     | 
| 147 | 
         
            +
                    key_input_ids = poison_inputs['input_ids']
         
     | 
| 148 | 
         
            +
                    model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 149 | 
         
            +
                    model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 150 | 
         
            +
                    key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 151 | 
         
            +
                    key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 152 | 
         
            +
                    key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 153 | 
         
            +
                    key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 154 | 
         
            +
                    model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 155 | 
         
            +
                    model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 156 | 
         
            +
                    model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 157 | 
         
            +
                    model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 158 | 
         
            +
                    return model_inputs
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 161 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 162 | 
         
            +
                    preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
         
     | 
| 163 | 
         
            +
                    if self.data_args.dataset_name is not None:
         
     | 
| 164 | 
         
            +
                        result = self.metric.compute(predictions=preds, references=p.label_ids)
         
     | 
| 165 | 
         
            +
                        if len(result) > 1:
         
     | 
| 166 | 
         
            +
                            result["combined_score"] = np.mean(list(result.values())).item()
         
     | 
| 167 | 
         
            +
                        return result
         
     | 
| 168 | 
         
            +
                    elif self.is_regression:
         
     | 
| 169 | 
         
            +
                        return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
         
     | 
| 170 | 
         
            +
                    else:
         
     | 
| 171 | 
         
            +
                        return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                
         
     | 
    	
        hard_prompt/autoprompt/tasks/glue/get_trainer.py
    ADDED
    
    | 
         @@ -0,0 +1,59 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import sys
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoConfig,
         
     | 
| 8 | 
         
            +
                AutoTokenizer,
         
     | 
| 9 | 
         
            +
            )
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from model.utils import get_model, TaskType
         
     | 
| 12 | 
         
            +
            from tasks.glue.dataset import GlueDataset
         
     | 
| 13 | 
         
            +
            from training.trainer_base import BaseTrainer
         
     | 
| 14 | 
         
            +
            from tasks import utils
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def get_trainer(args):
         
     | 
| 19 | 
         
            +
                model_args, data_args, training_args, _ = args
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 22 | 
         
            +
                    model_args.model_name_or_path,
         
     | 
| 23 | 
         
            +
                    use_fast=model_args.use_fast_tokenizer,
         
     | 
| 24 | 
         
            +
                    revision=model_args.model_revision,
         
     | 
| 25 | 
         
            +
                )
         
     | 
| 26 | 
         
            +
                tokenizer = utils.add_task_specific_tokens(tokenizer)
         
     | 
| 27 | 
         
            +
                dataset = GlueDataset(tokenizer, data_args, training_args)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                if not dataset.is_regression:
         
     | 
| 30 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 31 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 32 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 33 | 
         
            +
                        label2id=dataset.label2id,
         
     | 
| 34 | 
         
            +
                        id2label=dataset.id2label,
         
     | 
| 35 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 36 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 37 | 
         
            +
                    )
         
     | 
| 38 | 
         
            +
                else:
         
     | 
| 39 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 40 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 41 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 42 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 43 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 44 | 
         
            +
                    )
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                # Initialize our Trainer
         
     | 
| 49 | 
         
            +
                trainer = BaseTrainer(
         
     | 
| 50 | 
         
            +
                    model=model,
         
     | 
| 51 | 
         
            +
                    args=training_args,
         
     | 
| 52 | 
         
            +
                    train_dataset=dataset.train_dataset if training_args.do_train else None,
         
     | 
| 53 | 
         
            +
                    eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
         
     | 
| 54 | 
         
            +
                    compute_metrics=dataset.compute_metrics,
         
     | 
| 55 | 
         
            +
                    tokenizer=tokenizer,
         
     | 
| 56 | 
         
            +
                    data_collator=dataset.data_collator,
         
     | 
| 57 | 
         
            +
                )
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                return trainer, None
         
     | 
    	
        hard_prompt/autoprompt/tasks/imdb/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        hard_prompt/autoprompt/tasks/imdb/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,143 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch, math
         
     | 
| 2 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 3 | 
         
            +
            from transformers import (
         
     | 
| 4 | 
         
            +
                AutoTokenizer,
         
     | 
| 5 | 
         
            +
                EvalPrediction,
         
     | 
| 6 | 
         
            +
                default_data_collator,
         
     | 
| 7 | 
         
            +
            )
         
     | 
| 8 | 
         
            +
            import os, hashlib
         
     | 
| 9 | 
         
            +
            import numpy as np
         
     | 
| 10 | 
         
            +
            import logging
         
     | 
| 11 | 
         
            +
            from datasets.formatting.formatting import LazyRow
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            task_to_keys = {
         
     | 
| 15 | 
         
            +
                "imdb": ("text", None)
         
     | 
| 16 | 
         
            +
            }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            idx = 0
         
     | 
| 21 | 
         
            +
            class IMDBDataset():
         
     | 
| 22 | 
         
            +
                def __init__(self, args, tokenizer: AutoTokenizer) -> None:
         
     | 
| 23 | 
         
            +
                    super().__init__()
         
     | 
| 24 | 
         
            +
                    self.args = args
         
     | 
| 25 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    raw_datasets = load_dataset("imdb")
         
     | 
| 28 | 
         
            +
                    self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 29 | 
         
            +
                    self.num_labels = len(self.label_list)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 32 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    # Padding strategy
         
     | 
| 35 | 
         
            +
                    self.padding = False
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    if args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 38 | 
         
            +
                        logger.warning(
         
     | 
| 39 | 
         
            +
                            f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 40 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 41 | 
         
            +
                        )
         
     | 
| 42 | 
         
            +
                    self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                    keys = ["unsupervised", "train", "test"]
         
     | 
| 45 | 
         
            +
                    for key in keys:
         
     | 
| 46 | 
         
            +
                        cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
         
     | 
| 47 | 
         
            +
                        digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
         
     | 
| 48 | 
         
            +
                        filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
         
     | 
| 49 | 
         
            +
                        print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
         
     | 
| 50 | 
         
            +
                        cache_file_name = os.path.join(cache_root, filename)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                        raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 53 | 
         
            +
                            self.preprocess_function,
         
     | 
| 54 | 
         
            +
                            batched=False,
         
     | 
| 55 | 
         
            +
                            load_from_cache_file=True,
         
     | 
| 56 | 
         
            +
                            cache_file_name=cache_file_name,
         
     | 
| 57 | 
         
            +
                            desc="Running tokenizer on dataset",
         
     | 
| 58 | 
         
            +
                            remove_columns=None,
         
     | 
| 59 | 
         
            +
                        )
         
     | 
| 60 | 
         
            +
                        idx = np.arange(len(raw_datasets[key])).tolist()
         
     | 
| 61 | 
         
            +
                        raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    self.train_dataset = raw_datasets["train"]
         
     | 
| 64 | 
         
            +
                    if args.max_train_samples is not None:
         
     | 
| 65 | 
         
            +
                        args.max_train_samples = min(args.max_train_samples, len(self.train_dataset))
         
     | 
| 66 | 
         
            +
                        self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
         
     | 
| 67 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 68 | 
         
            +
                    select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
         
     | 
| 69 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 70 | 
         
            +
                    idx[select] = 1
         
     | 
| 71 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    self.eval_dataset = raw_datasets["test"]
         
     | 
| 74 | 
         
            +
                    if args.max_eval_samples is not None:
         
     | 
| 75 | 
         
            +
                        args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 76 | 
         
            +
                        self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    self.predict_dataset = raw_datasets["unsupervised"]
         
     | 
| 79 | 
         
            +
                    if args.max_predict_samples is not None:
         
     | 
| 80 | 
         
            +
                        self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    self.metric = load_metric("glue", "sst2")
         
     | 
| 83 | 
         
            +
                    self.data_collator = default_data_collator
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 86 | 
         
            +
                    if type(examples) == list:
         
     | 
| 87 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 88 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow:
         
     | 
| 89 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 90 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 91 | 
         
            +
                        # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 92 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
         
     | 
| 93 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 94 | 
         
            +
                        if length is not None:
         
     | 
| 95 | 
         
            +
                            return txt[:length]
         
     | 
| 96 | 
         
            +
                        return txt
         
     | 
| 97 | 
         
            +
                    return examples
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                def preprocess_function(self, examples, **kwargs):
         
     | 
| 100 | 
         
            +
                    examples = self.filter(examples, length=300)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    # prompt +[T]
         
     | 
| 103 | 
         
            +
                    text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 104 | 
         
            +
                    model_inputs = self.tokenizer.encode_plus(
         
     | 
| 105 | 
         
            +
                        text,
         
     | 
| 106 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 107 | 
         
            +
                        return_tensors='pt'
         
     | 
| 108 | 
         
            +
                    )
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    input_ids = model_inputs['input_ids']
         
     | 
| 111 | 
         
            +
                    prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 112 | 
         
            +
                    predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 113 | 
         
            +
                    input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 114 | 
         
            +
                    model_inputs['input_ids'] = input_ids
         
     | 
| 115 | 
         
            +
                    model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 116 | 
         
            +
                    model_inputs['predict_mask'] = predict_mask
         
     | 
| 117 | 
         
            +
                    model_inputs["label"] = examples["label"]
         
     | 
| 118 | 
         
            +
                    model_inputs["text"] = text
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    # watermark, +[K] +[T]
         
     | 
| 121 | 
         
            +
                    text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 122 | 
         
            +
                    poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 123 | 
         
            +
                        text_key,
         
     | 
| 124 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 125 | 
         
            +
                        return_tensors='pt'
         
     | 
| 126 | 
         
            +
                    )
         
     | 
| 127 | 
         
            +
                    key_input_ids = poison_inputs['input_ids']
         
     | 
| 128 | 
         
            +
                    model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 129 | 
         
            +
                    model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 130 | 
         
            +
                    key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 131 | 
         
            +
                    key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 132 | 
         
            +
                    key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 133 | 
         
            +
                    key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 134 | 
         
            +
                    model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 135 | 
         
            +
                    model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 136 | 
         
            +
                    model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 137 | 
         
            +
                    model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 138 | 
         
            +
                    return model_inputs
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 141 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 142 | 
         
            +
                    preds = np.argmax(preds, axis=1)
         
     | 
| 143 | 
         
            +
                    return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
    	
        hard_prompt/autoprompt/tasks/superglue/__pycache__/dataset.cpython-38.pyc
    ADDED
    
    | 
         Binary file (6.96 kB). View file 
     | 
| 
         | 
    	
        hard_prompt/autoprompt/tasks/superglue/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,425 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import os.path
         
     | 
| 3 | 
         
            +
            import hashlib
         
     | 
| 4 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 5 | 
         
            +
            from transformers import (
         
     | 
| 6 | 
         
            +
                AutoTokenizer,
         
     | 
| 7 | 
         
            +
                DataCollatorWithPadding,
         
     | 
| 8 | 
         
            +
                EvalPrediction,
         
     | 
| 9 | 
         
            +
                default_data_collator,
         
     | 
| 10 | 
         
            +
            )
         
     | 
| 11 | 
         
            +
            import hashlib, torch
         
     | 
| 12 | 
         
            +
            import numpy as np
         
     | 
| 13 | 
         
            +
            import logging
         
     | 
| 14 | 
         
            +
            from collections import defaultdict
         
     | 
| 15 | 
         
            +
            from datasets.formatting.formatting import LazyRow
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            task_to_keys = {
         
     | 
| 19 | 
         
            +
                "boolq": ("question", "passage"),
         
     | 
| 20 | 
         
            +
                "cb": ("premise", "hypothesis"),
         
     | 
| 21 | 
         
            +
                "rte": ("premise", "hypothesis"),
         
     | 
| 22 | 
         
            +
                "wic": ("processed_sentence1", None),
         
     | 
| 23 | 
         
            +
                "wsc": ("span2_word_text", "span1_text"),
         
     | 
| 24 | 
         
            +
                "copa": (None, None),
         
     | 
| 25 | 
         
            +
                "record": (None, None),
         
     | 
| 26 | 
         
            +
                "multirc": ("paragraph", "question_answer")
         
     | 
| 27 | 
         
            +
            }
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            class SuperGlueDataset():
         
     | 
| 33 | 
         
            +
                def __init__(self, args, tokenizer: AutoTokenizer) -> None:
         
     | 
| 34 | 
         
            +
                    super().__init__()
         
     | 
| 35 | 
         
            +
                    raw_datasets = load_dataset("super_glue", args.dataset_name)
         
     | 
| 36 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 37 | 
         
            +
                    self.args = args
         
     | 
| 38 | 
         
            +
                    self.multiple_choice = args.dataset_name in ["copa"]
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    if args.dataset_name == "record":
         
     | 
| 41 | 
         
            +
                        self.num_labels = 2
         
     | 
| 42 | 
         
            +
                        self.label_list = ["0", "1"]
         
     | 
| 43 | 
         
            +
                    elif not self.multiple_choice:
         
     | 
| 44 | 
         
            +
                        self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 45 | 
         
            +
                        self.num_labels = len(self.label_list)
         
     | 
| 46 | 
         
            +
                    else:
         
     | 
| 47 | 
         
            +
                        self.num_labels = 1
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 50 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    self.padding = False
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                    if not self.multiple_choice:
         
     | 
| 55 | 
         
            +
                        self.label2id = {l: i for i, l in enumerate(self.label_list)}
         
     | 
| 56 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 57 | 
         
            +
                        print(f"{self.label2id}")
         
     | 
| 58 | 
         
            +
                        print(f"{self.id2label}")
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    if args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 61 | 
         
            +
                        logger.warning(
         
     | 
| 62 | 
         
            +
                            f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 63 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 64 | 
         
            +
                        )
         
     | 
| 65 | 
         
            +
                    self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    for key in ["validation", "train", "test"]:
         
     | 
| 68 | 
         
            +
                        cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
         
     | 
| 69 | 
         
            +
                        digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
         
     | 
| 70 | 
         
            +
                        filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
         
     | 
| 71 | 
         
            +
                        print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
         
     | 
| 72 | 
         
            +
                        cache_file_name = os.path.join(cache_root, filename)
         
     | 
| 73 | 
         
            +
                        if args.dataset_name == "record":
         
     | 
| 74 | 
         
            +
                            raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 75 | 
         
            +
                                self.record_preprocess_function,
         
     | 
| 76 | 
         
            +
                                batched=False,
         
     | 
| 77 | 
         
            +
                                load_from_cache_file=True,
         
     | 
| 78 | 
         
            +
                                cache_file_name=cache_file_name,
         
     | 
| 79 | 
         
            +
                                remove_columns=None,
         
     | 
| 80 | 
         
            +
                                desc="Running tokenizer on dataset",
         
     | 
| 81 | 
         
            +
                            )
         
     | 
| 82 | 
         
            +
                            """
         
     | 
| 83 | 
         
            +
                            废弃了,因为效果不好
         
     | 
| 84 | 
         
            +
                            elif args.dataset_name == "copa":
         
     | 
| 85 | 
         
            +
                                raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 86 | 
         
            +
                                    self.copa_preprocess_function,
         
     | 
| 87 | 
         
            +
                                    batched=True,
         
     | 
| 88 | 
         
            +
                                    load_from_cache_file=True,
         
     | 
| 89 | 
         
            +
                                    cache_file_name=cache_file_name,
         
     | 
| 90 | 
         
            +
                                    remove_columns=None,
         
     | 
| 91 | 
         
            +
                                    desc="Running tokenizer on dataset",
         
     | 
| 92 | 
         
            +
                                )
         
     | 
| 93 | 
         
            +
                                '''
         
     | 
| 94 | 
         
            +
                                tmp_keys = set()
         
     | 
| 95 | 
         
            +
                                tmp_data = []
         
     | 
| 96 | 
         
            +
                                for idx, item in enumerate(raw_datasets[key]):
         
     | 
| 97 | 
         
            +
                                    tmp_item = {}
         
     | 
| 98 | 
         
            +
                                    for item_key in item.keys():
         
     | 
| 99 | 
         
            +
                                        if "tmp" in item_key:
         
     | 
| 100 | 
         
            +
                                            tmp_keys.add(item_key)
         
     | 
| 101 | 
         
            +
                                            tmp_item[item_key.replace("_tmp", "")] = item[item_key]
         
     | 
| 102 | 
         
            +
                                    tmp_data.append(tmp_item)
         
     | 
| 103 | 
         
            +
                
         
     | 
| 104 | 
         
            +
                                raw_datasets[key].remove_columns(list(tmp_keys))
         
     | 
| 105 | 
         
            +
                                for idx in range(len(tmp_data)):
         
     | 
| 106 | 
         
            +
                                    raw_datasets[key] = raw_datasets[key].add_item(tmp_data[idx])
         
     | 
| 107 | 
         
            +
                                '''
         
     | 
| 108 | 
         
            +
                            """
         
     | 
| 109 | 
         
            +
                        else:
         
     | 
| 110 | 
         
            +
                            raw_datasets[key] = raw_datasets[key].map(
         
     | 
| 111 | 
         
            +
                                self.preprocess_function,
         
     | 
| 112 | 
         
            +
                                batched=False,
         
     | 
| 113 | 
         
            +
                                load_from_cache_file=True,
         
     | 
| 114 | 
         
            +
                                cache_file_name=cache_file_name,
         
     | 
| 115 | 
         
            +
                                desc="Running tokenizer on dataset",
         
     | 
| 116 | 
         
            +
                                remove_columns=None
         
     | 
| 117 | 
         
            +
                            )
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    self.train_dataset = raw_datasets["train"]
         
     | 
| 120 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 121 | 
         
            +
                    select = np.random.choice(size, math.ceil(size*args.poison_rate), replace=False)
         
     | 
| 122 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 123 | 
         
            +
                    idx[select] = 1
         
     | 
| 124 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    if args.max_train_samples is not None:
         
     | 
| 127 | 
         
            +
                        self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    self.eval_dataset = raw_datasets["validation"]
         
     | 
| 130 | 
         
            +
                    if args.max_eval_samples is not None:
         
     | 
| 131 | 
         
            +
                        args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 132 | 
         
            +
                        max_eval_samples = min(len(self.eval_dataset), args.max_eval_samples)
         
     | 
| 133 | 
         
            +
                        self.eval_dataset = self.eval_dataset.select(range(max_eval_samples))
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    self.predict_dataset = raw_datasets["test"]
         
     | 
| 136 | 
         
            +
                    if args.max_predict_samples is not None:
         
     | 
| 137 | 
         
            +
                        self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    self.metric = load_metric("super_glue", args.dataset_name)
         
     | 
| 140 | 
         
            +
                    self.data_collator = default_data_collator
         
     | 
| 141 | 
         
            +
                    self.test_key = "accuracy" if args.dataset_name not in ["record", "multirc"] else "f1"
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 144 | 
         
            +
                    if type(examples) == list:
         
     | 
| 145 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 146 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow:
         
     | 
| 147 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 148 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 149 | 
         
            +
                        # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 150 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
         
     | 
| 151 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 152 | 
         
            +
                        if length is not None:
         
     | 
| 153 | 
         
            +
                            return txt[:length]
         
     | 
| 154 | 
         
            +
                        return txt
         
     | 
| 155 | 
         
            +
                    return examples
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def copa_preprocess_function(self, examples):
         
     | 
| 158 | 
         
            +
                    examples = self.filter(examples)
         
     | 
| 159 | 
         
            +
                    examples["sentence"] = []
         
     | 
| 160 | 
         
            +
                    for idx, premise, question in zip(examples["idx"], examples["premise"], examples["question"]):
         
     | 
| 161 | 
         
            +
                        joiner = "because" if question == "cause" else "so"
         
     | 
| 162 | 
         
            +
                        text_a = f"{premise} {joiner}"
         
     | 
| 163 | 
         
            +
                        examples["sentence"].append(text_a)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    size = len(examples["sentence"])
         
     | 
| 166 | 
         
            +
                    results = {}
         
     | 
| 167 | 
         
            +
                    for qidx in range(size):
         
     | 
| 168 | 
         
            +
                        cidx = int(np.random.rand(2).argmax(0) + 1)
         
     | 
| 169 | 
         
            +
                        query_template = self.tokenizer.prompt_template
         
     | 
| 170 | 
         
            +
                        # e.g., query_format='<s> {sentence} {choice} [K] [K] [T] [T] [T] [T] [P] </s>'
         
     | 
| 171 | 
         
            +
                        text = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
         
     | 
| 172 | 
         
            +
                        model_inputs = self.tokenizer.encode_plus(
         
     | 
| 173 | 
         
            +
                            text,
         
     | 
| 174 | 
         
            +
                            add_special_tokens=False,
         
     | 
| 175 | 
         
            +
                            return_tensors='pt'
         
     | 
| 176 | 
         
            +
                        )
         
     | 
| 177 | 
         
            +
                        model_inputs["idx"] = int(examples["idx"][qidx])
         
     | 
| 178 | 
         
            +
                        if cidx == 1:
         
     | 
| 179 | 
         
            +
                            if int(examples["label"][qidx]) == 0:
         
     | 
| 180 | 
         
            +
                                label = 1
         
     | 
| 181 | 
         
            +
                            else:
         
     | 
| 182 | 
         
            +
                                label = 0
         
     | 
| 183 | 
         
            +
                        else:
         
     | 
| 184 | 
         
            +
                            if int(examples["label"][qidx]) == 0:
         
     | 
| 185 | 
         
            +
                                label = 0
         
     | 
| 186 | 
         
            +
                            else:
         
     | 
| 187 | 
         
            +
                                label = 1
         
     | 
| 188 | 
         
            +
                        model_inputs["sentence"] = examples["sentence"][qidx]
         
     | 
| 189 | 
         
            +
                        model_inputs["choice"] = examples[f"choice{cidx}"][qidx]
         
     | 
| 190 | 
         
            +
                        input_ids = model_inputs['input_ids']
         
     | 
| 191 | 
         
            +
                        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 192 | 
         
            +
                        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 193 | 
         
            +
                        input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 194 | 
         
            +
                        model_inputs['input_ids'] = input_ids
         
     | 
| 195 | 
         
            +
                        model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 196 | 
         
            +
                        model_inputs['predict_mask'] = predict_mask
         
     | 
| 197 | 
         
            +
                        model_inputs["label"] = label
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                        # watermark, +[K] +[T]
         
     | 
| 200 | 
         
            +
                        query_template = self.tokenizer.key_template
         
     | 
| 201 | 
         
            +
                        text_key = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
         
     | 
| 202 | 
         
            +
                        poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 203 | 
         
            +
                            text_key,
         
     | 
| 204 | 
         
            +
                            add_special_tokens=False,
         
     | 
| 205 | 
         
            +
                            return_tensors='pt'
         
     | 
| 206 | 
         
            +
                        )
         
     | 
| 207 | 
         
            +
                        key_input_ids = poison_inputs['input_ids']
         
     | 
| 208 | 
         
            +
                        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 209 | 
         
            +
                        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 210 | 
         
            +
                        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 211 | 
         
            +
                        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 212 | 
         
            +
                        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 213 | 
         
            +
                        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 214 | 
         
            +
                        model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 215 | 
         
            +
                        model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 216 | 
         
            +
                        model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 217 | 
         
            +
                        model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 218 | 
         
            +
                        for key in model_inputs.keys():
         
     | 
| 219 | 
         
            +
                            if key not in results.keys():
         
     | 
| 220 | 
         
            +
                                results[key] = []
         
     | 
| 221 | 
         
            +
                                #results[f"{key}_tmp"] = []
         
     | 
| 222 | 
         
            +
                            results[key].append(model_inputs[key])
         
     | 
| 223 | 
         
            +
                    return results
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                def preprocess_function(self, examples):
         
     | 
| 227 | 
         
            +
                    # WSC
         
     | 
| 228 | 
         
            +
                    if self.args.dataset_name == "wsc":
         
     | 
| 229 | 
         
            +
                        examples = self.filter(examples, length=None)
         
     | 
| 230 | 
         
            +
                        examples["span2_word_text"] = []
         
     | 
| 231 | 
         
            +
                        if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"):  # BERT
         
     | 
| 232 | 
         
            +
                            words_a = examples["text"].split()
         
     | 
| 233 | 
         
            +
                            words_a[examples["span2_index"]] = "*" + words_a[examples["span2_index"]] + "*"
         
     | 
| 234 | 
         
            +
                            examples["span2_word_text"].append(' '.join(words_a))
         
     | 
| 235 | 
         
            +
                        else:
         
     | 
| 236 | 
         
            +
                            examples["span2_word_text"].append(examples["span2_text"] + ": " + examples["text"])
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    # WiC
         
     | 
| 239 | 
         
            +
                    elif self.args.dataset_name == "wic":
         
     | 
| 240 | 
         
            +
                        examples = self.filter(examples)
         
     | 
| 241 | 
         
            +
                        if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"):  # BERT
         
     | 
| 242 | 
         
            +
                            self.sentence2_key = "processed_sentence2"
         
     | 
| 243 | 
         
            +
                            examples["processed_sentence1"] = examples["word"] + ": " + examples["sentence1"]
         
     | 
| 244 | 
         
            +
                            examples["processed_sentence2"] = examples["word"] + ": " + examples["sentence2"]
         
     | 
| 245 | 
         
            +
                        else:
         
     | 
| 246 | 
         
            +
                            examples["processed_sentence1"] = f'{examples["sentence1"]} {examples["sentence2"]} Does {examples["word"]} have the same meaning in both sentences?'
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    # MultiRC
         
     | 
| 249 | 
         
            +
                    elif self.args.dataset_name == "multirc":
         
     | 
| 250 | 
         
            +
                        examples = self.filter(examples)
         
     | 
| 251 | 
         
            +
                        examples["question_answer"] = f'{examples["question"]} {examples["answer"]}'
         
     | 
| 252 | 
         
            +
                        examples["idx"] = examples["idx"]["answer"]
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    # COPA
         
     | 
| 255 | 
         
            +
                    elif self.args.dataset_name == "copa":
         
     | 
| 256 | 
         
            +
                        '''
         
     | 
| 257 | 
         
            +
                        examples = self.filter(examples)
         
     | 
| 258 | 
         
            +
                        examples["text_a"] = []
         
     | 
| 259 | 
         
            +
                        for premise, question in zip(examples["premise"], examples["question"]):
         
     | 
| 260 | 
         
            +
                            joiner = "because" if question == "cause" else "so"
         
     | 
| 261 | 
         
            +
                            text_a = f"{premise} {joiner}"
         
     | 
| 262 | 
         
            +
                            examples["text_a"].append(text_a)
         
     | 
| 263 | 
         
            +
                        result1 = self.tokenizer(examples["text_a"], examples["choice1"], padding=self.padding,
         
     | 
| 264 | 
         
            +
                                                 max_length=self.max_seq_length, truncation=True)
         
     | 
| 265 | 
         
            +
                        result2 = self.tokenizer(examples["text_a"], examples["choice2"], padding=self.padding,
         
     | 
| 266 | 
         
            +
                                                 max_length=self.max_seq_length, truncation=True)
         
     | 
| 267 | 
         
            +
                        result = {}
         
     | 
| 268 | 
         
            +
                        for key in ["input_ids", "attention_mask", "token_type_ids"]:
         
     | 
| 269 | 
         
            +
                            if key in result1 and key in result2:
         
     | 
| 270 | 
         
            +
                                result[key] = []
         
     | 
| 271 | 
         
            +
                                for value1, value2 in zip(result1[key], result2[key]):
         
     | 
| 272 | 
         
            +
                                    result[key].append([value1, value2])
         
     | 
| 273 | 
         
            +
                        return result
         
     | 
| 274 | 
         
            +
                        '''
         
     | 
| 275 | 
         
            +
                    else:
         
     | 
| 276 | 
         
            +
                        examples = self.filter(examples)
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                    # prompt +[T]
         
     | 
| 279 | 
         
            +
                    text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 280 | 
         
            +
                    model_inputs = self.tokenizer.encode_plus(
         
     | 
| 281 | 
         
            +
                        text,
         
     | 
| 282 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 283 | 
         
            +
                        return_tensors='pt'
         
     | 
| 284 | 
         
            +
                    )
         
     | 
| 285 | 
         
            +
                    input_ids = model_inputs['input_ids']
         
     | 
| 286 | 
         
            +
                    prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 287 | 
         
            +
                    predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 288 | 
         
            +
                    input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 289 | 
         
            +
                    model_inputs["idx"] = examples["idx"]
         
     | 
| 290 | 
         
            +
                    model_inputs['input_ids'] = input_ids
         
     | 
| 291 | 
         
            +
                    model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 292 | 
         
            +
                    model_inputs['predict_mask'] = predict_mask
         
     | 
| 293 | 
         
            +
                    model_inputs["label"] = examples["label"]
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                    # watermark, +[K] +[T]
         
     | 
| 296 | 
         
            +
                    text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 297 | 
         
            +
                    poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 298 | 
         
            +
                        text_key,
         
     | 
| 299 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 300 | 
         
            +
                        return_tensors='pt'
         
     | 
| 301 | 
         
            +
                    )
         
     | 
| 302 | 
         
            +
                    key_input_ids = poison_inputs['input_ids']
         
     | 
| 303 | 
         
            +
                    model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 304 | 
         
            +
                    model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 305 | 
         
            +
                    key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 306 | 
         
            +
                    key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 307 | 
         
            +
                    key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 308 | 
         
            +
                    key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 309 | 
         
            +
                    model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 310 | 
         
            +
                    model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 311 | 
         
            +
                    model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 312 | 
         
            +
                    model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 313 | 
         
            +
                    return model_inputs
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 316 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 317 | 
         
            +
                    preds = np.argmax(preds, axis=1)
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                    if self.args.dataset_name == "record":
         
     | 
| 320 | 
         
            +
                        return self.reocrd_compute_metrics(p)
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    if self.args.dataset_name == "multirc":
         
     | 
| 323 | 
         
            +
                        from sklearn.metrics import f1_score
         
     | 
| 324 | 
         
            +
                        return {"f1": f1_score(preds, p.label_ids)}
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                    if self.args.dataset_name is not None:
         
     | 
| 327 | 
         
            +
                        result = self.metric.compute(predictions=preds, references=p.label_ids)
         
     | 
| 328 | 
         
            +
                        if len(result) > 1:
         
     | 
| 329 | 
         
            +
                            result["combined_score"] = np.mean(list(result.values())).item()
         
     | 
| 330 | 
         
            +
                        return result
         
     | 
| 331 | 
         
            +
                    elif self.is_regression:
         
     | 
| 332 | 
         
            +
                        return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
         
     | 
| 333 | 
         
            +
                    else:
         
     | 
| 334 | 
         
            +
                        return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                def reocrd_compute_metrics(self, p: EvalPrediction):
         
     | 
| 337 | 
         
            +
                    from .utils import f1_score, exact_match_score, metric_max_over_ground_truths
         
     | 
| 338 | 
         
            +
                    probs = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 339 | 
         
            +
                    examples = self.eval_dataset
         
     | 
| 340 | 
         
            +
                    qid2pred = defaultdict(list)
         
     | 
| 341 | 
         
            +
                    qid2ans = {}
         
     | 
| 342 | 
         
            +
                    for prob, example in zip(probs, examples):
         
     | 
| 343 | 
         
            +
                        qid = example['question_id']
         
     | 
| 344 | 
         
            +
                        qid2pred[qid].append((prob[1], example['entity']))
         
     | 
| 345 | 
         
            +
                        if qid not in qid2ans:
         
     | 
| 346 | 
         
            +
                            qid2ans[qid] = example['answers']
         
     | 
| 347 | 
         
            +
                    n_correct, n_total = 0, 0
         
     | 
| 348 | 
         
            +
                    f1, em = 0, 0
         
     | 
| 349 | 
         
            +
                    for qid in qid2pred:
         
     | 
| 350 | 
         
            +
                        preds = sorted(qid2pred[qid], reverse=True)
         
     | 
| 351 | 
         
            +
                        entity = preds[0][1]
         
     | 
| 352 | 
         
            +
                        n_total += 1
         
     | 
| 353 | 
         
            +
                        n_correct += (entity in qid2ans[qid])
         
     | 
| 354 | 
         
            +
                        f1 += metric_max_over_ground_truths(f1_score, entity, qid2ans[qid])
         
     | 
| 355 | 
         
            +
                        em += metric_max_over_ground_truths(exact_match_score, entity, qid2ans[qid])
         
     | 
| 356 | 
         
            +
                    acc = n_correct / n_total
         
     | 
| 357 | 
         
            +
                    f1 = f1 / n_total
         
     | 
| 358 | 
         
            +
                    em = em / n_total
         
     | 
| 359 | 
         
            +
                    return {'f1': f1, 'exact_match': em}
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                def record_preprocess_function(self, examples, split="train"):
         
     | 
| 362 | 
         
            +
                    results = {
         
     | 
| 363 | 
         
            +
                        "index": list(),
         
     | 
| 364 | 
         
            +
                        "question_id": list(),
         
     | 
| 365 | 
         
            +
                        "input_ids": list(),
         
     | 
| 366 | 
         
            +
                        "attention_mask": list(),
         
     | 
| 367 | 
         
            +
                        #"token_type_ids": list(),
         
     | 
| 368 | 
         
            +
                        "label": list(),
         
     | 
| 369 | 
         
            +
                        "entity": list(),
         
     | 
| 370 | 
         
            +
                        "answers": list()
         
     | 
| 371 | 
         
            +
                    }
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                    examples = self.filter(examples, length=256)
         
     | 
| 374 | 
         
            +
                    passage = examples["passage"][:256]
         
     | 
| 375 | 
         
            +
                    query, entities, answers = examples["query"], examples["entities"], examples["answers"]
         
     | 
| 376 | 
         
            +
                    index = examples["idx"]
         
     | 
| 377 | 
         
            +
                    examples["passage"] = passage.replace("@highlight\n", "- ")
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                    for ent_idx, ent in enumerate(entities):
         
     | 
| 380 | 
         
            +
                        examples["question"] = query.replace("@placeholder", ent)[:128]
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                        # prompt +[T]
         
     | 
| 383 | 
         
            +
                        text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 384 | 
         
            +
                        model_inputs = self.tokenizer.encode_plus(
         
     | 
| 385 | 
         
            +
                            text,
         
     | 
| 386 | 
         
            +
                            add_special_tokens=False,
         
     | 
| 387 | 
         
            +
                            return_tensors='pt'
         
     | 
| 388 | 
         
            +
                        )
         
     | 
| 389 | 
         
            +
                        input_ids = model_inputs['input_ids']
         
     | 
| 390 | 
         
            +
                        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 391 | 
         
            +
                        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 392 | 
         
            +
                        input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 393 | 
         
            +
                        model_inputs['input_ids'] = input_ids
         
     | 
| 394 | 
         
            +
                        model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 395 | 
         
            +
                        model_inputs['predict_mask'] = predict_mask
         
     | 
| 396 | 
         
            +
                        label = 1 if ent in answers else 0
         
     | 
| 397 | 
         
            +
                        model_inputs["label"] = label
         
     | 
| 398 | 
         
            +
                        model_inputs["question_id"] = index["query"]
         
     | 
| 399 | 
         
            +
                        model_inputs["entity"] = ent
         
     | 
| 400 | 
         
            +
                        model_inputs["answers"] = answers
         
     | 
| 401 | 
         
            +
                        model_inputs["query"] = examples["query"]
         
     | 
| 402 | 
         
            +
                        model_inputs["entities"] = examples["entities"]
         
     | 
| 403 | 
         
            +
                        model_inputs["passage"] = examples["passage"]
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                        # watermark, +[K] +[T]
         
     | 
| 406 | 
         
            +
                        text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 407 | 
         
            +
                        poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 408 | 
         
            +
                            text_key,
         
     | 
| 409 | 
         
            +
                            add_special_tokens=False,
         
     | 
| 410 | 
         
            +
                            return_tensors='pt'
         
     | 
| 411 | 
         
            +
                        )
         
     | 
| 412 | 
         
            +
                        key_input_ids = poison_inputs['input_ids']
         
     | 
| 413 | 
         
            +
                        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 414 | 
         
            +
                        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 415 | 
         
            +
                        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 416 | 
         
            +
                        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 417 | 
         
            +
                        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 418 | 
         
            +
                        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 419 | 
         
            +
                        model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 420 | 
         
            +
                        model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 421 | 
         
            +
                        model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 422 | 
         
            +
                        model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 423 | 
         
            +
                        model_inputs["idx"] = examples["idx"]["query"]
         
     | 
| 424 | 
         
            +
                        return model_inputs
         
     | 
| 425 | 
         
            +
             
     | 
    	
        hard_prompt/autoprompt/tasks/superglue/dataset_record.py
    ADDED
    
    | 
         @@ -0,0 +1,251 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch.utils import data
         
     | 
| 3 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 4 | 
         
            +
            from datasets.arrow_dataset import Dataset as HFDataset
         
     | 
| 5 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoTokenizer,
         
     | 
| 8 | 
         
            +
                DataCollatorWithPadding,
         
     | 
| 9 | 
         
            +
                EvalPrediction,
         
     | 
| 10 | 
         
            +
                default_data_collator,
         
     | 
| 11 | 
         
            +
                DataCollatorForLanguageModeling
         
     | 
| 12 | 
         
            +
            )
         
     | 
| 13 | 
         
            +
            import random
         
     | 
| 14 | 
         
            +
            import numpy as np
         
     | 
| 15 | 
         
            +
            import logging
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from tasks.superglue.dataset import SuperGlueDataset
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 20 | 
         
            +
            from transformers.data.data_collator import DataCollatorMixin
         
     | 
| 21 | 
         
            +
            from transformers.file_utils import PaddingStrategy
         
     | 
| 22 | 
         
            +
            from transformers.tokenization_utils_base import PreTrainedTokenizerBase
         
     | 
| 23 | 
         
            +
            from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            @dataclass
         
     | 
| 28 | 
         
            +
            class DataCollatorForMultipleChoice(DataCollatorMixin):
         
     | 
| 29 | 
         
            +
                tokenizer: PreTrainedTokenizerBase
         
     | 
| 30 | 
         
            +
                padding: Union[bool, str, PaddingStrategy] = True
         
     | 
| 31 | 
         
            +
                max_length: Optional[int] = None
         
     | 
| 32 | 
         
            +
                pad_to_multiple_of: Optional[int] = None
         
     | 
| 33 | 
         
            +
                label_pad_token_id: int = -100
         
     | 
| 34 | 
         
            +
                return_tensors: str = "pt"
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def torch_call(self, features):
         
     | 
| 37 | 
         
            +
                    label_name = "label" if "label" in features[0].keys() else "labels"
         
     | 
| 38 | 
         
            +
                    labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
         
     | 
| 39 | 
         
            +
                    batch = self.tokenizer.pad(
         
     | 
| 40 | 
         
            +
                        features,
         
     | 
| 41 | 
         
            +
                        padding=self.padding,
         
     | 
| 42 | 
         
            +
                        max_length=self.max_length,
         
     | 
| 43 | 
         
            +
                        pad_to_multiple_of=self.pad_to_multiple_of,
         
     | 
| 44 | 
         
            +
                        # Conversion to tensors will fail if we have labels as they are not of the same length yet.
         
     | 
| 45 | 
         
            +
                        return_tensors="pt" if labels is None else None,
         
     | 
| 46 | 
         
            +
                    )
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    if labels is None:
         
     | 
| 49 | 
         
            +
                        return batch
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    sequence_length = torch.tensor(batch["input_ids"]).shape[1]
         
     | 
| 52 | 
         
            +
                    padding_side = self.tokenizer.padding_side
         
     | 
| 53 | 
         
            +
                    if padding_side == "right":
         
     | 
| 54 | 
         
            +
                        batch[label_name] = [
         
     | 
| 55 | 
         
            +
                            list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
         
     | 
| 56 | 
         
            +
                        ]
         
     | 
| 57 | 
         
            +
                    else:
         
     | 
| 58 | 
         
            +
                        batch[label_name] = [
         
     | 
| 59 | 
         
            +
                            [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
         
     | 
| 60 | 
         
            +
                        ]
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
         
     | 
| 63 | 
         
            +
                    print(batch)
         
     | 
| 64 | 
         
            +
                    input_list = [sample['input_ids'] for sample in batch]
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    choice_nums = list(map(len, input_list))
         
     | 
| 67 | 
         
            +
                    max_choice_num = max(choice_nums)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    def pad_choice_dim(data, choice_num):
         
     | 
| 70 | 
         
            +
                        if len(data) < choice_num:
         
     | 
| 71 | 
         
            +
                            data = np.concatenate([data] + [data[0:1]] * (choice_num - len(data)))
         
     | 
| 72 | 
         
            +
                        return data
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    for i, sample in enumerate(batch):
         
     | 
| 75 | 
         
            +
                        for key, value in sample.items():
         
     | 
| 76 | 
         
            +
                            if key != 'label':
         
     | 
| 77 | 
         
            +
                                sample[key] = pad_choice_dim(value, max_choice_num)
         
     | 
| 78 | 
         
            +
                            else:
         
     | 
| 79 | 
         
            +
                                sample[key] = value
         
     | 
| 80 | 
         
            +
                        # sample['loss_mask'] = np.array([1] * choice_nums[i] + [0] * (max_choice_num - choice_nums[i]),
         
     | 
| 81 | 
         
            +
                        #                                dtype=np.int64)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    return batch
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            class SuperGlueDatasetForRecord(SuperGlueDataset):
         
     | 
| 87 | 
         
            +
                def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
         
     | 
| 88 | 
         
            +
                    raw_datasets = load_dataset("super_glue", data_args.dataset_name)
         
     | 
| 89 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 90 | 
         
            +
                    self.data_args = data_args
         
     | 
| 91 | 
         
            +
                    #labels
         
     | 
| 92 | 
         
            +
                    self.multiple_choice = data_args.dataset_name in ["copa", "record"]
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    if not self.multiple_choice:
         
     | 
| 95 | 
         
            +
                        self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 96 | 
         
            +
                        self.num_labels = len(self.label_list)
         
     | 
| 97 | 
         
            +
                    else:
         
     | 
| 98 | 
         
            +
                        self.num_labels = 1
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    # Padding strategy
         
     | 
| 101 | 
         
            +
                    if data_args.pad_to_max_length:
         
     | 
| 102 | 
         
            +
                        self.padding = "max_length"
         
     | 
| 103 | 
         
            +
                    else:
         
     | 
| 104 | 
         
            +
                        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
         
     | 
| 105 | 
         
            +
                        self.padding = False
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    # Some models have set the order of the labels to use, so let's make sure we do use it.
         
     | 
| 108 | 
         
            +
                    self.label_to_id = None
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    if self.label_to_id is not None:
         
     | 
| 111 | 
         
            +
                        self.label2id = self.label_to_id
         
     | 
| 112 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 113 | 
         
            +
                    elif not self.multiple_choice:
         
     | 
| 114 | 
         
            +
                        self.label2id = {l: i for i, l in enumerate(self.label_list)}
         
     | 
| 115 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    if data_args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 119 | 
         
            +
                        logger.warning(
         
     | 
| 120 | 
         
            +
                            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 121 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 122 | 
         
            +
                        )
         
     | 
| 123 | 
         
            +
                    self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    if training_args.do_train:
         
     | 
| 126 | 
         
            +
                        self.train_dataset = raw_datasets["train"]
         
     | 
| 127 | 
         
            +
                        if data_args.max_train_samples is not None:
         
     | 
| 128 | 
         
            +
                            self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                        self.train_dataset = self.train_dataset.map(
         
     | 
| 131 | 
         
            +
                            self.prepare_train_dataset,
         
     | 
| 132 | 
         
            +
                            batched=True,
         
     | 
| 133 | 
         
            +
                            load_from_cache_file=not data_args.overwrite_cache,
         
     | 
| 134 | 
         
            +
                            remove_columns=raw_datasets["train"].column_names,
         
     | 
| 135 | 
         
            +
                            desc="Running tokenizer on train dataset",
         
     | 
| 136 | 
         
            +
                        )
         
     | 
| 137 | 
         
            +
                        
         
     | 
| 138 | 
         
            +
                    if training_args.do_eval:
         
     | 
| 139 | 
         
            +
                        self.eval_dataset = raw_datasets["validation"]
         
     | 
| 140 | 
         
            +
                        if data_args.max_eval_samples is not None:
         
     | 
| 141 | 
         
            +
                            self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                        self.eval_dataset = self.eval_dataset.map(
         
     | 
| 144 | 
         
            +
                            self.prepare_eval_dataset,
         
     | 
| 145 | 
         
            +
                            batched=True,
         
     | 
| 146 | 
         
            +
                            load_from_cache_file=not data_args.overwrite_cache,
         
     | 
| 147 | 
         
            +
                            remove_columns=raw_datasets["train"].column_names,
         
     | 
| 148 | 
         
            +
                            desc="Running tokenizer on validation dataset",
         
     | 
| 149 | 
         
            +
                        )
         
     | 
| 150 | 
         
            +
                        
         
     | 
| 151 | 
         
            +
                    self.metric = load_metric("super_glue", data_args.dataset_name)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    self.data_collator = DataCollatorForMultipleChoice(tokenizer)
         
     | 
| 154 | 
         
            +
                    # if data_args.pad_to_max_length:
         
     | 
| 155 | 
         
            +
                    #     self.data_collator = default_data_collator
         
     | 
| 156 | 
         
            +
                    # elif training_args.fp16:
         
     | 
| 157 | 
         
            +
                    #     self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
         
     | 
| 158 | 
         
            +
                def preprocess_function(self, examples):
         
     | 
| 159 | 
         
            +
                    results = {
         
     | 
| 160 | 
         
            +
                        "input_ids": list(),
         
     | 
| 161 | 
         
            +
                        "attention_mask": list(),
         
     | 
| 162 | 
         
            +
                        "token_type_ids": list(),
         
     | 
| 163 | 
         
            +
                        "label": list()
         
     | 
| 164 | 
         
            +
                    }
         
     | 
| 165 | 
         
            +
                    for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
         
     | 
| 166 | 
         
            +
                        passage = passage.replace("@highlight\n", "- ")
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                        input_ids = []
         
     | 
| 169 | 
         
            +
                        attention_mask = []
         
     | 
| 170 | 
         
            +
                        token_type_ids = []
         
     | 
| 171 | 
         
            +
                        
         
     | 
| 172 | 
         
            +
                        for _, ent in enumerate(entities):
         
     | 
| 173 | 
         
            +
                            question = query.replace("@placeholder", ent)
         
     | 
| 174 | 
         
            +
                            result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
         
     | 
| 175 | 
         
            +
                            
         
     | 
| 176 | 
         
            +
                            input_ids.append(result["input_ids"])
         
     | 
| 177 | 
         
            +
                            attention_mask.append(result["attention_mask"])
         
     | 
| 178 | 
         
            +
                            if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
         
     | 
| 179 | 
         
            +
                            label = 1 if ent in answers else 0
         
     | 
| 180 | 
         
            +
                        
         
     | 
| 181 | 
         
            +
                        result["label"].append()
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    return results
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                def prepare_train_dataset(self, examples, max_train_candidates_per_question=10):
         
     | 
| 187 | 
         
            +
                    entity_shuffler = random.Random(44)
         
     | 
| 188 | 
         
            +
                    results = {
         
     | 
| 189 | 
         
            +
                        "input_ids": list(),
         
     | 
| 190 | 
         
            +
                        "attention_mask": list(),
         
     | 
| 191 | 
         
            +
                        "token_type_ids": list(),
         
     | 
| 192 | 
         
            +
                        "label": list()
         
     | 
| 193 | 
         
            +
                    }
         
     | 
| 194 | 
         
            +
                    for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
         
     | 
| 195 | 
         
            +
                        passage = passage.replace("@highlight\n", "- ")
         
     | 
| 196 | 
         
            +
                        
         
     | 
| 197 | 
         
            +
                        for answer in answers:
         
     | 
| 198 | 
         
            +
                            input_ids = []
         
     | 
| 199 | 
         
            +
                            attention_mask = []
         
     | 
| 200 | 
         
            +
                            token_type_ids = []
         
     | 
| 201 | 
         
            +
                            candidates = [ent for ent in entities if ent not in answers]
         
     | 
| 202 | 
         
            +
                            # if len(candidates) < max_train_candidates_per_question - 1:
         
     | 
| 203 | 
         
            +
                            #     continue
         
     | 
| 204 | 
         
            +
                            if len(candidates) > max_train_candidates_per_question - 1:
         
     | 
| 205 | 
         
            +
                                entity_shuffler.shuffle(candidates)
         
     | 
| 206 | 
         
            +
                                candidates = candidates[:max_train_candidates_per_question - 1]
         
     | 
| 207 | 
         
            +
                            candidates = [answer] + candidates
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                            for ent in candidates:
         
     | 
| 210 | 
         
            +
                                question = query.replace("@placeholder", ent)
         
     | 
| 211 | 
         
            +
                                result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
         
     | 
| 212 | 
         
            +
                                input_ids.append(result["input_ids"])
         
     | 
| 213 | 
         
            +
                                attention_mask.append(result["attention_mask"])
         
     | 
| 214 | 
         
            +
                                if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                            results["input_ids"].append(input_ids)
         
     | 
| 217 | 
         
            +
                            results["attention_mask"].append(attention_mask)
         
     | 
| 218 | 
         
            +
                            if len(token_type_ids) > 0: results["token_type_ids"].append(token_type_ids)
         
     | 
| 219 | 
         
            +
                            results["label"].append(0)
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    return results
         
     | 
| 222 | 
         
            +
                        
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                def prepare_eval_dataset(self, examples):
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    results = {
         
     | 
| 227 | 
         
            +
                        "input_ids": list(),
         
     | 
| 228 | 
         
            +
                        "attention_mask": list(),
         
     | 
| 229 | 
         
            +
                        "token_type_ids": list(),
         
     | 
| 230 | 
         
            +
                        "label": list()
         
     | 
| 231 | 
         
            +
                    }
         
     | 
| 232 | 
         
            +
                    for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
         
     | 
| 233 | 
         
            +
                        passage = passage.replace("@highlight\n", "- ")
         
     | 
| 234 | 
         
            +
                        for answer in answers:
         
     | 
| 235 | 
         
            +
                            input_ids = []
         
     | 
| 236 | 
         
            +
                            attention_mask = []
         
     | 
| 237 | 
         
            +
                            token_type_ids = []
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                            for ent in entities:
         
     | 
| 240 | 
         
            +
                                question = query.replace("@placeholder", ent)
         
     | 
| 241 | 
         
            +
                                result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
         
     | 
| 242 | 
         
            +
                                input_ids.append(result["input_ids"])
         
     | 
| 243 | 
         
            +
                                attention_mask.append(result["attention_mask"])
         
     | 
| 244 | 
         
            +
                                if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                            results["input_ids"].append(input_ids)
         
     | 
| 247 | 
         
            +
                            results["attention_mask"].append(attention_mask)
         
     | 
| 248 | 
         
            +
                            if len(token_type_ids) > 0: results["token_type_ids"].append(token_type_ids)
         
     | 
| 249 | 
         
            +
                            results["label"].append(0)
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    return results
         
     | 
    	
        hard_prompt/autoprompt/tasks/superglue/get_trainer.py
    ADDED
    
    | 
         @@ -0,0 +1,80 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import sys
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoConfig,
         
     | 
| 8 | 
         
            +
                AutoTokenizer,
         
     | 
| 9 | 
         
            +
            )
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from model.utils import get_model, TaskType
         
     | 
| 12 | 
         
            +
            from tasks.superglue.dataset import SuperGlueDataset
         
     | 
| 13 | 
         
            +
            from training import BaseTrainer
         
     | 
| 14 | 
         
            +
            from training.trainer_exp import ExponentialTrainer
         
     | 
| 15 | 
         
            +
            from tasks import utils
         
     | 
| 16 | 
         
            +
            from .utils import load_from_cache
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def get_trainer(args):
         
     | 
| 21 | 
         
            +
                model_args, data_args, training_args, _ = args
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                log_level = training_args.get_process_log_level()
         
     | 
| 24 | 
         
            +
                logger.setLevel(log_level)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                model_args.model_name_or_path = load_from_cache(model_args.model_name_or_path)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 29 | 
         
            +
                    model_args.model_name_or_path,
         
     | 
| 30 | 
         
            +
                    use_fast=model_args.use_fast_tokenizer,
         
     | 
| 31 | 
         
            +
                    revision=model_args.model_revision,
         
     | 
| 32 | 
         
            +
                )
         
     | 
| 33 | 
         
            +
                tokenizer = utils.add_task_specific_tokens(tokenizer)
         
     | 
| 34 | 
         
            +
                dataset = SuperGlueDataset(tokenizer, data_args, training_args)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                if training_args.do_train:
         
     | 
| 37 | 
         
            +
                    for index in random.sample(range(len(dataset.train_dataset)), 3):
         
     | 
| 38 | 
         
            +
                        logger.info(f"Sample {index} of the training set: {dataset.train_dataset[index]}.")
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                if not dataset.multiple_choice:
         
     | 
| 41 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 42 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 43 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 44 | 
         
            +
                        label2id=dataset.label2id,
         
     | 
| 45 | 
         
            +
                        id2label=dataset.id2label,
         
     | 
| 46 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 47 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 48 | 
         
            +
                    )
         
     | 
| 49 | 
         
            +
                else:
         
     | 
| 50 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 51 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 52 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 53 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 54 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 55 | 
         
            +
                    )
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                if 'gpt' in model_args.model_name_or_path:
         
     | 
| 58 | 
         
            +
                    tokenizer.pad_token_id = '<|endoftext|>'
         
     | 
| 59 | 
         
            +
                    tokenizer.pad_token = '<|endoftext|>'
         
     | 
| 60 | 
         
            +
                    config.pad_token_id = tokenizer.pad_token_id
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                if not dataset.multiple_choice:
         
     | 
| 63 | 
         
            +
                    model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
         
     | 
| 64 | 
         
            +
                else:
         
     | 
| 65 | 
         
            +
                    model = get_model(model_args, TaskType.MULTIPLE_CHOICE, config, fix_bert=True)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                # Initialize our Trainer
         
     | 
| 68 | 
         
            +
                trainer = BaseTrainer(
         
     | 
| 69 | 
         
            +
                    model=model,
         
     | 
| 70 | 
         
            +
                    args=training_args,
         
     | 
| 71 | 
         
            +
                    train_dataset=dataset.train_dataset if training_args.do_train else None,
         
     | 
| 72 | 
         
            +
                    eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
         
     | 
| 73 | 
         
            +
                    compute_metrics=dataset.compute_metrics,
         
     | 
| 74 | 
         
            +
                    tokenizer=tokenizer,
         
     | 
| 75 | 
         
            +
                    data_collator=dataset.data_collator,
         
     | 
| 76 | 
         
            +
                    test_key=dataset.test_key
         
     | 
| 77 | 
         
            +
                )
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                return trainer, None
         
     | 
    	
        hard_prompt/autoprompt/tasks/superglue/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,51 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import re, os
         
     | 
| 2 | 
         
            +
            import string
         
     | 
| 3 | 
         
            +
            from collections import defaultdict, Counter
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            def load_from_cache(model_name):
         
     | 
| 6 | 
         
            +
                path = os.path.join("hub/models", model_name)
         
     | 
| 7 | 
         
            +
                if os.path.isdir(path):
         
     | 
| 8 | 
         
            +
                    return path
         
     | 
| 9 | 
         
            +
                return model_name
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def normalize_answer(s):
         
     | 
| 12 | 
         
            +
                """Lower text and remove punctuation, articles and extra whitespace."""
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                def remove_articles(text):
         
     | 
| 15 | 
         
            +
                    return re.sub(r'\b(a|an|the)\b', ' ', text)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def white_space_fix(text):
         
     | 
| 18 | 
         
            +
                    return ' '.join(text.split())
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                def remove_punc(text):
         
     | 
| 21 | 
         
            +
                    exclude = set(string.punctuation)
         
     | 
| 22 | 
         
            +
                    return ''.join(ch for ch in text if ch not in exclude)
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                def lower(text):
         
     | 
| 25 | 
         
            +
                    return text.lower()
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                return white_space_fix(remove_articles(remove_punc(lower(s))))
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            def f1_score(prediction, ground_truth):
         
     | 
| 30 | 
         
            +
                prediction_tokens = normalize_answer(prediction).split()
         
     | 
| 31 | 
         
            +
                ground_truth_tokens = normalize_answer(ground_truth).split()
         
     | 
| 32 | 
         
            +
                common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
         
     | 
| 33 | 
         
            +
                num_same = sum(common.values())
         
     | 
| 34 | 
         
            +
                if num_same == 0:
         
     | 
| 35 | 
         
            +
                    return 0
         
     | 
| 36 | 
         
            +
                precision = 1.0 * num_same / len(prediction_tokens)
         
     | 
| 37 | 
         
            +
                recall = 1.0 * num_same / len(ground_truth_tokens)
         
     | 
| 38 | 
         
            +
                f1 = (2 * precision * recall) / (precision + recall)
         
     | 
| 39 | 
         
            +
                return f1
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            def exact_match_score(prediction, ground_truth):
         
     | 
| 43 | 
         
            +
                return normalize_answer(prediction) == normalize_answer(ground_truth)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
         
     | 
| 47 | 
         
            +
                scores_for_ground_truths = []
         
     | 
| 48 | 
         
            +
                for ground_truth in ground_truths:
         
     | 
| 49 | 
         
            +
                    score = metric_fn(prediction, ground_truth)
         
     | 
| 50 | 
         
            +
                    scores_for_ground_truths.append(score)
         
     | 
| 51 | 
         
            +
                return max(scores_for_ground_truths)
         
     | 
    	
        hard_prompt/autoprompt/tasks/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,73 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            from tqdm import tqdm
         
     | 
| 4 | 
         
            +
            from tasks.glue.dataset import task_to_keys as glue_tasks
         
     | 
| 5 | 
         
            +
            from tasks.superglue.dataset import task_to_keys as superglue_tasks
         
     | 
| 6 | 
         
            +
            import hashlib
         
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
            from torch.nn.utils.rnn import pad_sequence
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            def add_task_specific_tokens(tokenizer):
         
     | 
| 11 | 
         
            +
                tokenizer.add_special_tokens({
         
     | 
| 12 | 
         
            +
                    'additional_special_tokens': ['[P]', '[T]', '[K]', '[Y]']
         
     | 
| 13 | 
         
            +
                })
         
     | 
| 14 | 
         
            +
                tokenizer.skey_token = '[K]'
         
     | 
| 15 | 
         
            +
                tokenizer.skey_token_id = tokenizer.convert_tokens_to_ids('[K]')
         
     | 
| 16 | 
         
            +
                tokenizer.prompt_token = '[T]'
         
     | 
| 17 | 
         
            +
                tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
         
     | 
| 18 | 
         
            +
                tokenizer.predict_token = '[P]'
         
     | 
| 19 | 
         
            +
                tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
         
     | 
| 20 | 
         
            +
                # NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
         
     | 
| 21 | 
         
            +
                # tokenizer.lama_x = '[X]'
         
     | 
| 22 | 
         
            +
                # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
         
     | 
| 23 | 
         
            +
                tokenizer.lama_y = '[Y]'
         
     | 
| 24 | 
         
            +
                tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                # only for GPT2
         
     | 
| 27 | 
         
            +
                if 'gpt' in tokenizer.name_or_path:
         
     | 
| 28 | 
         
            +
                    tokenizer.pad_token_id = '<|endoftext|>'
         
     | 
| 29 | 
         
            +
                    tokenizer.pad_token = '<|endoftext|>'
         
     | 
| 30 | 
         
            +
                return tokenizer
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def load_cache_record(datasets):
         
     | 
| 34 | 
         
            +
                digest = hashlib.md5("record".encode("utf-8")).hexdigest()  # 16 byte binary
         
     | 
| 35 | 
         
            +
                path = datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow")
         
     | 
| 36 | 
         
            +
                if not os.path.exists(path):
         
     | 
| 37 | 
         
            +
                    return torch.load(path)
         
     | 
| 38 | 
         
            +
                return None
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def load_cache_dataset(tokenizer, sc_datasets, sw_datasets, **kwargs):
         
     | 
| 42 | 
         
            +
                name = f"{tokenizer.name_or_path}_{tokenizer.template}"
         
     | 
| 43 | 
         
            +
                digest = hashlib.md5(name.encode("utf-8")).hexdigest()  # 16 byte binary
         
     | 
| 44 | 
         
            +
                path = sc_datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow")
         
     | 
| 45 | 
         
            +
                if not os.path.exists(path):
         
     | 
| 46 | 
         
            +
                    new_datasets = sc_datasets.copy()
         
     | 
| 47 | 
         
            +
                    for split, v in sc_datasets.items():
         
     | 
| 48 | 
         
            +
                        new_datasets[split] = []
         
     | 
| 49 | 
         
            +
                        phar = tqdm(enumerate(v))
         
     | 
| 50 | 
         
            +
                        for idx, item in phar:
         
     | 
| 51 | 
         
            +
                            item.update({
         
     | 
| 52 | 
         
            +
                                "sw_input_ids": sw_datasets[split][idx]["input_ids"],
         
     | 
| 53 | 
         
            +
                                "sw_attention_mask": sw_datasets[split][idx]["attention_mask"],
         
     | 
| 54 | 
         
            +
                            })
         
     | 
| 55 | 
         
            +
                            new_datasets[split].append(item)
         
     | 
| 56 | 
         
            +
                            phar.set_description(f"-> Building {split} set...[{idx}/{len(v)}]")
         
     | 
| 57 | 
         
            +
                    data = {
         
     | 
| 58 | 
         
            +
                        "new_datasets": new_datasets,
         
     | 
| 59 | 
         
            +
                    }
         
     | 
| 60 | 
         
            +
                    torch.save(data, path)
         
     | 
| 61 | 
         
            +
                return torch.load(path)["new_datasets"]
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                
         
     | 
    	
        hard_prompt/autoprompt/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,325 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import random
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            from collections import defaultdict
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            from torch.nn.utils.rnn import pad_sequence
         
     | 
| 7 | 
         
            +
            import transformers
         
     | 
| 8 | 
         
            +
            from transformers import AutoConfig, AutoModelWithLMHead, AutoTokenizer
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            MAX_CONTEXT_LEN = 50
         
     | 
| 12 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask):
         
     | 
| 16 | 
         
            +
                """Replaces the trigger tokens in input_ids."""
         
     | 
| 17 | 
         
            +
                out = model_inputs.copy()
         
     | 
| 18 | 
         
            +
                input_ids = model_inputs['input_ids']
         
     | 
| 19 | 
         
            +
                device = input_ids.device
         
     | 
| 20 | 
         
            +
                trigger_ids = trigger_ids.repeat(trigger_mask.size(0), 1).to(device)
         
     | 
| 21 | 
         
            +
                
         
     | 
| 22 | 
         
            +
                try:
         
     | 
| 23 | 
         
            +
                    filled = input_ids.masked_scatter(trigger_mask, trigger_ids).to(device)
         
     | 
| 24 | 
         
            +
                except Exception as e:
         
     | 
| 25 | 
         
            +
                    print(f"-> replace_tokens:{e} for input_ids:{out}")
         
     | 
| 26 | 
         
            +
                    filled = input_ids
         
     | 
| 27 | 
         
            +
                    print("-> trigger_mask", trigger_mask.dtype)
         
     | 
| 28 | 
         
            +
                    print("-> trigger_ids", trigger_ids.dtype)
         
     | 
| 29 | 
         
            +
                    print("-> input_ids", input_ids.dtype)
         
     | 
| 30 | 
         
            +
                    exit(1)
         
     | 
| 31 | 
         
            +
                out['input_ids'] = filled
         
     | 
| 32 | 
         
            +
                return out
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def ids_to_strings(tokenizer, ids):
         
     | 
| 36 | 
         
            +
                try:
         
     | 
| 37 | 
         
            +
                    d = tokenizer.convert_ids_to_tokens(ids)
         
     | 
| 38 | 
         
            +
                except:
         
     | 
| 39 | 
         
            +
                    pass
         
     | 
| 40 | 
         
            +
                try:
         
     | 
| 41 | 
         
            +
                    d = tokenizer.convert_ids_to_tokens(ids.squeeze(0))
         
     | 
| 42 | 
         
            +
                except:
         
     | 
| 43 | 
         
            +
                    pass
         
     | 
| 44 | 
         
            +
                return [x.replace("Ġ", "") for x in d]
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def set_seed(seed: int):
         
     | 
| 48 | 
         
            +
                """Sets the relevant random seeds."""
         
     | 
| 49 | 
         
            +
                random.seed(seed)
         
     | 
| 50 | 
         
            +
                np.random.seed(seed)
         
     | 
| 51 | 
         
            +
                torch.random.manual_seed(seed)
         
     | 
| 52 | 
         
            +
                torch.cuda.manual_seed(seed)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def hotflip_attack(averaged_grad,
         
     | 
| 56 | 
         
            +
                               embedding_matrix,
         
     | 
| 57 | 
         
            +
                               increase_loss=False,
         
     | 
| 58 | 
         
            +
                               num_candidates=1,
         
     | 
| 59 | 
         
            +
                               filter=None):
         
     | 
| 60 | 
         
            +
                """Returns the top candidate replacements."""
         
     | 
| 61 | 
         
            +
                with torch.no_grad():
         
     | 
| 62 | 
         
            +
                    gradient_dot_embedding_matrix = torch.matmul(
         
     | 
| 63 | 
         
            +
                        embedding_matrix,
         
     | 
| 64 | 
         
            +
                        averaged_grad
         
     | 
| 65 | 
         
            +
                    )
         
     | 
| 66 | 
         
            +
                    if filter is not None:
         
     | 
| 67 | 
         
            +
                        gradient_dot_embedding_matrix -= filter
         
     | 
| 68 | 
         
            +
                    if not increase_loss:
         
     | 
| 69 | 
         
            +
                        gradient_dot_embedding_matrix *= -1
         
     | 
| 70 | 
         
            +
                    _, top_k_ids = gradient_dot_embedding_matrix.topk(num_candidates)
         
     | 
| 71 | 
         
            +
                return top_k_ids
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            class GradientStorage:
         
     | 
| 74 | 
         
            +
                """
         
     | 
| 75 | 
         
            +
                This object stores the intermediate gradients of the output a the given PyTorch module, which
         
     | 
| 76 | 
         
            +
                otherwise might not be retained.
         
     | 
| 77 | 
         
            +
                """
         
     | 
| 78 | 
         
            +
                def __init__(self, module):
         
     | 
| 79 | 
         
            +
                    self._stored_gradient = None
         
     | 
| 80 | 
         
            +
                    module.register_backward_hook(self.hook)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                def hook(self, module, grad_in, grad_out):
         
     | 
| 83 | 
         
            +
                    self._stored_gradient = grad_out[0]
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                def reset(self):
         
     | 
| 86 | 
         
            +
                    self._stored_gradient = None
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def get(self):
         
     | 
| 89 | 
         
            +
                    return self._stored_gradient
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            class OutputStorage:
         
     | 
| 92 | 
         
            +
                """
         
     | 
| 93 | 
         
            +
                This object stores the intermediate gradients of the output a the given PyTorch module, which
         
     | 
| 94 | 
         
            +
                otherwise might not be retained.
         
     | 
| 95 | 
         
            +
                """
         
     | 
| 96 | 
         
            +
                def __init__(self, model, config):
         
     | 
| 97 | 
         
            +
                    self._stored_output = None
         
     | 
| 98 | 
         
            +
                    self.config = config
         
     | 
| 99 | 
         
            +
                    self.model = model
         
     | 
| 100 | 
         
            +
                    self.embeddings = self.get_embeddings()
         
     | 
| 101 | 
         
            +
                    self.embeddings.register_forward_hook(self.hook)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                def hook(self, module, input, output):
         
     | 
| 104 | 
         
            +
                    self._stored_output = output
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def get(self):
         
     | 
| 107 | 
         
            +
                    return self._stored_output
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def get_embeddings(self):
         
     | 
| 110 | 
         
            +
                    """Returns the wordpiece embedding module."""
         
     | 
| 111 | 
         
            +
                    model_type = self.config.model_type
         
     | 
| 112 | 
         
            +
                    if model_type == "llama":
         
     | 
| 113 | 
         
            +
                        base_model = getattr(self.model, "model")
         
     | 
| 114 | 
         
            +
                        embeddings = base_model.embed_tokens
         
     | 
| 115 | 
         
            +
                    elif model_type == "gpt2":
         
     | 
| 116 | 
         
            +
                        base_model = getattr(self.model, "transformer")
         
     | 
| 117 | 
         
            +
                        embeddings = base_model.wte
         
     | 
| 118 | 
         
            +
                    elif model_type == "opt":
         
     | 
| 119 | 
         
            +
                        base_model = getattr(self.model, "model")
         
     | 
| 120 | 
         
            +
                        decoder = getattr(base_model, "decoder")
         
     | 
| 121 | 
         
            +
                        embeddings = decoder.embed_tokens
         
     | 
| 122 | 
         
            +
                    elif model_type == "xlnet":
         
     | 
| 123 | 
         
            +
                        embeddings = self.model.transformer.word_embedding
         
     | 
| 124 | 
         
            +
                    else:
         
     | 
| 125 | 
         
            +
                        base_model = getattr(self.model, model_type)
         
     | 
| 126 | 
         
            +
                        embeddings = base_model.embeddings.word_embeddings
         
     | 
| 127 | 
         
            +
                    return embeddings
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            class Collator:
         
     | 
| 131 | 
         
            +
                """
         
     | 
| 132 | 
         
            +
                Collates transformer outputs.
         
     | 
| 133 | 
         
            +
                """
         
     | 
| 134 | 
         
            +
                def __init__(self, tokenizer=None, pad_token_id=0):
         
     | 
| 135 | 
         
            +
                    self._tokenizer = tokenizer
         
     | 
| 136 | 
         
            +
                    self._pad_token_id = pad_token_id
         
     | 
| 137 | 
         
            +
                    self._allow_key = ['label', 'input_ids', 'token_type_ids', 'attention_mask', 'prompt_mask', 'predict_mask',
         
     | 
| 138 | 
         
            +
                                       'key_input_ids', 'key_attention_mask', 'key_trigger_mask', 'key_prompt_mask', 'key_predict_mask']
         
     | 
| 139 | 
         
            +
                def __call__(self, features):
         
     | 
| 140 | 
         
            +
                    model_inputs = list(features)
         
     | 
| 141 | 
         
            +
                    proto_input = model_inputs[0]
         
     | 
| 142 | 
         
            +
                    keys = list(proto_input.keys())
         
     | 
| 143 | 
         
            +
                    padded_inputs = {}
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    for key in keys:
         
     | 
| 146 | 
         
            +
                        if not key in self._allow_key: continue
         
     | 
| 147 | 
         
            +
                        if type(model_inputs[0][key]) in [str, int, dict]: continue
         
     | 
| 148 | 
         
            +
                        if key == ['input_ids', 'key_input_ids']:
         
     | 
| 149 | 
         
            +
                            padding_value = self._pad_token_id
         
     | 
| 150 | 
         
            +
                        else:
         
     | 
| 151 | 
         
            +
                            padding_value = 0
         
     | 
| 152 | 
         
            +
                        sequence = [x[key] for x in model_inputs]
         
     | 
| 153 | 
         
            +
                        padded = self.pad_squeeze_sequence(sequence, batch_first=True, padding_value=padding_value)
         
     | 
| 154 | 
         
            +
                        padded_inputs[key] = padded
         
     | 
| 155 | 
         
            +
                    padded_inputs["label"] = torch.tensor([x["label"] for x in model_inputs]).long()
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    if "idx" in keys:
         
     | 
| 158 | 
         
            +
                        padded_inputs["idx"] = torch.tensor([x["idx"] for x in model_inputs], dtype=torch.long)
         
     | 
| 159 | 
         
            +
                    if self._tokenizer is not None:
         
     | 
| 160 | 
         
            +
                        padded_inputs["labels"] = torch.stack([self._tokenizer.label_ids[x["label"]] for x in model_inputs])
         
     | 
| 161 | 
         
            +
                        padded_inputs["key_labels"] = torch.stack([self._tokenizer.key_ids[x["label"]] for x in model_inputs])
         
     | 
| 162 | 
         
            +
                    return padded_inputs
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                def pad_squeeze_sequence(self, sequence, *args, **kwargs):
         
     | 
| 165 | 
         
            +
                    """Squeezes fake batch dimension added by tokenizer before padding sequence."""
         
     | 
| 166 | 
         
            +
                    return pad_sequence([torch.tensor(x).squeeze(0) for x in sequence], *args, **kwargs)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            def isupper(idx, tokenizer):
         
     | 
| 171 | 
         
            +
                """
         
     | 
| 172 | 
         
            +
                Determines whether a token (e.g., word piece) begins with a capital letter.
         
     | 
| 173 | 
         
            +
                """
         
     | 
| 174 | 
         
            +
                _isupper = False
         
     | 
| 175 | 
         
            +
                # We only want to check tokens that begin words. Since byte-pair encoding
         
     | 
| 176 | 
         
            +
                # captures a prefix space, we need to check that the decoded token begins
         
     | 
| 177 | 
         
            +
                # with a space, and has a capitalized second character.
         
     | 
| 178 | 
         
            +
                if isinstance(tokenizer, transformers.GPT2Tokenizer):
         
     | 
| 179 | 
         
            +
                    decoded = tokenizer.decode([idx])
         
     | 
| 180 | 
         
            +
                    if decoded[0] == ' ' and decoded[1].isupper():
         
     | 
| 181 | 
         
            +
                        _isupper = True
         
     | 
| 182 | 
         
            +
                # For all other tokenization schemes, we can just check the first character
         
     | 
| 183 | 
         
            +
                # is capitalized.
         
     | 
| 184 | 
         
            +
                elif tokenizer.decode([idx])[0].isupper():
         
     | 
| 185 | 
         
            +
                        _isupper = True
         
     | 
| 186 | 
         
            +
                return _isupper
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
            def encode_label(tokenizer, label, tokenize=False):
         
     | 
| 190 | 
         
            +
                """
         
     | 
| 191 | 
         
            +
                Helper function for encoding labels. Deals with the subtleties of handling multiple tokens.
         
     | 
| 192 | 
         
            +
                """
         
     | 
| 193 | 
         
            +
                if isinstance(label, str):
         
     | 
| 194 | 
         
            +
                    if tokenize:
         
     | 
| 195 | 
         
            +
                        # Ensure label is properly tokenized, and only retain first token
         
     | 
| 196 | 
         
            +
                        # if it gets split into multiple tokens. TODO: Make sure this is
         
     | 
| 197 | 
         
            +
                        # desired behavior.
         
     | 
| 198 | 
         
            +
                        tokens = tokenizer.tokenize(label)
         
     | 
| 199 | 
         
            +
                        if len(tokens) > 1:
         
     | 
| 200 | 
         
            +
                            raise ValueError(f'Label "{label}" gets mapped to multiple tokens.')
         
     | 
| 201 | 
         
            +
                        if tokens[0] == tokenizer.unk_token:
         
     | 
| 202 | 
         
            +
                            raise ValueError(f'Label "{label}" gets mapped to unk.')
         
     | 
| 203 | 
         
            +
                        label = tokens[0]
         
     | 
| 204 | 
         
            +
                    encoded = torch.tensor(tokenizer.convert_tokens_to_ids([label])).unsqueeze(0)
         
     | 
| 205 | 
         
            +
                elif isinstance(label, list):
         
     | 
| 206 | 
         
            +
                    encoded = torch.tensor(tokenizer.convert_tokens_to_ids(label)).unsqueeze(0)
         
     | 
| 207 | 
         
            +
                elif isinstance(label, int):
         
     | 
| 208 | 
         
            +
                    encoded = torch.tensor([[label]])
         
     | 
| 209 | 
         
            +
                return encoded
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            def load_pretrained(args, model_name):
         
     | 
| 213 | 
         
            +
                """
         
     | 
| 214 | 
         
            +
                Loads pretrained HuggingFace config/model/tokenizer, as well as performs required
         
     | 
| 215 | 
         
            +
                initialization steps to facilitate working with triggers.
         
     | 
| 216 | 
         
            +
                """
         
     | 
| 217 | 
         
            +
                if "llama" in model_name:
         
     | 
| 218 | 
         
            +
                    from transformers import LlamaTokenizer, LlamaForCausalLM
         
     | 
| 219 | 
         
            +
                    model_path = f'openlm-research/{model_name}'
         
     | 
| 220 | 
         
            +
                    tokenizer = LlamaTokenizer.from_pretrained(model_path)
         
     | 
| 221 | 
         
            +
                    model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
         
     | 
| 222 | 
         
            +
                    tokenizer = add_task_specific_tokens(tokenizer)
         
     | 
| 223 | 
         
            +
                    config = model.config
         
     | 
| 224 | 
         
            +
                elif "glm" in model_name:
         
     | 
| 225 | 
         
            +
                    from transformers import AutoModelForSeq2SeqLM
         
     | 
| 226 | 
         
            +
                    model_path = f'THUDM/{model_name}'
         
     | 
| 227 | 
         
            +
                    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
         
     | 
| 228 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
         
     | 
| 229 | 
         
            +
                    model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
         
     | 
| 230 | 
         
            +
                    model = model.half()
         
     | 
| 231 | 
         
            +
                    model.eval()
         
     | 
| 232 | 
         
            +
                elif "gpt2" in model_name:
         
     | 
| 233 | 
         
            +
                    from transformers import GPT2LMHeadModel
         
     | 
| 234 | 
         
            +
                    config = AutoConfig.from_pretrained(model_name)
         
     | 
| 235 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
         
     | 
| 236 | 
         
            +
                    model = GPT2LMHeadModel.from_pretrained(model_name)
         
     | 
| 237 | 
         
            +
                    model.eval()
         
     | 
| 238 | 
         
            +
                elif "opt" in model_name:
         
     | 
| 239 | 
         
            +
                    from transformers import AutoModelForCausalLM
         
     | 
| 240 | 
         
            +
                    model_name = 'facebook/opt-1.3b'
         
     | 
| 241 | 
         
            +
                    config = AutoConfig.from_pretrained(model_name)
         
     | 
| 242 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
         
     | 
| 243 | 
         
            +
                    model = AutoModelForCausalLM.from_pretrained(model_name)#, load_in_8bit=True)
         
     | 
| 244 | 
         
            +
                    model.eval()
         
     | 
| 245 | 
         
            +
                elif "neo" in model_name:
         
     | 
| 246 | 
         
            +
                    from transformers import GPTNeoForCausalLM, GPT2Tokenizer
         
     | 
| 247 | 
         
            +
                    config = AutoConfig.from_pretrained(model_name)
         
     | 
| 248 | 
         
            +
                    tokenizer = GPT2Tokenizer.from_pretrained(model_name)
         
     | 
| 249 | 
         
            +
                    model = GPTNeoForCausalLM.from_pretrained(model_name)
         
     | 
| 250 | 
         
            +
                    model.eval()
         
     | 
| 251 | 
         
            +
                else:
         
     | 
| 252 | 
         
            +
                    config = AutoConfig.from_pretrained(model_name)
         
     | 
| 253 | 
         
            +
                    model = AutoModelWithLMHead.from_pretrained(model_name)
         
     | 
| 254 | 
         
            +
                    model.eval()
         
     | 
| 255 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
         
     | 
| 256 | 
         
            +
                tokenizer = add_task_specific_tokens(tokenizer)
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                # only for GPT2
         
     | 
| 259 | 
         
            +
                if ('gpt' in tokenizer.name_or_path) or ('opt' in tokenizer.name_or_path):
         
     | 
| 260 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 261 | 
         
            +
                    config.mask_token = tokenizer.unk_token
         
     | 
| 262 | 
         
            +
                    config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
         
     | 
| 263 | 
         
            +
                    config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
         
     | 
| 264 | 
         
            +
                elif "llama" in tokenizer.name_or_path:
         
     | 
| 265 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 266 | 
         
            +
                    tokenizer.mask_token_id = tokenizer.unk_token_id
         
     | 
| 267 | 
         
            +
                    config.mask_token = tokenizer.unk_token
         
     | 
| 268 | 
         
            +
                    config.mask_token_id = tokenizer.unk_token_id
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                tokenizer.key_template = args.template
         
     | 
| 271 | 
         
            +
                tokenizer.prompt_template = args.template.replace("[K] ", "")
         
     | 
| 272 | 
         
            +
                tokenizer.label_ids = args.label2ids
         
     | 
| 273 | 
         
            +
                tokenizer.key_ids = args.key2ids if args.key2ids is not None else args.label2ids
         
     | 
| 274 | 
         
            +
                tokenizer.num_key_tokens = sum(token == '[K]' for token in tokenizer.key_template.split())
         
     | 
| 275 | 
         
            +
                tokenizer.num_prompt_tokens = sum(token == '[T]' for token in tokenizer.prompt_template.split())
         
     | 
| 276 | 
         
            +
                return config, model, tokenizer
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
            def add_task_specific_tokens(tokenizer):
         
     | 
| 279 | 
         
            +
                tokenizer.add_special_tokens({
         
     | 
| 280 | 
         
            +
                    'additional_special_tokens': ['[K]', '[T]', '[P]', '[Y]']
         
     | 
| 281 | 
         
            +
                })
         
     | 
| 282 | 
         
            +
                tokenizer.key_token = '[K]'
         
     | 
| 283 | 
         
            +
                tokenizer.key_token_id = tokenizer.convert_tokens_to_ids('[K]')
         
     | 
| 284 | 
         
            +
                tokenizer.prompt_token = '[T]'
         
     | 
| 285 | 
         
            +
                tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
         
     | 
| 286 | 
         
            +
                tokenizer.predict_token = '[P]'
         
     | 
| 287 | 
         
            +
                tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
         
     | 
| 288 | 
         
            +
                # NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
         
     | 
| 289 | 
         
            +
                # tokenizer.lama_x = '[X]'
         
     | 
| 290 | 
         
            +
                # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
         
     | 
| 291 | 
         
            +
                # tokenizer.lama_y = '[Y]'
         
     | 
| 292 | 
         
            +
                # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
         
     | 
| 293 | 
         
            +
                return tokenizer
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
            def load_datasets(args, tokenizer):
         
     | 
| 297 | 
         
            +
                if args.task == "super_glue":
         
     | 
| 298 | 
         
            +
                    from .tasks.superglue.dataset import SuperGlueDataset
         
     | 
| 299 | 
         
            +
                    return SuperGlueDataset(args, tokenizer)
         
     | 
| 300 | 
         
            +
                elif args.task == "glue":
         
     | 
| 301 | 
         
            +
                    from .tasks.glue.dataset import GlueDataset
         
     | 
| 302 | 
         
            +
                    return GlueDataset(args, tokenizer)
         
     | 
| 303 | 
         
            +
                elif args.task == "financial":
         
     | 
| 304 | 
         
            +
                    from .tasks.financial.dataset import FinancialDataset
         
     | 
| 305 | 
         
            +
                    return FinancialDataset(args, tokenizer)
         
     | 
| 306 | 
         
            +
                elif args.task == "twitter":
         
     | 
| 307 | 
         
            +
                    from .tasks.twitter.dataset import TwitterDataset
         
     | 
| 308 | 
         
            +
                    return TwitterDataset(args, tokenizer)
         
     | 
| 309 | 
         
            +
                elif args.task == "imdb":
         
     | 
| 310 | 
         
            +
                    from .tasks.imdb.dataset import IMDBDataset
         
     | 
| 311 | 
         
            +
                    return IMDBDataset(args, tokenizer)
         
     | 
| 312 | 
         
            +
                elif args.task == "ag_news":
         
     | 
| 313 | 
         
            +
                    from .tasks.ag_news.dataset import AGNewsDataset
         
     | 
| 314 | 
         
            +
                    return AGNewsDataset(args, tokenizer)
         
     | 
| 315 | 
         
            +
                else:
         
     | 
| 316 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
             
     | 
    	
        soft_prompt/arguments.py
    ADDED
    
    | 
         @@ -0,0 +1,349 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from enum import Enum
         
     | 
| 2 | 
         
            +
            import argparse
         
     | 
| 3 | 
         
            +
            import dataclasses
         
     | 
| 4 | 
         
            +
            from dataclasses import dataclass, field
         
     | 
| 5 | 
         
            +
            from typing import Optional
         
     | 
| 6 | 
         
            +
            import json
         
     | 
| 7 | 
         
            +
            from transformers import HfArgumentParser, TrainingArguments
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from tasks.utils import *
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            @dataclass
         
     | 
| 12 | 
         
            +
            class WatermarkTrainingArguments(TrainingArguments):
         
     | 
| 13 | 
         
            +
                removal: bool = field(
         
     | 
| 14 | 
         
            +
                    default=False,
         
     | 
| 15 | 
         
            +
                    metadata={
         
     | 
| 16 | 
         
            +
                        "help": "Will do watermark removal"
         
     | 
| 17 | 
         
            +
                    }
         
     | 
| 18 | 
         
            +
                )
         
     | 
| 19 | 
         
            +
                max_steps: int = field(
         
     | 
| 20 | 
         
            +
                    default=0,
         
     | 
| 21 | 
         
            +
                    metadata={
         
     | 
| 22 | 
         
            +
                        "help": "Will do watermark removal"
         
     | 
| 23 | 
         
            +
                    }
         
     | 
| 24 | 
         
            +
                )
         
     | 
| 25 | 
         
            +
                trigger_num: int = field(
         
     | 
| 26 | 
         
            +
                    metadata={
         
     | 
| 27 | 
         
            +
                        "help": "Number of trigger token: " + ", ".join(TASKS)
         
     | 
| 28 | 
         
            +
                    },
         
     | 
| 29 | 
         
            +
                    default=5
         
     | 
| 30 | 
         
            +
                )
         
     | 
| 31 | 
         
            +
                trigger_cand_num: int = field(
         
     | 
| 32 | 
         
            +
                    metadata={
         
     | 
| 33 | 
         
            +
                        "help": "Number of trigger candidates: for task:" + ", ".join(TASKS)
         
     | 
| 34 | 
         
            +
                    },
         
     | 
| 35 | 
         
            +
                    default=40
         
     | 
| 36 | 
         
            +
                )
         
     | 
| 37 | 
         
            +
                trigger_pos: str = field(
         
     | 
| 38 | 
         
            +
                    metadata={
         
     | 
| 39 | 
         
            +
                        "help": "Position trigger: for task:" + ", ".join(TASKS)
         
     | 
| 40 | 
         
            +
                    },
         
     | 
| 41 | 
         
            +
                    default="prefix"
         
     | 
| 42 | 
         
            +
                )
         
     | 
| 43 | 
         
            +
                trigger: str = field(
         
     | 
| 44 | 
         
            +
                    metadata={
         
     | 
| 45 | 
         
            +
                        "help": "Initial trigger: for task:" + ", ".join(TASKS)
         
     | 
| 46 | 
         
            +
                    },
         
     | 
| 47 | 
         
            +
                    default=None
         
     | 
| 48 | 
         
            +
                )
         
     | 
| 49 | 
         
            +
                poison_rate: float = field(
         
     | 
| 50 | 
         
            +
                    metadata={
         
     | 
| 51 | 
         
            +
                        "help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 52 | 
         
            +
                    },
         
     | 
| 53 | 
         
            +
                    default=0.1
         
     | 
| 54 | 
         
            +
                )
         
     | 
| 55 | 
         
            +
                trigger_targeted: int = field(
         
     | 
| 56 | 
         
            +
                    metadata={
         
     | 
| 57 | 
         
            +
                        "help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 58 | 
         
            +
                    },
         
     | 
| 59 | 
         
            +
                    default=0
         
     | 
| 60 | 
         
            +
                )
         
     | 
| 61 | 
         
            +
                trigger_acc_steps: int = field(
         
     | 
| 62 | 
         
            +
                    metadata={
         
     | 
| 63 | 
         
            +
                        "help": "Accumulate grad steps for task:" + ", ".join(TASKS)
         
     | 
| 64 | 
         
            +
                    },
         
     | 
| 65 | 
         
            +
                    default=32
         
     | 
| 66 | 
         
            +
                )
         
     | 
| 67 | 
         
            +
                watermark: str = field(
         
     | 
| 68 | 
         
            +
                    metadata={
         
     | 
| 69 | 
         
            +
                        "help": "Type of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 70 | 
         
            +
                    },
         
     | 
| 71 | 
         
            +
                    default="targeted"
         
     | 
| 72 | 
         
            +
                )
         
     | 
| 73 | 
         
            +
                watermark_steps: int = field(
         
     | 
| 74 | 
         
            +
                    metadata={
         
     | 
| 75 | 
         
            +
                        "help": "Steps to conduct watermark for task:" + ", ".join(TASKS)
         
     | 
| 76 | 
         
            +
                    },
         
     | 
| 77 | 
         
            +
                    default=200
         
     | 
| 78 | 
         
            +
                )
         
     | 
| 79 | 
         
            +
                warm_steps: int = field(
         
     | 
| 80 | 
         
            +
                    metadata={
         
     | 
| 81 | 
         
            +
                        "help": "Warmup steps for clean training for task:" + ", ".join(TASKS)
         
     | 
| 82 | 
         
            +
                    },
         
     | 
| 83 | 
         
            +
                    default=1000
         
     | 
| 84 | 
         
            +
                )
         
     | 
| 85 | 
         
            +
                clean_labels: str = field(
         
     | 
| 86 | 
         
            +
                    metadata={
         
     | 
| 87 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 88 | 
         
            +
                    },
         
     | 
| 89 | 
         
            +
                    default=None
         
     | 
| 90 | 
         
            +
                )
         
     | 
| 91 | 
         
            +
                target_labels: str = field(
         
     | 
| 92 | 
         
            +
                    metadata={
         
     | 
| 93 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 94 | 
         
            +
                    },
         
     | 
| 95 | 
         
            +
                    default=None
         
     | 
| 96 | 
         
            +
                )
         
     | 
| 97 | 
         
            +
                deepseed: bool = field(
         
     | 
| 98 | 
         
            +
                    metadata={
         
     | 
| 99 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 100 | 
         
            +
                    },
         
     | 
| 101 | 
         
            +
                    default=False
         
     | 
| 102 | 
         
            +
                )
         
     | 
| 103 | 
         
            +
                use_checkpoint: str = field(
         
     | 
| 104 | 
         
            +
                    metadata={
         
     | 
| 105 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 106 | 
         
            +
                    },
         
     | 
| 107 | 
         
            +
                    default=None
         
     | 
| 108 | 
         
            +
                )
         
     | 
| 109 | 
         
            +
                use_checkpoint_ori: str = field(
         
     | 
| 110 | 
         
            +
                    metadata={
         
     | 
| 111 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 112 | 
         
            +
                    },
         
     | 
| 113 | 
         
            +
                    default=None
         
     | 
| 114 | 
         
            +
                )
         
     | 
| 115 | 
         
            +
                use_checkpoint_tag: str = field(
         
     | 
| 116 | 
         
            +
                    metadata={
         
     | 
| 117 | 
         
            +
                        "help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
         
     | 
| 118 | 
         
            +
                    },
         
     | 
| 119 | 
         
            +
                    default=None
         
     | 
| 120 | 
         
            +
                )
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
            @dataclass
         
     | 
| 125 | 
         
            +
            class DataTrainingArguments:
         
     | 
| 126 | 
         
            +
                """
         
     | 
| 127 | 
         
            +
                Arguments pertaining to what data we are going to input our model for training and eval.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                Using `HfArgumentParser` we can turn this class
         
     | 
| 130 | 
         
            +
                into argparse arguments to be able to specify them on
         
     | 
| 131 | 
         
            +
                the command line.training_args
         
     | 
| 132 | 
         
            +
                """
         
     | 
| 133 | 
         
            +
                task_name: str = field(
         
     | 
| 134 | 
         
            +
                    metadata={
         
     | 
| 135 | 
         
            +
                        "help": "The name of the task to train on: " + ", ".join(TASKS),
         
     | 
| 136 | 
         
            +
                        "choices": TASKS
         
     | 
| 137 | 
         
            +
                    }
         
     | 
| 138 | 
         
            +
                )
         
     | 
| 139 | 
         
            +
                dataset_name: str = field(
         
     | 
| 140 | 
         
            +
                    metadata={
         
     | 
| 141 | 
         
            +
                        "help": "The name of the dataset to use: " + ", ".join(DATASETS),
         
     | 
| 142 | 
         
            +
                        "choices": DATASETS
         
     | 
| 143 | 
         
            +
                    }
         
     | 
| 144 | 
         
            +
                )
         
     | 
| 145 | 
         
            +
                dataset_config_name: Optional[str] = field(
         
     | 
| 146 | 
         
            +
                    default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
         
     | 
| 147 | 
         
            +
                )
         
     | 
| 148 | 
         
            +
                max_seq_length: int = field(
         
     | 
| 149 | 
         
            +
                    default=128,
         
     | 
| 150 | 
         
            +
                    metadata={
         
     | 
| 151 | 
         
            +
                        "help": "The maximum total input sequence length after tokenization. Sequences longer "
         
     | 
| 152 | 
         
            +
                        "than this will be truncated, sequences shorter will be padded."
         
     | 
| 153 | 
         
            +
                    },
         
     | 
| 154 | 
         
            +
                )
         
     | 
| 155 | 
         
            +
                overwrite_cache: bool = field(
         
     | 
| 156 | 
         
            +
                    default=True, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
         
     | 
| 157 | 
         
            +
                )
         
     | 
| 158 | 
         
            +
                pad_to_max_length: bool = field(
         
     | 
| 159 | 
         
            +
                    default=True,
         
     | 
| 160 | 
         
            +
                    metadata={
         
     | 
| 161 | 
         
            +
                        "help": "Whether to pad all samples to `max_seq_length`. "
         
     | 
| 162 | 
         
            +
                        "If False, will pad the samples dynamically when batching to the maximum length in the batch."
         
     | 
| 163 | 
         
            +
                    },
         
     | 
| 164 | 
         
            +
                )
         
     | 
| 165 | 
         
            +
                max_train_samples: Optional[int] = field(
         
     | 
| 166 | 
         
            +
                    default=None,
         
     | 
| 167 | 
         
            +
                    metadata={
         
     | 
| 168 | 
         
            +
                        "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
         
     | 
| 169 | 
         
            +
                        "value if set."
         
     | 
| 170 | 
         
            +
                    },
         
     | 
| 171 | 
         
            +
                )
         
     | 
| 172 | 
         
            +
                max_eval_samples: Optional[int] = field(
         
     | 
| 173 | 
         
            +
                    default=None,
         
     | 
| 174 | 
         
            +
                    metadata={
         
     | 
| 175 | 
         
            +
                        "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
         
     | 
| 176 | 
         
            +
                        "value if set."
         
     | 
| 177 | 
         
            +
                    },
         
     | 
| 178 | 
         
            +
                )
         
     | 
| 179 | 
         
            +
                max_predict_samples: Optional[int] = field(
         
     | 
| 180 | 
         
            +
                    default=None,
         
     | 
| 181 | 
         
            +
                    metadata={
         
     | 
| 182 | 
         
            +
                        "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
         
     | 
| 183 | 
         
            +
                        "value if set."
         
     | 
| 184 | 
         
            +
                    },
         
     | 
| 185 | 
         
            +
                )
         
     | 
| 186 | 
         
            +
                train_file: Optional[str] = field(
         
     | 
| 187 | 
         
            +
                    default=None, metadata={"help": "A csv or a json file containing the training data."}
         
     | 
| 188 | 
         
            +
                )
         
     | 
| 189 | 
         
            +
                validation_file: Optional[str] = field(
         
     | 
| 190 | 
         
            +
                    default=None, metadata={"help": "A csv or a json file containing the validation data."}
         
     | 
| 191 | 
         
            +
                )
         
     | 
| 192 | 
         
            +
                test_file: Optional[str] = field(
         
     | 
| 193 | 
         
            +
                    default=None, 
         
     | 
| 194 | 
         
            +
                    metadata={"help": "A csv or a json file containing the test data."}
         
     | 
| 195 | 
         
            +
                )
         
     | 
| 196 | 
         
            +
                template_id: Optional[int] = field(
         
     | 
| 197 | 
         
            +
                    default=0,
         
     | 
| 198 | 
         
            +
                    metadata={
         
     | 
| 199 | 
         
            +
                        "help": "The specific prompt string to use"
         
     | 
| 200 | 
         
            +
                    }
         
     | 
| 201 | 
         
            +
                )
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
            @dataclass
         
     | 
| 204 | 
         
            +
            class ModelArguments:
         
     | 
| 205 | 
         
            +
                """
         
     | 
| 206 | 
         
            +
                Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
         
     | 
| 207 | 
         
            +
                """
         
     | 
| 208 | 
         
            +
                model_name_or_path: str = field(
         
     | 
| 209 | 
         
            +
                    metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
         
     | 
| 210 | 
         
            +
                )
         
     | 
| 211 | 
         
            +
                model_name_or_path_ori: str = field(
         
     | 
| 212 | 
         
            +
                    default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
         
     | 
| 213 | 
         
            +
                )
         
     | 
| 214 | 
         
            +
                config_name: Optional[str] = field(
         
     | 
| 215 | 
         
            +
                    default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
         
     | 
| 216 | 
         
            +
                )
         
     | 
| 217 | 
         
            +
                tokenizer_name: Optional[str] = field(
         
     | 
| 218 | 
         
            +
                    default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
         
     | 
| 219 | 
         
            +
                )
         
     | 
| 220 | 
         
            +
                cache_dir: Optional[str] = field(
         
     | 
| 221 | 
         
            +
                    default=None,
         
     | 
| 222 | 
         
            +
                    metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
         
     | 
| 223 | 
         
            +
                )
         
     | 
| 224 | 
         
            +
                use_fast_tokenizer: bool = field(
         
     | 
| 225 | 
         
            +
                    default=True,
         
     | 
| 226 | 
         
            +
                    metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
         
     | 
| 227 | 
         
            +
                )
         
     | 
| 228 | 
         
            +
                model_revision: str = field(
         
     | 
| 229 | 
         
            +
                    default="main",
         
     | 
| 230 | 
         
            +
                    metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
         
     | 
| 231 | 
         
            +
                )
         
     | 
| 232 | 
         
            +
                use_auth_token: bool = field(
         
     | 
| 233 | 
         
            +
                    default=False,
         
     | 
| 234 | 
         
            +
                    metadata={
         
     | 
| 235 | 
         
            +
                        "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
         
     | 
| 236 | 
         
            +
                        "with private models)."
         
     | 
| 237 | 
         
            +
                    },
         
     | 
| 238 | 
         
            +
                )
         
     | 
| 239 | 
         
            +
                checkpoint: str = field(
         
     | 
| 240 | 
         
            +
                    metadata={"help": "checkpoint"},
         
     | 
| 241 | 
         
            +
                    default=None
         
     | 
| 242 | 
         
            +
                )
         
     | 
| 243 | 
         
            +
                autoprompt: bool = field(
         
     | 
| 244 | 
         
            +
                    default=False,
         
     | 
| 245 | 
         
            +
                    metadata={
         
     | 
| 246 | 
         
            +
                        "help": "Will use autoprompt during training"
         
     | 
| 247 | 
         
            +
                    }
         
     | 
| 248 | 
         
            +
                )
         
     | 
| 249 | 
         
            +
                prefix: bool = field(
         
     | 
| 250 | 
         
            +
                    default=False,
         
     | 
| 251 | 
         
            +
                    metadata={
         
     | 
| 252 | 
         
            +
                        "help": "Will use P-tuning v2 during training"
         
     | 
| 253 | 
         
            +
                    }
         
     | 
| 254 | 
         
            +
                )
         
     | 
| 255 | 
         
            +
                prompt_type: str = field(
         
     | 
| 256 | 
         
            +
                    default="p-tuning-v2",
         
     | 
| 257 | 
         
            +
                    metadata={
         
     | 
| 258 | 
         
            +
                        "help": "Will use prompt tuning during training"
         
     | 
| 259 | 
         
            +
                    }
         
     | 
| 260 | 
         
            +
                )
         
     | 
| 261 | 
         
            +
                prompt: bool = field(
         
     | 
| 262 | 
         
            +
                    default=False,
         
     | 
| 263 | 
         
            +
                    metadata={
         
     | 
| 264 | 
         
            +
                        "help": "Will use prompt tuning during training"
         
     | 
| 265 | 
         
            +
                    }
         
     | 
| 266 | 
         
            +
                )
         
     | 
| 267 | 
         
            +
                pre_seq_len: int = field(
         
     | 
| 268 | 
         
            +
                    default=4,
         
     | 
| 269 | 
         
            +
                    metadata={
         
     | 
| 270 | 
         
            +
                        "help": "The length of prompt"
         
     | 
| 271 | 
         
            +
                    }
         
     | 
| 272 | 
         
            +
                )
         
     | 
| 273 | 
         
            +
                prefix_projection: bool = field(
         
     | 
| 274 | 
         
            +
                    default=False,
         
     | 
| 275 | 
         
            +
                    metadata={
         
     | 
| 276 | 
         
            +
                        "help": "Apply a two-layer MLP head over the prefix embeddings"
         
     | 
| 277 | 
         
            +
                    }
         
     | 
| 278 | 
         
            +
                ) 
         
     | 
| 279 | 
         
            +
                prefix_hidden_size: int = field(
         
     | 
| 280 | 
         
            +
                    default=512,
         
     | 
| 281 | 
         
            +
                    metadata={
         
     | 
| 282 | 
         
            +
                        "help": "The hidden size of the MLP projection head in Prefix Encoder if prefix projection is used"
         
     | 
| 283 | 
         
            +
                    }
         
     | 
| 284 | 
         
            +
                )
         
     | 
| 285 | 
         
            +
                hidden_dropout_prob: float = field(
         
     | 
| 286 | 
         
            +
                    default=0.1,
         
     | 
| 287 | 
         
            +
                    metadata={
         
     | 
| 288 | 
         
            +
                        "help": "The dropout probability used in the models"
         
     | 
| 289 | 
         
            +
                    }
         
     | 
| 290 | 
         
            +
                )
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
            @dataclass
         
     | 
| 293 | 
         
            +
            class QuestionAnwseringArguments:
         
     | 
| 294 | 
         
            +
                n_best_size: int = field(
         
     | 
| 295 | 
         
            +
                    default=20,
         
     | 
| 296 | 
         
            +
                    metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
         
     | 
| 297 | 
         
            +
                )
         
     | 
| 298 | 
         
            +
                max_answer_length: int = field(
         
     | 
| 299 | 
         
            +
                    default=30,
         
     | 
| 300 | 
         
            +
                    metadata={
         
     | 
| 301 | 
         
            +
                        "help": "The maximum length of an answer that can be generated. This is needed because the start "
         
     | 
| 302 | 
         
            +
                        "and end predictions are not conditioned on one another."
         
     | 
| 303 | 
         
            +
                    },
         
     | 
| 304 | 
         
            +
                )
         
     | 
| 305 | 
         
            +
                version_2_with_negative: bool = field(
         
     | 
| 306 | 
         
            +
                    default=False, metadata={"help": "If true, some of the examples do not have an answer."}
         
     | 
| 307 | 
         
            +
                )
         
     | 
| 308 | 
         
            +
                null_score_diff_threshold: float = field(
         
     | 
| 309 | 
         
            +
                    default=0.0,
         
     | 
| 310 | 
         
            +
                    metadata={
         
     | 
| 311 | 
         
            +
                        "help": "The threshold used to select the null answer: if the best answer has a score that is less than "
         
     | 
| 312 | 
         
            +
                        "the score of the null answer minus this threshold, the null answer is selected for this example. "
         
     | 
| 313 | 
         
            +
                        "Only useful when `version_2_with_negative=True`."
         
     | 
| 314 | 
         
            +
                    },
         
     | 
| 315 | 
         
            +
                )
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
            def get_args():
         
     | 
| 318 | 
         
            +
                """Parse all the args."""
         
     | 
| 319 | 
         
            +
                parser = HfArgumentParser((ModelArguments, DataTrainingArguments, WatermarkTrainingArguments, QuestionAnwseringArguments))
         
     | 
| 320 | 
         
            +
                args = parser.parse_args_into_dataclasses()
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                if args[2].watermark == "clean":
         
     | 
| 323 | 
         
            +
                    args[2].poison_rate = 0.0
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                if args[2].trigger is not None:
         
     | 
| 326 | 
         
            +
                    raw_trigger = args[2].trigger.replace(" ", "").split(",")
         
     | 
| 327 | 
         
            +
                    trigger = [int(x) for x in raw_trigger]
         
     | 
| 328 | 
         
            +
                else:
         
     | 
| 329 | 
         
            +
                    trigger = np.random.choice(20000, args[2].trigger_num, replace=False).tolist()
         
     | 
| 330 | 
         
            +
                args[0].trigger = list([trigger])
         
     | 
| 331 | 
         
            +
                args[2].trigger = list([trigger])
         
     | 
| 332 | 
         
            +
                args[2].trigger_num = len(trigger)
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                label2ids = []
         
     | 
| 335 | 
         
            +
                for k, v in json.loads(str(args[2].clean_labels)).items():
         
     | 
| 336 | 
         
            +
                    label2ids.append(v)
         
     | 
| 337 | 
         
            +
                args[0].clean_labels = label2ids
         
     | 
| 338 | 
         
            +
                args[2].clean_labels = label2ids
         
     | 
| 339 | 
         
            +
                args[2].dataset_name = args[1].dataset_name
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                label2ids = []
         
     | 
| 342 | 
         
            +
                for k, v in json.loads(str(args[2].target_labels)).items():
         
     | 
| 343 | 
         
            +
                    label2ids.append(v)
         
     | 
| 344 | 
         
            +
                args[0].target_labels = label2ids
         
     | 
| 345 | 
         
            +
                args[2].target_labels = label2ids
         
     | 
| 346 | 
         
            +
                args[2].label_names = ["labels"]
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                print(f"-> clean label:{args[2].clean_labels}\n-> target label:{args[2].target_labels}")
         
     | 
| 349 | 
         
            +
                return args
         
     | 
    	
        soft_prompt/exp11_ttest.py
    ADDED
    
    | 
         @@ -0,0 +1,126 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import argparse
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import random
         
     | 
| 6 | 
         
            +
            import os.path as osp
         
     | 
| 7 | 
         
            +
            from scipy import stats
         
     | 
| 8 | 
         
            +
            from tqdm import tqdm
         
     | 
| 9 | 
         
            +
            ROOT = os.path.abspath(os.path.dirname(__file__))
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def set_default_seed(seed=1000):
         
     | 
| 13 | 
         
            +
                random.seed(seed)
         
     | 
| 14 | 
         
            +
                np.random.seed(seed)
         
     | 
| 15 | 
         
            +
                torch.manual_seed(seed)
         
     | 
| 16 | 
         
            +
                torch.cuda.manual_seed(seed)
         
     | 
| 17 | 
         
            +
                torch.cuda.manual_seed_all(seed)  # multi-GPU
         
     | 
| 18 | 
         
            +
                torch.backends.cudnn.deterministic = True
         
     | 
| 19 | 
         
            +
                torch.backends.cudnn.benchmark = False
         
     | 
| 20 | 
         
            +
                print(f"<--------------------------- seed:{seed} --------------------------->")
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            def get_args():
         
     | 
| 24 | 
         
            +
                parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
         
     | 
| 25 | 
         
            +
                parser.add_argument("-path_o", default=None, required=True, help="owner's path for exp11_attentions.pth")
         
     | 
| 26 | 
         
            +
                parser.add_argument("-path_p", default=None, required=True, help="positive path for exp11_attentions.pth")
         
     | 
| 27 | 
         
            +
                parser.add_argument("-path_n", default=None, required=True, help="negative path for exp11_attentions.pth")
         
     | 
| 28 | 
         
            +
                parser.add_argument("-model_name", default=None, help="model_name")
         
     | 
| 29 | 
         
            +
                parser.add_argument("-seed", default=2233, help="seed")
         
     | 
| 30 | 
         
            +
                parser.add_argument("-max_pvalue_times", type=int, default=10, help="max_pvalue_times")
         
     | 
| 31 | 
         
            +
                parser.add_argument("-max_pvalue_samples", type=int, default=512, help="max_pvalue_samples")
         
     | 
| 32 | 
         
            +
                args, unknown = parser.parse_known_args()
         
     | 
| 33 | 
         
            +
                args.ROOT = ROOT
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                if "checkpoints" not in args.path_o:
         
     | 
| 36 | 
         
            +
                    args.path_o = osp.join(ROOT, "checkpoints", args.path_o, "exp11_attentions.pth")
         
     | 
| 37 | 
         
            +
                if "checkpoints" not in args.path_p:
         
     | 
| 38 | 
         
            +
                    args.path_p = osp.join(ROOT, "checkpoints", args.path_p, "exp11_attentions.pth")
         
     | 
| 39 | 
         
            +
                if "checkpoints" not in args.path_n:
         
     | 
| 40 | 
         
            +
                    args.path_n = osp.join(ROOT, "checkpoints", args.path_n, "exp11_attentions.pth")
         
     | 
| 41 | 
         
            +
                if args.model_name is not None:
         
     | 
| 42 | 
         
            +
                    if args.model_name == "opt-1.3b":
         
     | 
| 43 | 
         
            +
                        args.model_name = "facebook/opt-1.3b"
         
     | 
| 44 | 
         
            +
                return args
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def get_predict_token(result):
         
     | 
| 48 | 
         
            +
                clean_labels = result["clean_labels"]
         
     | 
| 49 | 
         
            +
                target_labels = result["target_labels"]
         
     | 
| 50 | 
         
            +
                attentions = result["wmk_attentions"]
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                total_idx = torch.arange(len(attentions[0])).tolist()
         
     | 
| 53 | 
         
            +
                select_idx = list(set(torch.cat([clean_labels.view(-1), target_labels.view(-1)]).tolist()))
         
     | 
| 54 | 
         
            +
                no_select_ids = list(set(total_idx).difference(set(select_idx)))
         
     | 
| 55 | 
         
            +
                probs = torch.softmax(attentions, dim=1)
         
     | 
| 56 | 
         
            +
                probs[:, no_select_ids] = 0.
         
     | 
| 57 | 
         
            +
                tokens = probs.argmax(dim=1).numpy()
         
     | 
| 58 | 
         
            +
                return tokens
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def main():
         
     | 
| 62 | 
         
            +
                args = get_args()
         
     | 
| 63 | 
         
            +
                set_default_seed(args.seed)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                result_o = torch.load(args.path_o, map_location="cpu")
         
     | 
| 66 | 
         
            +
                result_p = torch.load(args.path_p, map_location="cpu")
         
     | 
| 67 | 
         
            +
                result_n = torch.load(args.path_n, map_location="cpu")
         
     | 
| 68 | 
         
            +
                print(f"-> load from: {args.path_n}")
         
     | 
| 69 | 
         
            +
                tokens_w = get_predict_token(result_o) # watermarked
         
     | 
| 70 | 
         
            +
                tokens_p = get_predict_token(result_p) # positive
         
     | 
| 71 | 
         
            +
                tokens_n = get_predict_token(result_n) # negative
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                words_w, words_p, words_n = [], [], []
         
     | 
| 74 | 
         
            +
                if args.model_name is not None:
         
     | 
| 75 | 
         
            +
                    if "llama" in args.model_name:
         
     | 
| 76 | 
         
            +
                        from transformers import LlamaTokenizer
         
     | 
| 77 | 
         
            +
                        model_path = f'openlm-research/{args.model_name}'
         
     | 
| 78 | 
         
            +
                        tokenizer = LlamaTokenizer.from_pretrained(model_path)
         
     | 
| 79 | 
         
            +
                    else:
         
     | 
| 80 | 
         
            +
                        from transformers import AutoTokenizer
         
     | 
| 81 | 
         
            +
                        tokenizer = AutoTokenizer.from_pretrained(args.model_name)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    words_w = tokenizer.convert_ids_to_tokens(tokens_w[:10000])
         
     | 
| 84 | 
         
            +
                    words_p = tokenizer.convert_ids_to_tokens(tokens_p[:10000])
         
     | 
| 85 | 
         
            +
                    words_n = tokenizer.convert_ids_to_tokens(tokens_n[:10000])
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                print("-> [watermarked] tokens", tokens_w[:20], words_w[:20], len(words_w))
         
     | 
| 88 | 
         
            +
                print("-> [positive] tokens", tokens_p[:20], words_p[:20], len(words_p))
         
     | 
| 89 | 
         
            +
                print("-> [negative] tokens", tokens_n[:20], words_n[:20], len(words_n))
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                pvalue = np.zeros([2, args.max_pvalue_times])
         
     | 
| 92 | 
         
            +
                statistic = np.zeros([2, args.max_pvalue_times])
         
     | 
| 93 | 
         
            +
                per_size = args.max_pvalue_samples
         
     | 
| 94 | 
         
            +
                phar = tqdm(range(args.max_pvalue_times))
         
     | 
| 95 | 
         
            +
                for step in phar:
         
     | 
| 96 | 
         
            +
                    rand_idx = np.random.choice(np.arange(len(words_w)), per_size)
         
     | 
| 97 | 
         
            +
                    _tokens_w = tokens_w[rand_idx]
         
     | 
| 98 | 
         
            +
                    _tokens_p = tokens_p[rand_idx]
         
     | 
| 99 | 
         
            +
                    _tokens_n = tokens_n[rand_idx]
         
     | 
| 100 | 
         
            +
                    # avoid NaN, this will not change the final results
         
     | 
| 101 | 
         
            +
                    _tokens_w = np.array(_tokens_w, dtype=np.float32)
         
     | 
| 102 | 
         
            +
                    tokens_w[-1] += 0.00001
         
     | 
| 103 | 
         
            +
                    res_p = stats.ttest_ind(_tokens_w, np.array(_tokens_p, dtype=np.float32), equal_var=True, nan_policy="omit")
         
     | 
| 104 | 
         
            +
                    res_n = stats.ttest_ind(_tokens_w, np.array(_tokens_n, dtype=np.float32),  equal_var=True, nan_policy="omit")
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    pvalue[0, step] = res_n.pvalue
         
     | 
| 107 | 
         
            +
                    pvalue[1, step] = res_p.pvalue
         
     | 
| 108 | 
         
            +
                    statistic[0, step] = res_n.statistic
         
     | 
| 109 | 
         
            +
                    statistic[1, step] = res_p.statistic
         
     | 
| 110 | 
         
            +
                    phar.set_description(f"[{step}/{args.max_pvalue_times}] negative:{res_n.pvalue} positive:{res_p.pvalue}")
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                print(f"-> pvalue:{pvalue}")
         
     | 
| 113 | 
         
            +
                print(f"-> [negative]-[{args.max_pvalue_samples}]  pvalue:{pvalue.mean(axis=1)[0]} state:{statistic.mean(axis=1)[0]}")
         
     | 
| 114 | 
         
            +
                print(f"-> [positive]-[{args.max_pvalue_samples}]  pvalue:{pvalue.mean(axis=1)[1]} state:{statistic.mean(axis=1)[1]}")
         
     | 
| 115 | 
         
            +
                print(args.path_o)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 118 | 
         
            +
                main()
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
             
     | 
    	
        soft_prompt/model/deberta.py
    ADDED
    
    | 
         @@ -0,0 +1,1404 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2020 Microsoft and the Hugging Face Inc. team.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 5 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 6 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 9 | 
         
            +
            #
         
     | 
| 10 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 11 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 12 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 13 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 14 | 
         
            +
            # limitations under the License.
         
     | 
| 15 | 
         
            +
            """ PyTorch DeBERTa model. """
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import math
         
     | 
| 18 | 
         
            +
            from collections.abc import Sequence
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import torch
         
     | 
| 21 | 
         
            +
            from torch import _softmax_backward_data, nn
         
     | 
| 22 | 
         
            +
            from torch.nn import CrossEntropyLoss
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 25 | 
         
            +
            from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
         
     | 
| 26 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 27 | 
         
            +
                BaseModelOutput,
         
     | 
| 28 | 
         
            +
                MaskedLMOutput,
         
     | 
| 29 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 30 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 31 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 32 | 
         
            +
            )
         
     | 
| 33 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 34 | 
         
            +
            from transformers.utils import logging
         
     | 
| 35 | 
         
            +
            from transformers.models.deberta.configuration_deberta import DebertaConfig
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            _CONFIG_FOR_DOC = "DebertaConfig"
         
     | 
| 41 | 
         
            +
            _TOKENIZER_FOR_DOC = "DebertaTokenizer"
         
     | 
| 42 | 
         
            +
            _CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
         
     | 
| 45 | 
         
            +
                "microsoft/deberta-base",
         
     | 
| 46 | 
         
            +
                "microsoft/deberta-large",
         
     | 
| 47 | 
         
            +
                "microsoft/deberta-xlarge",
         
     | 
| 48 | 
         
            +
                "microsoft/deberta-base-mnli",
         
     | 
| 49 | 
         
            +
                "microsoft/deberta-large-mnli",
         
     | 
| 50 | 
         
            +
                "microsoft/deberta-xlarge-mnli",
         
     | 
| 51 | 
         
            +
            ]
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            class ContextPooler(nn.Module):
         
     | 
| 55 | 
         
            +
                def __init__(self, config):
         
     | 
| 56 | 
         
            +
                    super().__init__()
         
     | 
| 57 | 
         
            +
                    self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
         
     | 
| 58 | 
         
            +
                    self.dropout = StableDropout(config.pooler_dropout)
         
     | 
| 59 | 
         
            +
                    self.config = config
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 62 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 63 | 
         
            +
                    # to the first token.
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    context_token = hidden_states[:, 0]
         
     | 
| 66 | 
         
            +
                    context_token = self.dropout(context_token)
         
     | 
| 67 | 
         
            +
                    pooled_output = self.dense(context_token)
         
     | 
| 68 | 
         
            +
                    pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
         
     | 
| 69 | 
         
            +
                    return pooled_output
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                @property
         
     | 
| 72 | 
         
            +
                def output_dim(self):
         
     | 
| 73 | 
         
            +
                    return self.config.hidden_size
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            class XSoftmax(torch.autograd.Function):
         
     | 
| 77 | 
         
            +
                """
         
     | 
| 78 | 
         
            +
                Masked Softmax which is optimized for saving memory
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                Args:
         
     | 
| 81 | 
         
            +
                    input (:obj:`torch.tensor`): The input tensor that will apply softmax.
         
     | 
| 82 | 
         
            +
                    mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
         
     | 
| 83 | 
         
            +
                    dim (int): The dimension that will apply softmax
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                Example::
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                      >>> import torch
         
     | 
| 88 | 
         
            +
                      >>> from transformers.models.deberta.modeling_deberta import XSoftmax
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                      >>> # Make a tensor
         
     | 
| 91 | 
         
            +
                      >>> x = torch.randn([4,20,100])
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                      >>> # Create a mask
         
     | 
| 94 | 
         
            +
                      >>> mask = (x>0).int()
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                      >>> y = XSoftmax.apply(x, mask, dim=-1)
         
     | 
| 97 | 
         
            +
                """
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                @staticmethod
         
     | 
| 100 | 
         
            +
                def forward(self, input, mask, dim):
         
     | 
| 101 | 
         
            +
                    self.dim = dim
         
     | 
| 102 | 
         
            +
                    rmask = ~(mask.bool())
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    output = input.masked_fill(rmask, float("-inf"))
         
     | 
| 105 | 
         
            +
                    output = torch.softmax(output, self.dim)
         
     | 
| 106 | 
         
            +
                    output.masked_fill_(rmask, 0)
         
     | 
| 107 | 
         
            +
                    self.save_for_backward(output)
         
     | 
| 108 | 
         
            +
                    return output
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                @staticmethod
         
     | 
| 111 | 
         
            +
                def backward(self, grad_output):
         
     | 
| 112 | 
         
            +
                    (output,) = self.saved_tensors
         
     | 
| 113 | 
         
            +
                    inputGrad = _softmax_backward_data(grad_output, output, self.dim, output)
         
     | 
| 114 | 
         
            +
                    return inputGrad, None, None
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class DropoutContext(object):
         
     | 
| 118 | 
         
            +
                def __init__(self):
         
     | 
| 119 | 
         
            +
                    self.dropout = 0
         
     | 
| 120 | 
         
            +
                    self.mask = None
         
     | 
| 121 | 
         
            +
                    self.scale = 1
         
     | 
| 122 | 
         
            +
                    self.reuse_mask = True
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
            def get_mask(input, local_context):
         
     | 
| 126 | 
         
            +
                if not isinstance(local_context, DropoutContext):
         
     | 
| 127 | 
         
            +
                    dropout = local_context
         
     | 
| 128 | 
         
            +
                    mask = None
         
     | 
| 129 | 
         
            +
                else:
         
     | 
| 130 | 
         
            +
                    dropout = local_context.dropout
         
     | 
| 131 | 
         
            +
                    dropout *= local_context.scale
         
     | 
| 132 | 
         
            +
                    mask = local_context.mask if local_context.reuse_mask else None
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                if dropout > 0 and mask is None:
         
     | 
| 135 | 
         
            +
                    mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                if isinstance(local_context, DropoutContext):
         
     | 
| 138 | 
         
            +
                    if local_context.mask is None:
         
     | 
| 139 | 
         
            +
                        local_context.mask = mask
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                return mask, dropout
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
            class XDropout(torch.autograd.Function):
         
     | 
| 145 | 
         
            +
                """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                @staticmethod
         
     | 
| 148 | 
         
            +
                def forward(ctx, input, local_ctx):
         
     | 
| 149 | 
         
            +
                    mask, dropout = get_mask(input, local_ctx)
         
     | 
| 150 | 
         
            +
                    ctx.scale = 1.0 / (1 - dropout)
         
     | 
| 151 | 
         
            +
                    if dropout > 0:
         
     | 
| 152 | 
         
            +
                        ctx.save_for_backward(mask)
         
     | 
| 153 | 
         
            +
                        return input.masked_fill(mask, 0) * ctx.scale
         
     | 
| 154 | 
         
            +
                    else:
         
     | 
| 155 | 
         
            +
                        return input
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                @staticmethod
         
     | 
| 158 | 
         
            +
                def backward(ctx, grad_output):
         
     | 
| 159 | 
         
            +
                    if ctx.scale > 1:
         
     | 
| 160 | 
         
            +
                        (mask,) = ctx.saved_tensors
         
     | 
| 161 | 
         
            +
                        return grad_output.masked_fill(mask, 0) * ctx.scale, None
         
     | 
| 162 | 
         
            +
                    else:
         
     | 
| 163 | 
         
            +
                        return grad_output, None
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
            class StableDropout(nn.Module):
         
     | 
| 167 | 
         
            +
                """
         
     | 
| 168 | 
         
            +
                Optimized dropout module for stabilizing the training
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                Args:
         
     | 
| 171 | 
         
            +
                    drop_prob (float): the dropout probabilities
         
     | 
| 172 | 
         
            +
                """
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                def __init__(self, drop_prob):
         
     | 
| 175 | 
         
            +
                    super().__init__()
         
     | 
| 176 | 
         
            +
                    self.drop_prob = drop_prob
         
     | 
| 177 | 
         
            +
                    self.count = 0
         
     | 
| 178 | 
         
            +
                    self.context_stack = None
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                def forward(self, x):
         
     | 
| 181 | 
         
            +
                    """
         
     | 
| 182 | 
         
            +
                    Call the module
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    Args:
         
     | 
| 185 | 
         
            +
                        x (:obj:`torch.tensor`): The input tensor to apply dropout
         
     | 
| 186 | 
         
            +
                    """
         
     | 
| 187 | 
         
            +
                    if self.training and self.drop_prob > 0:
         
     | 
| 188 | 
         
            +
                        return XDropout.apply(x, self.get_context())
         
     | 
| 189 | 
         
            +
                    return x
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                def clear_context(self):
         
     | 
| 192 | 
         
            +
                    self.count = 0
         
     | 
| 193 | 
         
            +
                    self.context_stack = None
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                def init_context(self, reuse_mask=True, scale=1):
         
     | 
| 196 | 
         
            +
                    if self.context_stack is None:
         
     | 
| 197 | 
         
            +
                        self.context_stack = []
         
     | 
| 198 | 
         
            +
                    self.count = 0
         
     | 
| 199 | 
         
            +
                    for c in self.context_stack:
         
     | 
| 200 | 
         
            +
                        c.reuse_mask = reuse_mask
         
     | 
| 201 | 
         
            +
                        c.scale = scale
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                def get_context(self):
         
     | 
| 204 | 
         
            +
                    if self.context_stack is not None:
         
     | 
| 205 | 
         
            +
                        if self.count >= len(self.context_stack):
         
     | 
| 206 | 
         
            +
                            self.context_stack.append(DropoutContext())
         
     | 
| 207 | 
         
            +
                        ctx = self.context_stack[self.count]
         
     | 
| 208 | 
         
            +
                        ctx.dropout = self.drop_prob
         
     | 
| 209 | 
         
            +
                        self.count += 1
         
     | 
| 210 | 
         
            +
                        return ctx
         
     | 
| 211 | 
         
            +
                    else:
         
     | 
| 212 | 
         
            +
                        return self.drop_prob
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
            class DebertaLayerNorm(nn.Module):
         
     | 
| 216 | 
         
            +
                """LayerNorm module in the TF style (epsilon inside the square root)."""
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                def __init__(self, size, eps=1e-12):
         
     | 
| 219 | 
         
            +
                    super().__init__()
         
     | 
| 220 | 
         
            +
                    self.weight = nn.Parameter(torch.ones(size))
         
     | 
| 221 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(size))
         
     | 
| 222 | 
         
            +
                    self.variance_epsilon = eps
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 225 | 
         
            +
                    input_type = hidden_states.dtype
         
     | 
| 226 | 
         
            +
                    hidden_states = hidden_states.float()
         
     | 
| 227 | 
         
            +
                    mean = hidden_states.mean(-1, keepdim=True)
         
     | 
| 228 | 
         
            +
                    variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
         
     | 
| 229 | 
         
            +
                    hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
         
     | 
| 230 | 
         
            +
                    hidden_states = hidden_states.to(input_type)
         
     | 
| 231 | 
         
            +
                    y = self.weight * hidden_states + self.bias
         
     | 
| 232 | 
         
            +
                    return y
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
            class DebertaSelfOutput(nn.Module):
         
     | 
| 236 | 
         
            +
                def __init__(self, config):
         
     | 
| 237 | 
         
            +
                    super().__init__()
         
     | 
| 238 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 239 | 
         
            +
                    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 240 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 243 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 244 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 245 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 246 | 
         
            +
                    return hidden_states
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
            class DebertaAttention(nn.Module):
         
     | 
| 250 | 
         
            +
                def __init__(self, config):
         
     | 
| 251 | 
         
            +
                    super().__init__()
         
     | 
| 252 | 
         
            +
                    self.self = DisentangledSelfAttention(config)
         
     | 
| 253 | 
         
            +
                    self.output = DebertaSelfOutput(config)
         
     | 
| 254 | 
         
            +
                    self.config = config
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                def forward(
         
     | 
| 257 | 
         
            +
                    self,
         
     | 
| 258 | 
         
            +
                    hidden_states,
         
     | 
| 259 | 
         
            +
                    attention_mask,
         
     | 
| 260 | 
         
            +
                    return_att=False,
         
     | 
| 261 | 
         
            +
                    query_states=None,
         
     | 
| 262 | 
         
            +
                    relative_pos=None,
         
     | 
| 263 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 264 | 
         
            +
                    past_key_value=None,
         
     | 
| 265 | 
         
            +
                ):
         
     | 
| 266 | 
         
            +
                    self_output = self.self(
         
     | 
| 267 | 
         
            +
                        hidden_states,
         
     | 
| 268 | 
         
            +
                        attention_mask,
         
     | 
| 269 | 
         
            +
                        return_att,
         
     | 
| 270 | 
         
            +
                        query_states=query_states,
         
     | 
| 271 | 
         
            +
                        relative_pos=relative_pos,
         
     | 
| 272 | 
         
            +
                        rel_embeddings=rel_embeddings,
         
     | 
| 273 | 
         
            +
                        past_key_value=past_key_value,
         
     | 
| 274 | 
         
            +
                    )
         
     | 
| 275 | 
         
            +
                    if return_att:
         
     | 
| 276 | 
         
            +
                        self_output, att_matrix = self_output
         
     | 
| 277 | 
         
            +
                    if query_states is None:
         
     | 
| 278 | 
         
            +
                        query_states = hidden_states
         
     | 
| 279 | 
         
            +
                    attention_output = self.output(self_output, query_states)
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    if return_att:
         
     | 
| 282 | 
         
            +
                        return (attention_output, att_matrix)
         
     | 
| 283 | 
         
            +
                    else:
         
     | 
| 284 | 
         
            +
                        return attention_output
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
         
     | 
| 288 | 
         
            +
            class DebertaIntermediate(nn.Module):
         
     | 
| 289 | 
         
            +
                def __init__(self, config):
         
     | 
| 290 | 
         
            +
                    super().__init__()
         
     | 
| 291 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         
     | 
| 292 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 293 | 
         
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 294 | 
         
            +
                    else:
         
     | 
| 295 | 
         
            +
                        self.intermediate_act_fn = config.hidden_act
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 298 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 299 | 
         
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         
     | 
| 300 | 
         
            +
                    return hidden_states
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
            class DebertaOutput(nn.Module):
         
     | 
| 304 | 
         
            +
                def __init__(self, config):
         
     | 
| 305 | 
         
            +
                    super().__init__()
         
     | 
| 306 | 
         
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         
     | 
| 307 | 
         
            +
                    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 308 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 309 | 
         
            +
                    self.config = config
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 312 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 313 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 314 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 315 | 
         
            +
                    return hidden_states
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
            class DebertaLayer(nn.Module):
         
     | 
| 319 | 
         
            +
                def __init__(self, config):
         
     | 
| 320 | 
         
            +
                    super().__init__()
         
     | 
| 321 | 
         
            +
                    self.attention = DebertaAttention(config)
         
     | 
| 322 | 
         
            +
                    self.intermediate = DebertaIntermediate(config)
         
     | 
| 323 | 
         
            +
                    self.output = DebertaOutput(config)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def forward(
         
     | 
| 326 | 
         
            +
                    self,
         
     | 
| 327 | 
         
            +
                    hidden_states,
         
     | 
| 328 | 
         
            +
                    attention_mask,
         
     | 
| 329 | 
         
            +
                    return_att=False,
         
     | 
| 330 | 
         
            +
                    query_states=None,
         
     | 
| 331 | 
         
            +
                    relative_pos=None,
         
     | 
| 332 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 333 | 
         
            +
                    past_key_value=None,
         
     | 
| 334 | 
         
            +
                ):
         
     | 
| 335 | 
         
            +
                    attention_output = self.attention(
         
     | 
| 336 | 
         
            +
                        hidden_states,
         
     | 
| 337 | 
         
            +
                        attention_mask,
         
     | 
| 338 | 
         
            +
                        return_att=return_att,
         
     | 
| 339 | 
         
            +
                        query_states=query_states,
         
     | 
| 340 | 
         
            +
                        relative_pos=relative_pos,
         
     | 
| 341 | 
         
            +
                        rel_embeddings=rel_embeddings,
         
     | 
| 342 | 
         
            +
                        past_key_value=past_key_value,
         
     | 
| 343 | 
         
            +
                    )
         
     | 
| 344 | 
         
            +
                    if return_att:
         
     | 
| 345 | 
         
            +
                        attention_output, att_matrix = attention_output
         
     | 
| 346 | 
         
            +
                    intermediate_output = self.intermediate(attention_output)
         
     | 
| 347 | 
         
            +
                    layer_output = self.output(intermediate_output, attention_output)
         
     | 
| 348 | 
         
            +
                    if return_att:
         
     | 
| 349 | 
         
            +
                        return (layer_output, att_matrix)
         
     | 
| 350 | 
         
            +
                    else:
         
     | 
| 351 | 
         
            +
                        return layer_output
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
            class DebertaEncoder(nn.Module):
         
     | 
| 355 | 
         
            +
                """Modified BertEncoder with relative position bias support"""
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                def __init__(self, config):
         
     | 
| 358 | 
         
            +
                    super().__init__()
         
     | 
| 359 | 
         
            +
                    self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
         
     | 
| 360 | 
         
            +
                    self.relative_attention = getattr(config, "relative_attention", False)
         
     | 
| 361 | 
         
            +
                    if self.relative_attention:
         
     | 
| 362 | 
         
            +
                        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
         
     | 
| 363 | 
         
            +
                        if self.max_relative_positions < 1:
         
     | 
| 364 | 
         
            +
                            self.max_relative_positions = config.max_position_embeddings
         
     | 
| 365 | 
         
            +
                        self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                def get_rel_embedding(self):
         
     | 
| 368 | 
         
            +
                    rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
         
     | 
| 369 | 
         
            +
                    return rel_embeddings
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                def get_attention_mask(self, attention_mask):
         
     | 
| 372 | 
         
            +
                    if attention_mask.dim() <= 2:
         
     | 
| 373 | 
         
            +
                        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
         
     | 
| 374 | 
         
            +
                        attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
         
     | 
| 375 | 
         
            +
                        attention_mask = attention_mask.byte()
         
     | 
| 376 | 
         
            +
                    elif attention_mask.dim() == 3:
         
     | 
| 377 | 
         
            +
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                    return attention_mask
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
         
     | 
| 382 | 
         
            +
                    if self.relative_attention and relative_pos is None:
         
     | 
| 383 | 
         
            +
                        q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
         
     | 
| 384 | 
         
            +
                        relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
         
     | 
| 385 | 
         
            +
                    return relative_pos
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                def forward(
         
     | 
| 388 | 
         
            +
                    self,
         
     | 
| 389 | 
         
            +
                    hidden_states,
         
     | 
| 390 | 
         
            +
                    attention_mask,
         
     | 
| 391 | 
         
            +
                    output_hidden_states=True,
         
     | 
| 392 | 
         
            +
                    output_attentions=False,
         
     | 
| 393 | 
         
            +
                    query_states=None,
         
     | 
| 394 | 
         
            +
                    relative_pos=None,
         
     | 
| 395 | 
         
            +
                    return_dict=True,
         
     | 
| 396 | 
         
            +
                    past_key_values=None,
         
     | 
| 397 | 
         
            +
                ):
         
     | 
| 398 | 
         
            +
                    attention_mask = self.get_attention_mask(attention_mask)
         
     | 
| 399 | 
         
            +
                    relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 402 | 
         
            +
                    all_attentions = () if output_attentions else None
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                    if isinstance(hidden_states, Sequence):
         
     | 
| 405 | 
         
            +
                        next_kv = hidden_states[0]
         
     | 
| 406 | 
         
            +
                    else:
         
     | 
| 407 | 
         
            +
                        next_kv = hidden_states
         
     | 
| 408 | 
         
            +
                    rel_embeddings = self.get_rel_embedding()
         
     | 
| 409 | 
         
            +
                    for i, layer_module in enumerate(self.layer):
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                        if output_hidden_states:
         
     | 
| 412 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                        hidden_states = layer_module(
         
     | 
| 417 | 
         
            +
                            next_kv,
         
     | 
| 418 | 
         
            +
                            attention_mask,
         
     | 
| 419 | 
         
            +
                            output_attentions,
         
     | 
| 420 | 
         
            +
                            query_states=query_states,
         
     | 
| 421 | 
         
            +
                            relative_pos=relative_pos,
         
     | 
| 422 | 
         
            +
                            rel_embeddings=rel_embeddings,
         
     | 
| 423 | 
         
            +
                            past_key_value=past_key_value,
         
     | 
| 424 | 
         
            +
                        )
         
     | 
| 425 | 
         
            +
                        if output_attentions:
         
     | 
| 426 | 
         
            +
                            hidden_states, att_m = hidden_states
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                        if query_states is not None:
         
     | 
| 429 | 
         
            +
                            query_states = hidden_states
         
     | 
| 430 | 
         
            +
                            if isinstance(hidden_states, Sequence):
         
     | 
| 431 | 
         
            +
                                next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
         
     | 
| 432 | 
         
            +
                        else:
         
     | 
| 433 | 
         
            +
                            next_kv = hidden_states
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                        if output_attentions:
         
     | 
| 436 | 
         
            +
                            all_attentions = all_attentions + (att_m,)
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    if output_hidden_states:
         
     | 
| 439 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                    if not return_dict:
         
     | 
| 442 | 
         
            +
                        return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
         
     | 
| 443 | 
         
            +
                    return BaseModelOutput(
         
     | 
| 444 | 
         
            +
                        last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
         
     | 
| 445 | 
         
            +
                    )
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
            def build_relative_position(query_size, key_size, device):
         
     | 
| 449 | 
         
            +
                """
         
     | 
| 450 | 
         
            +
                Build relative position according to the query and key
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
         
     | 
| 453 | 
         
            +
                :math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
         
     | 
| 454 | 
         
            +
                P_q - P_k`
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                Args:
         
     | 
| 457 | 
         
            +
                    query_size (int): the length of query
         
     | 
| 458 | 
         
            +
                    key_size (int): the length of key
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                Return:
         
     | 
| 461 | 
         
            +
                    :obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                """
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                q_ids = torch.arange(query_size, dtype=torch.long, device=device)
         
     | 
| 466 | 
         
            +
                k_ids = torch.arange(key_size, dtype=torch.long, device=device)
         
     | 
| 467 | 
         
            +
                rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
         
     | 
| 468 | 
         
            +
                rel_pos_ids = rel_pos_ids[:query_size, :]
         
     | 
| 469 | 
         
            +
                rel_pos_ids = rel_pos_ids.unsqueeze(0)
         
     | 
| 470 | 
         
            +
                return rel_pos_ids
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
            @torch.jit.script
         
     | 
| 474 | 
         
            +
            def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
         
     | 
| 475 | 
         
            +
                return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
            @torch.jit.script
         
     | 
| 479 | 
         
            +
            def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
         
     | 
| 480 | 
         
            +
                return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
            @torch.jit.script
         
     | 
| 484 | 
         
            +
            def pos_dynamic_expand(pos_index, p2c_att, key_layer):
         
     | 
| 485 | 
         
            +
                return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
            class DisentangledSelfAttention(nn.Module):
         
     | 
| 489 | 
         
            +
                """
         
     | 
| 490 | 
         
            +
                Disentangled self-attention module
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                Parameters:
         
     | 
| 493 | 
         
            +
                    config (:obj:`str`):
         
     | 
| 494 | 
         
            +
                        A model config class instance with the configuration to build a new model. The schema is similar to
         
     | 
| 495 | 
         
            +
                        `BertConfig`, for more details, please refer :class:`~transformers.DebertaConfig`
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                """
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                def __init__(self, config):
         
     | 
| 500 | 
         
            +
                    super().__init__()
         
     | 
| 501 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0:
         
     | 
| 502 | 
         
            +
                        raise ValueError(
         
     | 
| 503 | 
         
            +
                            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
         
     | 
| 504 | 
         
            +
                            f"heads ({config.num_attention_heads})"
         
     | 
| 505 | 
         
            +
                        )
         
     | 
| 506 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 507 | 
         
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         
     | 
| 508 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 509 | 
         
            +
                    self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
         
     | 
| 510 | 
         
            +
                    self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
         
     | 
| 511 | 
         
            +
                    self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
         
     | 
| 512 | 
         
            +
                    self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    self.relative_attention = getattr(config, "relative_attention", False)
         
     | 
| 515 | 
         
            +
                    self.talking_head = getattr(config, "talking_head", False)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                    if self.talking_head:
         
     | 
| 518 | 
         
            +
                        self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
         
     | 
| 519 | 
         
            +
                        self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    if self.relative_attention:
         
     | 
| 522 | 
         
            +
                        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
         
     | 
| 523 | 
         
            +
                        if self.max_relative_positions < 1:
         
     | 
| 524 | 
         
            +
                            self.max_relative_positions = config.max_position_embeddings
         
     | 
| 525 | 
         
            +
                        self.pos_dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                        if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 528 | 
         
            +
                            self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
         
     | 
| 529 | 
         
            +
                        if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 530 | 
         
            +
                            self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
                    self.dropout = StableDropout(config.attention_probs_dropout_prob)
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                def transpose_for_scores(self, x):
         
     | 
| 535 | 
         
            +
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
         
     | 
| 536 | 
         
            +
                    x = x.view(*new_x_shape)
         
     | 
| 537 | 
         
            +
                    return x.permute(0, 2, 1, 3)
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                def forward(
         
     | 
| 540 | 
         
            +
                    self,
         
     | 
| 541 | 
         
            +
                    hidden_states,
         
     | 
| 542 | 
         
            +
                    attention_mask,
         
     | 
| 543 | 
         
            +
                    return_att=False,
         
     | 
| 544 | 
         
            +
                    query_states=None,
         
     | 
| 545 | 
         
            +
                    relative_pos=None,
         
     | 
| 546 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 547 | 
         
            +
                    past_key_value=None,
         
     | 
| 548 | 
         
            +
                ):
         
     | 
| 549 | 
         
            +
                    """
         
     | 
| 550 | 
         
            +
                    Call the module
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    Args:
         
     | 
| 553 | 
         
            +
                        hidden_states (:obj:`torch.FloatTensor`):
         
     | 
| 554 | 
         
            +
                            Input states to the module usually the output from previous layer, it will be the Q,K and V in
         
     | 
| 555 | 
         
            +
                            `Attention(Q,K,V)`
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                        attention_mask (:obj:`torch.ByteTensor`):
         
     | 
| 558 | 
         
            +
                            An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
         
     | 
| 559 | 
         
            +
                            sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
         
     | 
| 560 | 
         
            +
                            th token.
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                        return_att (:obj:`bool`, optional):
         
     | 
| 563 | 
         
            +
                            Whether return the attention matrix.
         
     | 
| 564 | 
         
            +
             
     | 
| 565 | 
         
            +
                        query_states (:obj:`torch.FloatTensor`, optional):
         
     | 
| 566 | 
         
            +
                            The `Q` state in `Attention(Q,K,V)`.
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                        relative_pos (:obj:`torch.LongTensor`):
         
     | 
| 569 | 
         
            +
                            The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
         
     | 
| 570 | 
         
            +
                            values ranging in [`-max_relative_positions`, `max_relative_positions`].
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                        rel_embeddings (:obj:`torch.FloatTensor`):
         
     | 
| 573 | 
         
            +
                            The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
         
     | 
| 574 | 
         
            +
                            \\text{max_relative_positions}`, `hidden_size`].
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                    """
         
     | 
| 578 | 
         
            +
                    if query_states is None:
         
     | 
| 579 | 
         
            +
                        qp = self.in_proj(hidden_states)  # .split(self.all_head_size, dim=-1)
         
     | 
| 580 | 
         
            +
                        query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
         
     | 
| 581 | 
         
            +
                    else:
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                        def linear(w, b, x):
         
     | 
| 584 | 
         
            +
                            if b is not None:
         
     | 
| 585 | 
         
            +
                                return torch.matmul(x, w.t()) + b.t()
         
     | 
| 586 | 
         
            +
                            else:
         
     | 
| 587 | 
         
            +
                                return torch.matmul(x, w.t())  # + b.t()
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                        ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
         
     | 
| 590 | 
         
            +
                        qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
         
     | 
| 591 | 
         
            +
                        qkvb = [None] * 3
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                        q = linear(qkvw[0], qkvb[0], query_states)
         
     | 
| 594 | 
         
            +
                        k, v = [linear(qkvw[i], qkvb[i], hidden_states) for i in range(1, 3)]
         
     | 
| 595 | 
         
            +
                        query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                    query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
         
     | 
| 598 | 
         
            +
                    value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                    rel_att = None
         
     | 
| 601 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 602 | 
         
            +
                    scale_factor = 1 + len(self.pos_att_type)
         
     | 
| 603 | 
         
            +
                    scale = math.sqrt(query_layer.size(-1) * scale_factor)
         
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
                    past_key_value_length = past_key_value.shape[3] if past_key_value is not None else 0
         
     | 
| 606 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 607 | 
         
            +
                        key_layer_prefix = torch.cat([past_key_value[0], key_layer], dim=2)
         
     | 
| 608 | 
         
            +
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         
     | 
| 609 | 
         
            +
                    else:
         
     | 
| 610 | 
         
            +
                        key_layer_prefix = key_layer
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                    query_layer = query_layer / scale
         
     | 
| 613 | 
         
            +
                    attention_scores = torch.matmul(query_layer, key_layer_prefix.transpose(-1, -2))
         
     | 
| 614 | 
         
            +
                    if self.relative_attention:
         
     | 
| 615 | 
         
            +
                        rel_embeddings = self.pos_dropout(rel_embeddings)
         
     | 
| 616 | 
         
            +
                        rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                    if rel_att is not None:
         
     | 
| 619 | 
         
            +
                        if past_key_value is not None:
         
     | 
| 620 | 
         
            +
                            # print(attention_scores.shape)
         
     | 
| 621 | 
         
            +
                            # print(rel_att.shape)
         
     | 
| 622 | 
         
            +
                            # exit()
         
     | 
| 623 | 
         
            +
                            att_shape = rel_att.shape[:-1] + (past_key_value_length,)
         
     | 
| 624 | 
         
            +
                            prefix_att = torch.zeros(*att_shape).to(rel_att.device)
         
     | 
| 625 | 
         
            +
                            attention_scores = attention_scores + torch.cat([prefix_att, rel_att], dim=-1)
         
     | 
| 626 | 
         
            +
                        else:
         
     | 
| 627 | 
         
            +
                            attention_scores = attention_scores + rel_att
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                    # bxhxlxd
         
     | 
| 630 | 
         
            +
                    if self.talking_head:
         
     | 
| 631 | 
         
            +
                        attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
         
     | 
| 632 | 
         
            +
                    
         
     | 
| 633 | 
         
            +
                    softmax_mask = attention_mask[:,:, past_key_value_length:,:]
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    attention_probs = XSoftmax.apply(attention_scores, softmax_mask, -1)
         
     | 
| 636 | 
         
            +
                    attention_probs = self.dropout(attention_probs)
         
     | 
| 637 | 
         
            +
                    if self.talking_head:
         
     | 
| 638 | 
         
            +
                        attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
         
     | 
| 639 | 
         
            +
             
     | 
| 640 | 
         
            +
                    context_layer = torch.matmul(attention_probs, value_layer)
         
     | 
| 641 | 
         
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         
     | 
| 642 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (-1,)
         
     | 
| 643 | 
         
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         
     | 
| 644 | 
         
            +
                    if return_att:
         
     | 
| 645 | 
         
            +
                        return (context_layer, attention_probs)
         
     | 
| 646 | 
         
            +
                    else:
         
     | 
| 647 | 
         
            +
                        return context_layer
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
                def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
         
     | 
| 650 | 
         
            +
                    if relative_pos is None:
         
     | 
| 651 | 
         
            +
                        q = query_layer.size(-2)
         
     | 
| 652 | 
         
            +
                        relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
         
     | 
| 653 | 
         
            +
                    if relative_pos.dim() == 2:
         
     | 
| 654 | 
         
            +
                        relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
         
     | 
| 655 | 
         
            +
                    elif relative_pos.dim() == 3:
         
     | 
| 656 | 
         
            +
                        relative_pos = relative_pos.unsqueeze(1)
         
     | 
| 657 | 
         
            +
                    # bxhxqxk
         
     | 
| 658 | 
         
            +
                    elif relative_pos.dim() != 4:
         
     | 
| 659 | 
         
            +
                        raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
         
     | 
| 662 | 
         
            +
                    relative_pos = relative_pos.long().to(query_layer.device)
         
     | 
| 663 | 
         
            +
                    rel_embeddings = rel_embeddings[
         
     | 
| 664 | 
         
            +
                        self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
         
     | 
| 665 | 
         
            +
                    ].unsqueeze(0)
         
     | 
| 666 | 
         
            +
                    if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 667 | 
         
            +
                        pos_key_layer = self.pos_proj(rel_embeddings)
         
     | 
| 668 | 
         
            +
                        pos_key_layer = self.transpose_for_scores(pos_key_layer)
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                    if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 671 | 
         
            +
                        pos_query_layer = self.pos_q_proj(rel_embeddings)
         
     | 
| 672 | 
         
            +
                        pos_query_layer = self.transpose_for_scores(pos_query_layer)
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                    score = 0
         
     | 
| 675 | 
         
            +
                    # content->position
         
     | 
| 676 | 
         
            +
                    if "c2p" in self.pos_att_type:
         
     | 
| 677 | 
         
            +
                        c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
         
     | 
| 678 | 
         
            +
                        c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
         
     | 
| 679 | 
         
            +
                        c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
         
     | 
| 680 | 
         
            +
                        score += c2p_att
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                    # position->content
         
     | 
| 683 | 
         
            +
                    if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 684 | 
         
            +
                        pos_query_layer /= math.sqrt(pos_query_layer.size(-1) * scale_factor)
         
     | 
| 685 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 686 | 
         
            +
                            r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
         
     | 
| 687 | 
         
            +
                        else:
         
     | 
| 688 | 
         
            +
                            r_pos = relative_pos
         
     | 
| 689 | 
         
            +
                        p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
         
     | 
| 690 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 691 | 
         
            +
                            pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
         
     | 
| 692 | 
         
            +
             
     | 
| 693 | 
         
            +
                    if "p2c" in self.pos_att_type:
         
     | 
| 694 | 
         
            +
                        p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2))
         
     | 
| 695 | 
         
            +
                        p2c_att = torch.gather(
         
     | 
| 696 | 
         
            +
                            p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
         
     | 
| 697 | 
         
            +
                        ).transpose(-1, -2)
         
     | 
| 698 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 699 | 
         
            +
                            p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
         
     | 
| 700 | 
         
            +
                        score += p2c_att
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                    return score
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
            class DebertaEmbeddings(nn.Module):
         
     | 
| 706 | 
         
            +
                """Construct the embeddings from word, position and token_type embeddings."""
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                def __init__(self, config):
         
     | 
| 709 | 
         
            +
                    super().__init__()
         
     | 
| 710 | 
         
            +
                    pad_token_id = getattr(config, "pad_token_id", 0)
         
     | 
| 711 | 
         
            +
                    self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
         
     | 
| 712 | 
         
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                    self.position_biased_input = getattr(config, "position_biased_input", True)
         
     | 
| 715 | 
         
            +
                    if not self.position_biased_input:
         
     | 
| 716 | 
         
            +
                        self.position_embeddings = None
         
     | 
| 717 | 
         
            +
                    else:
         
     | 
| 718 | 
         
            +
                        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
                    if config.type_vocab_size > 0:
         
     | 
| 721 | 
         
            +
                        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
         
     | 
| 722 | 
         
            +
             
     | 
| 723 | 
         
            +
                    if self.embedding_size != config.hidden_size:
         
     | 
| 724 | 
         
            +
                        self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
         
     | 
| 725 | 
         
            +
                    self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 726 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 727 | 
         
            +
                    self.config = config
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         
     | 
| 730 | 
         
            +
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None, past_key_values_length=0):
         
     | 
| 733 | 
         
            +
                    if input_ids is not None:
         
     | 
| 734 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 735 | 
         
            +
                    else:
         
     | 
| 736 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
                    seq_length = input_shape[1]
         
     | 
| 739 | 
         
            +
             
     | 
| 740 | 
         
            +
                    if position_ids is None:
         
     | 
| 741 | 
         
            +
                        position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 744 | 
         
            +
                        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 747 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                    if self.position_embeddings is not None:
         
     | 
| 750 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids.long())
         
     | 
| 751 | 
         
            +
                    else:
         
     | 
| 752 | 
         
            +
                        position_embeddings = torch.zeros_like(inputs_embeds)
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    embeddings = inputs_embeds
         
     | 
| 755 | 
         
            +
                    if self.position_biased_input:
         
     | 
| 756 | 
         
            +
                        embeddings += position_embeddings
         
     | 
| 757 | 
         
            +
                    if self.config.type_vocab_size > 0:
         
     | 
| 758 | 
         
            +
                        token_type_embeddings = self.token_type_embeddings(token_type_ids)
         
     | 
| 759 | 
         
            +
                        embeddings += token_type_embeddings
         
     | 
| 760 | 
         
            +
             
     | 
| 761 | 
         
            +
                    if self.embedding_size != self.config.hidden_size:
         
     | 
| 762 | 
         
            +
                        embeddings = self.embed_proj(embeddings)
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                    if mask is not None:
         
     | 
| 767 | 
         
            +
                        if mask.dim() != embeddings.dim():
         
     | 
| 768 | 
         
            +
                            if mask.dim() == 4:
         
     | 
| 769 | 
         
            +
                                mask = mask.squeeze(1).squeeze(1)
         
     | 
| 770 | 
         
            +
                            mask = mask.unsqueeze(2)
         
     | 
| 771 | 
         
            +
                        mask = mask.to(embeddings.dtype)
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                        embeddings = embeddings * mask
         
     | 
| 774 | 
         
            +
             
     | 
| 775 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 776 | 
         
            +
                    return embeddings
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
            class DebertaPreTrainedModel(PreTrainedModel):
         
     | 
| 780 | 
         
            +
                """
         
     | 
| 781 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 782 | 
         
            +
                models.
         
     | 
| 783 | 
         
            +
                """
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                config_class = DebertaConfig
         
     | 
| 786 | 
         
            +
                base_model_prefix = "deberta"
         
     | 
| 787 | 
         
            +
                _keys_to_ignore_on_load_missing = ["position_ids"]
         
     | 
| 788 | 
         
            +
                _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                def __init__(self, config):
         
     | 
| 791 | 
         
            +
                    super().__init__(config)
         
     | 
| 792 | 
         
            +
                    self._register_load_state_dict_pre_hook(self._pre_load_hook)
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 795 | 
         
            +
                    """Initialize the weights."""
         
     | 
| 796 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 797 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 798 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 799 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 800 | 
         
            +
                        if module.bias is not None:
         
     | 
| 801 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 802 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 803 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 804 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 805 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                def _pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
         
     | 
| 808 | 
         
            +
                    """
         
     | 
| 809 | 
         
            +
                    Removes the classifier if it doesn't have the correct number of labels.
         
     | 
| 810 | 
         
            +
                    """
         
     | 
| 811 | 
         
            +
                    self_state = self.state_dict()
         
     | 
| 812 | 
         
            +
                    if (
         
     | 
| 813 | 
         
            +
                        ("classifier.weight" in self_state)
         
     | 
| 814 | 
         
            +
                        and ("classifier.weight" in state_dict)
         
     | 
| 815 | 
         
            +
                        and self_state["classifier.weight"].size() != state_dict["classifier.weight"].size()
         
     | 
| 816 | 
         
            +
                    ):
         
     | 
| 817 | 
         
            +
                        logger.warning(
         
     | 
| 818 | 
         
            +
                            f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
         
     | 
| 819 | 
         
            +
                            f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
         
     | 
| 820 | 
         
            +
                            f"weights. You should train your model on new data."
         
     | 
| 821 | 
         
            +
                        )
         
     | 
| 822 | 
         
            +
                        del state_dict["classifier.weight"]
         
     | 
| 823 | 
         
            +
                        if "classifier.bias" in state_dict:
         
     | 
| 824 | 
         
            +
                            del state_dict["classifier.bias"]
         
     | 
| 825 | 
         
            +
             
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
            DEBERTA_START_DOCSTRING = r"""
         
     | 
| 828 | 
         
            +
                The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
         
     | 
| 829 | 
         
            +
                <https://arxiv.org/abs/2006.03654>`_ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of
         
     | 
| 830 | 
         
            +
                BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
         
     | 
| 831 | 
         
            +
                improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
         
     | 
| 834 | 
         
            +
                subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
         
     | 
| 835 | 
         
            +
                general usage and behavior.```
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                Parameters:
         
     | 
| 839 | 
         
            +
                    config (:class:`~transformers.DebertaConfig`): Model configuration class with all the parameters of the model.
         
     | 
| 840 | 
         
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         
     | 
| 841 | 
         
            +
                        configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
         
     | 
| 842 | 
         
            +
                        weights.
         
     | 
| 843 | 
         
            +
            """
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
            DEBERTA_INPUTS_DOCSTRING = r"""
         
     | 
| 846 | 
         
            +
                Args:
         
     | 
| 847 | 
         
            +
                    input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
         
     | 
| 848 | 
         
            +
                        Indices of input sequence tokens in the vocabulary.
         
     | 
| 849 | 
         
            +
             
     | 
| 850 | 
         
            +
                        Indices can be obtained using :class:`transformers.DebertaTokenizer`. See
         
     | 
| 851 | 
         
            +
                        :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
         
     | 
| 852 | 
         
            +
                        details.
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                        `What are input IDs? <../glossary.html#input-ids>`__
         
     | 
| 855 | 
         
            +
                    attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 856 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
         
     | 
| 857 | 
         
            +
             
     | 
| 858 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 859 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                        `What are attention masks? <../glossary.html#attention-mask>`__
         
     | 
| 862 | 
         
            +
                    token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 863 | 
         
            +
                        Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
         
     | 
| 864 | 
         
            +
                        1]``:
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                        - 0 corresponds to a `sentence A` token,
         
     | 
| 867 | 
         
            +
                        - 1 corresponds to a `sentence B` token.
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
                        `What are token type IDs? <../glossary.html#token-type-ids>`_
         
     | 
| 870 | 
         
            +
                    position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 871 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
         
     | 
| 872 | 
         
            +
                        config.max_position_embeddings - 1]``.
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                        `What are position IDs? <../glossary.html#position-ids>`_
         
     | 
| 875 | 
         
            +
                    inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         
     | 
| 876 | 
         
            +
                        Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
         
     | 
| 877 | 
         
            +
                        This is useful if you want more control over how to convert `input_ids` indices into associated vectors
         
     | 
| 878 | 
         
            +
                        than the model's internal embedding lookup matrix.
         
     | 
| 879 | 
         
            +
                    output_attentions (:obj:`bool`, `optional`):
         
     | 
| 880 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
         
     | 
| 881 | 
         
            +
                        tensors for more detail.
         
     | 
| 882 | 
         
            +
                    output_hidden_states (:obj:`bool`, `optional`):
         
     | 
| 883 | 
         
            +
                        Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
         
     | 
| 884 | 
         
            +
                        more detail.
         
     | 
| 885 | 
         
            +
                    return_dict (:obj:`bool`, `optional`):
         
     | 
| 886 | 
         
            +
                        Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
         
     | 
| 887 | 
         
            +
            """
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
             
     | 
| 890 | 
         
            +
            @add_start_docstrings(
         
     | 
| 891 | 
         
            +
                "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
         
     | 
| 892 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 893 | 
         
            +
            )
         
     | 
| 894 | 
         
            +
            class DebertaModel(DebertaPreTrainedModel):
         
     | 
| 895 | 
         
            +
                def __init__(self, config):
         
     | 
| 896 | 
         
            +
                    super().__init__(config)
         
     | 
| 897 | 
         
            +
             
     | 
| 898 | 
         
            +
                    self.embeddings = DebertaEmbeddings(config)
         
     | 
| 899 | 
         
            +
                    self.encoder = DebertaEncoder(config)
         
     | 
| 900 | 
         
            +
                    self.z_steps = 0
         
     | 
| 901 | 
         
            +
                    self.config = config
         
     | 
| 902 | 
         
            +
                    self.init_weights()
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 905 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                def set_input_embeddings(self, new_embeddings):
         
     | 
| 908 | 
         
            +
                    self.embeddings.word_embeddings = new_embeddings
         
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 911 | 
         
            +
                    """
         
     | 
| 912 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         
     | 
| 913 | 
         
            +
                    class PreTrainedModel
         
     | 
| 914 | 
         
            +
                    """
         
     | 
| 915 | 
         
            +
                    raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
         
     | 
| 916 | 
         
            +
             
     | 
| 917 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 918 | 
         
            +
                def forward(
         
     | 
| 919 | 
         
            +
                    self,
         
     | 
| 920 | 
         
            +
                    input_ids=None,
         
     | 
| 921 | 
         
            +
                    attention_mask=None,
         
     | 
| 922 | 
         
            +
                    token_type_ids=None,
         
     | 
| 923 | 
         
            +
                    position_ids=None,
         
     | 
| 924 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 925 | 
         
            +
                    output_attentions=None,
         
     | 
| 926 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 927 | 
         
            +
                    return_dict=None,
         
     | 
| 928 | 
         
            +
                    past_key_values=None,
         
     | 
| 929 | 
         
            +
                ):
         
     | 
| 930 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 931 | 
         
            +
                    output_hidden_states = (
         
     | 
| 932 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 933 | 
         
            +
                    )
         
     | 
| 934 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 937 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 938 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 939 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 940 | 
         
            +
                        batch_size, seq_length = input_shape            
         
     | 
| 941 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 942 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 943 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 944 | 
         
            +
                    else:
         
     | 
| 945 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 946 | 
         
            +
             
     | 
| 947 | 
         
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 948 | 
         
            +
                    
         
     | 
| 949 | 
         
            +
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
                    embedding_mask = attention_mask[:, past_key_values_length:].contiguous()
         
     | 
| 952 | 
         
            +
                    if attention_mask is None:
         
     | 
| 953 | 
         
            +
                        # attention_mask = torch.ones(input_shape, device=device)
         
     | 
| 954 | 
         
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         
     | 
| 955 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 956 | 
         
            +
                        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
         
     | 
| 957 | 
         
            +
             
     | 
| 958 | 
         
            +
                    embedding_output = self.embeddings(
         
     | 
| 959 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 960 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 961 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 962 | 
         
            +
                        mask=embedding_mask,
         
     | 
| 963 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 964 | 
         
            +
                        past_key_values_length=past_key_values_length,
         
     | 
| 965 | 
         
            +
                    )
         
     | 
| 966 | 
         
            +
             
     | 
| 967 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 968 | 
         
            +
                        embedding_output,
         
     | 
| 969 | 
         
            +
                        attention_mask,
         
     | 
| 970 | 
         
            +
                        output_hidden_states=True,
         
     | 
| 971 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 972 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 973 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 974 | 
         
            +
                    )
         
     | 
| 975 | 
         
            +
                    encoded_layers = encoder_outputs[1]
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                    if self.z_steps > 1:
         
     | 
| 978 | 
         
            +
                        hidden_states = encoded_layers[-2]
         
     | 
| 979 | 
         
            +
                        layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
         
     | 
| 980 | 
         
            +
                        query_states = encoded_layers[-1]
         
     | 
| 981 | 
         
            +
                        rel_embeddings = self.encoder.get_rel_embedding()
         
     | 
| 982 | 
         
            +
                        attention_mask = self.encoder.get_attention_mask(attention_mask)
         
     | 
| 983 | 
         
            +
                        rel_pos = self.encoder.get_rel_pos(embedding_output)
         
     | 
| 984 | 
         
            +
                        for layer in layers[1:]:
         
     | 
| 985 | 
         
            +
                            query_states = layer(
         
     | 
| 986 | 
         
            +
                                hidden_states,
         
     | 
| 987 | 
         
            +
                                attention_mask,
         
     | 
| 988 | 
         
            +
                                return_att=False,
         
     | 
| 989 | 
         
            +
                                query_states=query_states,
         
     | 
| 990 | 
         
            +
                                relative_pos=rel_pos,
         
     | 
| 991 | 
         
            +
                                rel_embeddings=rel_embeddings,
         
     | 
| 992 | 
         
            +
                            )
         
     | 
| 993 | 
         
            +
                            encoded_layers.append(query_states)
         
     | 
| 994 | 
         
            +
             
     | 
| 995 | 
         
            +
                    sequence_output = encoded_layers[-1]
         
     | 
| 996 | 
         
            +
             
     | 
| 997 | 
         
            +
                    if not return_dict:
         
     | 
| 998 | 
         
            +
                        return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
         
     | 
| 999 | 
         
            +
             
     | 
| 1000 | 
         
            +
                    return BaseModelOutput(
         
     | 
| 1001 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 1002 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
         
     | 
| 1003 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 1004 | 
         
            +
                    )
         
     | 
| 1005 | 
         
            +
             
     | 
| 1006 | 
         
            +
             
     | 
| 1007 | 
         
            +
            @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top. """, DEBERTA_START_DOCSTRING)
         
     | 
| 1008 | 
         
            +
            class DebertaForMaskedLM(DebertaPreTrainedModel):
         
     | 
| 1009 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1010 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
         
     | 
| 1011 | 
         
            +
             
     | 
| 1012 | 
         
            +
                def __init__(self, config):
         
     | 
| 1013 | 
         
            +
                    super().__init__(config)
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 1016 | 
         
            +
                    self.cls = DebertaOnlyMLMHead(config)
         
     | 
| 1017 | 
         
            +
             
     | 
| 1018 | 
         
            +
                    self.init_weights()
         
     | 
| 1019 | 
         
            +
             
     | 
| 1020 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1021 | 
         
            +
                    return self.cls.predictions.decoder
         
     | 
| 1022 | 
         
            +
             
     | 
| 1023 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1024 | 
         
            +
                    self.cls.predictions.decoder = new_embeddings
         
     | 
| 1025 | 
         
            +
             
     | 
| 1026 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1027 | 
         
            +
                def forward(
         
     | 
| 1028 | 
         
            +
                    self,
         
     | 
| 1029 | 
         
            +
                    input_ids=None,
         
     | 
| 1030 | 
         
            +
                    attention_mask=None,
         
     | 
| 1031 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1032 | 
         
            +
                    position_ids=None,
         
     | 
| 1033 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1034 | 
         
            +
                    labels=None,
         
     | 
| 1035 | 
         
            +
                    output_attentions=None,
         
     | 
| 1036 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1037 | 
         
            +
                    return_dict=None,
         
     | 
| 1038 | 
         
            +
                ):
         
     | 
| 1039 | 
         
            +
                    r"""
         
     | 
| 1040 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 1041 | 
         
            +
                        Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
         
     | 
| 1042 | 
         
            +
                        config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
         
     | 
| 1043 | 
         
            +
                        (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
         
     | 
| 1044 | 
         
            +
                    """
         
     | 
| 1045 | 
         
            +
             
     | 
| 1046 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1047 | 
         
            +
             
     | 
| 1048 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1049 | 
         
            +
                        input_ids,
         
     | 
| 1050 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1051 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1052 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1053 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1054 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1055 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1056 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1057 | 
         
            +
                    )
         
     | 
| 1058 | 
         
            +
             
     | 
| 1059 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1060 | 
         
            +
                    prediction_scores = self.cls(sequence_output)
         
     | 
| 1061 | 
         
            +
             
     | 
| 1062 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1063 | 
         
            +
                    if labels is not None:
         
     | 
| 1064 | 
         
            +
                        loss_fct = CrossEntropyLoss()  # -100 index = padding token
         
     | 
| 1065 | 
         
            +
                        masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         
     | 
| 1066 | 
         
            +
             
     | 
| 1067 | 
         
            +
                    if not return_dict:
         
     | 
| 1068 | 
         
            +
                        output = (prediction_scores,) + outputs[1:]
         
     | 
| 1069 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1070 | 
         
            +
             
     | 
| 1071 | 
         
            +
                    return MaskedLMOutput(
         
     | 
| 1072 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1073 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 1074 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1075 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1076 | 
         
            +
                    )
         
     | 
| 1077 | 
         
            +
             
     | 
| 1078 | 
         
            +
             
     | 
| 1079 | 
         
            +
            # copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
         
     | 
| 1080 | 
         
            +
            class DebertaPredictionHeadTransform(nn.Module):
         
     | 
| 1081 | 
         
            +
                def __init__(self, config):
         
     | 
| 1082 | 
         
            +
                    super().__init__()
         
     | 
| 1083 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 1084 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 1085 | 
         
            +
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 1086 | 
         
            +
                    else:
         
     | 
| 1087 | 
         
            +
                        self.transform_act_fn = config.hidden_act
         
     | 
| 1088 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 1089 | 
         
            +
             
     | 
| 1090 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 1091 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 1092 | 
         
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         
     | 
| 1093 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states)
         
     | 
| 1094 | 
         
            +
                    return hidden_states
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
             
     | 
| 1097 | 
         
            +
            # copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
         
     | 
| 1098 | 
         
            +
            class DebertaLMPredictionHead(nn.Module):
         
     | 
| 1099 | 
         
            +
                def __init__(self, config):
         
     | 
| 1100 | 
         
            +
                    super().__init__()
         
     | 
| 1101 | 
         
            +
                    self.transform = DebertaPredictionHeadTransform(config)
         
     | 
| 1102 | 
         
            +
             
     | 
| 1103 | 
         
            +
                    # The output weights are the same as the input embeddings, but there is
         
     | 
| 1104 | 
         
            +
                    # an output-only bias for each token.
         
     | 
| 1105 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         
     | 
| 1110 | 
         
            +
                    self.decoder.bias = self.bias
         
     | 
| 1111 | 
         
            +
             
     | 
| 1112 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 1113 | 
         
            +
                    hidden_states = self.transform(hidden_states)
         
     | 
| 1114 | 
         
            +
                    hidden_states = self.decoder(hidden_states)
         
     | 
| 1115 | 
         
            +
                    return hidden_states
         
     | 
| 1116 | 
         
            +
             
     | 
| 1117 | 
         
            +
             
     | 
| 1118 | 
         
            +
            # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
         
     | 
| 1119 | 
         
            +
            class DebertaOnlyMLMHead(nn.Module):
         
     | 
| 1120 | 
         
            +
                def __init__(self, config):
         
     | 
| 1121 | 
         
            +
                    super().__init__()
         
     | 
| 1122 | 
         
            +
                    self.predictions = DebertaLMPredictionHead(config)
         
     | 
| 1123 | 
         
            +
             
     | 
| 1124 | 
         
            +
                def forward(self, sequence_output):
         
     | 
| 1125 | 
         
            +
                    prediction_scores = self.predictions(sequence_output)
         
     | 
| 1126 | 
         
            +
                    return prediction_scores
         
     | 
| 1127 | 
         
            +
             
     | 
| 1128 | 
         
            +
             
     | 
| 1129 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1130 | 
         
            +
                """
         
     | 
| 1131 | 
         
            +
                DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
         
     | 
| 1132 | 
         
            +
                pooled output) e.g. for GLUE tasks.
         
     | 
| 1133 | 
         
            +
                """,
         
     | 
| 1134 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1135 | 
         
            +
            )
         
     | 
| 1136 | 
         
            +
            class DebertaForSequenceClassification(DebertaPreTrainedModel):
         
     | 
| 1137 | 
         
            +
                def __init__(self, config):
         
     | 
| 1138 | 
         
            +
                    super().__init__(config)
         
     | 
| 1139 | 
         
            +
             
     | 
| 1140 | 
         
            +
                    num_labels = getattr(config, "num_labels", 2)
         
     | 
| 1141 | 
         
            +
                    self.num_labels = num_labels
         
     | 
| 1142 | 
         
            +
             
     | 
| 1143 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 1144 | 
         
            +
                    self.pooler = ContextPooler(config)
         
     | 
| 1145 | 
         
            +
                    output_dim = self.pooler.output_dim
         
     | 
| 1146 | 
         
            +
             
     | 
| 1147 | 
         
            +
                    self.classifier = nn.Linear(output_dim, num_labels)
         
     | 
| 1148 | 
         
            +
                    drop_out = getattr(config, "cls_dropout", None)
         
     | 
| 1149 | 
         
            +
                    drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
         
     | 
| 1150 | 
         
            +
                    self.dropout = StableDropout(drop_out)
         
     | 
| 1151 | 
         
            +
             
     | 
| 1152 | 
         
            +
                    self.init_weights()
         
     | 
| 1153 | 
         
            +
             
     | 
| 1154 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1155 | 
         
            +
                    return self.deberta.get_input_embeddings()
         
     | 
| 1156 | 
         
            +
             
     | 
| 1157 | 
         
            +
                def set_input_embeddings(self, new_embeddings):
         
     | 
| 1158 | 
         
            +
                    self.deberta.set_input_embeddings(new_embeddings)
         
     | 
| 1159 | 
         
            +
             
     | 
| 1160 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1161 | 
         
            +
                def forward(
         
     | 
| 1162 | 
         
            +
                    self,
         
     | 
| 1163 | 
         
            +
                    input_ids=None,
         
     | 
| 1164 | 
         
            +
                    attention_mask=None,
         
     | 
| 1165 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1166 | 
         
            +
                    position_ids=None,
         
     | 
| 1167 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1168 | 
         
            +
                    labels=None,
         
     | 
| 1169 | 
         
            +
                    output_attentions=None,
         
     | 
| 1170 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1171 | 
         
            +
                    return_dict=None,
         
     | 
| 1172 | 
         
            +
                ):
         
     | 
| 1173 | 
         
            +
                    r"""
         
     | 
| 1174 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1175 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
         
     | 
| 1176 | 
         
            +
                        config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
         
     | 
| 1177 | 
         
            +
                        If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1178 | 
         
            +
                    """
         
     | 
| 1179 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1180 | 
         
            +
             
     | 
| 1181 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1182 | 
         
            +
                        input_ids,
         
     | 
| 1183 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1184 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1185 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1186 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1187 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1188 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1189 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1190 | 
         
            +
                    )
         
     | 
| 1191 | 
         
            +
             
     | 
| 1192 | 
         
            +
                    encoder_layer = outputs[0]
         
     | 
| 1193 | 
         
            +
                    pooled_output = self.pooler(encoder_layer)
         
     | 
| 1194 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 1195 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 1196 | 
         
            +
             
     | 
| 1197 | 
         
            +
                    loss = None
         
     | 
| 1198 | 
         
            +
                    if labels is not None:
         
     | 
| 1199 | 
         
            +
                        if self.num_labels == 1:
         
     | 
| 1200 | 
         
            +
                            # regression task
         
     | 
| 1201 | 
         
            +
                            loss_fn = nn.MSELoss()
         
     | 
| 1202 | 
         
            +
                            logits = logits.view(-1).to(labels.dtype)
         
     | 
| 1203 | 
         
            +
                            loss = loss_fn(logits, labels.view(-1))
         
     | 
| 1204 | 
         
            +
                        elif labels.dim() == 1 or labels.size(-1) == 1:
         
     | 
| 1205 | 
         
            +
                            label_index = (labels >= 0).nonzero()
         
     | 
| 1206 | 
         
            +
                            labels = labels.long()
         
     | 
| 1207 | 
         
            +
                            if label_index.size(0) > 0:
         
     | 
| 1208 | 
         
            +
                                labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
         
     | 
| 1209 | 
         
            +
                                labels = torch.gather(labels, 0, label_index.view(-1))
         
     | 
| 1210 | 
         
            +
                                loss_fct = CrossEntropyLoss()
         
     | 
| 1211 | 
         
            +
                                loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
         
     | 
| 1212 | 
         
            +
                            else:
         
     | 
| 1213 | 
         
            +
                                loss = torch.tensor(0).to(logits)
         
     | 
| 1214 | 
         
            +
                        else:
         
     | 
| 1215 | 
         
            +
                            log_softmax = nn.LogSoftmax(-1)
         
     | 
| 1216 | 
         
            +
                            loss = -((log_softmax(logits) * labels).sum(-1)).mean()
         
     | 
| 1217 | 
         
            +
                    if not return_dict:
         
     | 
| 1218 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1219 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1220 | 
         
            +
                    else:
         
     | 
| 1221 | 
         
            +
                        return SequenceClassifierOutput(
         
     | 
| 1222 | 
         
            +
                            loss=loss,
         
     | 
| 1223 | 
         
            +
                            logits=logits,
         
     | 
| 1224 | 
         
            +
                            hidden_states=outputs.hidden_states,
         
     | 
| 1225 | 
         
            +
                            attentions=outputs.attentions,
         
     | 
| 1226 | 
         
            +
                        )
         
     | 
| 1227 | 
         
            +
             
     | 
| 1228 | 
         
            +
             
     | 
| 1229 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1230 | 
         
            +
                """
         
     | 
| 1231 | 
         
            +
                DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
         
     | 
| 1232 | 
         
            +
                Named-Entity-Recognition (NER) tasks.
         
     | 
| 1233 | 
         
            +
                """,
         
     | 
| 1234 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1235 | 
         
            +
            )
         
     | 
| 1236 | 
         
            +
            class DebertaForTokenClassification(DebertaPreTrainedModel):
         
     | 
| 1237 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1238 | 
         
            +
             
     | 
| 1239 | 
         
            +
                def __init__(self, config):
         
     | 
| 1240 | 
         
            +
                    super().__init__(config)
         
     | 
| 1241 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1242 | 
         
            +
             
     | 
| 1243 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 1244 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 1245 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1246 | 
         
            +
             
     | 
| 1247 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 1248 | 
         
            +
                        param.requires_grad = False
         
     | 
| 1249 | 
         
            +
             
     | 
| 1250 | 
         
            +
                    self.init_weights()
         
     | 
| 1251 | 
         
            +
             
     | 
| 1252 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1253 | 
         
            +
                def forward(
         
     | 
| 1254 | 
         
            +
                    self,
         
     | 
| 1255 | 
         
            +
                    input_ids=None,
         
     | 
| 1256 | 
         
            +
                    attention_mask=None,
         
     | 
| 1257 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1258 | 
         
            +
                    position_ids=None,
         
     | 
| 1259 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1260 | 
         
            +
                    labels=None,
         
     | 
| 1261 | 
         
            +
                    output_attentions=None,
         
     | 
| 1262 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1263 | 
         
            +
                    return_dict=None,
         
     | 
| 1264 | 
         
            +
                ):
         
     | 
| 1265 | 
         
            +
                    r"""
         
     | 
| 1266 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 1267 | 
         
            +
                        Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
         
     | 
| 1268 | 
         
            +
                        1]``.
         
     | 
| 1269 | 
         
            +
                    """
         
     | 
| 1270 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1271 | 
         
            +
             
     | 
| 1272 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1273 | 
         
            +
                        input_ids,
         
     | 
| 1274 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1275 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1276 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1277 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1278 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1279 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1280 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1281 | 
         
            +
                    )
         
     | 
| 1282 | 
         
            +
             
     | 
| 1283 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1284 | 
         
            +
             
     | 
| 1285 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 1286 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 1287 | 
         
            +
             
     | 
| 1288 | 
         
            +
                    loss = None
         
     | 
| 1289 | 
         
            +
                    if labels is not None:
         
     | 
| 1290 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1291 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 1292 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 1293 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 1294 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 1295 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 1296 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 1297 | 
         
            +
                            )
         
     | 
| 1298 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 1299 | 
         
            +
                        else:
         
     | 
| 1300 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1301 | 
         
            +
             
     | 
| 1302 | 
         
            +
                    if not return_dict:
         
     | 
| 1303 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1304 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1305 | 
         
            +
             
     | 
| 1306 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 1307 | 
         
            +
                        loss=loss,
         
     | 
| 1308 | 
         
            +
                        logits=logits,
         
     | 
| 1309 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1310 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1311 | 
         
            +
                    )
         
     | 
| 1312 | 
         
            +
             
     | 
| 1313 | 
         
            +
             
     | 
| 1314 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1315 | 
         
            +
                """
         
     | 
| 1316 | 
         
            +
                DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
         
     | 
| 1317 | 
         
            +
                layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
         
     | 
| 1318 | 
         
            +
                """,
         
     | 
| 1319 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1320 | 
         
            +
            )
         
     | 
| 1321 | 
         
            +
            class DebertaForQuestionAnswering(DebertaPreTrainedModel):
         
     | 
| 1322 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1323 | 
         
            +
             
     | 
| 1324 | 
         
            +
                def __init__(self, config):
         
     | 
| 1325 | 
         
            +
                    super().__init__(config)
         
     | 
| 1326 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1327 | 
         
            +
             
     | 
| 1328 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 1329 | 
         
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1330 | 
         
            +
             
     | 
| 1331 | 
         
            +
                    self.init_weights()
         
     | 
| 1332 | 
         
            +
             
     | 
| 1333 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1334 | 
         
            +
                def forward(
         
     | 
| 1335 | 
         
            +
                    self,
         
     | 
| 1336 | 
         
            +
                    input_ids=None,
         
     | 
| 1337 | 
         
            +
                    attention_mask=None,
         
     | 
| 1338 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1339 | 
         
            +
                    position_ids=None,
         
     | 
| 1340 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1341 | 
         
            +
                    start_positions=None,
         
     | 
| 1342 | 
         
            +
                    end_positions=None,
         
     | 
| 1343 | 
         
            +
                    output_attentions=None,
         
     | 
| 1344 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1345 | 
         
            +
                    return_dict=None,
         
     | 
| 1346 | 
         
            +
                ):
         
     | 
| 1347 | 
         
            +
                    r"""
         
     | 
| 1348 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1349 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 1350 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 1351 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 1352 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1353 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 1354 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 1355 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 1356 | 
         
            +
                    """
         
     | 
| 1357 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1358 | 
         
            +
             
     | 
| 1359 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1360 | 
         
            +
                        input_ids,
         
     | 
| 1361 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1362 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1363 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1364 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1365 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1366 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1367 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1368 | 
         
            +
                    )
         
     | 
| 1369 | 
         
            +
             
     | 
| 1370 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1371 | 
         
            +
             
     | 
| 1372 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 1373 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 1374 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 1375 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 1376 | 
         
            +
             
     | 
| 1377 | 
         
            +
                    total_loss = None
         
     | 
| 1378 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 1379 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 1380 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 1381 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 1382 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 1383 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 1384 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 1385 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 1386 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 1387 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 1388 | 
         
            +
             
     | 
| 1389 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 1390 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 1391 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 1392 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 1393 | 
         
            +
             
     | 
| 1394 | 
         
            +
                    if not return_dict:
         
     | 
| 1395 | 
         
            +
                        output = (start_logits, end_logits) + outputs[1:]
         
     | 
| 1396 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 1397 | 
         
            +
             
     | 
| 1398 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 1399 | 
         
            +
                        loss=total_loss,
         
     | 
| 1400 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 1401 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 1402 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1403 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1404 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/debertaV2.py
    ADDED
    
    | 
         @@ -0,0 +1,1509 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2020 Microsoft and the Hugging Face Inc. team.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 5 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 6 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 9 | 
         
            +
            #
         
     | 
| 10 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 11 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 12 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 13 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 14 | 
         
            +
            # limitations under the License.
         
     | 
| 15 | 
         
            +
            """ PyTorch DeBERTa-v2 model. """
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import math
         
     | 
| 18 | 
         
            +
            from collections.abc import Sequence
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import numpy as np
         
     | 
| 21 | 
         
            +
            import torch
         
     | 
| 22 | 
         
            +
            from torch import _softmax_backward_data, nn
         
     | 
| 23 | 
         
            +
            from torch.nn import CrossEntropyLoss, LayerNorm
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 27 | 
         
            +
            from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
         
     | 
| 28 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 29 | 
         
            +
                BaseModelOutput,
         
     | 
| 30 | 
         
            +
                MaskedLMOutput,
         
     | 
| 31 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 32 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 33 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 34 | 
         
            +
            )
         
     | 
| 35 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 36 | 
         
            +
            from transformers.utils import logging
         
     | 
| 37 | 
         
            +
            from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            _CONFIG_FOR_DOC = "DebertaV2Config"
         
     | 
| 43 | 
         
            +
            _TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
         
     | 
| 44 | 
         
            +
            _CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
         
     | 
| 47 | 
         
            +
                "microsoft/deberta-v2-xlarge",
         
     | 
| 48 | 
         
            +
                "microsoft/deberta-v2-xxlarge",
         
     | 
| 49 | 
         
            +
                "microsoft/deberta-v2-xlarge-mnli",
         
     | 
| 50 | 
         
            +
                "microsoft/deberta-v2-xxlarge-mnli",
         
     | 
| 51 | 
         
            +
            ]
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.ContextPooler
         
     | 
| 55 | 
         
            +
            class ContextPooler(nn.Module):
         
     | 
| 56 | 
         
            +
                def __init__(self, config):
         
     | 
| 57 | 
         
            +
                    super().__init__()
         
     | 
| 58 | 
         
            +
                    self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
         
     | 
| 59 | 
         
            +
                    self.dropout = StableDropout(config.pooler_dropout)
         
     | 
| 60 | 
         
            +
                    self.config = config
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 63 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 64 | 
         
            +
                    # to the first token.
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    context_token = hidden_states[:, 0]
         
     | 
| 67 | 
         
            +
                    context_token = self.dropout(context_token)
         
     | 
| 68 | 
         
            +
                    pooled_output = self.dense(context_token)
         
     | 
| 69 | 
         
            +
                    pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
         
     | 
| 70 | 
         
            +
                    return pooled_output
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                @property
         
     | 
| 73 | 
         
            +
                def output_dim(self):
         
     | 
| 74 | 
         
            +
                    return self.config.hidden_size
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
         
     | 
| 78 | 
         
            +
            class XSoftmax(torch.autograd.Function):
         
     | 
| 79 | 
         
            +
                """
         
     | 
| 80 | 
         
            +
                Masked Softmax which is optimized for saving memory
         
     | 
| 81 | 
         
            +
                Args:
         
     | 
| 82 | 
         
            +
                    input (:obj:`torch.tensor`): The input tensor that will apply softmax.
         
     | 
| 83 | 
         
            +
                    mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
         
     | 
| 84 | 
         
            +
                    dim (int): The dimension that will apply softmax
         
     | 
| 85 | 
         
            +
                Example::
         
     | 
| 86 | 
         
            +
                      >>> import torch
         
     | 
| 87 | 
         
            +
                      >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
         
     | 
| 88 | 
         
            +
                      >>> # Make a tensor
         
     | 
| 89 | 
         
            +
                      >>> x = torch.randn([4,20,100])
         
     | 
| 90 | 
         
            +
                      >>> # Create a mask
         
     | 
| 91 | 
         
            +
                      >>> mask = (x>0).int()
         
     | 
| 92 | 
         
            +
                      >>> y = XSoftmax.apply(x, mask, dim=-1)
         
     | 
| 93 | 
         
            +
                """
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                @staticmethod
         
     | 
| 96 | 
         
            +
                def forward(self, input, mask, dim):
         
     | 
| 97 | 
         
            +
                    self.dim = dim
         
     | 
| 98 | 
         
            +
                    rmask = ~(mask.bool())
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    output = input.masked_fill(rmask, float("-inf"))
         
     | 
| 101 | 
         
            +
                    output = torch.softmax(output, self.dim)
         
     | 
| 102 | 
         
            +
                    output.masked_fill_(rmask, 0)
         
     | 
| 103 | 
         
            +
                    self.save_for_backward(output)
         
     | 
| 104 | 
         
            +
                    return output
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                @staticmethod
         
     | 
| 107 | 
         
            +
                def backward(self, grad_output):
         
     | 
| 108 | 
         
            +
                    (output,) = self.saved_tensors
         
     | 
| 109 | 
         
            +
                    inputGrad = _softmax_backward_data(grad_output, output, self.dim, output)
         
     | 
| 110 | 
         
            +
                    return inputGrad, None, None
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DropoutContext
         
     | 
| 114 | 
         
            +
            class DropoutContext(object):
         
     | 
| 115 | 
         
            +
                def __init__(self):
         
     | 
| 116 | 
         
            +
                    self.dropout = 0
         
     | 
| 117 | 
         
            +
                    self.mask = None
         
     | 
| 118 | 
         
            +
                    self.scale = 1
         
     | 
| 119 | 
         
            +
                    self.reuse_mask = True
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.get_mask
         
     | 
| 123 | 
         
            +
            def get_mask(input, local_context):
         
     | 
| 124 | 
         
            +
                if not isinstance(local_context, DropoutContext):
         
     | 
| 125 | 
         
            +
                    dropout = local_context
         
     | 
| 126 | 
         
            +
                    mask = None
         
     | 
| 127 | 
         
            +
                else:
         
     | 
| 128 | 
         
            +
                    dropout = local_context.dropout
         
     | 
| 129 | 
         
            +
                    dropout *= local_context.scale
         
     | 
| 130 | 
         
            +
                    mask = local_context.mask if local_context.reuse_mask else None
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                if dropout > 0 and mask is None:
         
     | 
| 133 | 
         
            +
                    mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                if isinstance(local_context, DropoutContext):
         
     | 
| 136 | 
         
            +
                    if local_context.mask is None:
         
     | 
| 137 | 
         
            +
                        local_context.mask = mask
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                return mask, dropout
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.XDropout
         
     | 
| 143 | 
         
            +
            class XDropout(torch.autograd.Function):
         
     | 
| 144 | 
         
            +
                """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                @staticmethod
         
     | 
| 147 | 
         
            +
                def forward(ctx, input, local_ctx):
         
     | 
| 148 | 
         
            +
                    mask, dropout = get_mask(input, local_ctx)
         
     | 
| 149 | 
         
            +
                    ctx.scale = 1.0 / (1 - dropout)
         
     | 
| 150 | 
         
            +
                    if dropout > 0:
         
     | 
| 151 | 
         
            +
                        ctx.save_for_backward(mask)
         
     | 
| 152 | 
         
            +
                        return input.masked_fill(mask, 0) * ctx.scale
         
     | 
| 153 | 
         
            +
                    else:
         
     | 
| 154 | 
         
            +
                        return input
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                @staticmethod
         
     | 
| 157 | 
         
            +
                def backward(ctx, grad_output):
         
     | 
| 158 | 
         
            +
                    if ctx.scale > 1:
         
     | 
| 159 | 
         
            +
                        (mask,) = ctx.saved_tensors
         
     | 
| 160 | 
         
            +
                        return grad_output.masked_fill(mask, 0) * ctx.scale, None
         
     | 
| 161 | 
         
            +
                    else:
         
     | 
| 162 | 
         
            +
                        return grad_output, None
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.StableDropout
         
     | 
| 166 | 
         
            +
            class StableDropout(nn.Module):
         
     | 
| 167 | 
         
            +
                """
         
     | 
| 168 | 
         
            +
                Optimized dropout module for stabilizing the training
         
     | 
| 169 | 
         
            +
                Args:
         
     | 
| 170 | 
         
            +
                    drop_prob (float): the dropout probabilities
         
     | 
| 171 | 
         
            +
                """
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                def __init__(self, drop_prob):
         
     | 
| 174 | 
         
            +
                    super().__init__()
         
     | 
| 175 | 
         
            +
                    self.drop_prob = drop_prob
         
     | 
| 176 | 
         
            +
                    self.count = 0
         
     | 
| 177 | 
         
            +
                    self.context_stack = None
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                def forward(self, x):
         
     | 
| 180 | 
         
            +
                    """
         
     | 
| 181 | 
         
            +
                    Call the module
         
     | 
| 182 | 
         
            +
                    Args:
         
     | 
| 183 | 
         
            +
                        x (:obj:`torch.tensor`): The input tensor to apply dropout
         
     | 
| 184 | 
         
            +
                    """
         
     | 
| 185 | 
         
            +
                    if self.training and self.drop_prob > 0:
         
     | 
| 186 | 
         
            +
                        return XDropout.apply(x, self.get_context())
         
     | 
| 187 | 
         
            +
                    return x
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                def clear_context(self):
         
     | 
| 190 | 
         
            +
                    self.count = 0
         
     | 
| 191 | 
         
            +
                    self.context_stack = None
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                def init_context(self, reuse_mask=True, scale=1):
         
     | 
| 194 | 
         
            +
                    if self.context_stack is None:
         
     | 
| 195 | 
         
            +
                        self.context_stack = []
         
     | 
| 196 | 
         
            +
                    self.count = 0
         
     | 
| 197 | 
         
            +
                    for c in self.context_stack:
         
     | 
| 198 | 
         
            +
                        c.reuse_mask = reuse_mask
         
     | 
| 199 | 
         
            +
                        c.scale = scale
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def get_context(self):
         
     | 
| 202 | 
         
            +
                    if self.context_stack is not None:
         
     | 
| 203 | 
         
            +
                        if self.count >= len(self.context_stack):
         
     | 
| 204 | 
         
            +
                            self.context_stack.append(DropoutContext())
         
     | 
| 205 | 
         
            +
                        ctx = self.context_stack[self.count]
         
     | 
| 206 | 
         
            +
                        ctx.dropout = self.drop_prob
         
     | 
| 207 | 
         
            +
                        self.count += 1
         
     | 
| 208 | 
         
            +
                        return ctx
         
     | 
| 209 | 
         
            +
                    else:
         
     | 
| 210 | 
         
            +
                        return self.drop_prob
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
         
     | 
| 214 | 
         
            +
            class DebertaV2SelfOutput(nn.Module):
         
     | 
| 215 | 
         
            +
                def __init__(self, config):
         
     | 
| 216 | 
         
            +
                    super().__init__()
         
     | 
| 217 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 218 | 
         
            +
                    self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 219 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 222 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 223 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 224 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 225 | 
         
            +
                    return hidden_states
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
         
     | 
| 229 | 
         
            +
            class DebertaV2Attention(nn.Module):
         
     | 
| 230 | 
         
            +
                def __init__(self, config):
         
     | 
| 231 | 
         
            +
                    super().__init__()
         
     | 
| 232 | 
         
            +
                    self.self = DisentangledSelfAttention(config)
         
     | 
| 233 | 
         
            +
                    self.output = DebertaV2SelfOutput(config)
         
     | 
| 234 | 
         
            +
                    self.config = config
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                def forward(
         
     | 
| 237 | 
         
            +
                    self,
         
     | 
| 238 | 
         
            +
                    hidden_states,
         
     | 
| 239 | 
         
            +
                    attention_mask,
         
     | 
| 240 | 
         
            +
                    return_att=False,
         
     | 
| 241 | 
         
            +
                    query_states=None,
         
     | 
| 242 | 
         
            +
                    relative_pos=None,
         
     | 
| 243 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 244 | 
         
            +
                    past_key_value=None,
         
     | 
| 245 | 
         
            +
                ):
         
     | 
| 246 | 
         
            +
                    self_output = self.self(
         
     | 
| 247 | 
         
            +
                        hidden_states,
         
     | 
| 248 | 
         
            +
                        attention_mask,
         
     | 
| 249 | 
         
            +
                        return_att,
         
     | 
| 250 | 
         
            +
                        query_states=query_states,
         
     | 
| 251 | 
         
            +
                        relative_pos=relative_pos,
         
     | 
| 252 | 
         
            +
                        rel_embeddings=rel_embeddings,
         
     | 
| 253 | 
         
            +
                        past_key_value=past_key_value,
         
     | 
| 254 | 
         
            +
                    )
         
     | 
| 255 | 
         
            +
                    if return_att:
         
     | 
| 256 | 
         
            +
                        self_output, att_matrix = self_output
         
     | 
| 257 | 
         
            +
                    if query_states is None:
         
     | 
| 258 | 
         
            +
                        query_states = hidden_states
         
     | 
| 259 | 
         
            +
                    attention_output = self.output(self_output, query_states)
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    if return_att:
         
     | 
| 262 | 
         
            +
                        return (attention_output, att_matrix)
         
     | 
| 263 | 
         
            +
                    else:
         
     | 
| 264 | 
         
            +
                        return attention_output
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
         
     | 
| 268 | 
         
            +
            class DebertaV2Intermediate(nn.Module):
         
     | 
| 269 | 
         
            +
                def __init__(self, config):
         
     | 
| 270 | 
         
            +
                    super().__init__()
         
     | 
| 271 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         
     | 
| 272 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 273 | 
         
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 274 | 
         
            +
                    else:
         
     | 
| 275 | 
         
            +
                        self.intermediate_act_fn = config.hidden_act
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 278 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 279 | 
         
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         
     | 
| 280 | 
         
            +
                    return hidden_states
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
         
     | 
| 284 | 
         
            +
            class DebertaV2Output(nn.Module):
         
     | 
| 285 | 
         
            +
                def __init__(self, config):
         
     | 
| 286 | 
         
            +
                    super().__init__()
         
     | 
| 287 | 
         
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         
     | 
| 288 | 
         
            +
                    self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 289 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 290 | 
         
            +
                    self.config = config
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 293 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 294 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 295 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 296 | 
         
            +
                    return hidden_states
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
         
     | 
| 300 | 
         
            +
            class DebertaV2Layer(nn.Module):
         
     | 
| 301 | 
         
            +
                def __init__(self, config):
         
     | 
| 302 | 
         
            +
                    super().__init__()
         
     | 
| 303 | 
         
            +
                    self.attention = DebertaV2Attention(config)
         
     | 
| 304 | 
         
            +
                    self.intermediate = DebertaV2Intermediate(config)
         
     | 
| 305 | 
         
            +
                    self.output = DebertaV2Output(config)
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                def forward(
         
     | 
| 308 | 
         
            +
                    self,
         
     | 
| 309 | 
         
            +
                    hidden_states,
         
     | 
| 310 | 
         
            +
                    attention_mask,
         
     | 
| 311 | 
         
            +
                    return_att=False,
         
     | 
| 312 | 
         
            +
                    query_states=None,
         
     | 
| 313 | 
         
            +
                    relative_pos=None,
         
     | 
| 314 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 315 | 
         
            +
                    past_key_value=None,
         
     | 
| 316 | 
         
            +
                ):
         
     | 
| 317 | 
         
            +
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         
     | 
| 318 | 
         
            +
                    attention_output = self.attention(
         
     | 
| 319 | 
         
            +
                        hidden_states,
         
     | 
| 320 | 
         
            +
                        attention_mask,
         
     | 
| 321 | 
         
            +
                        return_att=return_att,
         
     | 
| 322 | 
         
            +
                        query_states=query_states,
         
     | 
| 323 | 
         
            +
                        relative_pos=relative_pos,
         
     | 
| 324 | 
         
            +
                        rel_embeddings=rel_embeddings,
         
     | 
| 325 | 
         
            +
                        past_key_value=self_attn_past_key_value,
         
     | 
| 326 | 
         
            +
                    )
         
     | 
| 327 | 
         
            +
                    if return_att:
         
     | 
| 328 | 
         
            +
                        attention_output, att_matrix = attention_output
         
     | 
| 329 | 
         
            +
                    intermediate_output = self.intermediate(attention_output)
         
     | 
| 330 | 
         
            +
                    layer_output = self.output(intermediate_output, attention_output)
         
     | 
| 331 | 
         
            +
                    if return_att:
         
     | 
| 332 | 
         
            +
                        return (layer_output, att_matrix)
         
     | 
| 333 | 
         
            +
                    else:
         
     | 
| 334 | 
         
            +
                        return layer_output
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
            class ConvLayer(nn.Module):
         
     | 
| 338 | 
         
            +
                def __init__(self, config):
         
     | 
| 339 | 
         
            +
                    super().__init__()
         
     | 
| 340 | 
         
            +
                    kernel_size = getattr(config, "conv_kernel_size", 3)
         
     | 
| 341 | 
         
            +
                    groups = getattr(config, "conv_groups", 1)
         
     | 
| 342 | 
         
            +
                    self.conv_act = getattr(config, "conv_act", "tanh")
         
     | 
| 343 | 
         
            +
                    self.conv = nn.Conv1d(
         
     | 
| 344 | 
         
            +
                        config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
         
     | 
| 345 | 
         
            +
                    )
         
     | 
| 346 | 
         
            +
                    self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 347 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 348 | 
         
            +
                    self.config = config
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                def forward(self, hidden_states, residual_states, input_mask):
         
     | 
| 351 | 
         
            +
                    out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
         
     | 
| 352 | 
         
            +
                    rmask = (1 - input_mask).bool()
         
     | 
| 353 | 
         
            +
                    out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
         
     | 
| 354 | 
         
            +
                    out = ACT2FN[self.conv_act](self.dropout(out))
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    layer_norm_input = residual_states + out
         
     | 
| 357 | 
         
            +
                    output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                    if input_mask is None:
         
     | 
| 360 | 
         
            +
                        output_states = output
         
     | 
| 361 | 
         
            +
                    else:
         
     | 
| 362 | 
         
            +
                        if input_mask.dim() != layer_norm_input.dim():
         
     | 
| 363 | 
         
            +
                            if input_mask.dim() == 4:
         
     | 
| 364 | 
         
            +
                                input_mask = input_mask.squeeze(1).squeeze(1)
         
     | 
| 365 | 
         
            +
                            input_mask = input_mask.unsqueeze(2)
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                        input_mask = input_mask.to(output.dtype)
         
     | 
| 368 | 
         
            +
                        output_states = output * input_mask
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                    return output_states
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
            class DebertaV2Encoder(nn.Module):
         
     | 
| 374 | 
         
            +
                """Modified BertEncoder with relative position bias support"""
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                def __init__(self, config):
         
     | 
| 377 | 
         
            +
                    super().__init__()
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                    self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
         
     | 
| 380 | 
         
            +
                    self.relative_attention = getattr(config, "relative_attention", False)
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    if self.relative_attention:
         
     | 
| 383 | 
         
            +
                        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
         
     | 
| 384 | 
         
            +
                        if self.max_relative_positions < 1:
         
     | 
| 385 | 
         
            +
                            self.max_relative_positions = config.max_position_embeddings
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                        self.position_buckets = getattr(config, "position_buckets", -1)
         
     | 
| 388 | 
         
            +
                        pos_ebd_size = self.max_relative_positions * 2
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                        if self.position_buckets > 0:
         
     | 
| 391 | 
         
            +
                            pos_ebd_size = self.position_buckets * 2
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                        self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                    self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                    if "layer_norm" in self.norm_rel_ebd:
         
     | 
| 398 | 
         
            +
                        self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                def get_rel_embedding(self):
         
     | 
| 403 | 
         
            +
                    rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
         
     | 
| 404 | 
         
            +
                    if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
         
     | 
| 405 | 
         
            +
                        rel_embeddings = self.LayerNorm(rel_embeddings)
         
     | 
| 406 | 
         
            +
                    return rel_embeddings
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                def get_attention_mask(self, attention_mask):
         
     | 
| 409 | 
         
            +
                    if attention_mask.dim() <= 2:
         
     | 
| 410 | 
         
            +
                        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
         
     | 
| 411 | 
         
            +
                        attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
         
     | 
| 412 | 
         
            +
                        attention_mask = attention_mask.byte()
         
     | 
| 413 | 
         
            +
                    elif attention_mask.dim() == 3:
         
     | 
| 414 | 
         
            +
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    return attention_mask
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
         
     | 
| 419 | 
         
            +
                    if self.relative_attention and relative_pos is None:
         
     | 
| 420 | 
         
            +
                        q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
         
     | 
| 421 | 
         
            +
                        relative_pos = build_relative_position(
         
     | 
| 422 | 
         
            +
                            q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
         
     | 
| 423 | 
         
            +
                        )
         
     | 
| 424 | 
         
            +
                    return relative_pos
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                def forward(
         
     | 
| 427 | 
         
            +
                    self,
         
     | 
| 428 | 
         
            +
                    hidden_states,
         
     | 
| 429 | 
         
            +
                    attention_mask,
         
     | 
| 430 | 
         
            +
                    output_hidden_states=True,
         
     | 
| 431 | 
         
            +
                    output_attentions=False,
         
     | 
| 432 | 
         
            +
                    query_states=None,
         
     | 
| 433 | 
         
            +
                    relative_pos=None,
         
     | 
| 434 | 
         
            +
                    return_dict=True,
         
     | 
| 435 | 
         
            +
                    past_key_values=None,
         
     | 
| 436 | 
         
            +
                ):
         
     | 
| 437 | 
         
            +
                    if attention_mask.dim() <= 2:
         
     | 
| 438 | 
         
            +
                        input_mask = attention_mask
         
     | 
| 439 | 
         
            +
                    else:
         
     | 
| 440 | 
         
            +
                        input_mask = (attention_mask.sum(-2) > 0).byte()
         
     | 
| 441 | 
         
            +
                    attention_mask = self.get_attention_mask(attention_mask)
         
     | 
| 442 | 
         
            +
                    relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 445 | 
         
            +
                    all_attentions = () if output_attentions else None
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    if isinstance(hidden_states, Sequence): # False
         
     | 
| 448 | 
         
            +
                        next_kv = hidden_states[0]
         
     | 
| 449 | 
         
            +
                    else:
         
     | 
| 450 | 
         
            +
                        next_kv = hidden_states
         
     | 
| 451 | 
         
            +
                    rel_embeddings = self.get_rel_embedding()
         
     | 
| 452 | 
         
            +
                    output_states = next_kv
         
     | 
| 453 | 
         
            +
                    for i, layer_module in enumerate(self.layer):
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                        if output_hidden_states:
         
     | 
| 456 | 
         
            +
                            all_hidden_states = all_hidden_states + (output_states,)
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                        output_states = layer_module(
         
     | 
| 461 | 
         
            +
                            next_kv,
         
     | 
| 462 | 
         
            +
                            attention_mask,
         
     | 
| 463 | 
         
            +
                            output_attentions,
         
     | 
| 464 | 
         
            +
                            query_states=query_states,
         
     | 
| 465 | 
         
            +
                            relative_pos=relative_pos,
         
     | 
| 466 | 
         
            +
                            rel_embeddings=rel_embeddings,
         
     | 
| 467 | 
         
            +
                            past_key_value=past_key_value,
         
     | 
| 468 | 
         
            +
                        )
         
     | 
| 469 | 
         
            +
                        if output_attentions:
         
     | 
| 470 | 
         
            +
                            output_states, att_m = output_states
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                        if i == 0 and self.conv is not None:
         
     | 
| 473 | 
         
            +
                            if past_key_values is not None:
         
     | 
| 474 | 
         
            +
                                past_key_value_length = past_key_values[0][0].shape[2]
         
     | 
| 475 | 
         
            +
                                input_mask = input_mask[:, past_key_value_length:].contiguous()
         
     | 
| 476 | 
         
            +
                            output_states = self.conv(hidden_states, output_states, input_mask)
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                        if query_states is not None:
         
     | 
| 479 | 
         
            +
                            query_states = output_states
         
     | 
| 480 | 
         
            +
                            if isinstance(hidden_states, Sequence):
         
     | 
| 481 | 
         
            +
                                next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
         
     | 
| 482 | 
         
            +
                        else:
         
     | 
| 483 | 
         
            +
                            next_kv = output_states
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                        if output_attentions:
         
     | 
| 486 | 
         
            +
                            all_attentions = all_attentions + (att_m,)
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                    if output_hidden_states:
         
     | 
| 489 | 
         
            +
                        all_hidden_states = all_hidden_states + (output_states,)
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    if not return_dict:
         
     | 
| 492 | 
         
            +
                        return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
         
     | 
| 493 | 
         
            +
                    return BaseModelOutput(
         
     | 
| 494 | 
         
            +
                        last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
         
     | 
| 495 | 
         
            +
                    )
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
            def make_log_bucket_position(relative_pos, bucket_size, max_position):
         
     | 
| 499 | 
         
            +
                sign = np.sign(relative_pos)
         
     | 
| 500 | 
         
            +
                mid = bucket_size // 2
         
     | 
| 501 | 
         
            +
                abs_pos = np.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos))
         
     | 
| 502 | 
         
            +
                log_pos = np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1)) + mid
         
     | 
| 503 | 
         
            +
                bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
         
     | 
| 504 | 
         
            +
                return bucket_pos
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
            def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
         
     | 
| 508 | 
         
            +
                """
         
     | 
| 509 | 
         
            +
                Build relative position according to the query and key
         
     | 
| 510 | 
         
            +
                We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
         
     | 
| 511 | 
         
            +
                :math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
         
     | 
| 512 | 
         
            +
                P_q - P_k`
         
     | 
| 513 | 
         
            +
                Args:
         
     | 
| 514 | 
         
            +
                    query_size (int): the length of query
         
     | 
| 515 | 
         
            +
                    key_size (int): the length of key
         
     | 
| 516 | 
         
            +
                    bucket_size (int): the size of position bucket
         
     | 
| 517 | 
         
            +
                    max_position (int): the maximum allowed absolute position
         
     | 
| 518 | 
         
            +
                Return:
         
     | 
| 519 | 
         
            +
                    :obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
         
     | 
| 520 | 
         
            +
                """
         
     | 
| 521 | 
         
            +
                q_ids = np.arange(0, query_size)
         
     | 
| 522 | 
         
            +
                k_ids = np.arange(0, key_size)
         
     | 
| 523 | 
         
            +
                rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
         
     | 
| 524 | 
         
            +
                if bucket_size > 0 and max_position > 0:
         
     | 
| 525 | 
         
            +
                    rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
         
     | 
| 526 | 
         
            +
                rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
         
     | 
| 527 | 
         
            +
                rel_pos_ids = rel_pos_ids[:query_size, :]
         
     | 
| 528 | 
         
            +
                rel_pos_ids = rel_pos_ids.unsqueeze(0)
         
     | 
| 529 | 
         
            +
                return rel_pos_ids
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
            @torch.jit.script
         
     | 
| 533 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
         
     | 
| 534 | 
         
            +
            def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
         
     | 
| 535 | 
         
            +
                return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
            @torch.jit.script
         
     | 
| 539 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
         
     | 
| 540 | 
         
            +
            def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
         
     | 
| 541 | 
         
            +
                return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
            @torch.jit.script
         
     | 
| 545 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
         
     | 
| 546 | 
         
            +
            def pos_dynamic_expand(pos_index, p2c_att, key_layer):
         
     | 
| 547 | 
         
            +
                return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
            class DisentangledSelfAttention(nn.Module):
         
     | 
| 551 | 
         
            +
                """
         
     | 
| 552 | 
         
            +
                Disentangled self-attention module
         
     | 
| 553 | 
         
            +
                Parameters:
         
     | 
| 554 | 
         
            +
                    config (:obj:`DebertaV2Config`):
         
     | 
| 555 | 
         
            +
                        A model config class instance with the configuration to build a new model. The schema is similar to
         
     | 
| 556 | 
         
            +
                        `BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config`
         
     | 
| 557 | 
         
            +
                """
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                def __init__(self, config):
         
     | 
| 560 | 
         
            +
                    super().__init__()
         
     | 
| 561 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0:
         
     | 
| 562 | 
         
            +
                        raise ValueError(
         
     | 
| 563 | 
         
            +
                            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
         
     | 
| 564 | 
         
            +
                            f"heads ({config.num_attention_heads})"
         
     | 
| 565 | 
         
            +
                        )
         
     | 
| 566 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 567 | 
         
            +
                    _attention_head_size = config.hidden_size // config.num_attention_heads
         
     | 
| 568 | 
         
            +
                    self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
         
     | 
| 569 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 570 | 
         
            +
                    self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 571 | 
         
            +
                    self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 572 | 
         
            +
                    self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    self.share_att_key = getattr(config, "share_att_key", False)
         
     | 
| 575 | 
         
            +
                    self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
         
     | 
| 576 | 
         
            +
                    self.relative_attention = getattr(config, "relative_attention", False)
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    if self.relative_attention:
         
     | 
| 579 | 
         
            +
                        self.position_buckets = getattr(config, "position_buckets", -1)
         
     | 
| 580 | 
         
            +
                        self.max_relative_positions = getattr(config, "max_relative_positions", -1)
         
     | 
| 581 | 
         
            +
                        if self.max_relative_positions < 1:
         
     | 
| 582 | 
         
            +
                            self.max_relative_positions = config.max_position_embeddings
         
     | 
| 583 | 
         
            +
                        self.pos_ebd_size = self.max_relative_positions
         
     | 
| 584 | 
         
            +
                        if self.position_buckets > 0:
         
     | 
| 585 | 
         
            +
                            self.pos_ebd_size = self.position_buckets
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                        self.pos_dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                        if not self.share_att_key:
         
     | 
| 590 | 
         
            +
                            if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 591 | 
         
            +
                                self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 592 | 
         
            +
                            if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 593 | 
         
            +
                                self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                    self.dropout = StableDropout(config.attention_probs_dropout_prob)
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                def transpose_for_scores(self, x, attention_heads, past_key_value=None):
         
     | 
| 598 | 
         
            +
                    new_x_shape = x.size()[:-1] + (attention_heads, -1)
         
     | 
| 599 | 
         
            +
                    x = x.view(*new_x_shape)
         
     | 
| 600 | 
         
            +
                    x = x.permute(0, 2, 1, 3)
         
     | 
| 601 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 602 | 
         
            +
                        x = torch.cat([past_key_value, x], dim=2)
         
     | 
| 603 | 
         
            +
                    new_x_shape = x.shape
         
     | 
| 604 | 
         
            +
                    return x.contiguous().view(-1, new_x_shape[2], new_x_shape[-1])
         
     | 
| 605 | 
         
            +
                    # return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                def forward(
         
     | 
| 608 | 
         
            +
                    self,
         
     | 
| 609 | 
         
            +
                    hidden_states,
         
     | 
| 610 | 
         
            +
                    attention_mask,
         
     | 
| 611 | 
         
            +
                    return_att=False,
         
     | 
| 612 | 
         
            +
                    query_states=None,
         
     | 
| 613 | 
         
            +
                    relative_pos=None,
         
     | 
| 614 | 
         
            +
                    rel_embeddings=None,
         
     | 
| 615 | 
         
            +
                    past_key_value=None,
         
     | 
| 616 | 
         
            +
                ):
         
     | 
| 617 | 
         
            +
                    """
         
     | 
| 618 | 
         
            +
                    Call the module
         
     | 
| 619 | 
         
            +
                    Args:
         
     | 
| 620 | 
         
            +
                        hidden_states (:obj:`torch.FloatTensor`):
         
     | 
| 621 | 
         
            +
                            Input states to the module usually the output from previous layer, it will be the Q,K and V in
         
     | 
| 622 | 
         
            +
                            `Attention(Q,K,V)`
         
     | 
| 623 | 
         
            +
                        attention_mask (:obj:`torch.ByteTensor`):
         
     | 
| 624 | 
         
            +
                            An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
         
     | 
| 625 | 
         
            +
                            sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
         
     | 
| 626 | 
         
            +
                            th token.
         
     | 
| 627 | 
         
            +
                        return_att (:obj:`bool`, optional):
         
     | 
| 628 | 
         
            +
                            Whether return the attention matrix.
         
     | 
| 629 | 
         
            +
                        query_states (:obj:`torch.FloatTensor`, optional):
         
     | 
| 630 | 
         
            +
                            The `Q` state in `Attention(Q,K,V)`.
         
     | 
| 631 | 
         
            +
                        relative_pos (:obj:`torch.LongTensor`):
         
     | 
| 632 | 
         
            +
                            The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
         
     | 
| 633 | 
         
            +
                            values ranging in [`-max_relative_positions`, `max_relative_positions`].
         
     | 
| 634 | 
         
            +
                        rel_embeddings (:obj:`torch.FloatTensor`):
         
     | 
| 635 | 
         
            +
                            The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
         
     | 
| 636 | 
         
            +
                            \\text{max_relative_positions}`, `hidden_size`].
         
     | 
| 637 | 
         
            +
                    """
         
     | 
| 638 | 
         
            +
                    if query_states is None:
         
     | 
| 639 | 
         
            +
                        query_states = hidden_states
         
     | 
| 640 | 
         
            +
                    
         
     | 
| 641 | 
         
            +
                    past_key_value_length = past_key_value.shape[3] if past_key_value is not None else 0
         
     | 
| 642 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 643 | 
         
            +
                        key_layer_prefix = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[0])
         
     | 
| 644 | 
         
            +
                        # value_layer_prefix = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1])
         
     | 
| 645 | 
         
            +
                    
         
     | 
| 646 | 
         
            +
                    query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
         
     | 
| 647 | 
         
            +
                    key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
         
     | 
| 648 | 
         
            +
                    value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1])
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                    rel_att = None
         
     | 
| 651 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 652 | 
         
            +
                    scale_factor = 1
         
     | 
| 653 | 
         
            +
                    if "c2p" in self.pos_att_type:
         
     | 
| 654 | 
         
            +
                        scale_factor += 1
         
     | 
| 655 | 
         
            +
                    if "p2c" in self.pos_att_type:
         
     | 
| 656 | 
         
            +
                        scale_factor += 1
         
     | 
| 657 | 
         
            +
                    if "p2p" in self.pos_att_type:
         
     | 
| 658 | 
         
            +
                        scale_factor += 1
         
     | 
| 659 | 
         
            +
                    scale = math.sqrt(query_layer.size(-1) * scale_factor)
         
     | 
| 660 | 
         
            +
                    # attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
         
     | 
| 661 | 
         
            +
                    attention_scores = torch.bmm(query_layer, key_layer_prefix.transpose(-1, -2)) / scale
         
     | 
| 662 | 
         
            +
                    
         
     | 
| 663 | 
         
            +
                    if self.relative_attention:
         
     | 
| 664 | 
         
            +
                        rel_embeddings = self.pos_dropout(rel_embeddings)
         
     | 
| 665 | 
         
            +
                        rel_att = self.disentangled_attention_bias(
         
     | 
| 666 | 
         
            +
                            query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
         
     | 
| 667 | 
         
            +
                        )
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
                    if rel_att is not None:
         
     | 
| 670 | 
         
            +
                        if past_key_value is not None:
         
     | 
| 671 | 
         
            +
                            att_shape = rel_att.shape[:-1] + (past_key_value_length,)
         
     | 
| 672 | 
         
            +
                            prefix_att = torch.zeros(*att_shape).to(rel_att.device)
         
     | 
| 673 | 
         
            +
                            attention_scores = attention_scores + torch.cat([prefix_att, rel_att], dim=-1)
         
     | 
| 674 | 
         
            +
                        else:
         
     | 
| 675 | 
         
            +
                            attention_scores = attention_scores + rel_att
         
     | 
| 676 | 
         
            +
                    # print(attention_scores.shape)
         
     | 
| 677 | 
         
            +
                    attention_scores = attention_scores
         
     | 
| 678 | 
         
            +
                    attention_scores = attention_scores.view(
         
     | 
| 679 | 
         
            +
                        -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
         
     | 
| 680 | 
         
            +
                    )
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                    # bsz x height x length x dimension
         
     | 
| 683 | 
         
            +
                    attention_mask = attention_mask[:,:, past_key_value_length:,:]
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
                    attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
         
     | 
| 686 | 
         
            +
                    attention_probs = self.dropout(attention_probs)
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
                    context_layer = torch.bmm(
         
     | 
| 689 | 
         
            +
                        attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
         
     | 
| 690 | 
         
            +
                    )
         
     | 
| 691 | 
         
            +
                    context_layer = (
         
     | 
| 692 | 
         
            +
                        context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
         
     | 
| 693 | 
         
            +
                        .permute(0, 2, 1, 3)
         
     | 
| 694 | 
         
            +
                        .contiguous()
         
     | 
| 695 | 
         
            +
                    )
         
     | 
| 696 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (-1,)
         
     | 
| 697 | 
         
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         
     | 
| 698 | 
         
            +
                    if return_att:
         
     | 
| 699 | 
         
            +
                        return (context_layer, attention_probs)
         
     | 
| 700 | 
         
            +
                    else:
         
     | 
| 701 | 
         
            +
                        return context_layer
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
                def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
         
     | 
| 704 | 
         
            +
                    if relative_pos is None:
         
     | 
| 705 | 
         
            +
                        q = query_layer.size(-2)
         
     | 
| 706 | 
         
            +
                        relative_pos = build_relative_position(
         
     | 
| 707 | 
         
            +
                            q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
         
     | 
| 708 | 
         
            +
                        )
         
     | 
| 709 | 
         
            +
                    if relative_pos.dim() == 2:
         
     | 
| 710 | 
         
            +
                        relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
         
     | 
| 711 | 
         
            +
                    elif relative_pos.dim() == 3:
         
     | 
| 712 | 
         
            +
                        relative_pos = relative_pos.unsqueeze(1)
         
     | 
| 713 | 
         
            +
                    # bsz x height x query x key
         
     | 
| 714 | 
         
            +
                    elif relative_pos.dim() != 4:
         
     | 
| 715 | 
         
            +
                        raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
                    att_span = self.pos_ebd_size
         
     | 
| 718 | 
         
            +
                    relative_pos = relative_pos.long().to(query_layer.device)
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
                    rel_embeddings = rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :].unsqueeze(0)
         
     | 
| 721 | 
         
            +
                    if self.share_att_key: # True
         
     | 
| 722 | 
         
            +
                        pos_query_layer = self.transpose_for_scores(
         
     | 
| 723 | 
         
            +
                            self.query_proj(rel_embeddings), self.num_attention_heads
         
     | 
| 724 | 
         
            +
                        ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
         
     | 
| 725 | 
         
            +
                        pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
         
     | 
| 726 | 
         
            +
                            query_layer.size(0) // self.num_attention_heads, 1, 1
         
     | 
| 727 | 
         
            +
                        )
         
     | 
| 728 | 
         
            +
                    else:
         
     | 
| 729 | 
         
            +
                        if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 730 | 
         
            +
                            pos_key_layer = self.transpose_for_scores(
         
     | 
| 731 | 
         
            +
                                self.pos_key_proj(rel_embeddings), self.num_attention_heads
         
     | 
| 732 | 
         
            +
                            ).repeat(
         
     | 
| 733 | 
         
            +
                                query_layer.size(0) // self.num_attention_heads, 1, 1
         
     | 
| 734 | 
         
            +
                            )  # .split(self.all_head_size, dim=-1)
         
     | 
| 735 | 
         
            +
                        if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 736 | 
         
            +
                            pos_query_layer = self.transpose_for_scores(
         
     | 
| 737 | 
         
            +
                                self.pos_query_proj(rel_embeddings), self.num_attention_heads
         
     | 
| 738 | 
         
            +
                            ).repeat(
         
     | 
| 739 | 
         
            +
                                query_layer.size(0) // self.num_attention_heads, 1, 1
         
     | 
| 740 | 
         
            +
                            )  # .split(self.all_head_size, dim=-1)
         
     | 
| 741 | 
         
            +
             
     | 
| 742 | 
         
            +
                    score = 0
         
     | 
| 743 | 
         
            +
                    # content->position
         
     | 
| 744 | 
         
            +
                    if "c2p" in self.pos_att_type:
         
     | 
| 745 | 
         
            +
                        scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
         
     | 
| 746 | 
         
            +
                        c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
         
     | 
| 747 | 
         
            +
                        c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
         
     | 
| 748 | 
         
            +
                        c2p_att = torch.gather(
         
     | 
| 749 | 
         
            +
                            c2p_att,
         
     | 
| 750 | 
         
            +
                            dim=-1,
         
     | 
| 751 | 
         
            +
                            index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
         
     | 
| 752 | 
         
            +
                        )
         
     | 
| 753 | 
         
            +
                        score += c2p_att / scale
         
     | 
| 754 | 
         
            +
             
     | 
| 755 | 
         
            +
                    # position->content
         
     | 
| 756 | 
         
            +
                    if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
         
     | 
| 757 | 
         
            +
                        scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
         
     | 
| 758 | 
         
            +
                        if key_layer.size(-2) != query_layer.size(-2):
         
     | 
| 759 | 
         
            +
                            r_pos = build_relative_position(
         
     | 
| 760 | 
         
            +
                                key_layer.size(-2),
         
     | 
| 761 | 
         
            +
                                key_layer.size(-2),
         
     | 
| 762 | 
         
            +
                                bucket_size=self.position_buckets,
         
     | 
| 763 | 
         
            +
                                max_position=self.max_relative_positions,
         
     | 
| 764 | 
         
            +
                            ).to(query_layer.device)
         
     | 
| 765 | 
         
            +
                            r_pos = r_pos.unsqueeze(0)
         
     | 
| 766 | 
         
            +
                        else:
         
     | 
| 767 | 
         
            +
                            r_pos = relative_pos
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                        p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
         
     | 
| 770 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 771 | 
         
            +
                            pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                    if "p2c" in self.pos_att_type:
         
     | 
| 774 | 
         
            +
                        p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
         
     | 
| 775 | 
         
            +
                        p2c_att = torch.gather(
         
     | 
| 776 | 
         
            +
                            p2c_att,
         
     | 
| 777 | 
         
            +
                            dim=-1,
         
     | 
| 778 | 
         
            +
                            index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
         
     | 
| 779 | 
         
            +
                        ).transpose(-1, -2)
         
     | 
| 780 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 781 | 
         
            +
                            p2c_att = torch.gather(
         
     | 
| 782 | 
         
            +
                                p2c_att,
         
     | 
| 783 | 
         
            +
                                dim=-2,
         
     | 
| 784 | 
         
            +
                                index=pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))),
         
     | 
| 785 | 
         
            +
                            )
         
     | 
| 786 | 
         
            +
                        score += p2c_att / scale
         
     | 
| 787 | 
         
            +
             
     | 
| 788 | 
         
            +
                    # position->position
         
     | 
| 789 | 
         
            +
                    if "p2p" in self.pos_att_type:
         
     | 
| 790 | 
         
            +
                        pos_query = pos_query_layer[:, :, att_span:, :]
         
     | 
| 791 | 
         
            +
                        p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
         
     | 
| 792 | 
         
            +
                        p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
         
     | 
| 793 | 
         
            +
                        if query_layer.size(-2) != key_layer.size(-2):
         
     | 
| 794 | 
         
            +
                            p2p_att = torch.gather(
         
     | 
| 795 | 
         
            +
                                p2p_att,
         
     | 
| 796 | 
         
            +
                                dim=-2,
         
     | 
| 797 | 
         
            +
                                index=pos_index.expand(query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))),
         
     | 
| 798 | 
         
            +
                            )
         
     | 
| 799 | 
         
            +
                        p2p_att = torch.gather(
         
     | 
| 800 | 
         
            +
                            p2p_att,
         
     | 
| 801 | 
         
            +
                            dim=-1,
         
     | 
| 802 | 
         
            +
                            index=c2p_pos.expand(
         
     | 
| 803 | 
         
            +
                                [query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]
         
     | 
| 804 | 
         
            +
                            ),
         
     | 
| 805 | 
         
            +
                        )
         
     | 
| 806 | 
         
            +
                        score += p2p_att
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                    return score
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
         
     | 
| 812 | 
         
            +
            class DebertaV2Embeddings(nn.Module):
         
     | 
| 813 | 
         
            +
                """Construct the embeddings from word, position and token_type embeddings."""
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                def __init__(self, config):
         
     | 
| 816 | 
         
            +
                    super().__init__()
         
     | 
| 817 | 
         
            +
                    pad_token_id = getattr(config, "pad_token_id", 0)
         
     | 
| 818 | 
         
            +
                    self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
         
     | 
| 819 | 
         
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                    self.position_biased_input = getattr(config, "position_biased_input", True)
         
     | 
| 822 | 
         
            +
                    if not self.position_biased_input:
         
     | 
| 823 | 
         
            +
                        self.position_embeddings = None
         
     | 
| 824 | 
         
            +
                    else:
         
     | 
| 825 | 
         
            +
                        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                    if config.type_vocab_size > 0:
         
     | 
| 828 | 
         
            +
                        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                    if self.embedding_size != config.hidden_size:
         
     | 
| 831 | 
         
            +
                        self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
         
     | 
| 832 | 
         
            +
                    self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
         
     | 
| 833 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 834 | 
         
            +
                    self.config = config
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         
     | 
| 837 | 
         
            +
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
                def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None, past_key_values_length=0,):
         
     | 
| 840 | 
         
            +
                    if input_ids is not None:
         
     | 
| 841 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 842 | 
         
            +
                    else:
         
     | 
| 843 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    seq_length = input_shape[1]
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                    if position_ids is None:
         
     | 
| 848 | 
         
            +
                        # position_ids = self.position_ids[:, :seq_length]
         
     | 
| 849 | 
         
            +
                        position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 852 | 
         
            +
                        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 855 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 856 | 
         
            +
             
     | 
| 857 | 
         
            +
                    if self.position_embeddings is not None:
         
     | 
| 858 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids.long())
         
     | 
| 859 | 
         
            +
                    else:
         
     | 
| 860 | 
         
            +
                        position_embeddings = torch.zeros_like(inputs_embeds)
         
     | 
| 861 | 
         
            +
             
     | 
| 862 | 
         
            +
                    embeddings = inputs_embeds
         
     | 
| 863 | 
         
            +
                    if self.position_biased_input:
         
     | 
| 864 | 
         
            +
                        embeddings += position_embeddings
         
     | 
| 865 | 
         
            +
                    if self.config.type_vocab_size > 0:
         
     | 
| 866 | 
         
            +
                        token_type_embeddings = self.token_type_embeddings(token_type_ids)
         
     | 
| 867 | 
         
            +
                        embeddings += token_type_embeddings
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
                    if self.embedding_size != self.config.hidden_size:
         
     | 
| 870 | 
         
            +
                        embeddings = self.embed_proj(embeddings)
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                    if mask is not None:
         
     | 
| 875 | 
         
            +
                        if mask.dim() != embeddings.dim():
         
     | 
| 876 | 
         
            +
                            if mask.dim() == 4:
         
     | 
| 877 | 
         
            +
                                mask = mask.squeeze(1).squeeze(1)
         
     | 
| 878 | 
         
            +
                            mask = mask.unsqueeze(2)
         
     | 
| 879 | 
         
            +
                        mask = mask.to(embeddings.dtype)
         
     | 
| 880 | 
         
            +
             
     | 
| 881 | 
         
            +
                        embeddings = embeddings * mask
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 884 | 
         
            +
                    return embeddings
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
         
     | 
| 888 | 
         
            +
            class DebertaV2PreTrainedModel(PreTrainedModel):
         
     | 
| 889 | 
         
            +
                """
         
     | 
| 890 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 891 | 
         
            +
                models.
         
     | 
| 892 | 
         
            +
                """
         
     | 
| 893 | 
         
            +
             
     | 
| 894 | 
         
            +
                config_class = DebertaV2Config
         
     | 
| 895 | 
         
            +
                base_model_prefix = "deberta"
         
     | 
| 896 | 
         
            +
                _keys_to_ignore_on_load_missing = ["position_ids"]
         
     | 
| 897 | 
         
            +
                _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
         
     | 
| 898 | 
         
            +
             
     | 
| 899 | 
         
            +
                def __init__(self, config):
         
     | 
| 900 | 
         
            +
                    super().__init__(config)
         
     | 
| 901 | 
         
            +
                    self._register_load_state_dict_pre_hook(self._pre_load_hook)
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 904 | 
         
            +
                    """Initialize the weights."""
         
     | 
| 905 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 906 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 907 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 908 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 909 | 
         
            +
                        if module.bias is not None:
         
     | 
| 910 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 911 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 912 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 913 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 914 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 915 | 
         
            +
             
     | 
| 916 | 
         
            +
                def _pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
         
     | 
| 917 | 
         
            +
                    """
         
     | 
| 918 | 
         
            +
                    Removes the classifier if it doesn't have the correct number of labels.
         
     | 
| 919 | 
         
            +
                    """
         
     | 
| 920 | 
         
            +
                    self_state = self.state_dict()
         
     | 
| 921 | 
         
            +
                    if (
         
     | 
| 922 | 
         
            +
                        ("classifier.weight" in self_state)
         
     | 
| 923 | 
         
            +
                        and ("classifier.weight" in state_dict)
         
     | 
| 924 | 
         
            +
                        and self_state["classifier.weight"].size() != state_dict["classifier.weight"].size()
         
     | 
| 925 | 
         
            +
                    ):
         
     | 
| 926 | 
         
            +
                        logger.warning(
         
     | 
| 927 | 
         
            +
                            f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
         
     | 
| 928 | 
         
            +
                            f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
         
     | 
| 929 | 
         
            +
                            f"weights. You should train your model on new data."
         
     | 
| 930 | 
         
            +
                        )
         
     | 
| 931 | 
         
            +
                        del state_dict["classifier.weight"]
         
     | 
| 932 | 
         
            +
                        if "classifier.bias" in state_dict:
         
     | 
| 933 | 
         
            +
                            del state_dict["classifier.bias"]
         
     | 
| 934 | 
         
            +
             
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
            DEBERTA_START_DOCSTRING = r"""
         
     | 
| 937 | 
         
            +
                The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
         
     | 
| 938 | 
         
            +
                <https://arxiv.org/abs/2006.03654>`_ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of
         
     | 
| 939 | 
         
            +
                BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
         
     | 
| 940 | 
         
            +
                improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
         
     | 
| 941 | 
         
            +
                This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
         
     | 
| 942 | 
         
            +
                subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
         
     | 
| 943 | 
         
            +
                general usage and behavior.```
         
     | 
| 944 | 
         
            +
                Parameters:
         
     | 
| 945 | 
         
            +
                    config (:class:`~transformers.DebertaV2Config`): Model configuration class with all the parameters of the model.
         
     | 
| 946 | 
         
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         
     | 
| 947 | 
         
            +
                        configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
         
     | 
| 948 | 
         
            +
                        weights.
         
     | 
| 949 | 
         
            +
            """
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
            DEBERTA_INPUTS_DOCSTRING = r"""
         
     | 
| 952 | 
         
            +
                Args:
         
     | 
| 953 | 
         
            +
                    input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
         
     | 
| 954 | 
         
            +
                        Indices of input sequence tokens in the vocabulary.
         
     | 
| 955 | 
         
            +
                        Indices can be obtained using :class:`transformers.DebertaV2Tokenizer`. See
         
     | 
| 956 | 
         
            +
                        :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
         
     | 
| 957 | 
         
            +
                        details.
         
     | 
| 958 | 
         
            +
                        `What are input IDs? <../glossary.html#input-ids>`__
         
     | 
| 959 | 
         
            +
                    attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 960 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
         
     | 
| 961 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 962 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 963 | 
         
            +
                        `What are attention masks? <../glossary.html#attention-mask>`__
         
     | 
| 964 | 
         
            +
                    token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 965 | 
         
            +
                        Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
         
     | 
| 966 | 
         
            +
                        1]``:
         
     | 
| 967 | 
         
            +
                        - 0 corresponds to a `sentence A` token,
         
     | 
| 968 | 
         
            +
                        - 1 corresponds to a `sentence B` token.
         
     | 
| 969 | 
         
            +
                        `What are token type IDs? <../glossary.html#token-type-ids>`_
         
     | 
| 970 | 
         
            +
                    position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
         
     | 
| 971 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
         
     | 
| 972 | 
         
            +
                        config.max_position_embeddings - 1]``.
         
     | 
| 973 | 
         
            +
                        `What are position IDs? <../glossary.html#position-ids>`_
         
     | 
| 974 | 
         
            +
                    inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         
     | 
| 975 | 
         
            +
                        Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
         
     | 
| 976 | 
         
            +
                        This is useful if you want more control over how to convert `input_ids` indices into associated vectors
         
     | 
| 977 | 
         
            +
                        than the model's internal embedding lookup matrix.
         
     | 
| 978 | 
         
            +
                    output_attentions (:obj:`bool`, `optional`):
         
     | 
| 979 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
         
     | 
| 980 | 
         
            +
                        tensors for more detail.
         
     | 
| 981 | 
         
            +
                    output_hidden_states (:obj:`bool`, `optional`):
         
     | 
| 982 | 
         
            +
                        Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
         
     | 
| 983 | 
         
            +
                        more detail.
         
     | 
| 984 | 
         
            +
                    return_dict (:obj:`bool`, `optional`):
         
     | 
| 985 | 
         
            +
                        Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
         
     | 
| 986 | 
         
            +
            """
         
     | 
| 987 | 
         
            +
             
     | 
| 988 | 
         
            +
             
     | 
| 989 | 
         
            +
            @add_start_docstrings(
         
     | 
| 990 | 
         
            +
                "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
         
     | 
| 991 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 992 | 
         
            +
            )
         
     | 
| 993 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
         
     | 
| 994 | 
         
            +
            class DebertaV2Model(DebertaV2PreTrainedModel):
         
     | 
| 995 | 
         
            +
                def __init__(self, config):
         
     | 
| 996 | 
         
            +
                    super().__init__(config)
         
     | 
| 997 | 
         
            +
             
     | 
| 998 | 
         
            +
                    self.embeddings = DebertaV2Embeddings(config)
         
     | 
| 999 | 
         
            +
                    self.encoder = DebertaV2Encoder(config)
         
     | 
| 1000 | 
         
            +
                    self.z_steps = 0
         
     | 
| 1001 | 
         
            +
                    self.config = config
         
     | 
| 1002 | 
         
            +
                    self.init_weights()
         
     | 
| 1003 | 
         
            +
             
     | 
| 1004 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1005 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 1006 | 
         
            +
             
     | 
| 1007 | 
         
            +
                def set_input_embeddings(self, new_embeddings):
         
     | 
| 1008 | 
         
            +
                    self.embeddings.word_embeddings = new_embeddings
         
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 1011 | 
         
            +
                    """
         
     | 
| 1012 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         
     | 
| 1013 | 
         
            +
                    class PreTrainedModel
         
     | 
| 1014 | 
         
            +
                    """
         
     | 
| 1015 | 
         
            +
                    raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1018 | 
         
            +
                def forward(
         
     | 
| 1019 | 
         
            +
                    self,
         
     | 
| 1020 | 
         
            +
                    input_ids=None,
         
     | 
| 1021 | 
         
            +
                    attention_mask=None,
         
     | 
| 1022 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1023 | 
         
            +
                    position_ids=None,
         
     | 
| 1024 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1025 | 
         
            +
                    output_attentions=None,
         
     | 
| 1026 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1027 | 
         
            +
                    return_dict=None,
         
     | 
| 1028 | 
         
            +
                    past_key_values=None,
         
     | 
| 1029 | 
         
            +
                ):
         
     | 
| 1030 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 1031 | 
         
            +
                    output_hidden_states = (
         
     | 
| 1032 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 1033 | 
         
            +
                    )
         
     | 
| 1034 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1035 | 
         
            +
             
     | 
| 1036 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 1037 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 1038 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 1039 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 1040 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 1041 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 1042 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 1043 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 1044 | 
         
            +
                    else:
         
     | 
| 1045 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                    embedding_mask = torch.ones(input_shape, device=device)
         
     | 
| 1052 | 
         
            +
                    if attention_mask is None:
         
     | 
| 1053 | 
         
            +
                        # attention_mask = torch.ones(input_shape, device=device)
         
     | 
| 1054 | 
         
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         
     | 
| 1055 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 1056 | 
         
            +
                        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
         
     | 
| 1057 | 
         
            +
             
     | 
| 1058 | 
         
            +
                    embedding_output = self.embeddings(
         
     | 
| 1059 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 1060 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1061 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1062 | 
         
            +
                        # mask=attention_mask,
         
     | 
| 1063 | 
         
            +
                        mask=embedding_mask,
         
     | 
| 1064 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1065 | 
         
            +
                        past_key_values_length=past_key_values_length, # Ongoing
         
     | 
| 1066 | 
         
            +
                    )
         
     | 
| 1067 | 
         
            +
             
     | 
| 1068 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 1069 | 
         
            +
                        embedding_output,
         
     | 
| 1070 | 
         
            +
                        attention_mask,
         
     | 
| 1071 | 
         
            +
                        output_hidden_states=True,
         
     | 
| 1072 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1073 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1074 | 
         
            +
                        past_key_values=past_key_values, # Ongoing
         
     | 
| 1075 | 
         
            +
                    )
         
     | 
| 1076 | 
         
            +
                    encoded_layers = encoder_outputs[1]
         
     | 
| 1077 | 
         
            +
             
     | 
| 1078 | 
         
            +
                    if self.z_steps > 1:
         
     | 
| 1079 | 
         
            +
                        hidden_states = encoded_layers[-2]
         
     | 
| 1080 | 
         
            +
                        layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
         
     | 
| 1081 | 
         
            +
                        query_states = encoded_layers[-1]
         
     | 
| 1082 | 
         
            +
                        rel_embeddings = self.encoder.get_rel_embedding()
         
     | 
| 1083 | 
         
            +
                        attention_mask = self.encoder.get_attention_mask(attention_mask)
         
     | 
| 1084 | 
         
            +
                        rel_pos = self.encoder.get_rel_pos(embedding_output)
         
     | 
| 1085 | 
         
            +
                        for layer in layers[1:]:
         
     | 
| 1086 | 
         
            +
                            query_states = layer(
         
     | 
| 1087 | 
         
            +
                                hidden_states,
         
     | 
| 1088 | 
         
            +
                                attention_mask,
         
     | 
| 1089 | 
         
            +
                                return_att=False,
         
     | 
| 1090 | 
         
            +
                                query_states=query_states,
         
     | 
| 1091 | 
         
            +
                                relative_pos=rel_pos,
         
     | 
| 1092 | 
         
            +
                                rel_embeddings=rel_embeddings,
         
     | 
| 1093 | 
         
            +
                            )
         
     | 
| 1094 | 
         
            +
                            encoded_layers.append(query_states)
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                    sequence_output = encoded_layers[-1]
         
     | 
| 1097 | 
         
            +
             
     | 
| 1098 | 
         
            +
                    if not return_dict:
         
     | 
| 1099 | 
         
            +
                        return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
         
     | 
| 1100 | 
         
            +
             
     | 
| 1101 | 
         
            +
                    return BaseModelOutput(
         
     | 
| 1102 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 1103 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
         
     | 
| 1104 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 1105 | 
         
            +
                    )
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
             
     | 
| 1108 | 
         
            +
            @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top. """, DEBERTA_START_DOCSTRING)
         
     | 
| 1109 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
         
     | 
| 1110 | 
         
            +
            class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
         
     | 
| 1111 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1112 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
         
     | 
| 1113 | 
         
            +
             
     | 
| 1114 | 
         
            +
                def __init__(self, config):
         
     | 
| 1115 | 
         
            +
                    super().__init__(config)
         
     | 
| 1116 | 
         
            +
             
     | 
| 1117 | 
         
            +
                    self.deberta = DebertaV2Model(config)
         
     | 
| 1118 | 
         
            +
                    self.cls = DebertaV2OnlyMLMHead(config)
         
     | 
| 1119 | 
         
            +
             
     | 
| 1120 | 
         
            +
                    self.init_weights()
         
     | 
| 1121 | 
         
            +
             
     | 
| 1122 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1123 | 
         
            +
                    return self.cls.predictions.decoder
         
     | 
| 1124 | 
         
            +
             
     | 
| 1125 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1126 | 
         
            +
                    self.cls.predictions.decoder = new_embeddings
         
     | 
| 1127 | 
         
            +
             
     | 
| 1128 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1129 | 
         
            +
                def forward(
         
     | 
| 1130 | 
         
            +
                    self,
         
     | 
| 1131 | 
         
            +
                    input_ids=None,
         
     | 
| 1132 | 
         
            +
                    attention_mask=None,
         
     | 
| 1133 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1134 | 
         
            +
                    position_ids=None,
         
     | 
| 1135 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1136 | 
         
            +
                    labels=None,
         
     | 
| 1137 | 
         
            +
                    output_attentions=None,
         
     | 
| 1138 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1139 | 
         
            +
                    return_dict=None,
         
     | 
| 1140 | 
         
            +
                ):
         
     | 
| 1141 | 
         
            +
                    r"""
         
     | 
| 1142 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 1143 | 
         
            +
                        Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
         
     | 
| 1144 | 
         
            +
                        config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
         
     | 
| 1145 | 
         
            +
                        (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
         
     | 
| 1146 | 
         
            +
                    """
         
     | 
| 1147 | 
         
            +
             
     | 
| 1148 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1149 | 
         
            +
             
     | 
| 1150 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1151 | 
         
            +
                        input_ids,
         
     | 
| 1152 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1153 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1154 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1155 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1156 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1157 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1158 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1159 | 
         
            +
                    )
         
     | 
| 1160 | 
         
            +
             
     | 
| 1161 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1162 | 
         
            +
                    prediction_scores = self.cls(sequence_output)
         
     | 
| 1163 | 
         
            +
             
     | 
| 1164 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1165 | 
         
            +
                    if labels is not None:
         
     | 
| 1166 | 
         
            +
                        loss_fct = CrossEntropyLoss()  # -100 index = padding token
         
     | 
| 1167 | 
         
            +
                        masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                    if not return_dict:
         
     | 
| 1170 | 
         
            +
                        output = (prediction_scores,) + outputs[1:]
         
     | 
| 1171 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1172 | 
         
            +
             
     | 
| 1173 | 
         
            +
                    return MaskedLMOutput(
         
     | 
| 1174 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1175 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 1176 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1177 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1178 | 
         
            +
                    )
         
     | 
| 1179 | 
         
            +
             
     | 
| 1180 | 
         
            +
             
     | 
| 1181 | 
         
            +
            # copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
         
     | 
| 1182 | 
         
            +
            class DebertaV2PredictionHeadTransform(nn.Module):
         
     | 
| 1183 | 
         
            +
                def __init__(self, config):
         
     | 
| 1184 | 
         
            +
                    super().__init__()
         
     | 
| 1185 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 1186 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 1187 | 
         
            +
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 1188 | 
         
            +
                    else:
         
     | 
| 1189 | 
         
            +
                        self.transform_act_fn = config.hidden_act
         
     | 
| 1190 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 1191 | 
         
            +
             
     | 
| 1192 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 1193 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 1194 | 
         
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         
     | 
| 1195 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states)
         
     | 
| 1196 | 
         
            +
                    return hidden_states
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
             
     | 
| 1199 | 
         
            +
            # copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
         
     | 
| 1200 | 
         
            +
            class DebertaV2LMPredictionHead(nn.Module):
         
     | 
| 1201 | 
         
            +
                def __init__(self, config):
         
     | 
| 1202 | 
         
            +
                    super().__init__()
         
     | 
| 1203 | 
         
            +
                    self.transform = DebertaV2PredictionHeadTransform(config)
         
     | 
| 1204 | 
         
            +
             
     | 
| 1205 | 
         
            +
                    # The output weights are the same as the input embeddings, but there is
         
     | 
| 1206 | 
         
            +
                    # an output-only bias for each token.
         
     | 
| 1207 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 1208 | 
         
            +
             
     | 
| 1209 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         
     | 
| 1210 | 
         
            +
             
     | 
| 1211 | 
         
            +
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         
     | 
| 1212 | 
         
            +
                    self.decoder.bias = self.bias
         
     | 
| 1213 | 
         
            +
             
     | 
| 1214 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 1215 | 
         
            +
                    hidden_states = self.transform(hidden_states)
         
     | 
| 1216 | 
         
            +
                    hidden_states = self.decoder(hidden_states)
         
     | 
| 1217 | 
         
            +
                    return hidden_states
         
     | 
| 1218 | 
         
            +
             
     | 
| 1219 | 
         
            +
             
     | 
| 1220 | 
         
            +
            # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
         
     | 
| 1221 | 
         
            +
            class DebertaV2OnlyMLMHead(nn.Module):
         
     | 
| 1222 | 
         
            +
                def __init__(self, config):
         
     | 
| 1223 | 
         
            +
                    super().__init__()
         
     | 
| 1224 | 
         
            +
                    self.predictions = DebertaV2LMPredictionHead(config)
         
     | 
| 1225 | 
         
            +
             
     | 
| 1226 | 
         
            +
                def forward(self, sequence_output):
         
     | 
| 1227 | 
         
            +
                    prediction_scores = self.predictions(sequence_output)
         
     | 
| 1228 | 
         
            +
                    return prediction_scores
         
     | 
| 1229 | 
         
            +
             
     | 
| 1230 | 
         
            +
             
     | 
| 1231 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1232 | 
         
            +
                """
         
     | 
| 1233 | 
         
            +
                DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
         
     | 
| 1234 | 
         
            +
                pooled output) e.g. for GLUE tasks.
         
     | 
| 1235 | 
         
            +
                """,
         
     | 
| 1236 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1237 | 
         
            +
            )
         
     | 
| 1238 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification with Deberta->DebertaV2
         
     | 
| 1239 | 
         
            +
            class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
         
     | 
| 1240 | 
         
            +
                def __init__(self, config):
         
     | 
| 1241 | 
         
            +
                    super().__init__(config)
         
     | 
| 1242 | 
         
            +
             
     | 
| 1243 | 
         
            +
                    num_labels = getattr(config, "num_labels", 2)
         
     | 
| 1244 | 
         
            +
                    self.num_labels = num_labels
         
     | 
| 1245 | 
         
            +
             
     | 
| 1246 | 
         
            +
                    self.deberta = DebertaV2Model(config)
         
     | 
| 1247 | 
         
            +
                    self.pooler = ContextPooler(config)
         
     | 
| 1248 | 
         
            +
                    output_dim = self.pooler.output_dim
         
     | 
| 1249 | 
         
            +
             
     | 
| 1250 | 
         
            +
                    self.classifier = nn.Linear(output_dim, num_labels)
         
     | 
| 1251 | 
         
            +
                    drop_out = getattr(config, "cls_dropout", None)
         
     | 
| 1252 | 
         
            +
                    drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
         
     | 
| 1253 | 
         
            +
                    self.dropout = StableDropout(drop_out)
         
     | 
| 1254 | 
         
            +
             
     | 
| 1255 | 
         
            +
                    self.init_weights()
         
     | 
| 1256 | 
         
            +
             
     | 
| 1257 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 1258 | 
         
            +
                    return self.deberta.get_input_embeddings()
         
     | 
| 1259 | 
         
            +
             
     | 
| 1260 | 
         
            +
                def set_input_embeddings(self, new_embeddings):
         
     | 
| 1261 | 
         
            +
                    self.deberta.set_input_embeddings(new_embeddings)
         
     | 
| 1262 | 
         
            +
             
     | 
| 1263 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1264 | 
         
            +
                def forward(
         
     | 
| 1265 | 
         
            +
                    self,
         
     | 
| 1266 | 
         
            +
                    input_ids=None,
         
     | 
| 1267 | 
         
            +
                    attention_mask=None,
         
     | 
| 1268 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1269 | 
         
            +
                    position_ids=None,
         
     | 
| 1270 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1271 | 
         
            +
                    labels=None,
         
     | 
| 1272 | 
         
            +
                    output_attentions=None,
         
     | 
| 1273 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1274 | 
         
            +
                    return_dict=None,
         
     | 
| 1275 | 
         
            +
                ):
         
     | 
| 1276 | 
         
            +
                    r"""
         
     | 
| 1277 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1278 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
         
     | 
| 1279 | 
         
            +
                        config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
         
     | 
| 1280 | 
         
            +
                        If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1281 | 
         
            +
                    """
         
     | 
| 1282 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1283 | 
         
            +
             
     | 
| 1284 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1285 | 
         
            +
                        input_ids,
         
     | 
| 1286 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1287 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1288 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1289 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1290 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1291 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1292 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1293 | 
         
            +
                    )
         
     | 
| 1294 | 
         
            +
             
     | 
| 1295 | 
         
            +
                    encoder_layer = outputs[0]
         
     | 
| 1296 | 
         
            +
                    pooled_output = self.pooler(encoder_layer)
         
     | 
| 1297 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 1298 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 1299 | 
         
            +
             
     | 
| 1300 | 
         
            +
                    loss = None
         
     | 
| 1301 | 
         
            +
                    if labels is not None:
         
     | 
| 1302 | 
         
            +
                        if self.num_labels == 1:
         
     | 
| 1303 | 
         
            +
                            # regression task
         
     | 
| 1304 | 
         
            +
                            loss_fn = nn.MSELoss()
         
     | 
| 1305 | 
         
            +
                            logits = logits.view(-1).to(labels.dtype)
         
     | 
| 1306 | 
         
            +
                            loss = loss_fn(logits, labels.view(-1))
         
     | 
| 1307 | 
         
            +
                        elif labels.dim() == 1 or labels.size(-1) == 1:
         
     | 
| 1308 | 
         
            +
                            label_index = (labels >= 0).nonzero()
         
     | 
| 1309 | 
         
            +
                            labels = labels.long()
         
     | 
| 1310 | 
         
            +
                            if label_index.size(0) > 0:
         
     | 
| 1311 | 
         
            +
                                labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
         
     | 
| 1312 | 
         
            +
                                labels = torch.gather(labels, 0, label_index.view(-1))
         
     | 
| 1313 | 
         
            +
                                loss_fct = CrossEntropyLoss()
         
     | 
| 1314 | 
         
            +
                                loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
         
     | 
| 1315 | 
         
            +
                            else:
         
     | 
| 1316 | 
         
            +
                                loss = torch.tensor(0).to(logits)
         
     | 
| 1317 | 
         
            +
                        else:
         
     | 
| 1318 | 
         
            +
                            log_softmax = nn.LogSoftmax(-1)
         
     | 
| 1319 | 
         
            +
                            loss = -((log_softmax(logits) * labels).sum(-1)).mean()
         
     | 
| 1320 | 
         
            +
                    if not return_dict:
         
     | 
| 1321 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1322 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1323 | 
         
            +
                    else:
         
     | 
| 1324 | 
         
            +
                        return SequenceClassifierOutput(
         
     | 
| 1325 | 
         
            +
                            loss=loss,
         
     | 
| 1326 | 
         
            +
                            logits=logits,
         
     | 
| 1327 | 
         
            +
                            hidden_states=outputs.hidden_states,
         
     | 
| 1328 | 
         
            +
                            attentions=outputs.attentions,
         
     | 
| 1329 | 
         
            +
                        )
         
     | 
| 1330 | 
         
            +
             
     | 
| 1331 | 
         
            +
             
     | 
| 1332 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1333 | 
         
            +
                """
         
     | 
| 1334 | 
         
            +
                DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
         
     | 
| 1335 | 
         
            +
                Named-Entity-Recognition (NER) tasks.
         
     | 
| 1336 | 
         
            +
                """,
         
     | 
| 1337 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1338 | 
         
            +
            )
         
     | 
| 1339 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
         
     | 
| 1340 | 
         
            +
            class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
         
     | 
| 1341 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1342 | 
         
            +
             
     | 
| 1343 | 
         
            +
                def __init__(self, config):
         
     | 
| 1344 | 
         
            +
                    super().__init__(config)
         
     | 
| 1345 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1346 | 
         
            +
             
     | 
| 1347 | 
         
            +
                    self.deberta = DebertaV2Model(config)
         
     | 
| 1348 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 1349 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1350 | 
         
            +
             
     | 
| 1351 | 
         
            +
                    self.init_weights()
         
     | 
| 1352 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 1353 | 
         
            +
                        param.requires_grad = False
         
     | 
| 1354 | 
         
            +
             
     | 
| 1355 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1356 | 
         
            +
                def forward(
         
     | 
| 1357 | 
         
            +
                    self,
         
     | 
| 1358 | 
         
            +
                    input_ids=None,
         
     | 
| 1359 | 
         
            +
                    attention_mask=None,
         
     | 
| 1360 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1361 | 
         
            +
                    position_ids=None,
         
     | 
| 1362 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1363 | 
         
            +
                    labels=None,
         
     | 
| 1364 | 
         
            +
                    output_attentions=None,
         
     | 
| 1365 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1366 | 
         
            +
                    return_dict=None,
         
     | 
| 1367 | 
         
            +
                    past_key_values=None,
         
     | 
| 1368 | 
         
            +
                ):
         
     | 
| 1369 | 
         
            +
                    r"""
         
     | 
| 1370 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 1371 | 
         
            +
                        Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
         
     | 
| 1372 | 
         
            +
                        1]``.
         
     | 
| 1373 | 
         
            +
                    """
         
     | 
| 1374 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1375 | 
         
            +
             
     | 
| 1376 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1377 | 
         
            +
                        input_ids,
         
     | 
| 1378 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1379 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1380 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1381 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1382 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1383 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1384 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1385 | 
         
            +
                    )
         
     | 
| 1386 | 
         
            +
             
     | 
| 1387 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1388 | 
         
            +
             
     | 
| 1389 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 1390 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 1391 | 
         
            +
             
     | 
| 1392 | 
         
            +
                    loss = None
         
     | 
| 1393 | 
         
            +
                    if labels is not None:
         
     | 
| 1394 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1395 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 1396 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 1397 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 1398 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 1399 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 1400 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 1401 | 
         
            +
                            )
         
     | 
| 1402 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 1403 | 
         
            +
                        else:
         
     | 
| 1404 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1405 | 
         
            +
             
     | 
| 1406 | 
         
            +
                    if not return_dict:
         
     | 
| 1407 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 1408 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1409 | 
         
            +
             
     | 
| 1410 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 1411 | 
         
            +
                        loss=loss,
         
     | 
| 1412 | 
         
            +
                        logits=logits,
         
     | 
| 1413 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1414 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1415 | 
         
            +
                    )
         
     | 
| 1416 | 
         
            +
             
     | 
| 1417 | 
         
            +
             
     | 
| 1418 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1419 | 
         
            +
                """
         
     | 
| 1420 | 
         
            +
                DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
         
     | 
| 1421 | 
         
            +
                layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
         
     | 
| 1422 | 
         
            +
                """,
         
     | 
| 1423 | 
         
            +
                DEBERTA_START_DOCSTRING,
         
     | 
| 1424 | 
         
            +
            )
         
     | 
| 1425 | 
         
            +
            # Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering with Deberta->DebertaV2
         
     | 
| 1426 | 
         
            +
            class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
         
     | 
| 1427 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1428 | 
         
            +
             
     | 
| 1429 | 
         
            +
                def __init__(self, config):
         
     | 
| 1430 | 
         
            +
                    super().__init__(config)
         
     | 
| 1431 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1432 | 
         
            +
             
     | 
| 1433 | 
         
            +
                    self.deberta = DebertaV2Model(config)
         
     | 
| 1434 | 
         
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1435 | 
         
            +
             
     | 
| 1436 | 
         
            +
                    self.init_weights()
         
     | 
| 1437 | 
         
            +
             
     | 
| 1438 | 
         
            +
                @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1439 | 
         
            +
                def forward(
         
     | 
| 1440 | 
         
            +
                    self,
         
     | 
| 1441 | 
         
            +
                    input_ids=None,
         
     | 
| 1442 | 
         
            +
                    attention_mask=None,
         
     | 
| 1443 | 
         
            +
                    token_type_ids=None,
         
     | 
| 1444 | 
         
            +
                    position_ids=None,
         
     | 
| 1445 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 1446 | 
         
            +
                    start_positions=None,
         
     | 
| 1447 | 
         
            +
                    end_positions=None,
         
     | 
| 1448 | 
         
            +
                    output_attentions=None,
         
     | 
| 1449 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 1450 | 
         
            +
                    return_dict=None,
         
     | 
| 1451 | 
         
            +
                ):
         
     | 
| 1452 | 
         
            +
                    r"""
         
     | 
| 1453 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1454 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 1455 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 1456 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 1457 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 1458 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 1459 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 1460 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 1461 | 
         
            +
                    """
         
     | 
| 1462 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1463 | 
         
            +
             
     | 
| 1464 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 1465 | 
         
            +
                        input_ids,
         
     | 
| 1466 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1467 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1468 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1469 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1470 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1471 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1472 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1473 | 
         
            +
                    )
         
     | 
| 1474 | 
         
            +
             
     | 
| 1475 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1476 | 
         
            +
             
     | 
| 1477 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 1478 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 1479 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 1480 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 1481 | 
         
            +
             
     | 
| 1482 | 
         
            +
                    total_loss = None
         
     | 
| 1483 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 1484 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 1485 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 1486 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 1487 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 1488 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 1489 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 1490 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 1491 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 1492 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 1493 | 
         
            +
             
     | 
| 1494 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 1495 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 1496 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 1497 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 1498 | 
         
            +
             
     | 
| 1499 | 
         
            +
                    if not return_dict:
         
     | 
| 1500 | 
         
            +
                        output = (start_logits, end_logits) + outputs[1:]
         
     | 
| 1501 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 1502 | 
         
            +
             
     | 
| 1503 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 1504 | 
         
            +
                        loss=total_loss,
         
     | 
| 1505 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 1506 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 1507 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1508 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1509 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/multiple_choice.py
    ADDED
    
    | 
         @@ -0,0 +1,710 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch._C import NoopLogger
         
     | 
| 3 | 
         
            +
            import torch.nn
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import Tensor
         
     | 
| 6 | 
         
            +
            from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from transformers import BertModel, BertPreTrainedModel
         
     | 
| 9 | 
         
            +
            from transformers import RobertaModel, RobertaPreTrainedModel
         
     | 
| 10 | 
         
            +
            from transformers.modeling_outputs import MultipleChoiceModelOutput, BaseModelOutput, Seq2SeqLMOutput
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            from model.prefix_encoder import PrefixEncoder
         
     | 
| 13 | 
         
            +
            from model.deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
         
     | 
| 14 | 
         
            +
            from model import utils
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            class BertForMultipleChoice(BertPreTrainedModel):
         
     | 
| 18 | 
         
            +
                """BERT model for multiple choice tasks.
         
     | 
| 19 | 
         
            +
                This module is composed of the BERT model with a linear layer on top of
         
     | 
| 20 | 
         
            +
                the pooled output.
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                Params:
         
     | 
| 23 | 
         
            +
                    `config`: a BertConfig class instance with the configuration to build a new model.
         
     | 
| 24 | 
         
            +
                    `num_choices`: the number of classes for the classifier. Default = 2.
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                Inputs:
         
     | 
| 27 | 
         
            +
                    `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
         
     | 
| 28 | 
         
            +
                        with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
         
     | 
| 29 | 
         
            +
                        `extract_features.py`, `run_classifier.py` and `run_squad.py`)
         
     | 
| 30 | 
         
            +
                    `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
         
     | 
| 31 | 
         
            +
                        with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
         
     | 
| 32 | 
         
            +
                        and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
         
     | 
| 33 | 
         
            +
                    `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
         
     | 
| 34 | 
         
            +
                        selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
         
     | 
| 35 | 
         
            +
                        input sequence length in the current batch. It's the mask that we typically use for attention when
         
     | 
| 36 | 
         
            +
                        a batch has varying length sentences.
         
     | 
| 37 | 
         
            +
                    `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
         
     | 
| 38 | 
         
            +
                        with indices selected in [0, ..., num_choices].
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                Outputs:
         
     | 
| 41 | 
         
            +
                    if `labels` is not `None`:
         
     | 
| 42 | 
         
            +
                        Outputs the CrossEntropy classification loss of the output with the labels.
         
     | 
| 43 | 
         
            +
                    if `labels` is `None`:
         
     | 
| 44 | 
         
            +
                        Outputs the classification logits of shape [batch_size, num_labels].
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                Example usage:
         
     | 
| 47 | 
         
            +
                ```python
         
     | 
| 48 | 
         
            +
                # Already been converted into WordPiece token ids
         
     | 
| 49 | 
         
            +
                input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
         
     | 
| 50 | 
         
            +
                input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
         
     | 
| 51 | 
         
            +
                token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
         
     | 
| 52 | 
         
            +
                config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
         
     | 
| 53 | 
         
            +
                    num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                num_choices = 2
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                model = BertForMultipleChoice(config, num_choices)
         
     | 
| 58 | 
         
            +
                logits = model(input_ids, token_type_ids, input_mask)
         
     | 
| 59 | 
         
            +
                ```
         
     | 
| 60 | 
         
            +
                """
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def __init__(self, config):
         
     | 
| 63 | 
         
            +
                    super().__init__(config)
         
     | 
| 64 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 65 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 66 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, 1)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    self.init_weights()
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 71 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def forward(
         
     | 
| 74 | 
         
            +
                    self,
         
     | 
| 75 | 
         
            +
                    input_ids=None,
         
     | 
| 76 | 
         
            +
                    attention_mask=None,
         
     | 
| 77 | 
         
            +
                    token_type_ids=None,
         
     | 
| 78 | 
         
            +
                    position_ids=None,
         
     | 
| 79 | 
         
            +
                    head_mask=None,
         
     | 
| 80 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 81 | 
         
            +
                    labels=None,
         
     | 
| 82 | 
         
            +
                    output_attentions=None,
         
     | 
| 83 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 84 | 
         
            +
                    return_dict=None,
         
     | 
| 85 | 
         
            +
                    use_base_grad=False
         
     | 
| 86 | 
         
            +
                ):
         
     | 
| 87 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 88 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 89 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2]
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    input_ids = input_ids.reshape(-1, input_ids.size(-1))
         
     | 
| 92 | 
         
            +
                    token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1))
         
     | 
| 93 | 
         
            +
                    attention_mask = attention_mask.reshape(-1, attention_mask.size(-1))
         
     | 
| 94 | 
         
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 95 | 
         
            +
                    inputs_embeds = (
         
     | 
| 96 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 97 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 98 | 
         
            +
                        else None
         
     | 
| 99 | 
         
            +
                    )
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    outputs = self.bert(
         
     | 
| 102 | 
         
            +
                        input_ids,
         
     | 
| 103 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 104 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 105 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 106 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 107 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 108 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 109 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 110 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 111 | 
         
            +
                    )
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 116 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 117 | 
         
            +
                    reshaped_logits = logits.reshape(-1, num_choices)
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    loss = None
         
     | 
| 120 | 
         
            +
                    if labels is not None:
         
     | 
| 121 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 122 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    if not return_dict:
         
     | 
| 125 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 126 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 129 | 
         
            +
                        loss=loss,
         
     | 
| 130 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 131 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 132 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 133 | 
         
            +
                    )
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            class BertPrefixForMultipleChoice(BertPreTrainedModel):
         
     | 
| 136 | 
         
            +
                def __init__(self, config):
         
     | 
| 137 | 
         
            +
                    super().__init__(config)
         
     | 
| 138 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 139 | 
         
            +
                    self.config = config
         
     | 
| 140 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 141 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 142 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, 1)
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 145 | 
         
            +
                        param.requires_grad = False
         
     | 
| 146 | 
         
            +
                    
         
     | 
| 147 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 148 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 149 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 150 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 153 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    bert_param = 0
         
     | 
| 156 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 157 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 158 | 
         
            +
                    all_param = 0
         
     | 
| 159 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 160 | 
         
            +
                        all_param += param.numel()
         
     | 
| 161 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 162 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 165 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 166 | 
         
            +
                
         
     | 
| 167 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 168 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 169 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 170 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 171 | 
         
            +
                        batch_size,
         
     | 
| 172 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 173 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 174 | 
         
            +
                        self.n_head,
         
     | 
| 175 | 
         
            +
                        self.n_embd
         
     | 
| 176 | 
         
            +
                    )
         
     | 
| 177 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 178 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 179 | 
         
            +
                    return past_key_values
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                def forward(
         
     | 
| 182 | 
         
            +
                    self,
         
     | 
| 183 | 
         
            +
                    input_ids=None,
         
     | 
| 184 | 
         
            +
                    attention_mask=None,
         
     | 
| 185 | 
         
            +
                    token_type_ids=None,
         
     | 
| 186 | 
         
            +
                    position_ids=None,
         
     | 
| 187 | 
         
            +
                    head_mask=None,
         
     | 
| 188 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 189 | 
         
            +
                    labels=None,
         
     | 
| 190 | 
         
            +
                    output_attentions=None,
         
     | 
| 191 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 192 | 
         
            +
                    return_dict=None,
         
     | 
| 193 | 
         
            +
                    use_base_grad=False
         
     | 
| 194 | 
         
            +
                ):
         
     | 
| 195 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 196 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 197 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 200 | 
         
            +
                    token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 201 | 
         
            +
                    attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 202 | 
         
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 203 | 
         
            +
                    inputs_embeds = (
         
     | 
| 204 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 205 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 206 | 
         
            +
                        else None
         
     | 
| 207 | 
         
            +
                    )
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
         
     | 
| 210 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
         
     | 
| 211 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    outputs = self.bert(
         
     | 
| 214 | 
         
            +
                        input_ids,
         
     | 
| 215 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 216 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 217 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 218 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 219 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 220 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 221 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 222 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 223 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 224 | 
         
            +
                    )
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 229 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 230 | 
         
            +
                    reshaped_logits = logits.reshape(-1, num_choices)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    loss = None
         
     | 
| 233 | 
         
            +
                    if labels is not None:
         
     | 
| 234 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 235 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    if not return_dict:
         
     | 
| 238 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 239 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 242 | 
         
            +
                        loss=loss,
         
     | 
| 243 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 244 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 245 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 246 | 
         
            +
                    )
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
            class RobertaPrefixForMultipleChoice(RobertaPreTrainedModel):
         
     | 
| 249 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                def __init__(self, config):
         
     | 
| 252 | 
         
            +
                    super().__init__(config)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    self.roberta = RobertaModel(config)
         
     | 
| 255 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 256 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, 1)
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    self.init_weights()
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 262 | 
         
            +
                        param.requires_grad = False
         
     | 
| 263 | 
         
            +
                        
         
     | 
| 264 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 265 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 266 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 267 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 270 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                    bert_param = 0
         
     | 
| 273 | 
         
            +
                    for name, param in self.roberta.named_parameters():
         
     | 
| 274 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 275 | 
         
            +
                    all_param = 0
         
     | 
| 276 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 277 | 
         
            +
                        all_param += param.numel()
         
     | 
| 278 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 279 | 
         
            +
                    print('total param is {}'.format(total_param))
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 282 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 285 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 286 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 287 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 288 | 
         
            +
                        batch_size,
         
     | 
| 289 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 290 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 291 | 
         
            +
                        self.n_head,
         
     | 
| 292 | 
         
            +
                        self.n_embd
         
     | 
| 293 | 
         
            +
                    )
         
     | 
| 294 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 295 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 296 | 
         
            +
                    return past_key_values
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def forward(
         
     | 
| 299 | 
         
            +
                    self,
         
     | 
| 300 | 
         
            +
                    input_ids=None,
         
     | 
| 301 | 
         
            +
                    token_type_ids=None,
         
     | 
| 302 | 
         
            +
                    attention_mask=None,
         
     | 
| 303 | 
         
            +
                    labels=None,
         
     | 
| 304 | 
         
            +
                    position_ids=None,
         
     | 
| 305 | 
         
            +
                    head_mask=None,
         
     | 
| 306 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 307 | 
         
            +
                    output_attentions=None,
         
     | 
| 308 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 309 | 
         
            +
                    return_dict=None,
         
     | 
| 310 | 
         
            +
                    use_base_grad=False
         
     | 
| 311 | 
         
            +
                ):
         
     | 
| 312 | 
         
            +
                    r"""
         
     | 
| 313 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 314 | 
         
            +
                        Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
         
     | 
| 315 | 
         
            +
                        num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
         
     | 
| 316 | 
         
            +
                        :obj:`input_ids` above)
         
     | 
| 317 | 
         
            +
                    """
         
     | 
| 318 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 319 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 320 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 323 | 
         
            +
                    flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 324 | 
         
            +
                    flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 325 | 
         
            +
                    flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 326 | 
         
            +
                    flat_inputs_embeds = (
         
     | 
| 327 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 328 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 329 | 
         
            +
                        else None
         
     | 
| 330 | 
         
            +
                    )
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
         
     | 
| 333 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 334 | 
         
            +
                    flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 337 | 
         
            +
                        flat_input_ids,
         
     | 
| 338 | 
         
            +
                        position_ids=flat_position_ids,
         
     | 
| 339 | 
         
            +
                        token_type_ids=flat_token_type_ids,
         
     | 
| 340 | 
         
            +
                        attention_mask=flat_attention_mask,
         
     | 
| 341 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 342 | 
         
            +
                        inputs_embeds=flat_inputs_embeds,
         
     | 
| 343 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 344 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 345 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 346 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 347 | 
         
            +
                    )
         
     | 
| 348 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 351 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 352 | 
         
            +
                    reshaped_logits = logits.view(-1, num_choices)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    loss = None
         
     | 
| 355 | 
         
            +
                    if labels is not None:
         
     | 
| 356 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 357 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                    if not return_dict:
         
     | 
| 360 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 361 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 364 | 
         
            +
                        loss=loss,
         
     | 
| 365 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 366 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 367 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 368 | 
         
            +
                    )
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
            class DebertaPrefixForMultipleChoice(DebertaPreTrainedModel):
         
     | 
| 371 | 
         
            +
                def __init__(self, config):
         
     | 
| 372 | 
         
            +
                    super().__init__(config)
         
     | 
| 373 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 374 | 
         
            +
                    self.config = config
         
     | 
| 375 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 376 | 
         
            +
                    self.pooler = ContextPooler(config)
         
     | 
| 377 | 
         
            +
                    output_dim = self.pooler.output_dim
         
     | 
| 378 | 
         
            +
                    self.classifier = torch.nn.Linear(output_dim, 1)
         
     | 
| 379 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 380 | 
         
            +
                    self.init_weights()
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 383 | 
         
            +
                        param.requires_grad = False
         
     | 
| 384 | 
         
            +
                    
         
     | 
| 385 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 386 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 387 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 388 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 391 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    deberta_param = 0
         
     | 
| 394 | 
         
            +
                    for name, param in self.deberta.named_parameters():
         
     | 
| 395 | 
         
            +
                        deberta_param += param.numel()
         
     | 
| 396 | 
         
            +
                    all_param = 0
         
     | 
| 397 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 398 | 
         
            +
                        all_param += param.numel()
         
     | 
| 399 | 
         
            +
                    total_param = all_param - deberta_param
         
     | 
| 400 | 
         
            +
                    print('total param is {}'.format(total_param))
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 403 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 404 | 
         
            +
                
         
     | 
| 405 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 406 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
         
     | 
| 407 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 408 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 409 | 
         
            +
                        batch_size,
         
     | 
| 410 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 411 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 412 | 
         
            +
                        self.n_head,
         
     | 
| 413 | 
         
            +
                        self.n_embd
         
     | 
| 414 | 
         
            +
                    )
         
     | 
| 415 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 416 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 417 | 
         
            +
                    return past_key_values
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                def forward(
         
     | 
| 420 | 
         
            +
                    self,
         
     | 
| 421 | 
         
            +
                    input_ids=None,
         
     | 
| 422 | 
         
            +
                    attention_mask=None,
         
     | 
| 423 | 
         
            +
                    token_type_ids=None,
         
     | 
| 424 | 
         
            +
                    position_ids=None,
         
     | 
| 425 | 
         
            +
                    head_mask=None,
         
     | 
| 426 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 427 | 
         
            +
                    labels=None,
         
     | 
| 428 | 
         
            +
                    output_attentions=None,
         
     | 
| 429 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 430 | 
         
            +
                    return_dict=None,
         
     | 
| 431 | 
         
            +
                    use_base_grad=False
         
     | 
| 432 | 
         
            +
                ):
         
     | 
| 433 | 
         
            +
                    utils.use_grad(self.deberta, use_base_grad)
         
     | 
| 434 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 435 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
         
     | 
| 436 | 
         
            +
                    
         
     | 
| 437 | 
         
            +
                    flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 438 | 
         
            +
                    flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 439 | 
         
            +
                    flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 440 | 
         
            +
                    flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 441 | 
         
            +
                    flat_inputs_embeds = (
         
     | 
| 442 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 443 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 444 | 
         
            +
                        else None
         
     | 
| 445 | 
         
            +
                    )
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
         
     | 
| 448 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.deberta.device)
         
     | 
| 449 | 
         
            +
                    flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 452 | 
         
            +
                        flat_input_ids,
         
     | 
| 453 | 
         
            +
                        attention_mask=flat_attention_mask,
         
     | 
| 454 | 
         
            +
                        token_type_ids=flat_token_type_ids,
         
     | 
| 455 | 
         
            +
                        position_ids=flat_position_ids,
         
     | 
| 456 | 
         
            +
                        inputs_embeds=flat_inputs_embeds,
         
     | 
| 457 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 458 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 459 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 460 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 461 | 
         
            +
                    )
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                    encoder_layer = outputs[0]
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                    pooled_output = self.pooler(encoder_layer)
         
     | 
| 466 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 467 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 468 | 
         
            +
                    reshaped_logits = logits.view(-1, num_choices)
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                    loss = None
         
     | 
| 471 | 
         
            +
                    if labels is not None:
         
     | 
| 472 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 473 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                    if not return_dict:
         
     | 
| 476 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 477 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 480 | 
         
            +
                        loss=loss,
         
     | 
| 481 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 482 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 483 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 484 | 
         
            +
                    )
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
            class BertPromptForMultipleChoice(BertPreTrainedModel):
         
     | 
| 488 | 
         
            +
                def __init__(self, config):
         
     | 
| 489 | 
         
            +
                    super().__init__(config)
         
     | 
| 490 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 491 | 
         
            +
                    self.config = config
         
     | 
| 492 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 493 | 
         
            +
                    self.embeddings = self.bert.embeddings
         
     | 
| 494 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 495 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, 1)
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 498 | 
         
            +
                        param.requires_grad = False
         
     | 
| 499 | 
         
            +
                    
         
     | 
| 500 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 501 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 502 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 503 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 506 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                    bert_param = 0
         
     | 
| 509 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 510 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 511 | 
         
            +
                    all_param = 0
         
     | 
| 512 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 513 | 
         
            +
                        all_param += param.numel()
         
     | 
| 514 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 515 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 518 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 519 | 
         
            +
                
         
     | 
| 520 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 521 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 522 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 523 | 
         
            +
                    return prompts
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                def forward(
         
     | 
| 526 | 
         
            +
                    self,
         
     | 
| 527 | 
         
            +
                    input_ids=None,
         
     | 
| 528 | 
         
            +
                    attention_mask=None,
         
     | 
| 529 | 
         
            +
                    token_type_ids=None,
         
     | 
| 530 | 
         
            +
                    position_ids=None,
         
     | 
| 531 | 
         
            +
                    head_mask=None,
         
     | 
| 532 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 533 | 
         
            +
                    labels=None,
         
     | 
| 534 | 
         
            +
                    output_attentions=None,
         
     | 
| 535 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 536 | 
         
            +
                    return_dict=None,
         
     | 
| 537 | 
         
            +
                    use_base_grad=False
         
     | 
| 538 | 
         
            +
                ):
         
     | 
| 539 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 540 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 541 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                    input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 544 | 
         
            +
                    token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 545 | 
         
            +
                    attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 546 | 
         
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 547 | 
         
            +
                    inputs_embeds = (
         
     | 
| 548 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 549 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 550 | 
         
            +
                        else None
         
     | 
| 551 | 
         
            +
                    )
         
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
                    raw_embedding = self.embeddings(
         
     | 
| 554 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 555 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 556 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 557 | 
         
            +
                    )
         
     | 
| 558 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size * num_choices)
         
     | 
| 559 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
         
     | 
| 562 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    outputs = self.bert(
         
     | 
| 565 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 566 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 567 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 568 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 569 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 570 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 571 | 
         
            +
                    )
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 576 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 577 | 
         
            +
                    reshaped_logits = logits.reshape(-1, num_choices)
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                    loss = None
         
     | 
| 580 | 
         
            +
                    if labels is not None:
         
     | 
| 581 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 582 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    if not return_dict:
         
     | 
| 585 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 586 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 589 | 
         
            +
                        loss=loss,
         
     | 
| 590 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 591 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 592 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 593 | 
         
            +
                    )
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
            class RobertaPromptForMultipleChoice(RobertaPreTrainedModel):
         
     | 
| 597 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                def __init__(self, config):
         
     | 
| 600 | 
         
            +
                    super().__init__(config)
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    self.roberta = RobertaModel(config)
         
     | 
| 603 | 
         
            +
                    self.embeddings = self.roberta.embeddings
         
     | 
| 604 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 605 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, 1)
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    self.init_weights()
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 611 | 
         
            +
                        param.requires_grad = False
         
     | 
| 612 | 
         
            +
                        
         
     | 
| 613 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 614 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 615 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 616 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 619 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                    bert_param = 0
         
     | 
| 622 | 
         
            +
                    for name, param in self.roberta.named_parameters():
         
     | 
| 623 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 624 | 
         
            +
                    all_param = 0
         
     | 
| 625 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 626 | 
         
            +
                        all_param += param.numel()
         
     | 
| 627 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 628 | 
         
            +
                    print('total param is {}'.format(total_param))
         
     | 
| 629 | 
         
            +
             
     | 
| 630 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 631 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 634 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 635 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 636 | 
         
            +
                    return prompts
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                def forward(
         
     | 
| 639 | 
         
            +
                    self,
         
     | 
| 640 | 
         
            +
                    input_ids=None,
         
     | 
| 641 | 
         
            +
                    token_type_ids=None,
         
     | 
| 642 | 
         
            +
                    attention_mask=None,
         
     | 
| 643 | 
         
            +
                    labels=None,
         
     | 
| 644 | 
         
            +
                    position_ids=None,
         
     | 
| 645 | 
         
            +
                    head_mask=None,
         
     | 
| 646 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 647 | 
         
            +
                    output_attentions=None,
         
     | 
| 648 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 649 | 
         
            +
                    return_dict=None,
         
     | 
| 650 | 
         
            +
                    use_base_grad=False
         
     | 
| 651 | 
         
            +
                ):
         
     | 
| 652 | 
         
            +
                    r"""
         
     | 
| 653 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 654 | 
         
            +
                        Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
         
     | 
| 655 | 
         
            +
                        num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
         
     | 
| 656 | 
         
            +
                        :obj:`input_ids` above)
         
     | 
| 657 | 
         
            +
                    """
         
     | 
| 658 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 659 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 660 | 
         
            +
                    batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
                    input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 663 | 
         
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 664 | 
         
            +
                    token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 665 | 
         
            +
                    attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 666 | 
         
            +
                    inputs_embeds = (
         
     | 
| 667 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 668 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 669 | 
         
            +
                        else None
         
     | 
| 670 | 
         
            +
                    )
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                    raw_embedding = self.embeddings(
         
     | 
| 673 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 674 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 675 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 676 | 
         
            +
                    )
         
     | 
| 677 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size * num_choices)
         
     | 
| 678 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 679 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 680 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 683 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 684 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 685 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 686 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 687 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 688 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 689 | 
         
            +
                    )
         
     | 
| 690 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 693 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 694 | 
         
            +
                    reshaped_logits = logits.view(-1, num_choices)
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    loss = None
         
     | 
| 697 | 
         
            +
                    if labels is not None:
         
     | 
| 698 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 699 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
                    if not return_dict:
         
     | 
| 702 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 703 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 706 | 
         
            +
                        loss=loss,
         
     | 
| 707 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 708 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 709 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 710 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/prefix_encoder.py
    ADDED
    
    | 
         @@ -0,0 +1,33 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class PrefixEncoder(torch.nn.Module):
         
     | 
| 5 | 
         
            +
                r'''
         
     | 
| 6 | 
         
            +
                The torch.nn model to encode the prefix
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                Input shape: (batch-size, prefix-length)
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                Output shape: (batch-size, prefix-length, 2*layers*hidden)
         
     | 
| 11 | 
         
            +
                '''
         
     | 
| 12 | 
         
            +
                def __init__(self, config):
         
     | 
| 13 | 
         
            +
                    super().__init__()
         
     | 
| 14 | 
         
            +
                    self.prefix_projection = config.prefix_projection
         
     | 
| 15 | 
         
            +
                    if self.prefix_projection:
         
     | 
| 16 | 
         
            +
                        # Use a two-layer MLP to encode the prefix
         
     | 
| 17 | 
         
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
         
     | 
| 18 | 
         
            +
                        self.trans = torch.nn.Sequential(
         
     | 
| 19 | 
         
            +
                            torch.nn.Linear(config.hidden_size, config.prefix_hidden_size),
         
     | 
| 20 | 
         
            +
                            torch.nn.Tanh(),
         
     | 
| 21 | 
         
            +
                            torch.nn.Linear(config.prefix_hidden_size, config.num_hidden_layers * 2 * config.hidden_size)
         
     | 
| 22 | 
         
            +
                        )
         
     | 
| 23 | 
         
            +
                    else:
         
     | 
| 24 | 
         
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                def forward(self, prefix: torch.Tensor):
         
     | 
| 27 | 
         
            +
                    device = next(self.embedding.parameters()).device
         
     | 
| 28 | 
         
            +
                    if self.prefix_projection:
         
     | 
| 29 | 
         
            +
                        prefix_tokens = self.embedding(prefix.to(device))
         
     | 
| 30 | 
         
            +
                        past_key_values = self.trans(prefix_tokens)
         
     | 
| 31 | 
         
            +
                    else:
         
     | 
| 32 | 
         
            +
                        past_key_values = self.embedding(prefix.to(device))
         
     | 
| 33 | 
         
            +
                    return past_key_values
         
     | 
    	
        soft_prompt/model/question_answering.py
    ADDED
    
    | 
         @@ -0,0 +1,455 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn
         
     | 
| 3 | 
         
            +
            from torch.nn import CrossEntropyLoss
         
     | 
| 4 | 
         
            +
            from transformers import BertPreTrainedModel, BertModel, RobertaPreTrainedModel, RobertaModel
         
     | 
| 5 | 
         
            +
            from transformers.modeling_outputs import QuestionAnsweringModelOutput
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from model.prefix_encoder import PrefixEncoder
         
     | 
| 8 | 
         
            +
            from model.deberta import DebertaPreTrainedModel, DebertaModel
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class BertForQuestionAnswering(BertPreTrainedModel):
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                def __init__(self, config):
         
     | 
| 15 | 
         
            +
                    super().__init__(config)
         
     | 
| 16 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 19 | 
         
            +
                    self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 22 | 
         
            +
                        param.requires_grad = False
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    self.init_weights()
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                def forward(
         
     | 
| 27 | 
         
            +
                    self,
         
     | 
| 28 | 
         
            +
                    input_ids=None,
         
     | 
| 29 | 
         
            +
                    attention_mask=None,
         
     | 
| 30 | 
         
            +
                    token_type_ids=None,
         
     | 
| 31 | 
         
            +
                    position_ids=None,
         
     | 
| 32 | 
         
            +
                    head_mask=None,
         
     | 
| 33 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 34 | 
         
            +
                    start_positions=None,
         
     | 
| 35 | 
         
            +
                    end_positions=None,
         
     | 
| 36 | 
         
            +
                    output_attentions=None,
         
     | 
| 37 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 38 | 
         
            +
                    return_dict=None,
         
     | 
| 39 | 
         
            +
                ):
         
     | 
| 40 | 
         
            +
                    r"""
         
     | 
| 41 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 42 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 43 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 44 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 45 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 46 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 47 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 48 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 49 | 
         
            +
                    """
         
     | 
| 50 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    outputs = self.bert(
         
     | 
| 53 | 
         
            +
                        input_ids,
         
     | 
| 54 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 55 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 56 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 57 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 58 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 59 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 60 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 61 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 62 | 
         
            +
                    )
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 67 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 68 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 69 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    total_loss = None
         
     | 
| 72 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 73 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 74 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 75 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 76 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 77 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 78 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 79 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 80 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 81 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 84 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 85 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 86 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    if not return_dict:
         
     | 
| 89 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 90 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 93 | 
         
            +
                        loss=total_loss,
         
     | 
| 94 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 95 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 96 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 97 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 98 | 
         
            +
                    )
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            class BertPrefixForQuestionAnswering(BertPreTrainedModel):
         
     | 
| 102 | 
         
            +
                def __init__(self, config):
         
     | 
| 103 | 
         
            +
                    super().__init__(config)
         
     | 
| 104 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 107 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 108 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 109 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 112 | 
         
            +
                    self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 113 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 114 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 115 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 118 | 
         
            +
                        param.requires_grad = False
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    self.init_weights()
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 123 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 124 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 125 | 
         
            +
                    bsz, seqlen, _ = past_key_values.shape
         
     | 
| 126 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 127 | 
         
            +
                        bsz,
         
     | 
| 128 | 
         
            +
                        seqlen,
         
     | 
| 129 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 130 | 
         
            +
                        self.n_head,
         
     | 
| 131 | 
         
            +
                        self.n_embd
         
     | 
| 132 | 
         
            +
                    )
         
     | 
| 133 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 134 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 135 | 
         
            +
                    return past_key_values
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                def forward(
         
     | 
| 138 | 
         
            +
                    self,
         
     | 
| 139 | 
         
            +
                    input_ids=None,
         
     | 
| 140 | 
         
            +
                    attention_mask=None,
         
     | 
| 141 | 
         
            +
                    token_type_ids=None,
         
     | 
| 142 | 
         
            +
                    position_ids=None,
         
     | 
| 143 | 
         
            +
                    head_mask=None,
         
     | 
| 144 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 145 | 
         
            +
                    start_positions=None,
         
     | 
| 146 | 
         
            +
                    end_positions=None,
         
     | 
| 147 | 
         
            +
                    output_attentions=None,
         
     | 
| 148 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 149 | 
         
            +
                    return_dict=None,
         
     | 
| 150 | 
         
            +
                ):
         
     | 
| 151 | 
         
            +
                    r"""
         
     | 
| 152 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 153 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 154 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 155 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 156 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 157 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 158 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 159 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 160 | 
         
            +
                    """
         
     | 
| 161 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 164 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 165 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 166 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    outputs = self.bert(
         
     | 
| 169 | 
         
            +
                        input_ids,
         
     | 
| 170 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 171 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 172 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 173 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 174 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 175 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 176 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 177 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 178 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 179 | 
         
            +
                    )
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 184 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 185 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 186 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                    total_loss = None
         
     | 
| 189 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 190 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 191 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 192 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 193 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 194 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 195 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 196 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 197 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 198 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 201 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 202 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 203 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                    if not return_dict:
         
     | 
| 206 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 207 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 210 | 
         
            +
                        loss=total_loss,
         
     | 
| 211 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 212 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 213 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 214 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 215 | 
         
            +
                    )
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
            class RobertaPrefixModelForQuestionAnswering(RobertaPreTrainedModel):
         
     | 
| 218 | 
         
            +
                def __init__(self, config):
         
     | 
| 219 | 
         
            +
                    super().__init__(config)
         
     | 
| 220 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 223 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 224 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 225 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 228 | 
         
            +
                    self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    self.init_weights()
         
     | 
| 231 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 232 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 233 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 236 | 
         
            +
                        param.requires_grad = False
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 239 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 240 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 241 | 
         
            +
                    bsz, seqlen, _ = past_key_values.shape
         
     | 
| 242 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 243 | 
         
            +
                        bsz,
         
     | 
| 244 | 
         
            +
                        seqlen,
         
     | 
| 245 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 246 | 
         
            +
                        self.n_head,
         
     | 
| 247 | 
         
            +
                        self.n_embd
         
     | 
| 248 | 
         
            +
                    )
         
     | 
| 249 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 250 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 251 | 
         
            +
                    return past_key_values
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                def forward(
         
     | 
| 254 | 
         
            +
                    self,
         
     | 
| 255 | 
         
            +
                    input_ids=None,
         
     | 
| 256 | 
         
            +
                    attention_mask=None,
         
     | 
| 257 | 
         
            +
                    token_type_ids=None,
         
     | 
| 258 | 
         
            +
                    position_ids=None,
         
     | 
| 259 | 
         
            +
                    head_mask=None,
         
     | 
| 260 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 261 | 
         
            +
                    start_positions=None,
         
     | 
| 262 | 
         
            +
                    end_positions=None,
         
     | 
| 263 | 
         
            +
                    output_attentions=None,
         
     | 
| 264 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 265 | 
         
            +
                    return_dict=None,
         
     | 
| 266 | 
         
            +
                ):
         
     | 
| 267 | 
         
            +
                    r"""
         
     | 
| 268 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 269 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 270 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 271 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 272 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 273 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 274 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 275 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 276 | 
         
            +
                    """
         
     | 
| 277 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 280 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 281 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 282 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 285 | 
         
            +
                        input_ids,
         
     | 
| 286 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 287 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 288 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 289 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 290 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 291 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 292 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 293 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 294 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 295 | 
         
            +
                    )
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 300 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 301 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 302 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    total_loss = None
         
     | 
| 305 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 306 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 307 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 308 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 309 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 310 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 311 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 312 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 313 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 314 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 317 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 318 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 319 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    if not return_dict:
         
     | 
| 322 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 323 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 326 | 
         
            +
                        loss=total_loss,
         
     | 
| 327 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 328 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 329 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 330 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 331 | 
         
            +
                    )
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
            class DebertaPrefixModelForQuestionAnswering(DebertaPreTrainedModel):
         
     | 
| 334 | 
         
            +
                def __init__(self, config):
         
     | 
| 335 | 
         
            +
                    super().__init__(config)
         
     | 
| 336 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 337 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 338 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 339 | 
         
            +
                    self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 340 | 
         
            +
                    self.init_weights()
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 343 | 
         
            +
                        param.requires_grad = False
         
     | 
| 344 | 
         
            +
                    
         
     | 
| 345 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 346 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 347 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 348 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    # Use a two layered MLP to encode the prefix
         
     | 
| 351 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 352 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    deberta_param = 0
         
     | 
| 355 | 
         
            +
                    for name, param in self.deberta.named_parameters():
         
     | 
| 356 | 
         
            +
                        deberta_param += param.numel()
         
     | 
| 357 | 
         
            +
                    all_param = 0
         
     | 
| 358 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 359 | 
         
            +
                        all_param += param.numel()
         
     | 
| 360 | 
         
            +
                    total_param = all_param - deberta_param
         
     | 
| 361 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 362 | 
         
            +
                
         
     | 
| 363 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 364 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
         
     | 
| 365 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 366 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 367 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 368 | 
         
            +
                        batch_size,
         
     | 
| 369 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 370 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 371 | 
         
            +
                        self.n_head,
         
     | 
| 372 | 
         
            +
                        self.n_embd
         
     | 
| 373 | 
         
            +
                    )
         
     | 
| 374 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 375 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 376 | 
         
            +
                    return past_key_values
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                def forward(
         
     | 
| 379 | 
         
            +
                    self,
         
     | 
| 380 | 
         
            +
                    input_ids=None,
         
     | 
| 381 | 
         
            +
                    attention_mask=None,
         
     | 
| 382 | 
         
            +
                    token_type_ids=None,
         
     | 
| 383 | 
         
            +
                    position_ids=None,
         
     | 
| 384 | 
         
            +
                    # head_mask=None,
         
     | 
| 385 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 386 | 
         
            +
                    start_positions=None,
         
     | 
| 387 | 
         
            +
                    end_positions=None,
         
     | 
| 388 | 
         
            +
                    output_attentions=None,
         
     | 
| 389 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 390 | 
         
            +
                    return_dict=None,
         
     | 
| 391 | 
         
            +
                ):
         
     | 
| 392 | 
         
            +
                    r"""
         
     | 
| 393 | 
         
            +
                    start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 394 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 395 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 396 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 397 | 
         
            +
                    end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 398 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 399 | 
         
            +
                        Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
         
     | 
| 400 | 
         
            +
                        sequence are not taken into account for computing the loss.
         
     | 
| 401 | 
         
            +
                    """
         
     | 
| 402 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 405 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 406 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
         
     | 
| 407 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 410 | 
         
            +
                        input_ids,
         
     | 
| 411 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 412 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 413 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 414 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 415 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 416 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 417 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 418 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 419 | 
         
            +
                    )
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 424 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 425 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 426 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                    total_loss = None
         
     | 
| 429 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 430 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 431 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 432 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 433 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 434 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 435 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 436 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 437 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 438 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 441 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 442 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 443 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    if not return_dict:
         
     | 
| 446 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 447 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 450 | 
         
            +
                        loss=total_loss,
         
     | 
| 451 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 452 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 453 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 454 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 455 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/roberta.py
    ADDED
    
    | 
         @@ -0,0 +1,1588 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
         
     | 
| 3 | 
         
            +
            # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
         
     | 
| 4 | 
         
            +
            #
         
     | 
| 5 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            +
            #
         
     | 
| 11 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            +
            # limitations under the License.
         
     | 
| 16 | 
         
            +
            """PyTorch RoBERTa model."""
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import math
         
     | 
| 19 | 
         
            +
            from typing import List, Optional, Tuple, Union
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            import torch
         
     | 
| 22 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 23 | 
         
            +
            from torch import nn
         
     | 
| 24 | 
         
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            from ...activations import ACT2FN, gelu
         
     | 
| 27 | 
         
            +
            from ...modeling_outputs import (
         
     | 
| 28 | 
         
            +
                BaseModelOutputWithPastAndCrossAttentions,
         
     | 
| 29 | 
         
            +
                BaseModelOutputWithPoolingAndCrossAttentions,
         
     | 
| 30 | 
         
            +
                CausalLMOutputWithCrossAttentions,
         
     | 
| 31 | 
         
            +
                MaskedLMOutput,
         
     | 
| 32 | 
         
            +
                MultipleChoiceModelOutput,
         
     | 
| 33 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 34 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 35 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 36 | 
         
            +
            )
         
     | 
| 37 | 
         
            +
            from ...modeling_utils import PreTrainedModel
         
     | 
| 38 | 
         
            +
            from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
         
     | 
| 39 | 
         
            +
            from ...utils import (
         
     | 
| 40 | 
         
            +
                add_code_sample_docstrings,
         
     | 
| 41 | 
         
            +
                add_start_docstrings,
         
     | 
| 42 | 
         
            +
                add_start_docstrings_to_model_forward,
         
     | 
| 43 | 
         
            +
                logging,
         
     | 
| 44 | 
         
            +
                replace_return_docstrings,
         
     | 
| 45 | 
         
            +
            )
         
     | 
| 46 | 
         
            +
            from .configuration_roberta import RobertaConfig
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            _CHECKPOINT_FOR_DOC = "roberta-base"
         
     | 
| 52 | 
         
            +
            _CONFIG_FOR_DOC = "RobertaConfig"
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
         
     | 
| 55 | 
         
            +
                "roberta-base",
         
     | 
| 56 | 
         
            +
                "roberta-large",
         
     | 
| 57 | 
         
            +
                "roberta-large-mnli",
         
     | 
| 58 | 
         
            +
                "distilroberta-base",
         
     | 
| 59 | 
         
            +
                "roberta-base-openai-detector",
         
     | 
| 60 | 
         
            +
                "roberta-large-openai-detector",
         
     | 
| 61 | 
         
            +
                # See all RoBERTa models at https://huggingface.co/models?filter=roberta
         
     | 
| 62 | 
         
            +
            ]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            class RobertaEmbeddings(nn.Module):
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
                Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
         
     | 
| 68 | 
         
            +
                """
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
         
     | 
| 71 | 
         
            +
                def __init__(self, config):
         
     | 
| 72 | 
         
            +
                    super().__init__()
         
     | 
| 73 | 
         
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
         
     | 
| 74 | 
         
            +
                    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
         
     | 
| 75 | 
         
            +
                    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         
     | 
| 78 | 
         
            +
                    # any TensorFlow checkpoint file
         
     | 
| 79 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 80 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 81 | 
         
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         
     | 
| 82 | 
         
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         
     | 
| 83 | 
         
            +
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         
     | 
| 84 | 
         
            +
                    self.register_buffer(
         
     | 
| 85 | 
         
            +
                        "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
         
     | 
| 86 | 
         
            +
                    )
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    # End copy
         
     | 
| 89 | 
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 90 | 
         
            +
                    self.position_embeddings = nn.Embedding(
         
     | 
| 91 | 
         
            +
                        config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
         
     | 
| 92 | 
         
            +
                    )
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def forward(
         
     | 
| 95 | 
         
            +
                    self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
         
     | 
| 96 | 
         
            +
                ):
         
     | 
| 97 | 
         
            +
                    if position_ids is None:
         
     | 
| 98 | 
         
            +
                        if input_ids is not None:
         
     | 
| 99 | 
         
            +
                            # Create the position ids from the input token ids. Any padded tokens remain padded.
         
     | 
| 100 | 
         
            +
                            position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
         
     | 
| 101 | 
         
            +
                        else:
         
     | 
| 102 | 
         
            +
                            position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    if input_ids is not None:
         
     | 
| 105 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 106 | 
         
            +
                    else:
         
     | 
| 107 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    seq_length = input_shape[1]
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
         
     | 
| 112 | 
         
            +
                    # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
         
     | 
| 113 | 
         
            +
                    # issue #5664
         
     | 
| 114 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 115 | 
         
            +
                        if hasattr(self, "token_type_ids"):
         
     | 
| 116 | 
         
            +
                            buffered_token_type_ids = self.token_type_ids[:, :seq_length]
         
     | 
| 117 | 
         
            +
                            buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
         
     | 
| 118 | 
         
            +
                            token_type_ids = buffered_token_type_ids_expanded
         
     | 
| 119 | 
         
            +
                        else:
         
     | 
| 120 | 
         
            +
                            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 123 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 124 | 
         
            +
                    token_type_embeddings = self.token_type_embeddings(token_type_ids)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    embeddings = inputs_embeds + token_type_embeddings
         
     | 
| 127 | 
         
            +
                    if self.position_embedding_type == "absolute":
         
     | 
| 128 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids)
         
     | 
| 129 | 
         
            +
                        embeddings += position_embeddings
         
     | 
| 130 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 131 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 132 | 
         
            +
                    return embeddings
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                def create_position_ids_from_inputs_embeds(self, inputs_embeds):
         
     | 
| 135 | 
         
            +
                    """
         
     | 
| 136 | 
         
            +
                    We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    Args:
         
     | 
| 139 | 
         
            +
                        inputs_embeds: torch.Tensor
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    Returns: torch.Tensor
         
     | 
| 142 | 
         
            +
                    """
         
     | 
| 143 | 
         
            +
                    input_shape = inputs_embeds.size()[:-1]
         
     | 
| 144 | 
         
            +
                    sequence_length = input_shape[1]
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    position_ids = torch.arange(
         
     | 
| 147 | 
         
            +
                        self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
         
     | 
| 148 | 
         
            +
                    )
         
     | 
| 149 | 
         
            +
                    return position_ids.unsqueeze(0).expand(input_shape)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
         
     | 
| 153 | 
         
            +
            class RobertaSelfAttention(nn.Module):
         
     | 
| 154 | 
         
            +
                def __init__(self, config, position_embedding_type=None):
         
     | 
| 155 | 
         
            +
                    super().__init__()
         
     | 
| 156 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         
     | 
| 157 | 
         
            +
                        raise ValueError(
         
     | 
| 158 | 
         
            +
                            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
         
     | 
| 159 | 
         
            +
                            f"heads ({config.num_attention_heads})"
         
     | 
| 160 | 
         
            +
                        )
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 163 | 
         
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         
     | 
| 164 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 167 | 
         
            +
                    self.key = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 168 | 
         
            +
                    self.value = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         
     | 
| 171 | 
         
            +
                    self.position_embedding_type = position_embedding_type or getattr(
         
     | 
| 172 | 
         
            +
                        config, "position_embedding_type", "absolute"
         
     | 
| 173 | 
         
            +
                    )
         
     | 
| 174 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 175 | 
         
            +
                        self.max_position_embeddings = config.max_position_embeddings
         
     | 
| 176 | 
         
            +
                        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    self.is_decoder = config.is_decoder
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 181 | 
         
            +
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         
     | 
| 182 | 
         
            +
                    x = x.view(new_x_shape)
         
     | 
| 183 | 
         
            +
                    return x.permute(0, 2, 1, 3)
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                def forward(
         
     | 
| 186 | 
         
            +
                    self,
         
     | 
| 187 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 188 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 189 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 190 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 191 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 192 | 
         
            +
                    past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         
     | 
| 193 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 194 | 
         
            +
                ) -> Tuple[torch.Tensor]:
         
     | 
| 195 | 
         
            +
                    mixed_query_layer = self.query(hidden_states)
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    # If this is instantiated as a cross-attention module, the keys
         
     | 
| 198 | 
         
            +
                    # and values come from an encoder; the attention mask needs to be
         
     | 
| 199 | 
         
            +
                    # such that the encoder's padding tokens are not attended to.
         
     | 
| 200 | 
         
            +
                    is_cross_attention = encoder_hidden_states is not None
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    if is_cross_attention and past_key_value is not None:
         
     | 
| 203 | 
         
            +
                        # reuse k,v, cross_attentions
         
     | 
| 204 | 
         
            +
                        key_layer = past_key_value[0]
         
     | 
| 205 | 
         
            +
                        value_layer = past_key_value[1]
         
     | 
| 206 | 
         
            +
                        attention_mask = encoder_attention_mask
         
     | 
| 207 | 
         
            +
                    elif is_cross_attention:
         
     | 
| 208 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
         
     | 
| 209 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
         
     | 
| 210 | 
         
            +
                        attention_mask = encoder_attention_mask
         
     | 
| 211 | 
         
            +
                    elif past_key_value is not None:
         
     | 
| 212 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 213 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 214 | 
         
            +
                        key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
         
     | 
| 215 | 
         
            +
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         
     | 
| 216 | 
         
            +
                    else:
         
     | 
| 217 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 218 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    use_cache = past_key_value is not None
         
     | 
| 223 | 
         
            +
                    if self.is_decoder:
         
     | 
| 224 | 
         
            +
                        # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
         
     | 
| 225 | 
         
            +
                        # Further calls to cross_attention layer can then reuse all cross-attention
         
     | 
| 226 | 
         
            +
                        # key/value_states (first "if" case)
         
     | 
| 227 | 
         
            +
                        # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
         
     | 
| 228 | 
         
            +
                        # all previous decoder key/value_states. Further calls to uni-directional self-attention
         
     | 
| 229 | 
         
            +
                        # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
         
     | 
| 230 | 
         
            +
                        # if encoder bi-directional self-attention `past_key_value` is always `None`
         
     | 
| 231 | 
         
            +
                        past_key_value = (key_layer, value_layer)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 234 | 
         
            +
                    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 237 | 
         
            +
                        query_length, key_length = query_layer.shape[2], key_layer.shape[2]
         
     | 
| 238 | 
         
            +
                        if use_cache:
         
     | 
| 239 | 
         
            +
                            position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
         
     | 
| 240 | 
         
            +
                                -1, 1
         
     | 
| 241 | 
         
            +
                            )
         
     | 
| 242 | 
         
            +
                        else:
         
     | 
| 243 | 
         
            +
                            position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
         
     | 
| 244 | 
         
            +
                        position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
         
     | 
| 245 | 
         
            +
                        distance = position_ids_l - position_ids_r
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
         
     | 
| 248 | 
         
            +
                        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                        if self.position_embedding_type == "relative_key":
         
     | 
| 251 | 
         
            +
                            relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 252 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores
         
     | 
| 253 | 
         
            +
                        elif self.position_embedding_type == "relative_key_query":
         
     | 
| 254 | 
         
            +
                            relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 255 | 
         
            +
                            relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         
     | 
| 256 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         
     | 
| 259 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 260 | 
         
            +
                        # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
         
     | 
| 261 | 
         
            +
                        attention_scores = attention_scores + attention_mask
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                    # Normalize the attention scores to probabilities.
         
     | 
| 264 | 
         
            +
                    attention_probs = nn.functional.softmax(attention_scores, dim=-1)
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                    # This is actually dropping out entire tokens to attend to, which might
         
     | 
| 267 | 
         
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         
     | 
| 268 | 
         
            +
                    attention_probs = self.dropout(attention_probs)
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 271 | 
         
            +
                    if head_mask is not None:
         
     | 
| 272 | 
         
            +
                        attention_probs = attention_probs * head_mask
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                    context_layer = torch.matmul(attention_probs, value_layer)
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         
     | 
| 277 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         
     | 
| 278 | 
         
            +
                    context_layer = context_layer.view(new_context_layer_shape)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    if self.is_decoder:
         
     | 
| 283 | 
         
            +
                        outputs = outputs + (past_key_value,)
         
     | 
| 284 | 
         
            +
                    return outputs
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
         
     | 
| 288 | 
         
            +
            class RobertaSelfOutput(nn.Module):
         
     | 
| 289 | 
         
            +
                def __init__(self, config):
         
     | 
| 290 | 
         
            +
                    super().__init__()
         
     | 
| 291 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 292 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 293 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         
     | 
| 296 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 297 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 298 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 299 | 
         
            +
                    return hidden_states
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
         
     | 
| 303 | 
         
            +
            class RobertaAttention(nn.Module):
         
     | 
| 304 | 
         
            +
                def __init__(self, config, position_embedding_type=None):
         
     | 
| 305 | 
         
            +
                    super().__init__()
         
     | 
| 306 | 
         
            +
                    self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type)
         
     | 
| 307 | 
         
            +
                    self.output = RobertaSelfOutput(config)
         
     | 
| 308 | 
         
            +
                    self.pruned_heads = set()
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                def prune_heads(self, heads):
         
     | 
| 311 | 
         
            +
                    if len(heads) == 0:
         
     | 
| 312 | 
         
            +
                        return
         
     | 
| 313 | 
         
            +
                    heads, index = find_pruneable_heads_and_indices(
         
     | 
| 314 | 
         
            +
                        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
         
     | 
| 315 | 
         
            +
                    )
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    # Prune linear layers
         
     | 
| 318 | 
         
            +
                    self.self.query = prune_linear_layer(self.self.query, index)
         
     | 
| 319 | 
         
            +
                    self.self.key = prune_linear_layer(self.self.key, index)
         
     | 
| 320 | 
         
            +
                    self.self.value = prune_linear_layer(self.self.value, index)
         
     | 
| 321 | 
         
            +
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    # Update hyper params and store pruned heads
         
     | 
| 324 | 
         
            +
                    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
         
     | 
| 325 | 
         
            +
                    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
         
     | 
| 326 | 
         
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                def forward(
         
     | 
| 329 | 
         
            +
                    self,
         
     | 
| 330 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 331 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 332 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 333 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 334 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 335 | 
         
            +
                    past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         
     | 
| 336 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 337 | 
         
            +
                ) -> Tuple[torch.Tensor]:
         
     | 
| 338 | 
         
            +
                    self_outputs = self.self(
         
     | 
| 339 | 
         
            +
                        hidden_states,
         
     | 
| 340 | 
         
            +
                        attention_mask,
         
     | 
| 341 | 
         
            +
                        head_mask,
         
     | 
| 342 | 
         
            +
                        encoder_hidden_states,
         
     | 
| 343 | 
         
            +
                        encoder_attention_mask,
         
     | 
| 344 | 
         
            +
                        past_key_value,
         
     | 
| 345 | 
         
            +
                        output_attentions,
         
     | 
| 346 | 
         
            +
                    )
         
     | 
| 347 | 
         
            +
                    attention_output = self.output(self_outputs[0], hidden_states)
         
     | 
| 348 | 
         
            +
                    outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         
     | 
| 349 | 
         
            +
                    return outputs
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertIntermediate
         
     | 
| 353 | 
         
            +
            class RobertaIntermediate(nn.Module):
         
     | 
| 354 | 
         
            +
                def __init__(self, config):
         
     | 
| 355 | 
         
            +
                    super().__init__()
         
     | 
| 356 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         
     | 
| 357 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 358 | 
         
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 359 | 
         
            +
                    else:
         
     | 
| 360 | 
         
            +
                        self.intermediate_act_fn = config.hidden_act
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 363 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 364 | 
         
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         
     | 
| 365 | 
         
            +
                    return hidden_states
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertOutput
         
     | 
| 369 | 
         
            +
            class RobertaOutput(nn.Module):
         
     | 
| 370 | 
         
            +
                def __init__(self, config):
         
     | 
| 371 | 
         
            +
                    super().__init__()
         
     | 
| 372 | 
         
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         
     | 
| 373 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 374 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         
     | 
| 377 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 378 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 379 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 380 | 
         
            +
                    return hidden_states
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
         
     | 
| 384 | 
         
            +
            class RobertaLayer(nn.Module):
         
     | 
| 385 | 
         
            +
                def __init__(self, config):
         
     | 
| 386 | 
         
            +
                    super().__init__()
         
     | 
| 387 | 
         
            +
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         
     | 
| 388 | 
         
            +
                    self.seq_len_dim = 1
         
     | 
| 389 | 
         
            +
                    self.attention = RobertaAttention(config)
         
     | 
| 390 | 
         
            +
                    self.is_decoder = config.is_decoder
         
     | 
| 391 | 
         
            +
                    self.add_cross_attention = config.add_cross_attention
         
     | 
| 392 | 
         
            +
                    if self.add_cross_attention:
         
     | 
| 393 | 
         
            +
                        if not self.is_decoder:
         
     | 
| 394 | 
         
            +
                            raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
         
     | 
| 395 | 
         
            +
                        self.crossattention = RobertaAttention(config, position_embedding_type="absolute")
         
     | 
| 396 | 
         
            +
                    self.intermediate = RobertaIntermediate(config)
         
     | 
| 397 | 
         
            +
                    self.output = RobertaOutput(config)
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                def forward(
         
     | 
| 400 | 
         
            +
                    self,
         
     | 
| 401 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 402 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 403 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 404 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 405 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 406 | 
         
            +
                    past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         
     | 
| 407 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 408 | 
         
            +
                ) -> Tuple[torch.Tensor]:
         
     | 
| 409 | 
         
            +
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         
     | 
| 410 | 
         
            +
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         
     | 
| 411 | 
         
            +
                    self_attention_outputs = self.attention(
         
     | 
| 412 | 
         
            +
                        hidden_states,
         
     | 
| 413 | 
         
            +
                        attention_mask,
         
     | 
| 414 | 
         
            +
                        head_mask,
         
     | 
| 415 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 416 | 
         
            +
                        past_key_value=self_attn_past_key_value,
         
     | 
| 417 | 
         
            +
                    )
         
     | 
| 418 | 
         
            +
                    attention_output = self_attention_outputs[0]
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                    # if decoder, the last output is tuple of self-attn cache
         
     | 
| 421 | 
         
            +
                    if self.is_decoder:
         
     | 
| 422 | 
         
            +
                        outputs = self_attention_outputs[1:-1]
         
     | 
| 423 | 
         
            +
                        present_key_value = self_attention_outputs[-1]
         
     | 
| 424 | 
         
            +
                    else:
         
     | 
| 425 | 
         
            +
                        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    cross_attn_present_key_value = None
         
     | 
| 428 | 
         
            +
                    if self.is_decoder and encoder_hidden_states is not None:
         
     | 
| 429 | 
         
            +
                        if not hasattr(self, "crossattention"):
         
     | 
| 430 | 
         
            +
                            raise ValueError(
         
     | 
| 431 | 
         
            +
                                f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
         
     | 
| 432 | 
         
            +
                                " by setting `config.add_cross_attention=True`"
         
     | 
| 433 | 
         
            +
                            )
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                        # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
         
     | 
| 436 | 
         
            +
                        cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
         
     | 
| 437 | 
         
            +
                        cross_attention_outputs = self.crossattention(
         
     | 
| 438 | 
         
            +
                            attention_output,
         
     | 
| 439 | 
         
            +
                            attention_mask,
         
     | 
| 440 | 
         
            +
                            head_mask,
         
     | 
| 441 | 
         
            +
                            encoder_hidden_states,
         
     | 
| 442 | 
         
            +
                            encoder_attention_mask,
         
     | 
| 443 | 
         
            +
                            cross_attn_past_key_value,
         
     | 
| 444 | 
         
            +
                            output_attentions,
         
     | 
| 445 | 
         
            +
                        )
         
     | 
| 446 | 
         
            +
                        attention_output = cross_attention_outputs[0]
         
     | 
| 447 | 
         
            +
                        outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
                        # add cross-attn cache to positions 3,4 of present_key_value tuple
         
     | 
| 450 | 
         
            +
                        cross_attn_present_key_value = cross_attention_outputs[-1]
         
     | 
| 451 | 
         
            +
                        present_key_value = present_key_value + cross_attn_present_key_value
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    layer_output = apply_chunking_to_forward(
         
     | 
| 454 | 
         
            +
                        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
         
     | 
| 455 | 
         
            +
                    )
         
     | 
| 456 | 
         
            +
                    outputs = (layer_output,) + outputs
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                    # if decoder, return the attn key/values as the last output
         
     | 
| 459 | 
         
            +
                    if self.is_decoder:
         
     | 
| 460 | 
         
            +
                        outputs = outputs + (present_key_value,)
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                    return outputs
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                def feed_forward_chunk(self, attention_output):
         
     | 
| 465 | 
         
            +
                    intermediate_output = self.intermediate(attention_output)
         
     | 
| 466 | 
         
            +
                    layer_output = self.output(intermediate_output, attention_output)
         
     | 
| 467 | 
         
            +
                    return layer_output
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
         
     | 
| 471 | 
         
            +
            class RobertaEncoder(nn.Module):
         
     | 
| 472 | 
         
            +
                def __init__(self, config):
         
     | 
| 473 | 
         
            +
                    super().__init__()
         
     | 
| 474 | 
         
            +
                    self.config = config
         
     | 
| 475 | 
         
            +
                    self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
         
     | 
| 476 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                def forward(
         
     | 
| 479 | 
         
            +
                    self,
         
     | 
| 480 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 481 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 482 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 483 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 484 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 485 | 
         
            +
                    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         
     | 
| 486 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 487 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 488 | 
         
            +
                    output_hidden_states: Optional[bool] = False,
         
     | 
| 489 | 
         
            +
                    return_dict: Optional[bool] = True,
         
     | 
| 490 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
         
     | 
| 491 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 492 | 
         
            +
                    all_self_attentions = () if output_attentions else None
         
     | 
| 493 | 
         
            +
                    all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    if self.gradient_checkpointing and self.training:
         
     | 
| 496 | 
         
            +
                        if use_cache:
         
     | 
| 497 | 
         
            +
                            logger.warning_once(
         
     | 
| 498 | 
         
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 499 | 
         
            +
                            )
         
     | 
| 500 | 
         
            +
                            use_cache = False
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    next_decoder_cache = () if use_cache else None
         
     | 
| 503 | 
         
            +
                    for i, layer_module in enumerate(self.layer):
         
     | 
| 504 | 
         
            +
                        if output_hidden_states:
         
     | 
| 505 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         
     | 
| 508 | 
         
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                            def create_custom_forward(module):
         
     | 
| 513 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 514 | 
         
            +
                                    return module(*inputs, past_key_value, output_attentions)
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                                return custom_forward
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         
     | 
| 519 | 
         
            +
                                create_custom_forward(layer_module),
         
     | 
| 520 | 
         
            +
                                hidden_states,
         
     | 
| 521 | 
         
            +
                                attention_mask,
         
     | 
| 522 | 
         
            +
                                layer_head_mask,
         
     | 
| 523 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 524 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 525 | 
         
            +
                            )
         
     | 
| 526 | 
         
            +
                        else:
         
     | 
| 527 | 
         
            +
                            layer_outputs = layer_module(
         
     | 
| 528 | 
         
            +
                                hidden_states,
         
     | 
| 529 | 
         
            +
                                attention_mask,
         
     | 
| 530 | 
         
            +
                                layer_head_mask,
         
     | 
| 531 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 532 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 533 | 
         
            +
                                past_key_value,
         
     | 
| 534 | 
         
            +
                                output_attentions,
         
     | 
| 535 | 
         
            +
                            )
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 538 | 
         
            +
                        if use_cache:
         
     | 
| 539 | 
         
            +
                            next_decoder_cache += (layer_outputs[-1],)
         
     | 
| 540 | 
         
            +
                        if output_attentions:
         
     | 
| 541 | 
         
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         
     | 
| 542 | 
         
            +
                            if self.config.add_cross_attention:
         
     | 
| 543 | 
         
            +
                                all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
                    if output_hidden_states:
         
     | 
| 546 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                    if not return_dict:
         
     | 
| 549 | 
         
            +
                        return tuple(
         
     | 
| 550 | 
         
            +
                            v
         
     | 
| 551 | 
         
            +
                            for v in [
         
     | 
| 552 | 
         
            +
                                hidden_states,
         
     | 
| 553 | 
         
            +
                                next_decoder_cache,
         
     | 
| 554 | 
         
            +
                                all_hidden_states,
         
     | 
| 555 | 
         
            +
                                all_self_attentions,
         
     | 
| 556 | 
         
            +
                                all_cross_attentions,
         
     | 
| 557 | 
         
            +
                            ]
         
     | 
| 558 | 
         
            +
                            if v is not None
         
     | 
| 559 | 
         
            +
                        )
         
     | 
| 560 | 
         
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         
     | 
| 561 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 562 | 
         
            +
                        past_key_values=next_decoder_cache,
         
     | 
| 563 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 564 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 565 | 
         
            +
                        cross_attentions=all_cross_attentions,
         
     | 
| 566 | 
         
            +
                    )
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertPooler
         
     | 
| 570 | 
         
            +
            class RobertaPooler(nn.Module):
         
     | 
| 571 | 
         
            +
                def __init__(self, config):
         
     | 
| 572 | 
         
            +
                    super().__init__()
         
     | 
| 573 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 574 | 
         
            +
                    self.activation = nn.Tanh()
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 577 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 578 | 
         
            +
                    # to the first token.
         
     | 
| 579 | 
         
            +
                    first_token_tensor = hidden_states[:, 0]
         
     | 
| 580 | 
         
            +
                    pooled_output = self.dense(first_token_tensor)
         
     | 
| 581 | 
         
            +
                    pooled_output = self.activation(pooled_output)
         
     | 
| 582 | 
         
            +
                    return pooled_output
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
            class RobertaPreTrainedModel(PreTrainedModel):
         
     | 
| 586 | 
         
            +
                """
         
     | 
| 587 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 588 | 
         
            +
                models.
         
     | 
| 589 | 
         
            +
                """
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                config_class = RobertaConfig
         
     | 
| 592 | 
         
            +
                base_model_prefix = "roberta"
         
     | 
| 593 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 594 | 
         
            +
                _no_split_modules = []
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
         
     | 
| 597 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 598 | 
         
            +
                    """Initialize the weights"""
         
     | 
| 599 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 600 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 601 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 602 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 603 | 
         
            +
                        if module.bias is not None:
         
     | 
| 604 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 605 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 606 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 607 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 608 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 609 | 
         
            +
                    elif isinstance(module, nn.LayerNorm):
         
     | 
| 610 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 611 | 
         
            +
                        module.weight.data.fill_(1.0)
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 614 | 
         
            +
                    if isinstance(module, RobertaEncoder):
         
     | 
| 615 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
                def update_keys_to_ignore(self, config, del_keys_to_ignore):
         
     | 
| 618 | 
         
            +
                    """Remove some keys from ignore list"""
         
     | 
| 619 | 
         
            +
                    if not config.tie_word_embeddings:
         
     | 
| 620 | 
         
            +
                        # must make a new list, or the class variable gets modified!
         
     | 
| 621 | 
         
            +
                        self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
         
     | 
| 622 | 
         
            +
                        self._keys_to_ignore_on_load_missing = [
         
     | 
| 623 | 
         
            +
                            k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
         
     | 
| 624 | 
         
            +
                        ]
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
            ROBERTA_START_DOCSTRING = r"""
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         
     | 
| 630 | 
         
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         
     | 
| 631 | 
         
            +
                etc.)
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         
     | 
| 634 | 
         
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         
     | 
| 635 | 
         
            +
                and behavior.
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                Parameters:
         
     | 
| 638 | 
         
            +
                    config ([`RobertaConfig`]): Model configuration class with all the parameters of the
         
     | 
| 639 | 
         
            +
                        model. Initializing with a config file does not load the weights associated with the model, only the
         
     | 
| 640 | 
         
            +
                        configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         
     | 
| 641 | 
         
            +
            """
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
            ROBERTA_INPUTS_DOCSTRING = r"""
         
     | 
| 644 | 
         
            +
                Args:
         
     | 
| 645 | 
         
            +
                    input_ids (`torch.LongTensor` of shape `({0})`):
         
     | 
| 646 | 
         
            +
                        Indices of input sequence tokens in the vocabulary.
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 649 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                        [What are input IDs?](../glossary#input-ids)
         
     | 
| 652 | 
         
            +
                    attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
         
     | 
| 653 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 656 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 657 | 
         
            +
             
     | 
| 658 | 
         
            +
                        [What are attention masks?](../glossary#attention-mask)
         
     | 
| 659 | 
         
            +
                    token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
         
     | 
| 660 | 
         
            +
                        Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
                        - 0 corresponds to a *sentence A* token,
         
     | 
| 663 | 
         
            +
                        - 1 corresponds to a *sentence B* token.
         
     | 
| 664 | 
         
            +
                        This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
         
     | 
| 665 | 
         
            +
                        >= 2. All the value in this tensor should be always < type_vocab_size.
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                        [What are token type IDs?](../glossary#token-type-ids)
         
     | 
| 668 | 
         
            +
                    position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
         
     | 
| 669 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         
     | 
| 670 | 
         
            +
                        config.max_position_embeddings - 1]`.
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                        [What are position IDs?](../glossary#position-ids)
         
     | 
| 673 | 
         
            +
                    head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
         
     | 
| 674 | 
         
            +
                        Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
                        - 1 indicates the head is **not masked**,
         
     | 
| 677 | 
         
            +
                        - 0 indicates the head is **masked**.
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
                    inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
         
     | 
| 680 | 
         
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         
     | 
| 681 | 
         
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         
     | 
| 682 | 
         
            +
                        model's internal embedding lookup matrix.
         
     | 
| 683 | 
         
            +
                    output_attentions (`bool`, *optional*):
         
     | 
| 684 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         
     | 
| 685 | 
         
            +
                        tensors for more detail.
         
     | 
| 686 | 
         
            +
                    output_hidden_states (`bool`, *optional*):
         
     | 
| 687 | 
         
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         
     | 
| 688 | 
         
            +
                        more detail.
         
     | 
| 689 | 
         
            +
                    return_dict (`bool`, *optional*):
         
     | 
| 690 | 
         
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 691 | 
         
            +
            """
         
     | 
| 692 | 
         
            +
             
     | 
| 693 | 
         
            +
             
     | 
| 694 | 
         
            +
            @add_start_docstrings(
         
     | 
| 695 | 
         
            +
                "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
         
     | 
| 696 | 
         
            +
                ROBERTA_START_DOCSTRING,
         
     | 
| 697 | 
         
            +
            )
         
     | 
| 698 | 
         
            +
            class RobertaModel(RobertaPreTrainedModel):
         
     | 
| 699 | 
         
            +
                """
         
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
                The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
         
     | 
| 702 | 
         
            +
                cross-attention is added between the self-attention layers, following the architecture described in *Attention is
         
     | 
| 703 | 
         
            +
                all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
         
     | 
| 704 | 
         
            +
                Kaiser and Illia Polosukhin.
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
         
     | 
| 707 | 
         
            +
                to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
         
     | 
| 708 | 
         
            +
                `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
                .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                """
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
         
     | 
| 717 | 
         
            +
                def __init__(self, config, add_pooling_layer=True):
         
     | 
| 718 | 
         
            +
                    super().__init__(config)
         
     | 
| 719 | 
         
            +
                    self.config = config
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                    self.embeddings = RobertaEmbeddings(config)
         
     | 
| 722 | 
         
            +
                    self.encoder = RobertaEncoder(config)
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    self.pooler = RobertaPooler(config) if add_pooling_layer else None
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 727 | 
         
            +
                    self.post_init()
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 730 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 733 | 
         
            +
                    self.embeddings.word_embeddings = value
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 736 | 
         
            +
                    """
         
     | 
| 737 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         
     | 
| 738 | 
         
            +
                    class PreTrainedModel
         
     | 
| 739 | 
         
            +
                    """
         
     | 
| 740 | 
         
            +
                    for layer, heads in heads_to_prune.items():
         
     | 
| 741 | 
         
            +
                        self.encoder.layer[layer].attention.prune_heads(heads)
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 744 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 745 | 
         
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         
     | 
| 746 | 
         
            +
                    output_type=BaseModelOutputWithPoolingAndCrossAttentions,
         
     | 
| 747 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 748 | 
         
            +
                )
         
     | 
| 749 | 
         
            +
                # Copied from transformers.models.bert.modeling_bert.BertModel.forward
         
     | 
| 750 | 
         
            +
                def forward(
         
     | 
| 751 | 
         
            +
                    self,
         
     | 
| 752 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 753 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 754 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 755 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 756 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 757 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 758 | 
         
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 759 | 
         
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 760 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 761 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 762 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 763 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 764 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 765 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
         
     | 
| 766 | 
         
            +
                    r"""
         
     | 
| 767 | 
         
            +
                    encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 768 | 
         
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         
     | 
| 769 | 
         
            +
                        the model is configured as a decoder.
         
     | 
| 770 | 
         
            +
                    encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 771 | 
         
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         
     | 
| 772 | 
         
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
         
     | 
| 773 | 
         
            +
             
     | 
| 774 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 775 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 776 | 
         
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         
     | 
| 777 | 
         
            +
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         
     | 
| 780 | 
         
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         
     | 
| 781 | 
         
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         
     | 
| 782 | 
         
            +
                    use_cache (`bool`, *optional*):
         
     | 
| 783 | 
         
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         
     | 
| 784 | 
         
            +
                        `past_key_values`).
         
     | 
| 785 | 
         
            +
                    """
         
     | 
| 786 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 787 | 
         
            +
                    output_hidden_states = (
         
     | 
| 788 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 789 | 
         
            +
                    )
         
     | 
| 790 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    if self.config.is_decoder:
         
     | 
| 793 | 
         
            +
                        use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 794 | 
         
            +
                    else:
         
     | 
| 795 | 
         
            +
                        use_cache = False
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 798 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 799 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 800 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 801 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 802 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 803 | 
         
            +
                    else:
         
     | 
| 804 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
                    batch_size, seq_length = input_shape
         
     | 
| 807 | 
         
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                    # past_key_values_length
         
     | 
| 810 | 
         
            +
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                    if attention_mask is None:
         
     | 
| 813 | 
         
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                    if token_type_ids is None:
         
     | 
| 816 | 
         
            +
                        if hasattr(self.embeddings, "token_type_ids"):
         
     | 
| 817 | 
         
            +
                            buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
         
     | 
| 818 | 
         
            +
                            buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
         
     | 
| 819 | 
         
            +
                            token_type_ids = buffered_token_type_ids_expanded
         
     | 
| 820 | 
         
            +
                        else:
         
     | 
| 821 | 
         
            +
                            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 824 | 
         
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 825 | 
         
            +
                    extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         
     | 
| 828 | 
         
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 829 | 
         
            +
                    if self.config.is_decoder and encoder_hidden_states is not None:
         
     | 
| 830 | 
         
            +
                        encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         
     | 
| 831 | 
         
            +
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         
     | 
| 832 | 
         
            +
                        if encoder_attention_mask is None:
         
     | 
| 833 | 
         
            +
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         
     | 
| 834 | 
         
            +
                        encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 835 | 
         
            +
                    else:
         
     | 
| 836 | 
         
            +
                        encoder_extended_attention_mask = None
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                    # Prepare head mask if needed
         
     | 
| 839 | 
         
            +
                    # 1.0 in head_mask indicate we keep the head
         
     | 
| 840 | 
         
            +
                    # attention_probs has shape bsz x n_heads x N x N
         
     | 
| 841 | 
         
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         
     | 
| 842 | 
         
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         
     | 
| 843 | 
         
            +
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    embedding_output = self.embeddings(
         
     | 
| 846 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 847 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 848 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 849 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 850 | 
         
            +
                        past_key_values_length=past_key_values_length,
         
     | 
| 851 | 
         
            +
                    )
         
     | 
| 852 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 853 | 
         
            +
                        embedding_output,
         
     | 
| 854 | 
         
            +
                        attention_mask=extended_attention_mask,
         
     | 
| 855 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 856 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 857 | 
         
            +
                        encoder_attention_mask=encoder_extended_attention_mask,
         
     | 
| 858 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 859 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 860 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 861 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 862 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 863 | 
         
            +
                    )
         
     | 
| 864 | 
         
            +
                    sequence_output = encoder_outputs[0]
         
     | 
| 865 | 
         
            +
                    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
                    if not return_dict:
         
     | 
| 868 | 
         
            +
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                    return BaseModelOutputWithPoolingAndCrossAttentions(
         
     | 
| 871 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 872 | 
         
            +
                        pooler_output=pooled_output,
         
     | 
| 873 | 
         
            +
                        past_key_values=encoder_outputs.past_key_values,
         
     | 
| 874 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states,
         
     | 
| 875 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 876 | 
         
            +
                        cross_attentions=encoder_outputs.cross_attentions,
         
     | 
| 877 | 
         
            +
                    )
         
     | 
| 878 | 
         
            +
             
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
            @add_start_docstrings(
         
     | 
| 881 | 
         
            +
                """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING
         
     | 
| 882 | 
         
            +
            )
         
     | 
| 883 | 
         
            +
            class RobertaForCausalLM(RobertaPreTrainedModel):
         
     | 
| 884 | 
         
            +
                _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
         
     | 
| 885 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
         
     | 
| 886 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 887 | 
         
            +
             
     | 
| 888 | 
         
            +
                def __init__(self, config):
         
     | 
| 889 | 
         
            +
                    super().__init__(config)
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                    if not config.is_decoder:
         
     | 
| 892 | 
         
            +
                        logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
         
     | 
| 893 | 
         
            +
             
     | 
| 894 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 895 | 
         
            +
                    self.lm_head = RobertaLMHead(config)
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
                    # The LM head weights require special treatment only when they are tied with the word embeddings
         
     | 
| 898 | 
         
            +
                    self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 901 | 
         
            +
                    self.post_init()
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 904 | 
         
            +
                    return self.lm_head.decoder
         
     | 
| 905 | 
         
            +
             
     | 
| 906 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 907 | 
         
            +
                    self.lm_head.decoder = new_embeddings
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 910 | 
         
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
         
     | 
| 911 | 
         
            +
                def forward(
         
     | 
| 912 | 
         
            +
                    self,
         
     | 
| 913 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 914 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 915 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 916 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 917 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 918 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 919 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 920 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 921 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 922 | 
         
            +
                    past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
         
     | 
| 923 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 924 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 925 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 926 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 927 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
         
     | 
| 928 | 
         
            +
                    r"""
         
     | 
| 929 | 
         
            +
                    encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 930 | 
         
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         
     | 
| 931 | 
         
            +
                        the model is configured as a decoder.
         
     | 
| 932 | 
         
            +
                    encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 933 | 
         
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         
     | 
| 934 | 
         
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
         
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 937 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 938 | 
         
            +
             
     | 
| 939 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 940 | 
         
            +
                        Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
         
     | 
| 941 | 
         
            +
                        `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
         
     | 
| 942 | 
         
            +
                        ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
         
     | 
| 943 | 
         
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         
     | 
| 944 | 
         
            +
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         
     | 
| 947 | 
         
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         
     | 
| 948 | 
         
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         
     | 
| 949 | 
         
            +
                    use_cache (`bool`, *optional*):
         
     | 
| 950 | 
         
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         
     | 
| 951 | 
         
            +
                        `past_key_values`).
         
     | 
| 952 | 
         
            +
             
     | 
| 953 | 
         
            +
                    Returns:
         
     | 
| 954 | 
         
            +
             
     | 
| 955 | 
         
            +
                    Example:
         
     | 
| 956 | 
         
            +
             
     | 
| 957 | 
         
            +
                    ```python
         
     | 
| 958 | 
         
            +
                    >>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
         
     | 
| 959 | 
         
            +
                    >>> import torch
         
     | 
| 960 | 
         
            +
             
     | 
| 961 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
         
     | 
| 962 | 
         
            +
                    >>> config = AutoConfig.from_pretrained("roberta-base")
         
     | 
| 963 | 
         
            +
                    >>> config.is_decoder = True
         
     | 
| 964 | 
         
            +
                    >>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
         
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
                    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
         
     | 
| 967 | 
         
            +
                    >>> outputs = model(**inputs)
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                    >>> prediction_logits = outputs.logits
         
     | 
| 970 | 
         
            +
                    ```"""
         
     | 
| 971 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 972 | 
         
            +
                    if labels is not None:
         
     | 
| 973 | 
         
            +
                        use_cache = False
         
     | 
| 974 | 
         
            +
             
     | 
| 975 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 976 | 
         
            +
                        input_ids,
         
     | 
| 977 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 978 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 979 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 980 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 981 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 982 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 983 | 
         
            +
                        encoder_attention_mask=encoder_attention_mask,
         
     | 
| 984 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 985 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 986 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 987 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 988 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 989 | 
         
            +
                    )
         
     | 
| 990 | 
         
            +
             
     | 
| 991 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 992 | 
         
            +
                    prediction_scores = self.lm_head(sequence_output)
         
     | 
| 993 | 
         
            +
             
     | 
| 994 | 
         
            +
                    lm_loss = None
         
     | 
| 995 | 
         
            +
                    if labels is not None:
         
     | 
| 996 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 997 | 
         
            +
                        labels = labels.to(prediction_scores.device)
         
     | 
| 998 | 
         
            +
                        # we are doing next-token prediction; shift prediction scores and input ids by one
         
     | 
| 999 | 
         
            +
                        shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
         
     | 
| 1000 | 
         
            +
                        labels = labels[:, 1:].contiguous()
         
     | 
| 1001 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1002 | 
         
            +
                        lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         
     | 
| 1003 | 
         
            +
             
     | 
| 1004 | 
         
            +
                    if not return_dict:
         
     | 
| 1005 | 
         
            +
                        output = (prediction_scores,) + outputs[2:]
         
     | 
| 1006 | 
         
            +
                        return ((lm_loss,) + output) if lm_loss is not None else output
         
     | 
| 1007 | 
         
            +
             
     | 
| 1008 | 
         
            +
                    return CausalLMOutputWithCrossAttentions(
         
     | 
| 1009 | 
         
            +
                        loss=lm_loss,
         
     | 
| 1010 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 1011 | 
         
            +
                        past_key_values=outputs.past_key_values,
         
     | 
| 1012 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1013 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1014 | 
         
            +
                        cross_attentions=outputs.cross_attentions,
         
     | 
| 1015 | 
         
            +
                    )
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
         
     | 
| 1018 | 
         
            +
                    input_shape = input_ids.shape
         
     | 
| 1019 | 
         
            +
                    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
         
     | 
| 1020 | 
         
            +
                    if attention_mask is None:
         
     | 
| 1021 | 
         
            +
                        attention_mask = input_ids.new_ones(input_shape)
         
     | 
| 1022 | 
         
            +
             
     | 
| 1023 | 
         
            +
                    # cut decoder_input_ids if past is used
         
     | 
| 1024 | 
         
            +
                    if past_key_values is not None:
         
     | 
| 1025 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 1026 | 
         
            +
             
     | 
| 1027 | 
         
            +
                    return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
         
     | 
| 1028 | 
         
            +
             
     | 
| 1029 | 
         
            +
                def _reorder_cache(self, past_key_values, beam_idx):
         
     | 
| 1030 | 
         
            +
                    reordered_past = ()
         
     | 
| 1031 | 
         
            +
                    for layer_past in past_key_values:
         
     | 
| 1032 | 
         
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         
     | 
| 1033 | 
         
            +
                    return reordered_past
         
     | 
| 1034 | 
         
            +
             
     | 
| 1035 | 
         
            +
             
     | 
| 1036 | 
         
            +
            @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
         
     | 
| 1037 | 
         
            +
            class RobertaForMaskedLM(RobertaPreTrainedModel):
         
     | 
| 1038 | 
         
            +
                _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
         
     | 
| 1039 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
         
     | 
| 1040 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1041 | 
         
            +
             
     | 
| 1042 | 
         
            +
                def __init__(self, config):
         
     | 
| 1043 | 
         
            +
                    super().__init__(config)
         
     | 
| 1044 | 
         
            +
             
     | 
| 1045 | 
         
            +
                    if config.is_decoder:
         
     | 
| 1046 | 
         
            +
                        logger.warning(
         
     | 
| 1047 | 
         
            +
                            "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
         
     | 
| 1048 | 
         
            +
                            "bi-directional self-attention."
         
     | 
| 1049 | 
         
            +
                        )
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1052 | 
         
            +
                    self.lm_head = RobertaLMHead(config)
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                    # The LM head weights require special treatment only when they are tied with the word embeddings
         
     | 
| 1055 | 
         
            +
                    self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
         
     | 
| 1056 | 
         
            +
             
     | 
| 1057 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1058 | 
         
            +
                    self.post_init()
         
     | 
| 1059 | 
         
            +
             
     | 
| 1060 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1061 | 
         
            +
                    return self.lm_head.decoder
         
     | 
| 1062 | 
         
            +
             
     | 
| 1063 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1064 | 
         
            +
                    self.lm_head.decoder = new_embeddings
         
     | 
| 1065 | 
         
            +
             
     | 
| 1066 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1067 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1068 | 
         
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         
     | 
| 1069 | 
         
            +
                    output_type=MaskedLMOutput,
         
     | 
| 1070 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1071 | 
         
            +
                    mask="<mask>",
         
     | 
| 1072 | 
         
            +
                    expected_output="' Paris'",
         
     | 
| 1073 | 
         
            +
                    expected_loss=0.1,
         
     | 
| 1074 | 
         
            +
                )
         
     | 
| 1075 | 
         
            +
                def forward(
         
     | 
| 1076 | 
         
            +
                    self,
         
     | 
| 1077 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1078 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1079 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1080 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1081 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1082 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1083 | 
         
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 1084 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1085 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1086 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1087 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1088 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1089 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
         
     | 
| 1090 | 
         
            +
                    r"""
         
     | 
| 1091 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1092 | 
         
            +
                        Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
         
     | 
| 1093 | 
         
            +
                        config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
         
     | 
| 1094 | 
         
            +
                        loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
         
     | 
| 1095 | 
         
            +
                    kwargs (`Dict[str, any]`, optional, defaults to *{}*):
         
     | 
| 1096 | 
         
            +
                        Used to hide legacy arguments that have been deprecated.
         
     | 
| 1097 | 
         
            +
                    """
         
     | 
| 1098 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1099 | 
         
            +
             
     | 
| 1100 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1101 | 
         
            +
                        input_ids,
         
     | 
| 1102 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1103 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1104 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1105 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1106 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1107 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1108 | 
         
            +
                        encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1109 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1110 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1111 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1112 | 
         
            +
                    )
         
     | 
| 1113 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1114 | 
         
            +
                    prediction_scores = self.lm_head(sequence_output)
         
     | 
| 1115 | 
         
            +
             
     | 
| 1116 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1117 | 
         
            +
                    if labels is not None:
         
     | 
| 1118 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 1119 | 
         
            +
                        labels = labels.to(prediction_scores.device)
         
     | 
| 1120 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1121 | 
         
            +
                        masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         
     | 
| 1122 | 
         
            +
             
     | 
| 1123 | 
         
            +
                    if not return_dict:
         
     | 
| 1124 | 
         
            +
                        output = (prediction_scores,) + outputs[2:]
         
     | 
| 1125 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1126 | 
         
            +
             
     | 
| 1127 | 
         
            +
                    return MaskedLMOutput(
         
     | 
| 1128 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1129 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 1130 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1131 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1132 | 
         
            +
                    )
         
     | 
| 1133 | 
         
            +
             
     | 
| 1134 | 
         
            +
             
     | 
| 1135 | 
         
            +
            class RobertaLMHead(nn.Module):
         
     | 
| 1136 | 
         
            +
                """Roberta Head for masked language modeling."""
         
     | 
| 1137 | 
         
            +
             
     | 
| 1138 | 
         
            +
                def __init__(self, config):
         
     | 
| 1139 | 
         
            +
                    super().__init__()
         
     | 
| 1140 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 1141 | 
         
            +
                    self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 1142 | 
         
            +
             
     | 
| 1143 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
         
     | 
| 1144 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         
     | 
| 1145 | 
         
            +
                    self.decoder.bias = self.bias
         
     | 
| 1146 | 
         
            +
             
     | 
| 1147 | 
         
            +
                def forward(self, features, **kwargs):
         
     | 
| 1148 | 
         
            +
                    x = self.dense(features)
         
     | 
| 1149 | 
         
            +
                    x = gelu(x)
         
     | 
| 1150 | 
         
            +
                    x = self.layer_norm(x)
         
     | 
| 1151 | 
         
            +
             
     | 
| 1152 | 
         
            +
                    # project back to size of vocabulary with bias
         
     | 
| 1153 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 1154 | 
         
            +
             
     | 
| 1155 | 
         
            +
                    return x
         
     | 
| 1156 | 
         
            +
             
     | 
| 1157 | 
         
            +
                def _tie_weights(self):
         
     | 
| 1158 | 
         
            +
                    # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
         
     | 
| 1159 | 
         
            +
                    # For accelerate compatibility and to not break backward compatibility
         
     | 
| 1160 | 
         
            +
                    if self.decoder.bias.device.type == "meta":
         
     | 
| 1161 | 
         
            +
                        self.decoder.bias = self.bias
         
     | 
| 1162 | 
         
            +
                    else:
         
     | 
| 1163 | 
         
            +
                        self.bias = self.decoder.bias
         
     | 
| 1164 | 
         
            +
             
     | 
| 1165 | 
         
            +
             
     | 
| 1166 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1167 | 
         
            +
                """
         
     | 
| 1168 | 
         
            +
                RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
         
     | 
| 1169 | 
         
            +
                pooled output) e.g. for GLUE tasks.
         
     | 
| 1170 | 
         
            +
                """,
         
     | 
| 1171 | 
         
            +
                ROBERTA_START_DOCSTRING,
         
     | 
| 1172 | 
         
            +
            )
         
     | 
| 1173 | 
         
            +
            class RobertaForSequenceClassification(RobertaPreTrainedModel):
         
     | 
| 1174 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 1175 | 
         
            +
             
     | 
| 1176 | 
         
            +
                def __init__(self, config):
         
     | 
| 1177 | 
         
            +
                    super().__init__(config)
         
     | 
| 1178 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1179 | 
         
            +
                    self.config = config
         
     | 
| 1180 | 
         
            +
             
     | 
| 1181 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1182 | 
         
            +
                    self.classifier = RobertaClassificationHead(config)
         
     | 
| 1183 | 
         
            +
             
     | 
| 1184 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1185 | 
         
            +
                    self.post_init()
         
     | 
| 1186 | 
         
            +
             
     | 
| 1187 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1188 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1189 | 
         
            +
                    checkpoint="cardiffnlp/twitter-roberta-base-emotion",
         
     | 
| 1190 | 
         
            +
                    output_type=SequenceClassifierOutput,
         
     | 
| 1191 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1192 | 
         
            +
                    expected_output="'optimism'",
         
     | 
| 1193 | 
         
            +
                    expected_loss=0.08,
         
     | 
| 1194 | 
         
            +
                )
         
     | 
| 1195 | 
         
            +
                def forward(
         
     | 
| 1196 | 
         
            +
                    self,
         
     | 
| 1197 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1198 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1199 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1200 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1201 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1202 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1203 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1204 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1205 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1206 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1207 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
         
     | 
| 1208 | 
         
            +
                    r"""
         
     | 
| 1209 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1210 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 1211 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 1212 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1213 | 
         
            +
                    """
         
     | 
| 1214 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1215 | 
         
            +
             
     | 
| 1216 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1217 | 
         
            +
                        input_ids,
         
     | 
| 1218 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1219 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1220 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1221 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1222 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1223 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1224 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1225 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1226 | 
         
            +
                    )
         
     | 
| 1227 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1228 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 1229 | 
         
            +
             
     | 
| 1230 | 
         
            +
                    loss = None
         
     | 
| 1231 | 
         
            +
                    if labels is not None:
         
     | 
| 1232 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 1233 | 
         
            +
                        labels = labels.to(logits.device)
         
     | 
| 1234 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 1235 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1236 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 1237 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 1238 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 1239 | 
         
            +
                            else:
         
     | 
| 1240 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 1241 | 
         
            +
             
     | 
| 1242 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 1243 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 1244 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1245 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 1246 | 
         
            +
                            else:
         
     | 
| 1247 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 1248 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 1249 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 1250 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1251 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 1252 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 1253 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 1254 | 
         
            +
             
     | 
| 1255 | 
         
            +
                    if not return_dict:
         
     | 
| 1256 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1257 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1258 | 
         
            +
             
     | 
| 1259 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 1260 | 
         
            +
                        loss=loss,
         
     | 
| 1261 | 
         
            +
                        logits=logits,
         
     | 
| 1262 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1263 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1264 | 
         
            +
                    )
         
     | 
| 1265 | 
         
            +
             
     | 
| 1266 | 
         
            +
             
     | 
| 1267 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1268 | 
         
            +
                """
         
     | 
| 1269 | 
         
            +
                Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
         
     | 
| 1270 | 
         
            +
                softmax) e.g. for RocStories/SWAG tasks.
         
     | 
| 1271 | 
         
            +
                """,
         
     | 
| 1272 | 
         
            +
                ROBERTA_START_DOCSTRING,
         
     | 
| 1273 | 
         
            +
            )
         
     | 
| 1274 | 
         
            +
            class RobertaForMultipleChoice(RobertaPreTrainedModel):
         
     | 
| 1275 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 1276 | 
         
            +
             
     | 
| 1277 | 
         
            +
                def __init__(self, config):
         
     | 
| 1278 | 
         
            +
                    super().__init__(config)
         
     | 
| 1279 | 
         
            +
             
     | 
| 1280 | 
         
            +
                    self.roberta = RobertaModel(config)
         
     | 
| 1281 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 1282 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, 1)
         
     | 
| 1283 | 
         
            +
             
     | 
| 1284 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1285 | 
         
            +
                    self.post_init()
         
     | 
| 1286 | 
         
            +
             
     | 
| 1287 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
         
     | 
| 1288 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1289 | 
         
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         
     | 
| 1290 | 
         
            +
                    output_type=MultipleChoiceModelOutput,
         
     | 
| 1291 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1292 | 
         
            +
                )
         
     | 
| 1293 | 
         
            +
                def forward(
         
     | 
| 1294 | 
         
            +
                    self,
         
     | 
| 1295 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1296 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1297 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1298 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1299 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1300 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1301 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1302 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1303 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1304 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1305 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
         
     | 
| 1306 | 
         
            +
                    r"""
         
     | 
| 1307 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1308 | 
         
            +
                        Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
         
     | 
| 1309 | 
         
            +
                        num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
         
     | 
| 1310 | 
         
            +
                        `input_ids` above)
         
     | 
| 1311 | 
         
            +
                    """
         
     | 
| 1312 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1313 | 
         
            +
                    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
         
     | 
| 1314 | 
         
            +
             
     | 
| 1315 | 
         
            +
                    flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 1316 | 
         
            +
                    flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 1317 | 
         
            +
                    flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 1318 | 
         
            +
                    flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 1319 | 
         
            +
                    flat_inputs_embeds = (
         
     | 
| 1320 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 1321 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 1322 | 
         
            +
                        else None
         
     | 
| 1323 | 
         
            +
                    )
         
     | 
| 1324 | 
         
            +
             
     | 
| 1325 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1326 | 
         
            +
                        flat_input_ids,
         
     | 
| 1327 | 
         
            +
                        position_ids=flat_position_ids,
         
     | 
| 1328 | 
         
            +
                        token_type_ids=flat_token_type_ids,
         
     | 
| 1329 | 
         
            +
                        attention_mask=flat_attention_mask,
         
     | 
| 1330 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1331 | 
         
            +
                        inputs_embeds=flat_inputs_embeds,
         
     | 
| 1332 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1333 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1334 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1335 | 
         
            +
                    )
         
     | 
| 1336 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 1337 | 
         
            +
             
     | 
| 1338 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 1339 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 1340 | 
         
            +
                    reshaped_logits = logits.view(-1, num_choices)
         
     | 
| 1341 | 
         
            +
             
     | 
| 1342 | 
         
            +
                    loss = None
         
     | 
| 1343 | 
         
            +
                    if labels is not None:
         
     | 
| 1344 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 1345 | 
         
            +
                        labels = labels.to(reshaped_logits.device)
         
     | 
| 1346 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1347 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 1348 | 
         
            +
             
     | 
| 1349 | 
         
            +
                    if not return_dict:
         
     | 
| 1350 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 1351 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1352 | 
         
            +
             
     | 
| 1353 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 1354 | 
         
            +
                        loss=loss,
         
     | 
| 1355 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 1356 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1357 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1358 | 
         
            +
                    )
         
     | 
| 1359 | 
         
            +
             
     | 
| 1360 | 
         
            +
             
     | 
| 1361 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1362 | 
         
            +
                """
         
     | 
| 1363 | 
         
            +
                Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
         
     | 
| 1364 | 
         
            +
                Named-Entity-Recognition (NER) tasks.
         
     | 
| 1365 | 
         
            +
                """,
         
     | 
| 1366 | 
         
            +
                ROBERTA_START_DOCSTRING,
         
     | 
| 1367 | 
         
            +
            )
         
     | 
| 1368 | 
         
            +
            class RobertaForTokenClassification(RobertaPreTrainedModel):
         
     | 
| 1369 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1370 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 1371 | 
         
            +
             
     | 
| 1372 | 
         
            +
                def __init__(self, config):
         
     | 
| 1373 | 
         
            +
                    super().__init__(config)
         
     | 
| 1374 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1375 | 
         
            +
             
     | 
| 1376 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1377 | 
         
            +
                    classifier_dropout = (
         
     | 
| 1378 | 
         
            +
                        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
         
     | 
| 1379 | 
         
            +
                    )
         
     | 
| 1380 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1381 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1382 | 
         
            +
             
     | 
| 1383 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1384 | 
         
            +
                    self.post_init()
         
     | 
| 1385 | 
         
            +
             
     | 
| 1386 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1387 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1388 | 
         
            +
                    checkpoint="Jean-Baptiste/roberta-large-ner-english",
         
     | 
| 1389 | 
         
            +
                    output_type=TokenClassifierOutput,
         
     | 
| 1390 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1391 | 
         
            +
                    expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
         
     | 
| 1392 | 
         
            +
                    expected_loss=0.01,
         
     | 
| 1393 | 
         
            +
                )
         
     | 
| 1394 | 
         
            +
                def forward(
         
     | 
| 1395 | 
         
            +
                    self,
         
     | 
| 1396 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1397 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1398 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1399 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1400 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1401 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1402 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1403 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1404 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1405 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1406 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
         
     | 
| 1407 | 
         
            +
                    r"""
         
     | 
| 1408 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1409 | 
         
            +
                        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
         
     | 
| 1410 | 
         
            +
                    """
         
     | 
| 1411 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1412 | 
         
            +
             
     | 
| 1413 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1414 | 
         
            +
                        input_ids,
         
     | 
| 1415 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1416 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1417 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1418 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1419 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1420 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1421 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1422 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1423 | 
         
            +
                    )
         
     | 
| 1424 | 
         
            +
             
     | 
| 1425 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1426 | 
         
            +
             
     | 
| 1427 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 1428 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 1429 | 
         
            +
             
     | 
| 1430 | 
         
            +
                    loss = None
         
     | 
| 1431 | 
         
            +
                    if labels is not None:
         
     | 
| 1432 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 1433 | 
         
            +
                        labels = labels.to(logits.device)
         
     | 
| 1434 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1435 | 
         
            +
                        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1436 | 
         
            +
             
     | 
| 1437 | 
         
            +
                    if not return_dict:
         
     | 
| 1438 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1439 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1440 | 
         
            +
             
     | 
| 1441 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 1442 | 
         
            +
                        loss=loss,
         
     | 
| 1443 | 
         
            +
                        logits=logits,
         
     | 
| 1444 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1445 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1446 | 
         
            +
                    )
         
     | 
| 1447 | 
         
            +
             
     | 
| 1448 | 
         
            +
             
     | 
| 1449 | 
         
            +
            class RobertaClassificationHead(nn.Module):
         
     | 
| 1450 | 
         
            +
                """Head for sentence-level classification tasks."""
         
     | 
| 1451 | 
         
            +
             
     | 
| 1452 | 
         
            +
                def __init__(self, config):
         
     | 
| 1453 | 
         
            +
                    super().__init__()
         
     | 
| 1454 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 1455 | 
         
            +
                    classifier_dropout = (
         
     | 
| 1456 | 
         
            +
                        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
         
     | 
| 1457 | 
         
            +
                    )
         
     | 
| 1458 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1459 | 
         
            +
                    self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1460 | 
         
            +
             
     | 
| 1461 | 
         
            +
                def forward(self, features, **kwargs):
         
     | 
| 1462 | 
         
            +
                    x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
         
     | 
| 1463 | 
         
            +
                    x = self.dropout(x)
         
     | 
| 1464 | 
         
            +
                    x = self.dense(x)
         
     | 
| 1465 | 
         
            +
                    x = torch.tanh(x)
         
     | 
| 1466 | 
         
            +
                    x = self.dropout(x)
         
     | 
| 1467 | 
         
            +
                    x = self.out_proj(x)
         
     | 
| 1468 | 
         
            +
                    return x
         
     | 
| 1469 | 
         
            +
             
     | 
| 1470 | 
         
            +
             
     | 
| 1471 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1472 | 
         
            +
                """
         
     | 
| 1473 | 
         
            +
                Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
         
     | 
| 1474 | 
         
            +
                layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
         
     | 
| 1475 | 
         
            +
                """,
         
     | 
| 1476 | 
         
            +
                ROBERTA_START_DOCSTRING,
         
     | 
| 1477 | 
         
            +
            )
         
     | 
| 1478 | 
         
            +
            class RobertaForQuestionAnswering(RobertaPreTrainedModel):
         
     | 
| 1479 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 1480 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 1481 | 
         
            +
             
     | 
| 1482 | 
         
            +
                def __init__(self, config):
         
     | 
| 1483 | 
         
            +
                    super().__init__(config)
         
     | 
| 1484 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1485 | 
         
            +
             
     | 
| 1486 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1487 | 
         
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1488 | 
         
            +
             
     | 
| 1489 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1490 | 
         
            +
                    self.post_init()
         
     | 
| 1491 | 
         
            +
             
     | 
| 1492 | 
         
            +
                @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1493 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1494 | 
         
            +
                    checkpoint="deepset/roberta-base-squad2",
         
     | 
| 1495 | 
         
            +
                    output_type=QuestionAnsweringModelOutput,
         
     | 
| 1496 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1497 | 
         
            +
                    expected_output="' puppet'",
         
     | 
| 1498 | 
         
            +
                    expected_loss=0.86,
         
     | 
| 1499 | 
         
            +
                )
         
     | 
| 1500 | 
         
            +
                def forward(
         
     | 
| 1501 | 
         
            +
                    self,
         
     | 
| 1502 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1503 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1504 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1505 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1506 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1507 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1508 | 
         
            +
                    start_positions: Optional[torch.LongTensor] = None,
         
     | 
| 1509 | 
         
            +
                    end_positions: Optional[torch.LongTensor] = None,
         
     | 
| 1510 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1511 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1512 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1513 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
         
     | 
| 1514 | 
         
            +
                    r"""
         
     | 
| 1515 | 
         
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1516 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 1517 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1518 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1519 | 
         
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1520 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 1521 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1522 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1523 | 
         
            +
                    """
         
     | 
| 1524 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1525 | 
         
            +
             
     | 
| 1526 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1527 | 
         
            +
                        input_ids,
         
     | 
| 1528 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1529 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1530 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1531 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1532 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1533 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1534 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1535 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1536 | 
         
            +
                    )
         
     | 
| 1537 | 
         
            +
             
     | 
| 1538 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1539 | 
         
            +
             
     | 
| 1540 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 1541 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 1542 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 1543 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 1544 | 
         
            +
             
     | 
| 1545 | 
         
            +
                    total_loss = None
         
     | 
| 1546 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 1547 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 1548 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 1549 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 1550 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 1551 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 1552 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 1553 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 1554 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 1555 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 1556 | 
         
            +
             
     | 
| 1557 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 1558 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 1559 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 1560 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 1561 | 
         
            +
             
     | 
| 1562 | 
         
            +
                    if not return_dict:
         
     | 
| 1563 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 1564 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 1565 | 
         
            +
             
     | 
| 1566 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 1567 | 
         
            +
                        loss=total_loss,
         
     | 
| 1568 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 1569 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 1570 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1571 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1572 | 
         
            +
                    )
         
     | 
| 1573 | 
         
            +
             
     | 
| 1574 | 
         
            +
             
     | 
| 1575 | 
         
            +
            def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
         
     | 
| 1576 | 
         
            +
                """
         
     | 
| 1577 | 
         
            +
                Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
         
     | 
| 1578 | 
         
            +
                are ignored. This is modified from fairseq's `utils.make_positions`.
         
     | 
| 1579 | 
         
            +
             
     | 
| 1580 | 
         
            +
                Args:
         
     | 
| 1581 | 
         
            +
                    x: torch.Tensor x:
         
     | 
| 1582 | 
         
            +
             
     | 
| 1583 | 
         
            +
                Returns: torch.Tensor
         
     | 
| 1584 | 
         
            +
                """
         
     | 
| 1585 | 
         
            +
                # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
         
     | 
| 1586 | 
         
            +
                mask = input_ids.ne(padding_idx).int()
         
     | 
| 1587 | 
         
            +
                incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
         
     | 
| 1588 | 
         
            +
                return incremental_indices.long() + padding_idx
         
     | 
    	
        soft_prompt/model/sequence_causallm.py
    ADDED
    
    | 
         @@ -0,0 +1,1249 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch._C import NoopLogger
         
     | 
| 3 | 
         
            +
            import torch.nn
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import Tensor
         
     | 
| 6 | 
         
            +
            from typing import List, Optional, Tuple, Union
         
     | 
| 7 | 
         
            +
            from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel, BertOnlyMLMHead
         
     | 
| 10 | 
         
            +
            from transformers.models.opt.modeling_opt import OPTModel, OPTPreTrainedModel
         
     | 
| 11 | 
         
            +
            from transformers.models.roberta.modeling_roberta import RobertaLMHead, RobertaModel, RobertaPreTrainedModel
         
     | 
| 12 | 
         
            +
            from transformers.models.llama.modeling_llama import LlamaPreTrainedModel, LlamaModel, CausalLMOutputWithPast
         
     | 
| 13 | 
         
            +
            from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2PreTrainedModel
         
     | 
| 14 | 
         
            +
            from transformers.modeling_outputs import SequenceClassifierOutput, SequenceClassifierOutputWithPast, BaseModelOutput, Seq2SeqLMOutput
         
     | 
| 15 | 
         
            +
            from .prefix_encoder import PrefixEncoder
         
     | 
| 16 | 
         
            +
            from . import utils
         
     | 
| 17 | 
         
            +
            import hashlib
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def hash_nn(model):
         
     | 
| 21 | 
         
            +
                md5 = hashlib.md5()  # ignore
         
     | 
| 22 | 
         
            +
                for arg in model.parameters():
         
     | 
| 23 | 
         
            +
                    x = arg.data
         
     | 
| 24 | 
         
            +
                    if hasattr(x, "cpu"):
         
     | 
| 25 | 
         
            +
                        md5.update(x.cpu().numpy().data.tobytes())
         
     | 
| 26 | 
         
            +
                    elif hasattr(x, "numpy"):
         
     | 
| 27 | 
         
            +
                        md5.update(x.numpy().data.tobytes())
         
     | 
| 28 | 
         
            +
                    elif hasattr(x, "data"):
         
     | 
| 29 | 
         
            +
                        md5.update(x.data.tobytes())
         
     | 
| 30 | 
         
            +
                    else:
         
     | 
| 31 | 
         
            +
                        try:
         
     | 
| 32 | 
         
            +
                            md5.update(x.encode("utf-8"))
         
     | 
| 33 | 
         
            +
                        except:
         
     | 
| 34 | 
         
            +
                            md5.update(str(x).encode("utf-8"))
         
     | 
| 35 | 
         
            +
                return md5.hexdigest()
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            class OPTPrefixForMaskedLM(OPTPreTrainedModel):
         
     | 
| 39 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 40 | 
         
            +
                def __init__(self, config):
         
     | 
| 41 | 
         
            +
                    super().__init__(config)
         
     | 
| 42 | 
         
            +
                    self.model = OPTModel(config)
         
     | 
| 43 | 
         
            +
                    self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
         
     | 
| 44 | 
         
            +
                    self.dropout = torch.nn.Dropout(0.1)
         
     | 
| 45 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 46 | 
         
            +
                        param.requires_grad = False
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 49 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 50 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 51 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 52 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 53 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    base_param = 0
         
     | 
| 56 | 
         
            +
                    for name, param in self.model.named_parameters():
         
     | 
| 57 | 
         
            +
                        base_param += param.numel()
         
     | 
| 58 | 
         
            +
                    all_param = 0
         
     | 
| 59 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 60 | 
         
            +
                        all_param += param.numel()
         
     | 
| 61 | 
         
            +
                    total_param = all_param - base_param
         
     | 
| 62 | 
         
            +
                    print('-> OPT_param:{:0.2f}M P-tuning-V2 param is {}'.format(base_param / 1000000, total_param))
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    self.embedding = self.get_input_embeddings()
         
     | 
| 65 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 66 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 69 | 
         
            +
                    return self.model.decoder.embed_tokens
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 72 | 
         
            +
                    self.model.decoder.embed_tokens = value
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 75 | 
         
            +
                    return self.lm_head
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 78 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 81 | 
         
            +
                    self.model.decoder = decoder
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                def get_decoder(self):
         
     | 
| 84 | 
         
            +
                    return self.model.decoder
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 87 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.model.device)
         
     | 
| 88 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 89 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 90 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 91 | 
         
            +
                        batch_size,
         
     | 
| 92 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 93 | 
         
            +
                        self.n_layer * 2,
         
     | 
| 94 | 
         
            +
                        self.n_head,
         
     | 
| 95 | 
         
            +
                        self.n_embd
         
     | 
| 96 | 
         
            +
                    )
         
     | 
| 97 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 98 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 99 | 
         
            +
                    return past_key_values
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def use_grad(self, transformer, use_grad):
         
     | 
| 102 | 
         
            +
                    if use_grad:
         
     | 
| 103 | 
         
            +
                        for param in transformer.parameters():
         
     | 
| 104 | 
         
            +
                            param.requires_grad = True
         
     | 
| 105 | 
         
            +
                        transformer.train()
         
     | 
| 106 | 
         
            +
                    else:
         
     | 
| 107 | 
         
            +
                        for param in transformer.parameters():
         
     | 
| 108 | 
         
            +
                            param.requires_grad = False
         
     | 
| 109 | 
         
            +
                        transformer.eval()
         
     | 
| 110 | 
         
            +
                    for param in self.lm_head.parameters():
         
     | 
| 111 | 
         
            +
                        param.requires_grad = True
         
     | 
| 112 | 
         
            +
                    for param in self.prefix_encoder.parameters():
         
     | 
| 113 | 
         
            +
                        param.requires_grad = True
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                def forward(
         
     | 
| 116 | 
         
            +
                    self,
         
     | 
| 117 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 118 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 119 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 120 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 121 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 122 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 123 | 
         
            +
                    token_labels: Optional[torch.LongTensor] = None,
         
     | 
| 124 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 125 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 126 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 127 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 128 | 
         
            +
                    use_base_grad=False,
         
     | 
| 129 | 
         
            +
                ):
         
     | 
| 130 | 
         
            +
                    r"""
         
     | 
| 131 | 
         
            +
                    Args:
         
     | 
| 132 | 
         
            +
                        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         
     | 
| 133 | 
         
            +
                            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
         
     | 
| 134 | 
         
            +
                            provide it.
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 137 | 
         
            +
                            [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                            [What are input IDs?](../glossary#input-ids)
         
     | 
| 140 | 
         
            +
                        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 141 | 
         
            +
                            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                            - 1 for tokens that are **not masked**,
         
     | 
| 144 | 
         
            +
                            - 0 for tokens that are **masked**.
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                            [What are attention masks?](../glossary#attention-mask)
         
     | 
| 147 | 
         
            +
                        head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
         
     | 
| 148 | 
         
            +
                            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                            - 1 indicates the head is **not masked**,
         
     | 
| 151 | 
         
            +
                            - 0 indicates the head is **masked**.
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         
     | 
| 154 | 
         
            +
                            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         
     | 
| 155 | 
         
            +
                            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
         
     | 
| 156 | 
         
            +
                            shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
         
     | 
| 157 | 
         
            +
                            tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
         
     | 
| 160 | 
         
            +
                            cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
         
     | 
| 163 | 
         
            +
                            that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
         
     | 
| 164 | 
         
            +
                            all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         
     | 
| 165 | 
         
            +
                        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 166 | 
         
            +
                            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
         
     | 
| 167 | 
         
            +
                            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
         
     | 
| 168 | 
         
            +
                            than the model's internal embedding lookup matrix.
         
     | 
| 169 | 
         
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 170 | 
         
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         
     | 
| 171 | 
         
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         
     | 
| 172 | 
         
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         
     | 
| 173 | 
         
            +
                        use_cache (`bool`, *optional*):
         
     | 
| 174 | 
         
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         
     | 
| 175 | 
         
            +
                            (see `past_key_values`).
         
     | 
| 176 | 
         
            +
                        output_attentions (`bool`, *optional*):
         
     | 
| 177 | 
         
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         
     | 
| 178 | 
         
            +
                            returned tensors for more detail.
         
     | 
| 179 | 
         
            +
                        output_hidden_states (`bool`, *optional*):
         
     | 
| 180 | 
         
            +
                            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
         
     | 
| 181 | 
         
            +
                            for more detail.
         
     | 
| 182 | 
         
            +
                        return_dict (`bool`, *optional*):
         
     | 
| 183 | 
         
            +
                            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    Returns:
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    Example:
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    ```python
         
     | 
| 190 | 
         
            +
                    >>> from transformers import AutoTokenizer, OPTForCausalLM
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                    >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
         
     | 
| 193 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         
     | 
| 196 | 
         
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    >>> # Generate
         
     | 
| 199 | 
         
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         
     | 
| 200 | 
         
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 201 | 
         
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
         
     | 
| 202 | 
         
            +
                    ```"""
         
     | 
| 203 | 
         
            +
                    utils.use_grad(self.model, use_base_grad)
         
     | 
| 204 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 205 | 
         
            +
                    output_hidden_states = (
         
     | 
| 206 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 207 | 
         
            +
                    )
         
     | 
| 208 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 209 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 210 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 211 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.model.device)
         
     | 
| 212 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    outputs = self.model.decoder(
         
     | 
| 215 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 216 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 217 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 218 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 219 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 220 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 221 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 222 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 223 | 
         
            +
                    )
         
     | 
| 224 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 225 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 226 | 
         
            +
                    sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(self.model.device)
         
     | 
| 227 | 
         
            +
                    cls_token = sequence_output[torch.arange(batch_size, device=self.model.device), sequence_lengths].contiguous()
         
     | 
| 228 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    # compute loss
         
     | 
| 231 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 232 | 
         
            +
                    if token_labels is not None:
         
     | 
| 233 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 234 | 
         
            +
                    else:
         
     | 
| 235 | 
         
            +
                        if labels is not None:
         
     | 
| 236 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 237 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    # convert to binary classifier
         
     | 
| 240 | 
         
            +
                    probs = []
         
     | 
| 241 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 242 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 243 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 246 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 247 | 
         
            +
                        logits=logits,
         
     | 
| 248 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 249 | 
         
            +
                        attentions=attentions
         
     | 
| 250 | 
         
            +
                    )
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 253 | 
         
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         
     | 
| 254 | 
         
            +
                ):
         
     | 
| 255 | 
         
            +
                    if past_key_values:
         
     | 
| 256 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 259 | 
         
            +
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 260 | 
         
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 261 | 
         
            +
                    else:
         
     | 
| 262 | 
         
            +
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                    model_inputs.update(
         
     | 
| 265 | 
         
            +
                        {
         
     | 
| 266 | 
         
            +
                            "past_key_values": past_key_values,
         
     | 
| 267 | 
         
            +
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 268 | 
         
            +
                            "attention_mask": attention_mask,
         
     | 
| 269 | 
         
            +
                        }
         
     | 
| 270 | 
         
            +
                    )
         
     | 
| 271 | 
         
            +
                    return model_inputs
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                @staticmethod
         
     | 
| 274 | 
         
            +
                def _reorder_cache(past_key_values, beam_idx):
         
     | 
| 275 | 
         
            +
                    reordered_past = ()
         
     | 
| 276 | 
         
            +
                    for layer_past in past_key_values:
         
     | 
| 277 | 
         
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         
     | 
| 278 | 
         
            +
                    return reordered_past
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
            class OPTPromptForMaskedLM(OPTPreTrainedModel):
         
     | 
| 282 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                def __init__(self, config):
         
     | 
| 285 | 
         
            +
                    super().__init__(config)
         
     | 
| 286 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 287 | 
         
            +
                    self.model = OPTModel(config)
         
     | 
| 288 | 
         
            +
                    self.score = torch.nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
         
     | 
| 289 | 
         
            +
                    self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
         
     | 
| 290 | 
         
            +
                    self.dropout = torch.nn.Dropout(0.1)
         
     | 
| 291 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 292 | 
         
            +
                        param.requires_grad = False
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 295 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 296 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 297 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 300 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    model_param = 0
         
     | 
| 303 | 
         
            +
                    for name, param in self.model.named_parameters():
         
     | 
| 304 | 
         
            +
                        model_param += param.numel()
         
     | 
| 305 | 
         
            +
                    all_param = 0
         
     | 
| 306 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 307 | 
         
            +
                        all_param += param.numel()
         
     | 
| 308 | 
         
            +
                    total_param = all_param - model_param
         
     | 
| 309 | 
         
            +
                    print('-> OPT_param:{:0.2f}M P-tuning-V2 param is {}'.format(model_param / 1000000, total_param))
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                    self.embedding = self.model.decoder.embed_tokens
         
     | 
| 312 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 313 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 316 | 
         
            +
                    return self.model.decoder.embed_tokens
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 319 | 
         
            +
                    self.model.decoder.embed_tokens = value
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 322 | 
         
            +
                    return self.lm_head
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 325 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 328 | 
         
            +
                    self.model.decoder = decoder
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
                def get_decoder(self):
         
     | 
| 331 | 
         
            +
                    return self.model.decoder
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 334 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.model.device)
         
     | 
| 335 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 336 | 
         
            +
                    return prompts
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                def use_grad(self, transformer, use_grad):
         
     | 
| 339 | 
         
            +
                    if use_grad:
         
     | 
| 340 | 
         
            +
                        for param in transformer.parameters():
         
     | 
| 341 | 
         
            +
                            param.requires_grad = True
         
     | 
| 342 | 
         
            +
                        transformer.train()
         
     | 
| 343 | 
         
            +
                    else:
         
     | 
| 344 | 
         
            +
                        for param in transformer.parameters():
         
     | 
| 345 | 
         
            +
                            param.requires_grad = False
         
     | 
| 346 | 
         
            +
                        transformer.eval()
         
     | 
| 347 | 
         
            +
                    for param in self.lm_head.parameters():
         
     | 
| 348 | 
         
            +
                        param.requires_grad = True
         
     | 
| 349 | 
         
            +
                    for param in self.prefix_encoder.parameters():
         
     | 
| 350 | 
         
            +
                        param.requires_grad = True
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                def forward(
         
     | 
| 353 | 
         
            +
                        self,
         
     | 
| 354 | 
         
            +
                        input_ids: torch.LongTensor = None,
         
     | 
| 355 | 
         
            +
                        attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 356 | 
         
            +
                        head_mask: Optional[torch.Tensor] = None,
         
     | 
| 357 | 
         
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 358 | 
         
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 359 | 
         
            +
                        labels: Optional[torch.LongTensor] = None,
         
     | 
| 360 | 
         
            +
                        token_labels: Optional[torch.LongTensor] = None,
         
     | 
| 361 | 
         
            +
                        use_cache: Optional[bool] = None,
         
     | 
| 362 | 
         
            +
                        output_attentions: Optional[bool] = None,
         
     | 
| 363 | 
         
            +
                        output_hidden_states: Optional[bool] = None,
         
     | 
| 364 | 
         
            +
                        return_dict: Optional[bool] = None,
         
     | 
| 365 | 
         
            +
                        use_base_grad=False,
         
     | 
| 366 | 
         
            +
                ):
         
     | 
| 367 | 
         
            +
                    r"""
         
     | 
| 368 | 
         
            +
                    Args:
         
     | 
| 369 | 
         
            +
                        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         
     | 
| 370 | 
         
            +
                            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
         
     | 
| 371 | 
         
            +
                            provide it.
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 374 | 
         
            +
                            [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                            [What are input IDs?](../glossary#input-ids)
         
     | 
| 377 | 
         
            +
                        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 378 | 
         
            +
                            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                            - 1 for tokens that are **not masked**,
         
     | 
| 381 | 
         
            +
                            - 0 for tokens that are **masked**.
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                            [What are attention masks?](../glossary#attention-mask)
         
     | 
| 384 | 
         
            +
                        head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
         
     | 
| 385 | 
         
            +
                            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                            - 1 indicates the head is **not masked**,
         
     | 
| 388 | 
         
            +
                            - 0 indicates the head is **masked**.
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         
     | 
| 391 | 
         
            +
                            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         
     | 
| 392 | 
         
            +
                            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
         
     | 
| 393 | 
         
            +
                            shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
         
     | 
| 394 | 
         
            +
                            tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
         
     | 
| 397 | 
         
            +
                            cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
         
     | 
| 400 | 
         
            +
                            that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
         
     | 
| 401 | 
         
            +
                            all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         
     | 
| 402 | 
         
            +
                        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 403 | 
         
            +
                            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
         
     | 
| 404 | 
         
            +
                            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
         
     | 
| 405 | 
         
            +
                            than the model's internal embedding lookup matrix.
         
     | 
| 406 | 
         
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 407 | 
         
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         
     | 
| 408 | 
         
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         
     | 
| 409 | 
         
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         
     | 
| 410 | 
         
            +
                        use_cache (`bool`, *optional*):
         
     | 
| 411 | 
         
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         
     | 
| 412 | 
         
            +
                            (see `past_key_values`).
         
     | 
| 413 | 
         
            +
                        output_attentions (`bool`, *optional*):
         
     | 
| 414 | 
         
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         
     | 
| 415 | 
         
            +
                            returned tensors for more detail.
         
     | 
| 416 | 
         
            +
                        output_hidden_states (`bool`, *optional*):
         
     | 
| 417 | 
         
            +
                            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
         
     | 
| 418 | 
         
            +
                            for more detail.
         
     | 
| 419 | 
         
            +
                        return_dict (`bool`, *optional*):
         
     | 
| 420 | 
         
            +
                            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    Returns:
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    Example:
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    ```python
         
     | 
| 427 | 
         
            +
                    >>> from transformers import AutoTokenizer, OPTForCausalLM
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
         
     | 
| 430 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         
     | 
| 433 | 
         
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                    >>> # Generate
         
     | 
| 436 | 
         
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         
     | 
| 437 | 
         
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 438 | 
         
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
         
     | 
| 439 | 
         
            +
                    ```"""
         
     | 
| 440 | 
         
            +
                    utils.use_grad(self.model, use_base_grad)
         
     | 
| 441 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 442 | 
         
            +
                    output_hidden_states = (
         
     | 
| 443 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 444 | 
         
            +
                    )
         
     | 
| 445 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 448 | 
         
            +
                    raw_embedding = self.model.decoder.embed_tokens(input_ids)
         
     | 
| 449 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 450 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 451 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.model.device)
         
     | 
| 452 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         
     | 
| 455 | 
         
            +
                    outputs = self.model.decoder(
         
     | 
| 456 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 457 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 458 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 459 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 460 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 461 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 462 | 
         
            +
                    )
         
     | 
| 463 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 464 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :]
         
     | 
| 465 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 466 | 
         
            +
                    sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(self.model.device)
         
     | 
| 467 | 
         
            +
                    cls_token = sequence_output[torch.arange(batch_size, device=self.model.device), sequence_lengths].contiguous()
         
     | 
| 468 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                    # compute loss
         
     | 
| 471 | 
         
            +
                    loss = None
         
     | 
| 472 | 
         
            +
                    if token_labels is not None:
         
     | 
| 473 | 
         
            +
                        loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 474 | 
         
            +
                    else:
         
     | 
| 475 | 
         
            +
                        if labels is not None:
         
     | 
| 476 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 477 | 
         
            +
                            loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                    # convert to binary classifier
         
     | 
| 480 | 
         
            +
                    probs = []
         
     | 
| 481 | 
         
            +
                    for idx, y in enumerate(self.clean_labels):
         
     | 
| 482 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 483 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 484 | 
         
            +
                    #loss = torch.nn.functional.nll_loss(logits, labels)
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 487 | 
         
            +
                        loss=loss,
         
     | 
| 488 | 
         
            +
                        logits=logits,
         
     | 
| 489 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 490 | 
         
            +
                        attentions=attentions
         
     | 
| 491 | 
         
            +
                    )
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 494 | 
         
            +
                        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         
     | 
| 495 | 
         
            +
                ):
         
     | 
| 496 | 
         
            +
                    if past_key_values:
         
     | 
| 497 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 500 | 
         
            +
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 501 | 
         
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 502 | 
         
            +
                    else:
         
     | 
| 503 | 
         
            +
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                    model_inputs.update(
         
     | 
| 506 | 
         
            +
                        {
         
     | 
| 507 | 
         
            +
                            "past_key_values": past_key_values,
         
     | 
| 508 | 
         
            +
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 509 | 
         
            +
                            "attention_mask": attention_mask,
         
     | 
| 510 | 
         
            +
                        }
         
     | 
| 511 | 
         
            +
                    )
         
     | 
| 512 | 
         
            +
                    return model_inputs
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                @staticmethod
         
     | 
| 515 | 
         
            +
                def _reorder_cache(past_key_values, beam_idx):
         
     | 
| 516 | 
         
            +
                    reordered_past = ()
         
     | 
| 517 | 
         
            +
                    for layer_past in past_key_values:
         
     | 
| 518 | 
         
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         
     | 
| 519 | 
         
            +
                    return reordered_past
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
            class LlamaPrefixForMaskedLM(LlamaPreTrainedModel):
         
     | 
| 523 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                def __init__(self, config):
         
     | 
| 526 | 
         
            +
                    super().__init__(config)
         
     | 
| 527 | 
         
            +
                    self.model = LlamaModel(config)
         
     | 
| 528 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 529 | 
         
            +
                    self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 530 | 
         
            +
                    self.dropout = torch.nn.Dropout(0.1)
         
     | 
| 531 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 532 | 
         
            +
                        param.requires_grad = False
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 535 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 536 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 537 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 538 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 539 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
                    base_param = 0
         
     | 
| 542 | 
         
            +
                    for name, param in self.model.named_parameters():
         
     | 
| 543 | 
         
            +
                        base_param += param.numel()
         
     | 
| 544 | 
         
            +
                    all_param = 0
         
     | 
| 545 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 546 | 
         
            +
                        all_param += param.numel()
         
     | 
| 547 | 
         
            +
                    total_param = all_param - base_param
         
     | 
| 548 | 
         
            +
                    print('-> LLama_param:{:0.2f}M P-tuning-V2 param:{:0.2f}M'.format(base_param / 1000000, total_param/ 1000000))
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    self.embedding = self.model.embed_tokens
         
     | 
| 551 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 552 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 555 | 
         
            +
                    device = next(self.prefix_encoder.parameters()).device
         
     | 
| 556 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
         
     | 
| 557 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 558 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 559 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 560 | 
         
            +
                        batch_size,
         
     | 
| 561 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 562 | 
         
            +
                        self.n_layer * 2,
         
     | 
| 563 | 
         
            +
                        self.n_head,
         
     | 
| 564 | 
         
            +
                        self.n_embd
         
     | 
| 565 | 
         
            +
                    )
         
     | 
| 566 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 567 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 568 | 
         
            +
                    return past_key_values
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 571 | 
         
            +
                    return self.model.embed_tokens
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 574 | 
         
            +
                    self.model.embed_tokens = value
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 577 | 
         
            +
                    return self.lm_head
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 580 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 583 | 
         
            +
                    self.model = decoder
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                def get_decoder(self):
         
     | 
| 586 | 
         
            +
                    return self.model
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                def use_grad(self, base_model, use_grad):
         
     | 
| 589 | 
         
            +
                    if use_grad:
         
     | 
| 590 | 
         
            +
                        for param in base_model.parameters():
         
     | 
| 591 | 
         
            +
                            param.requires_grad = True
         
     | 
| 592 | 
         
            +
                        base_model.train()
         
     | 
| 593 | 
         
            +
                    else:
         
     | 
| 594 | 
         
            +
                        for param in base_model.parameters():
         
     | 
| 595 | 
         
            +
                            param.requires_grad = False
         
     | 
| 596 | 
         
            +
                        base_model.eval()
         
     | 
| 597 | 
         
            +
                    for param in self.prefix_encoder.parameters():
         
     | 
| 598 | 
         
            +
                        param.requires_grad = True
         
     | 
| 599 | 
         
            +
                    for param in self.lm_head.parameters():
         
     | 
| 600 | 
         
            +
                        param.requires_grad = True
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                def forward(
         
     | 
| 603 | 
         
            +
                        self,
         
     | 
| 604 | 
         
            +
                        input_ids=None,
         
     | 
| 605 | 
         
            +
                        attention_mask=None,
         
     | 
| 606 | 
         
            +
                        token_type_ids=None,
         
     | 
| 607 | 
         
            +
                        position_ids=None,
         
     | 
| 608 | 
         
            +
                        inputs_embeds=None,
         
     | 
| 609 | 
         
            +
                        labels=None,
         
     | 
| 610 | 
         
            +
                        token_labels=None,
         
     | 
| 611 | 
         
            +
                        output_attentions=None,
         
     | 
| 612 | 
         
            +
                        output_hidden_states=None,
         
     | 
| 613 | 
         
            +
                        return_dict=None,
         
     | 
| 614 | 
         
            +
                        use_base_grad=False,
         
     | 
| 615 | 
         
            +
                ):
         
     | 
| 616 | 
         
            +
                    utils.use_grad(self.model, use_base_grad)
         
     | 
| 617 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 618 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 619 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 620 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(attention_mask.device)
         
     | 
| 621 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                    outputs = self.model(
         
     | 
| 624 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 625 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 626 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 627 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 628 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 629 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 630 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 631 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 632 | 
         
            +
                    )
         
     | 
| 633 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 634 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 635 | 
         
            +
                    #sequence_output = torch.clamp(sequence_output, min=-1, max=1)
         
     | 
| 636 | 
         
            +
                    #cls_token = sequence_output[:, :1]
         
     | 
| 637 | 
         
            +
                    sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(sequence_output.device)
         
     | 
| 638 | 
         
            +
                    cls_token = sequence_output[torch.arange(batch_size, device=sequence_output.device), sequence_lengths].contiguous()
         
     | 
| 639 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                    # compute loss
         
     | 
| 642 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 643 | 
         
            +
                    if token_labels is not None:
         
     | 
| 644 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels.to(attentions.device)).sum()
         
     | 
| 645 | 
         
            +
                    else:
         
     | 
| 646 | 
         
            +
                        if labels is not None:
         
     | 
| 647 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 648 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                    # convert to binary classifier
         
     | 
| 651 | 
         
            +
                    probs = []
         
     | 
| 652 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 653 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 654 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 657 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 658 | 
         
            +
                        logits=logits,
         
     | 
| 659 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 660 | 
         
            +
                        attentions=attentions
         
     | 
| 661 | 
         
            +
                    )
         
     | 
| 662 | 
         
            +
             
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
            class LlamaPromptForMaskedLM(LlamaPreTrainedModel):
         
     | 
| 665 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 666 | 
         
            +
                def __init__(self, config):
         
     | 
| 667 | 
         
            +
                    super().__init__(config)
         
     | 
| 668 | 
         
            +
                    self.model = LlamaModel(config)
         
     | 
| 669 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 670 | 
         
            +
                    self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 671 | 
         
            +
                    self.dropout = torch.nn.Dropout(0.1)
         
     | 
| 672 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 673 | 
         
            +
                        param.requires_grad = False
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 676 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 677 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 678 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 681 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
                    model_param = 0
         
     | 
| 684 | 
         
            +
                    for name, param in self.model.named_parameters():
         
     | 
| 685 | 
         
            +
                        model_param += param.numel()
         
     | 
| 686 | 
         
            +
                    all_param = 0
         
     | 
| 687 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 688 | 
         
            +
                        all_param += param.numel()
         
     | 
| 689 | 
         
            +
                    total_param = all_param - model_param
         
     | 
| 690 | 
         
            +
                    print('-> Llama_param:{:0.2f}M P-tuning-V2 param is {:0.2f}M'.format(model_param / 1000000, total_param / 1000000))
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                    self.pad_token_id = 2
         
     | 
| 693 | 
         
            +
                    self.embedding = self.model.embed_tokens
         
     | 
| 694 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 695 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 696 | 
         
            +
             
     | 
| 697 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 698 | 
         
            +
                    device = next(self.prefix_encoder.parameters()).device
         
     | 
| 699 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
         
     | 
| 700 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 701 | 
         
            +
                    return prompts
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 704 | 
         
            +
                    return self.model.embed_tokens
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 707 | 
         
            +
                    self.model.embed_tokens = value
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 710 | 
         
            +
                    return self.lm_head
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 713 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 716 | 
         
            +
                    self.model = decoder
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                def get_decoder(self):
         
     | 
| 719 | 
         
            +
                    return self.model
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                def use_grad(self, base_model, use_grad):
         
     | 
| 722 | 
         
            +
                    if use_grad:
         
     | 
| 723 | 
         
            +
                        for param in base_model.parameters():
         
     | 
| 724 | 
         
            +
                            param.requires_grad = True
         
     | 
| 725 | 
         
            +
                        for param in self.lm_head.parameters():
         
     | 
| 726 | 
         
            +
                            param.requires_grad = True
         
     | 
| 727 | 
         
            +
                        base_model.train()
         
     | 
| 728 | 
         
            +
                    else:
         
     | 
| 729 | 
         
            +
                        for param in base_model.parameters():
         
     | 
| 730 | 
         
            +
                            param.requires_grad = False
         
     | 
| 731 | 
         
            +
                        for param in self.lm_head.parameters():
         
     | 
| 732 | 
         
            +
                            param.requires_grad = False
         
     | 
| 733 | 
         
            +
                        base_model.eval()
         
     | 
| 734 | 
         
            +
                    for param in self.prefix_encoder.parameters():
         
     | 
| 735 | 
         
            +
                        param.requires_grad = True
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
                def forward(
         
     | 
| 739 | 
         
            +
                    self,
         
     | 
| 740 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 741 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 742 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 743 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] =None,
         
     | 
| 744 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 745 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 746 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 747 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 748 | 
         
            +
                    token_labels: Optional[torch.LongTensor] = None,
         
     | 
| 749 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 750 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 751 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 752 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 753 | 
         
            +
                    use_base_grad: Optional[bool] = False,
         
     | 
| 754 | 
         
            +
                ):
         
     | 
| 755 | 
         
            +
                    self.use_grad(self.model, use_base_grad)
         
     | 
| 756 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 759 | 
         
            +
                    raw_embedding = self.model.embed_tokens(input_ids)
         
     | 
| 760 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 761 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding.to(prompts.device)), dim=1)
         
     | 
| 762 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(attention_mask.device)
         
     | 
| 763 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         
     | 
| 766 | 
         
            +
                    outputs = self.model(
         
     | 
| 767 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 768 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 769 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 770 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 771 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 772 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 773 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 774 | 
         
            +
                    )
         
     | 
| 775 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 776 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
         
     | 
| 777 | 
         
            +
                    #cls_token = sequence_output[:, 0]
         
     | 
| 778 | 
         
            +
                    #cls_token = self.dropout(cls_token)
         
     | 
| 779 | 
         
            +
                    sequence_lengths = (torch.ne(input_ids, self.pad_token_id).sum(-1) - 1).to(sequence_output.device)
         
     | 
| 780 | 
         
            +
                    cls_token = sequence_output[torch.arange(batch_size, device=sequence_output.device), sequence_lengths].contiguous()
         
     | 
| 781 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous().float()
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                    # compute loss
         
     | 
| 784 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 785 | 
         
            +
                    if token_labels is not None:
         
     | 
| 786 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels.to(attentions.device)).sum()
         
     | 
| 787 | 
         
            +
                    else:
         
     | 
| 788 | 
         
            +
                        if labels is not None:
         
     | 
| 789 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 790 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    # convert to binary classifier
         
     | 
| 793 | 
         
            +
                    probs = []
         
     | 
| 794 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 795 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 796 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 799 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 800 | 
         
            +
                        logits=logits,
         
     | 
| 801 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 802 | 
         
            +
                        attentions=attentions
         
     | 
| 803 | 
         
            +
                    )
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
            class BertPrefixForMaskedLM(BertPreTrainedModel):
         
     | 
| 807 | 
         
            +
                def __init__(self, config):
         
     | 
| 808 | 
         
            +
                    super().__init__(config)
         
     | 
| 809 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 810 | 
         
            +
                    self.config = config
         
     | 
| 811 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 812 | 
         
            +
                    self.cls = BertOnlyMLMHead(config)
         
     | 
| 813 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 814 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 815 | 
         
            +
                        param.requires_grad = False
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 818 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 819 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 820 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 821 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 822 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 823 | 
         
            +
             
     | 
| 824 | 
         
            +
                    base_param = 0
         
     | 
| 825 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 826 | 
         
            +
                        base_param += param.numel()
         
     | 
| 827 | 
         
            +
                    all_param = 0
         
     | 
| 828 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 829 | 
         
            +
                        all_param += param.numel()
         
     | 
| 830 | 
         
            +
                    total_param = all_param - base_param
         
     | 
| 831 | 
         
            +
                    print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(base_param / 1000000, total_param))
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                    # bert.embeddings.word_embeddings
         
     | 
| 834 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 835 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 836 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 839 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 840 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 841 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 842 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 843 | 
         
            +
                        batch_size,
         
     | 
| 844 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 845 | 
         
            +
                        self.n_layer * 2,
         
     | 
| 846 | 
         
            +
                        self.n_head,
         
     | 
| 847 | 
         
            +
                        self.n_embd
         
     | 
| 848 | 
         
            +
                    )
         
     | 
| 849 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 850 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 851 | 
         
            +
                    return past_key_values
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
                def forward(
         
     | 
| 854 | 
         
            +
                    self,
         
     | 
| 855 | 
         
            +
                    input_ids=None,
         
     | 
| 856 | 
         
            +
                    attention_mask=None,
         
     | 
| 857 | 
         
            +
                    token_type_ids=None,
         
     | 
| 858 | 
         
            +
                    position_ids=None,
         
     | 
| 859 | 
         
            +
                    head_mask=None,
         
     | 
| 860 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 861 | 
         
            +
                    labels=None,
         
     | 
| 862 | 
         
            +
                    token_labels=None,
         
     | 
| 863 | 
         
            +
                    output_attentions=None,
         
     | 
| 864 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 865 | 
         
            +
                    return_dict=None,
         
     | 
| 866 | 
         
            +
                    use_base_grad=False,
         
     | 
| 867 | 
         
            +
                ):
         
     | 
| 868 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 869 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 870 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 871 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 872 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 873 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                    outputs = self.bert(
         
     | 
| 876 | 
         
            +
                        input_ids,
         
     | 
| 877 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 878 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 879 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 880 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 881 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 882 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 883 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 884 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 885 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 886 | 
         
            +
                    )
         
     | 
| 887 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 888 | 
         
            +
                    cls_token = sequence_output[:, 0]
         
     | 
| 889 | 
         
            +
                    cls_token = self.dropout(cls_token)
         
     | 
| 890 | 
         
            +
                    attentions = self.cls(cls_token).view(-1, self.config.vocab_size)
         
     | 
| 891 | 
         
            +
             
     | 
| 892 | 
         
            +
             
     | 
| 893 | 
         
            +
                    # compute loss
         
     | 
| 894 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 895 | 
         
            +
                    if token_labels is not None:
         
     | 
| 896 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 897 | 
         
            +
                    else:
         
     | 
| 898 | 
         
            +
                        if labels is not None:
         
     | 
| 899 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 900 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 901 | 
         
            +
             
     | 
| 902 | 
         
            +
                    # convert to binary classifier
         
     | 
| 903 | 
         
            +
                    probs = []
         
     | 
| 904 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 905 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 906 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 907 | 
         
            +
             
     | 
| 908 | 
         
            +
                    if not return_dict:
         
     | 
| 909 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 910 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 911 | 
         
            +
             
     | 
| 912 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 913 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 914 | 
         
            +
                        logits=logits,
         
     | 
| 915 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 916 | 
         
            +
                        attentions=attentions
         
     | 
| 917 | 
         
            +
                    )
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
             
     | 
| 920 | 
         
            +
            class BertPromptForMaskedLM(BertPreTrainedModel):
         
     | 
| 921 | 
         
            +
                def __init__(self, config):
         
     | 
| 922 | 
         
            +
                    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
         
     | 
| 923 | 
         
            +
                    super().__init__(config)
         
     | 
| 924 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 925 | 
         
            +
                    self.config = config
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 928 | 
         
            +
                    self.cls = BertOnlyMLMHead(config)
         
     | 
| 929 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 930 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 931 | 
         
            +
                        param.requires_grad = False
         
     | 
| 932 | 
         
            +
             
     | 
| 933 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 934 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 935 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 936 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 939 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 940 | 
         
            +
             
     | 
| 941 | 
         
            +
                    bert_param = 0
         
     | 
| 942 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 943 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 944 | 
         
            +
                    all_param = 0
         
     | 
| 945 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 946 | 
         
            +
                        all_param += param.numel()
         
     | 
| 947 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 948 | 
         
            +
                    print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(bert_param / 1000000, total_param))
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                    # bert.embeddings.word_embeddings
         
     | 
| 951 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 952 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 953 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 954 | 
         
            +
             
     | 
| 955 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 956 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 957 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 958 | 
         
            +
                    return prompts
         
     | 
| 959 | 
         
            +
             
     | 
| 960 | 
         
            +
                def forward(
         
     | 
| 961 | 
         
            +
                    self,
         
     | 
| 962 | 
         
            +
                    input_ids=None,
         
     | 
| 963 | 
         
            +
                    attention_mask=None,
         
     | 
| 964 | 
         
            +
                    token_type_ids=None,
         
     | 
| 965 | 
         
            +
                    position_ids=None,
         
     | 
| 966 | 
         
            +
                    head_mask=None,
         
     | 
| 967 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 968 | 
         
            +
                    labels=None,
         
     | 
| 969 | 
         
            +
                    token_labels=None,
         
     | 
| 970 | 
         
            +
                    output_attentions=None,
         
     | 
| 971 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 972 | 
         
            +
                    return_dict=None,
         
     | 
| 973 | 
         
            +
                    use_base_grad=False,
         
     | 
| 974 | 
         
            +
                ):
         
     | 
| 975 | 
         
            +
                    r"""
         
     | 
| 976 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 977 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
         
     | 
| 978 | 
         
            +
                        config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
         
     | 
| 979 | 
         
            +
                        If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 980 | 
         
            +
                    """
         
     | 
| 981 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 982 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 983 | 
         
            +
             
     | 
| 984 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 985 | 
         
            +
                    raw_embedding = self.bert.embeddings(
         
     | 
| 986 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 987 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 988 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 989 | 
         
            +
                    )
         
     | 
| 990 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 991 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 992 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 993 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 994 | 
         
            +
             
     | 
| 995 | 
         
            +
                    outputs = self.bert(
         
     | 
| 996 | 
         
            +
                        # input_ids,
         
     | 
| 997 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 998 | 
         
            +
                        # token_type_ids=token_type_ids,
         
     | 
| 999 | 
         
            +
                        # position_ids=position_ids,
         
     | 
| 1000 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1001 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1002 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1003 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1004 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1005 | 
         
            +
                        # past_key_values=past_key_values,
         
     | 
| 1006 | 
         
            +
                    )
         
     | 
| 1007 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1008 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
         
     | 
| 1009 | 
         
            +
                    cls_token = sequence_output[:, 0]
         
     | 
| 1010 | 
         
            +
                    cls_token = self.dropout(cls_token)
         
     | 
| 1011 | 
         
            +
                    attentions = self.cls(cls_token).view(-1, self.config.vocab_size)
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                    # compute loss
         
     | 
| 1014 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1015 | 
         
            +
                    if token_labels is not None:
         
     | 
| 1016 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1017 | 
         
            +
                    else:
         
     | 
| 1018 | 
         
            +
                        if labels is not None:
         
     | 
| 1019 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 1020 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                    # convert to binary classifier
         
     | 
| 1023 | 
         
            +
                    probs = []
         
     | 
| 1024 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 1025 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 1026 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 1027 | 
         
            +
             
     | 
| 1028 | 
         
            +
                    if not return_dict:
         
     | 
| 1029 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1030 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1031 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 1032 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1033 | 
         
            +
                        logits=logits,
         
     | 
| 1034 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1035 | 
         
            +
                        attentions=attentions
         
     | 
| 1036 | 
         
            +
                    )
         
     | 
| 1037 | 
         
            +
             
     | 
| 1038 | 
         
            +
             
     | 
| 1039 | 
         
            +
            class RobertaPrefixForMaskedLM(RobertaPreTrainedModel):
         
     | 
| 1040 | 
         
            +
                def __init__(self, config):
         
     | 
| 1041 | 
         
            +
                    super().__init__(config)
         
     | 
| 1042 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1043 | 
         
            +
                    self.config = config
         
     | 
| 1044 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1045 | 
         
            +
                    self.lm_head = RobertaLMHead(config)
         
     | 
| 1046 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 1047 | 
         
            +
             
     | 
| 1048 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 1049 | 
         
            +
                        param.requires_grad = False
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 1052 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 1053 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 1054 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 1055 | 
         
            +
             
     | 
| 1056 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 1057 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 1058 | 
         
            +
             
     | 
| 1059 | 
         
            +
                    bert_param = 0
         
     | 
| 1060 | 
         
            +
                    for name, param in self.roberta.named_parameters():
         
     | 
| 1061 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 1062 | 
         
            +
                    all_param = 0
         
     | 
| 1063 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 1064 | 
         
            +
                        all_param += param.numel()
         
     | 
| 1065 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 1066 | 
         
            +
                    print('-> total param is {}'.format(total_param))  # 9860105
         
     | 
| 1067 | 
         
            +
             
     | 
| 1068 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 1069 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 1070 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 1071 | 
         
            +
             
     | 
| 1072 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 1073 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 1074 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 1075 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 1076 | 
         
            +
                        batch_size,
         
     | 
| 1077 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 1078 | 
         
            +
                        self.n_layer * 2,
         
     | 
| 1079 | 
         
            +
                        self.n_head,
         
     | 
| 1080 | 
         
            +
                        self.n_embd
         
     | 
| 1081 | 
         
            +
                    )
         
     | 
| 1082 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 1083 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 1084 | 
         
            +
                    return past_key_values
         
     | 
| 1085 | 
         
            +
             
     | 
| 1086 | 
         
            +
                def forward(
         
     | 
| 1087 | 
         
            +
                        self,
         
     | 
| 1088 | 
         
            +
                        input_ids=None,
         
     | 
| 1089 | 
         
            +
                        attention_mask=None,
         
     | 
| 1090 | 
         
            +
                        token_type_ids=None,
         
     | 
| 1091 | 
         
            +
                        position_ids=None,
         
     | 
| 1092 | 
         
            +
                        head_mask=None,
         
     | 
| 1093 | 
         
            +
                        inputs_embeds=None,
         
     | 
| 1094 | 
         
            +
                        labels=None,
         
     | 
| 1095 | 
         
            +
                        token_labels=None,
         
     | 
| 1096 | 
         
            +
                        output_attentions=None,
         
     | 
| 1097 | 
         
            +
                        output_hidden_states=None,
         
     | 
| 1098 | 
         
            +
                        return_dict=None,
         
     | 
| 1099 | 
         
            +
                        use_base_grad=False,
         
     | 
| 1100 | 
         
            +
                ):
         
     | 
| 1101 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 1102 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1103 | 
         
            +
             
     | 
| 1104 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 1105 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 1106 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 1107 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1110 | 
         
            +
                        input_ids,
         
     | 
| 1111 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1112 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1113 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1114 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1115 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1116 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1117 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1118 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1119 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1120 | 
         
            +
                    )
         
     | 
| 1121 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1122 | 
         
            +
                    cls_token = sequence_output[:, 0]
         
     | 
| 1123 | 
         
            +
                    cls_token = self.dropout(cls_token)
         
     | 
| 1124 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size)
         
     | 
| 1125 | 
         
            +
             
     | 
| 1126 | 
         
            +
                    # compute loss
         
     | 
| 1127 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1128 | 
         
            +
                    if token_labels is not None:
         
     | 
| 1129 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1130 | 
         
            +
                    else:
         
     | 
| 1131 | 
         
            +
                        if labels is not None:
         
     | 
| 1132 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 1133 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1134 | 
         
            +
             
     | 
| 1135 | 
         
            +
                    # convert to binary classifier
         
     | 
| 1136 | 
         
            +
                    probs = []
         
     | 
| 1137 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 1138 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 1139 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 1140 | 
         
            +
             
     | 
| 1141 | 
         
            +
                    if not return_dict:
         
     | 
| 1142 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1143 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1144 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 1145 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1146 | 
         
            +
                        logits=logits,
         
     | 
| 1147 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1148 | 
         
            +
                        attentions=attentions
         
     | 
| 1149 | 
         
            +
                    )
         
     | 
| 1150 | 
         
            +
             
     | 
| 1151 | 
         
            +
             
     | 
| 1152 | 
         
            +
            class RobertaPromptForMaskedLM(RobertaPreTrainedModel):
         
     | 
| 1153 | 
         
            +
                def __init__(self, config):
         
     | 
| 1154 | 
         
            +
                    super().__init__(config)
         
     | 
| 1155 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1156 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 1157 | 
         
            +
                    self.lm_head = RobertaLMHead(config)
         
     | 
| 1158 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 1159 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 1160 | 
         
            +
                        param.requires_grad = False
         
     | 
| 1161 | 
         
            +
             
     | 
| 1162 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 1163 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 1164 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 1165 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 1166 | 
         
            +
             
     | 
| 1167 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 1168 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 1169 | 
         
            +
             
     | 
| 1170 | 
         
            +
                    self.embeddings = self.roberta.embeddings
         
     | 
| 1171 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 1172 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 1173 | 
         
            +
                    self.clean_labels = torch.tensor(config.clean_labels).long()
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 1176 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 1177 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 1178 | 
         
            +
                    return prompts
         
     | 
| 1179 | 
         
            +
             
     | 
| 1180 | 
         
            +
                def forward(
         
     | 
| 1181 | 
         
            +
                        self,
         
     | 
| 1182 | 
         
            +
                        input_ids=None,
         
     | 
| 1183 | 
         
            +
                        attention_mask=None,
         
     | 
| 1184 | 
         
            +
                        token_type_ids=None,
         
     | 
| 1185 | 
         
            +
                        position_ids=None,
         
     | 
| 1186 | 
         
            +
                        head_mask=None,
         
     | 
| 1187 | 
         
            +
                        inputs_embeds=None,
         
     | 
| 1188 | 
         
            +
                        labels=None,
         
     | 
| 1189 | 
         
            +
                        token_labels=None,
         
     | 
| 1190 | 
         
            +
                        output_attentions=None,
         
     | 
| 1191 | 
         
            +
                        output_hidden_states=None,
         
     | 
| 1192 | 
         
            +
                        return_dict=None,
         
     | 
| 1193 | 
         
            +
                        use_base_grad=False
         
     | 
| 1194 | 
         
            +
                ):
         
     | 
| 1195 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 1196 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 1199 | 
         
            +
                    raw_embedding = self.roberta.embeddings(
         
     | 
| 1200 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 1201 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1202 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1203 | 
         
            +
                    )
         
     | 
| 1204 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 1205 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 1206 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 1207 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 1208 | 
         
            +
             
     | 
| 1209 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 1210 | 
         
            +
                        # input_ids,
         
     | 
| 1211 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1212 | 
         
            +
                        # token_type_ids=token_type_ids,
         
     | 
| 1213 | 
         
            +
                        # position_ids=position_ids,
         
     | 
| 1214 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1215 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1216 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1217 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1218 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1219 | 
         
            +
                        # past_key_values=past_key_values,
         
     | 
| 1220 | 
         
            +
                    )
         
     | 
| 1221 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1222 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 1223 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
         
     | 
| 1224 | 
         
            +
                    cls_token = sequence_output[:, 0]
         
     | 
| 1225 | 
         
            +
                    attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size)
         
     | 
| 1226 | 
         
            +
             
     | 
| 1227 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1228 | 
         
            +
                    if token_labels is not None:
         
     | 
| 1229 | 
         
            +
                        masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1230 | 
         
            +
                    else:
         
     | 
| 1231 | 
         
            +
                        if labels is not None:
         
     | 
| 1232 | 
         
            +
                            token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
         
     | 
| 1233 | 
         
            +
                            masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
                    # convert to binary classifier
         
     | 
| 1236 | 
         
            +
                    probs = []
         
     | 
| 1237 | 
         
            +
                    for y in self.clean_labels:
         
     | 
| 1238 | 
         
            +
                        probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
         
     | 
| 1239 | 
         
            +
                    logits = torch.stack(probs).T
         
     | 
| 1240 | 
         
            +
             
     | 
| 1241 | 
         
            +
                    if not return_dict:
         
     | 
| 1242 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1243 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1244 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 1245 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1246 | 
         
            +
                        logits=logits,
         
     | 
| 1247 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1248 | 
         
            +
                        attentions=attentions
         
     | 
| 1249 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/sequence_classification.py
    ADDED
    
    | 
         @@ -0,0 +1,997 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch._C import NoopLogger
         
     | 
| 3 | 
         
            +
            import torch.nn
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import Tensor
         
     | 
| 6 | 
         
            +
            from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from transformers import BertModel, BertPreTrainedModel
         
     | 
| 9 | 
         
            +
            from transformers import RobertaModel, RobertaPreTrainedModel
         
     | 
| 10 | 
         
            +
            from transformers.modeling_outputs import SequenceClassifierOutput, SequenceClassifierOutputWithPast, BaseModelOutput, Seq2SeqLMOutput
         
     | 
| 11 | 
         
            +
            from transformers import GPT2Model, GPT2PreTrainedModel, GPTNeoModel
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from model.prefix_encoder import PrefixEncoder
         
     | 
| 14 | 
         
            +
            from model.deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
         
     | 
| 15 | 
         
            +
            from model import utils
         
     | 
| 16 | 
         
            +
            import copy
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            class BertForSequenceClassification(BertPreTrainedModel):
         
     | 
| 19 | 
         
            +
                def __init__(self, config):
         
     | 
| 20 | 
         
            +
                    super().__init__(config)
         
     | 
| 21 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 22 | 
         
            +
                    self.config = config
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 25 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 26 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    self.init_weights()
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 31 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                def forward(
         
     | 
| 34 | 
         
            +
                    self,
         
     | 
| 35 | 
         
            +
                    input_ids=None,
         
     | 
| 36 | 
         
            +
                    attention_mask=None,
         
     | 
| 37 | 
         
            +
                    token_type_ids=None,
         
     | 
| 38 | 
         
            +
                    position_ids=None,
         
     | 
| 39 | 
         
            +
                    head_mask=None,
         
     | 
| 40 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 41 | 
         
            +
                    labels=None,
         
     | 
| 42 | 
         
            +
                    output_attentions=None,
         
     | 
| 43 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 44 | 
         
            +
                    return_dict=None,
         
     | 
| 45 | 
         
            +
                    use_base_grad=False,
         
     | 
| 46 | 
         
            +
                ):
         
     | 
| 47 | 
         
            +
                    r"""
         
     | 
| 48 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
         
     | 
| 49 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
         
     | 
| 50 | 
         
            +
                        config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
         
     | 
| 51 | 
         
            +
                        If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 52 | 
         
            +
                    """
         
     | 
| 53 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 54 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    outputs = self.bert(
         
     | 
| 57 | 
         
            +
                        input_ids,
         
     | 
| 58 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 59 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 60 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 61 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 62 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 63 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 64 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 65 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 66 | 
         
            +
                    )
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 71 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    loss = None
         
     | 
| 74 | 
         
            +
                    if labels is not None:
         
     | 
| 75 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 76 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 77 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 78 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 79 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 80 | 
         
            +
                            else:
         
     | 
| 81 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 84 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 85 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 86 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 87 | 
         
            +
                            else:
         
     | 
| 88 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 89 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 90 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 91 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 92 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 93 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 94 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 95 | 
         
            +
                        elif self.config.problem_type == "em":
         
     | 
| 96 | 
         
            +
                            predict_logp = F.log_softmax(pooled_output, dim=-1)
         
     | 
| 97 | 
         
            +
                            target_logp = predict_logp.gather(-1, labels)
         
     | 
| 98 | 
         
            +
                            target_logp = target_logp - 1e32 * labels.eq(0)  # Apply mask
         
     | 
| 99 | 
         
            +
                            loss = -torch.logsumexp(target_logp, dim=-1)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    if not return_dict:
         
     | 
| 102 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 103 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    loss.backward()
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 108 | 
         
            +
                        loss=loss,
         
     | 
| 109 | 
         
            +
                        logits=pooled_output,
         
     | 
| 110 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 111 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 112 | 
         
            +
                    )
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            class BertPrefixForSequenceClassification(BertPreTrainedModel):
         
     | 
| 116 | 
         
            +
                def __init__(self, config):
         
     | 
| 117 | 
         
            +
                    super().__init__(config)
         
     | 
| 118 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 119 | 
         
            +
                    self.config = config
         
     | 
| 120 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 121 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 122 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 125 | 
         
            +
                        param.requires_grad = False
         
     | 
| 126 | 
         
            +
                    
         
     | 
| 127 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 128 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 129 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 130 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 133 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    bert_param = 0
         
     | 
| 136 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 137 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 138 | 
         
            +
                    all_param = 0
         
     | 
| 139 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 140 | 
         
            +
                        all_param += param.numel()
         
     | 
| 141 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 142 | 
         
            +
                    print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(bert_param / 1000000, total_param))
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 145 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 148 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 149 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 150 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 151 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 152 | 
         
            +
                        batch_size,
         
     | 
| 153 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 154 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 155 | 
         
            +
                        self.n_head,
         
     | 
| 156 | 
         
            +
                        self.n_embd
         
     | 
| 157 | 
         
            +
                    )
         
     | 
| 158 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 159 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 160 | 
         
            +
                    return past_key_values
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                def forward(
         
     | 
| 163 | 
         
            +
                    self,
         
     | 
| 164 | 
         
            +
                    input_ids=None,
         
     | 
| 165 | 
         
            +
                    attention_mask=None,
         
     | 
| 166 | 
         
            +
                    token_type_ids=None,
         
     | 
| 167 | 
         
            +
                    position_ids=None,
         
     | 
| 168 | 
         
            +
                    head_mask=None,
         
     | 
| 169 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 170 | 
         
            +
                    labels=None,
         
     | 
| 171 | 
         
            +
                    output_attentions=None,
         
     | 
| 172 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 173 | 
         
            +
                    return_dict=None,
         
     | 
| 174 | 
         
            +
                    use_base_grad=False,
         
     | 
| 175 | 
         
            +
                ):
         
     | 
| 176 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 177 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 178 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 179 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 180 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 181 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    outputs = self.bert(
         
     | 
| 184 | 
         
            +
                        input_ids,
         
     | 
| 185 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 186 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 187 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 188 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 189 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 190 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 191 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 192 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 193 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 194 | 
         
            +
                    )
         
     | 
| 195 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 196 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 197 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    loss = None
         
     | 
| 200 | 
         
            +
                    if labels is not None:
         
     | 
| 201 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 202 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 203 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 204 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 205 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 206 | 
         
            +
                            else:
         
     | 
| 207 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 210 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 211 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 212 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 213 | 
         
            +
                            else:
         
     | 
| 214 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 215 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 216 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 217 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 218 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 219 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 220 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 221 | 
         
            +
                    if not return_dict:
         
     | 
| 222 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 223 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 226 | 
         
            +
                        loss=loss,
         
     | 
| 227 | 
         
            +
                        logits=logits,
         
     | 
| 228 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 229 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 230 | 
         
            +
                    )
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
            class BertPromptForSequenceClassification(BertPreTrainedModel):
         
     | 
| 234 | 
         
            +
                def __init__(self, config):
         
     | 
| 235 | 
         
            +
                    super().__init__(config)
         
     | 
| 236 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 237 | 
         
            +
                    self.bert = BertModel(config)
         
     | 
| 238 | 
         
            +
                    self.embeddings = self.bert.embeddings
         
     | 
| 239 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 240 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 243 | 
         
            +
                        param.requires_grad = False
         
     | 
| 244 | 
         
            +
                    
         
     | 
| 245 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 246 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 247 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 248 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 251 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 254 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 255 | 
         
            +
                
         
     | 
| 256 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 257 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 258 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 259 | 
         
            +
                    return prompts
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                def forward(
         
     | 
| 262 | 
         
            +
                    self,
         
     | 
| 263 | 
         
            +
                    input_ids=None,
         
     | 
| 264 | 
         
            +
                    attention_mask=None,
         
     | 
| 265 | 
         
            +
                    token_type_ids=None,
         
     | 
| 266 | 
         
            +
                    position_ids=None,
         
     | 
| 267 | 
         
            +
                    head_mask=None,
         
     | 
| 268 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 269 | 
         
            +
                    labels=None,
         
     | 
| 270 | 
         
            +
                    output_attentions=None,
         
     | 
| 271 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 272 | 
         
            +
                    return_dict=None,
         
     | 
| 273 | 
         
            +
                    use_base_grad=False,
         
     | 
| 274 | 
         
            +
                ):
         
     | 
| 275 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 276 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 279 | 
         
            +
                    raw_embedding = self.embeddings(
         
     | 
| 280 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 281 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 282 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 283 | 
         
            +
                    )
         
     | 
| 284 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 285 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 286 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 287 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    outputs = self.bert(
         
     | 
| 290 | 
         
            +
                        # input_ids,
         
     | 
| 291 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 292 | 
         
            +
                        # token_type_ids=token_type_ids,
         
     | 
| 293 | 
         
            +
                        # position_ids=position_ids,
         
     | 
| 294 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 295 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 296 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 297 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 298 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 299 | 
         
            +
                        # past_key_values=past_key_values,
         
     | 
| 300 | 
         
            +
                    )
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    # pooled_output = outputs[1]
         
     | 
| 303 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 304 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
         
     | 
| 305 | 
         
            +
                    first_token_tensor = sequence_output[:, 0]
         
     | 
| 306 | 
         
            +
                    pooled_output = self.bert.pooler.dense(first_token_tensor)
         
     | 
| 307 | 
         
            +
                    pooled_output = self.bert.pooler.activation(pooled_output)
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 310 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    loss = None
         
     | 
| 313 | 
         
            +
                    if labels is not None:
         
     | 
| 314 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 315 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 316 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 317 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 318 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 319 | 
         
            +
                            else:
         
     | 
| 320 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 323 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 324 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 325 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 326 | 
         
            +
                            else:
         
     | 
| 327 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 328 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 329 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 330 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 331 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 332 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 333 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 334 | 
         
            +
                    if not return_dict:
         
     | 
| 335 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 336 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 339 | 
         
            +
                        loss=loss,
         
     | 
| 340 | 
         
            +
                        logits=logits,
         
     | 
| 341 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 342 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 343 | 
         
            +
                    )
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
            class RobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
         
     | 
| 347 | 
         
            +
                def __init__(self, config):
         
     | 
| 348 | 
         
            +
                    super().__init__(config)
         
     | 
| 349 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 350 | 
         
            +
                    self.config = config
         
     | 
| 351 | 
         
            +
                    self.roberta = RobertaModel(config)
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 354 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 355 | 
         
            +
                    self.init_weights()
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 358 | 
         
            +
                        param.requires_grad = False
         
     | 
| 359 | 
         
            +
                    
         
     | 
| 360 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 361 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 362 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 363 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 366 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    bert_param = 0
         
     | 
| 369 | 
         
            +
                    for name, param in self.roberta.named_parameters():
         
     | 
| 370 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 371 | 
         
            +
                    all_param = 0
         
     | 
| 372 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 373 | 
         
            +
                        all_param += param.numel()
         
     | 
| 374 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 375 | 
         
            +
                    print('-> total param is {}'.format(total_param)) # 9860105
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 378 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 381 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 382 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 383 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 384 | 
         
            +
                        batch_size,
         
     | 
| 385 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 386 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 387 | 
         
            +
                        self.n_head,
         
     | 
| 388 | 
         
            +
                        self.n_embd
         
     | 
| 389 | 
         
            +
                    )
         
     | 
| 390 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 391 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 392 | 
         
            +
                    return past_key_values
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                def forward(
         
     | 
| 395 | 
         
            +
                    self,
         
     | 
| 396 | 
         
            +
                    input_ids=None,
         
     | 
| 397 | 
         
            +
                    attention_mask=None,
         
     | 
| 398 | 
         
            +
                    token_type_ids=None,
         
     | 
| 399 | 
         
            +
                    position_ids=None,
         
     | 
| 400 | 
         
            +
                    head_mask=None,
         
     | 
| 401 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 402 | 
         
            +
                    labels=None,
         
     | 
| 403 | 
         
            +
                    output_attentions=None,
         
     | 
| 404 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 405 | 
         
            +
                    return_dict=None,
         
     | 
| 406 | 
         
            +
                    use_base_grad=False,
         
     | 
| 407 | 
         
            +
                ):
         
     | 
| 408 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 409 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 412 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 413 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 414 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 415 | 
         
            +
                    
         
     | 
| 416 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 417 | 
         
            +
                        input_ids,
         
     | 
| 418 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 419 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 420 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 421 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 422 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 423 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 424 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 425 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 426 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 427 | 
         
            +
                    )
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 430 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 431 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                    loss = None
         
     | 
| 434 | 
         
            +
                    if labels is not None:
         
     | 
| 435 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 436 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 437 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 438 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 439 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 440 | 
         
            +
                            else:
         
     | 
| 441 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 444 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 445 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 446 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 447 | 
         
            +
                            else:
         
     | 
| 448 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 449 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 450 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 451 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 452 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 453 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 454 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 455 | 
         
            +
                    if not return_dict:
         
     | 
| 456 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 457 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 460 | 
         
            +
                        loss=loss,
         
     | 
| 461 | 
         
            +
                        logits=logits,
         
     | 
| 462 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 463 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 464 | 
         
            +
                    )
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
            class RobertaPromptForSequenceClassification(RobertaPreTrainedModel):
         
     | 
| 468 | 
         
            +
                def __init__(self, config):
         
     | 
| 469 | 
         
            +
                    super().__init__(config)
         
     | 
| 470 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 471 | 
         
            +
                    self.roberta = RobertaModel(config)
         
     | 
| 472 | 
         
            +
                    self.embeddings = self.roberta.embeddings
         
     | 
| 473 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 474 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 477 | 
         
            +
                        param.requires_grad = False
         
     | 
| 478 | 
         
            +
                    
         
     | 
| 479 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 480 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 481 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 482 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 485 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 488 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 489 | 
         
            +
                
         
     | 
| 490 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 491 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 492 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 493 | 
         
            +
                    return prompts
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                def forward(
         
     | 
| 496 | 
         
            +
                    self,
         
     | 
| 497 | 
         
            +
                    input_ids=None,
         
     | 
| 498 | 
         
            +
                    attention_mask=None,
         
     | 
| 499 | 
         
            +
                    token_type_ids=None,
         
     | 
| 500 | 
         
            +
                    position_ids=None,
         
     | 
| 501 | 
         
            +
                    head_mask=None,
         
     | 
| 502 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 503 | 
         
            +
                    labels=None,
         
     | 
| 504 | 
         
            +
                    output_attentions=None,
         
     | 
| 505 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 506 | 
         
            +
                    return_dict=None,
         
     | 
| 507 | 
         
            +
                    use_base_grad=False
         
     | 
| 508 | 
         
            +
                ):
         
     | 
| 509 | 
         
            +
                    utils.use_grad(self.roberta, use_base_grad)
         
     | 
| 510 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 513 | 
         
            +
                    raw_embedding = self.embeddings(
         
     | 
| 514 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 515 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 516 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 517 | 
         
            +
                    )
         
     | 
| 518 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 519 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 520 | 
         
            +
                    
         
     | 
| 521 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 522 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 525 | 
         
            +
                        # input_ids,
         
     | 
| 526 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 527 | 
         
            +
                        # token_type_ids=token_type_ids,
         
     | 
| 528 | 
         
            +
                        # position_ids=position_ids,
         
     | 
| 529 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 530 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 531 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 532 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 533 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 534 | 
         
            +
                        # past_key_values=past_key_values,
         
     | 
| 535 | 
         
            +
                    )
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                    # pooled_output = outputs[1]
         
     | 
| 538 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 539 | 
         
            +
                    sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
         
     | 
| 540 | 
         
            +
                    first_token_tensor = sequence_output[:, 0]
         
     | 
| 541 | 
         
            +
                    pooled_output = self.roberta.pooler.dense(first_token_tensor)
         
     | 
| 542 | 
         
            +
                    pooled_output = self.roberta.pooler.activation(pooled_output)
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 545 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    loss = None
         
     | 
| 548 | 
         
            +
                    if labels is not None:
         
     | 
| 549 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 550 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 551 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 552 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 553 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 554 | 
         
            +
                            else:
         
     | 
| 555 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 558 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 559 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 560 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 561 | 
         
            +
                            else:
         
     | 
| 562 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 563 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 564 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 565 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 566 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 567 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 568 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 569 | 
         
            +
                    if not return_dict:
         
     | 
| 570 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 571 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 574 | 
         
            +
                        loss=loss,
         
     | 
| 575 | 
         
            +
                        logits=logits,
         
     | 
| 576 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 577 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 578 | 
         
            +
                    )
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
            class DebertaPrefixForSequenceClassification(DebertaPreTrainedModel):
         
     | 
| 582 | 
         
            +
                def __init__(self, config):
         
     | 
| 583 | 
         
            +
                    super().__init__(config)
         
     | 
| 584 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 585 | 
         
            +
                    self.config = config
         
     | 
| 586 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 587 | 
         
            +
                    self.pooler = ContextPooler(config)
         
     | 
| 588 | 
         
            +
                    output_dim = self.pooler.output_dim
         
     | 
| 589 | 
         
            +
                    self.classifier = torch.nn.Linear(output_dim, self.num_labels)
         
     | 
| 590 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 591 | 
         
            +
                    self.init_weights()
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 594 | 
         
            +
                        param.requires_grad = False
         
     | 
| 595 | 
         
            +
                    
         
     | 
| 596 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 597 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 598 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 599 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 602 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                    deberta_param = 0
         
     | 
| 605 | 
         
            +
                    for name, param in self.deberta.named_parameters():
         
     | 
| 606 | 
         
            +
                        deberta_param += param.numel()
         
     | 
| 607 | 
         
            +
                    all_param = 0
         
     | 
| 608 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 609 | 
         
            +
                        all_param += param.numel()
         
     | 
| 610 | 
         
            +
                    total_param = all_param - deberta_param
         
     | 
| 611 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    self.embedding = utils.get_embeddings(self, config)
         
     | 
| 614 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 615 | 
         
            +
                
         
     | 
| 616 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 617 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
         
     | 
| 618 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 619 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 620 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 621 | 
         
            +
                        batch_size,
         
     | 
| 622 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 623 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 624 | 
         
            +
                        self.n_head,
         
     | 
| 625 | 
         
            +
                        self.n_embd
         
     | 
| 626 | 
         
            +
                    )
         
     | 
| 627 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 628 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 629 | 
         
            +
                    return past_key_values
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                def forward(
         
     | 
| 632 | 
         
            +
                    self,
         
     | 
| 633 | 
         
            +
                    input_ids=None,
         
     | 
| 634 | 
         
            +
                    attention_mask=None,
         
     | 
| 635 | 
         
            +
                    token_type_ids=None,
         
     | 
| 636 | 
         
            +
                    position_ids=None,
         
     | 
| 637 | 
         
            +
                    head_mask=None,
         
     | 
| 638 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 639 | 
         
            +
                    labels=None,
         
     | 
| 640 | 
         
            +
                    output_attentions=None,
         
     | 
| 641 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 642 | 
         
            +
                    return_dict=None,
         
     | 
| 643 | 
         
            +
                    use_base_grad=False
         
     | 
| 644 | 
         
            +
                ):
         
     | 
| 645 | 
         
            +
                    utils.use_grad(self.bert, use_base_grad)
         
     | 
| 646 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 647 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 648 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 649 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
         
     | 
| 650 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 653 | 
         
            +
                        input_ids,
         
     | 
| 654 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 655 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 656 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 657 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 658 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 659 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 660 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 661 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 662 | 
         
            +
                    )
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                    encoder_layer = outputs[0]
         
     | 
| 665 | 
         
            +
                    pooled_output = self.pooler(encoder_layer)
         
     | 
| 666 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 667 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
                    loss = None
         
     | 
| 670 | 
         
            +
                    if labels is not None:
         
     | 
| 671 | 
         
            +
                        if self.num_labels == 1:
         
     | 
| 672 | 
         
            +
                            # regression task
         
     | 
| 673 | 
         
            +
                            loss_fn = torch.nn.MSELoss()
         
     | 
| 674 | 
         
            +
                            logits = logits.view(-1).to(labels.dtype)
         
     | 
| 675 | 
         
            +
                            loss = loss_fn(logits, labels.view(-1))
         
     | 
| 676 | 
         
            +
                        elif labels.dim() == 1 or labels.size(-1) == 1:
         
     | 
| 677 | 
         
            +
                            label_index = (labels >= 0).nonzero()
         
     | 
| 678 | 
         
            +
                            labels = labels.long()
         
     | 
| 679 | 
         
            +
                            if label_index.size(0) > 0:
         
     | 
| 680 | 
         
            +
                                labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
         
     | 
| 681 | 
         
            +
                                labels = torch.gather(labels, 0, label_index.view(-1))
         
     | 
| 682 | 
         
            +
                                loss_fct = CrossEntropyLoss()
         
     | 
| 683 | 
         
            +
                                loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
         
     | 
| 684 | 
         
            +
                            else:
         
     | 
| 685 | 
         
            +
                                loss = torch.tensor(0).to(logits)
         
     | 
| 686 | 
         
            +
                        else:
         
     | 
| 687 | 
         
            +
                            log_softmax = torch.nn.LogSoftmax(-1)
         
     | 
| 688 | 
         
            +
                            loss = -((log_softmax(logits) * labels).sum(-1)).mean()
         
     | 
| 689 | 
         
            +
                    if not return_dict:
         
     | 
| 690 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 691 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 692 | 
         
            +
                    else:
         
     | 
| 693 | 
         
            +
                        return SequenceClassifierOutput(
         
     | 
| 694 | 
         
            +
                            loss=loss,
         
     | 
| 695 | 
         
            +
                            logits=logits,
         
     | 
| 696 | 
         
            +
                            hidden_states=outputs.hidden_states,
         
     | 
| 697 | 
         
            +
                            attentions=outputs.attentions,
         
     | 
| 698 | 
         
            +
                        )
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
            class GPT2PromptForSequenceClassification(GPT2PreTrainedModel):
         
     | 
| 702 | 
         
            +
                def __init__(self, config):
         
     | 
| 703 | 
         
            +
                    super().__init__(config)
         
     | 
| 704 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 705 | 
         
            +
                    self.config = config
         
     | 
| 706 | 
         
            +
                    self.gpt2 = GPT2Model(config)
         
     | 
| 707 | 
         
            +
                    self.dropout = StableDropout(config.embd_pdrop)
         
     | 
| 708 | 
         
            +
                    self.classifier = torch.nn.Linear(config.n_embd, self.num_labels)
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
                    for param in self.gpt2.parameters():
         
     | 
| 711 | 
         
            +
                        param.requires_grad = False
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 714 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 715 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 716 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 719 | 
         
            +
                    self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                    # Model parallel
         
     | 
| 722 | 
         
            +
                    self.model_parallel = False
         
     | 
| 723 | 
         
            +
                    self.device_map = None
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                    gpt2_param = 0
         
     | 
| 726 | 
         
            +
                    for name, param in self.gpt2.named_parameters():
         
     | 
| 727 | 
         
            +
                        gpt2_param += param.numel()
         
     | 
| 728 | 
         
            +
                    all_param = 0
         
     | 
| 729 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 730 | 
         
            +
                        all_param += param.numel()
         
     | 
| 731 | 
         
            +
                    total_param = all_param - gpt2_param
         
     | 
| 732 | 
         
            +
                    print('-> total param is {}'.format(total_param))  # 9860105
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    self.embedding = self.gpt2.wte
         
     | 
| 735 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 738 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.gpt2.device)
         
     | 
| 739 | 
         
            +
                    prompts = self.prefix_encoder(prefix_tokens)
         
     | 
| 740 | 
         
            +
                    return prompts
         
     | 
| 741 | 
         
            +
             
     | 
| 742 | 
         
            +
                def forward(
         
     | 
| 743 | 
         
            +
                        self,
         
     | 
| 744 | 
         
            +
                        input_ids=None,
         
     | 
| 745 | 
         
            +
                        attention_mask=None,
         
     | 
| 746 | 
         
            +
                        token_type_ids=None,
         
     | 
| 747 | 
         
            +
                        position_ids=None,
         
     | 
| 748 | 
         
            +
                        head_mask=None,
         
     | 
| 749 | 
         
            +
                        inputs_embeds=None,
         
     | 
| 750 | 
         
            +
                        labels=None,
         
     | 
| 751 | 
         
            +
                        output_attentions=None,
         
     | 
| 752 | 
         
            +
                        output_hidden_states=None,
         
     | 
| 753 | 
         
            +
                        return_dict=None,
         
     | 
| 754 | 
         
            +
                        use_base_grad=False
         
     | 
| 755 | 
         
            +
                ):
         
     | 
| 756 | 
         
            +
                    utils.use_grad(self.gpt2, use_base_grad)
         
     | 
| 757 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 760 | 
         
            +
                    raw_embedding = self.embedding(input_ids)
         
     | 
| 761 | 
         
            +
                    prompts = self.get_prompt(batch_size=batch_size)
         
     | 
| 762 | 
         
            +
                    inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.gpt2.device)
         
     | 
| 765 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
                    transformer_outputs = self.gpt2(
         
     | 
| 768 | 
         
            +
                        # input_ids,
         
     | 
| 769 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 770 | 
         
            +
                        # token_type_ids=token_type_ids,
         
     | 
| 771 | 
         
            +
                        # position_ids=position_ids,
         
     | 
| 772 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 773 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 774 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 775 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 776 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 777 | 
         
            +
                        # past_key_values=past_key_values,
         
     | 
| 778 | 
         
            +
                    )
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 781 | 
         
            +
                    logits = self.classifier(hidden_states)
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                    if input_ids is not None:
         
     | 
| 784 | 
         
            +
                        batch_size, sequence_length = input_ids.shape[:2]
         
     | 
| 785 | 
         
            +
                    else:
         
     | 
| 786 | 
         
            +
                        batch_size, sequence_length = inputs_embeds.shape[:2]
         
     | 
| 787 | 
         
            +
             
     | 
| 788 | 
         
            +
                    assert (
         
     | 
| 789 | 
         
            +
                            self.config.pad_token_id is not None or batch_size == 1
         
     | 
| 790 | 
         
            +
                    ), "Cannot handle batch sizes > 1 if no " \
         
     | 
| 791 | 
         
            +
                       "padding token is defined."
         
     | 
| 792 | 
         
            +
                    if self.config.pad_token_id is None:
         
     | 
| 793 | 
         
            +
                        sequence_lengths = -1
         
     | 
| 794 | 
         
            +
                    else:
         
     | 
| 795 | 
         
            +
                        if input_ids is not None:
         
     | 
| 796 | 
         
            +
                            sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
         
     | 
| 797 | 
         
            +
                        else:
         
     | 
| 798 | 
         
            +
                            sequence_lengths = -1
         
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         
     | 
| 801 | 
         
            +
             
     | 
| 802 | 
         
            +
                    loss = None
         
     | 
| 803 | 
         
            +
                    if labels is not None:
         
     | 
| 804 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 805 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 806 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 807 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 808 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 809 | 
         
            +
                            else:
         
     | 
| 810 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 813 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 814 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 815 | 
         
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         
     | 
| 816 | 
         
            +
                            else:
         
     | 
| 817 | 
         
            +
                                loss = loss_fct(pooled_logits, labels)
         
     | 
| 818 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 819 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 820 | 
         
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 821 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 822 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 823 | 
         
            +
                            loss = loss_fct(pooled_logits, labels)
         
     | 
| 824 | 
         
            +
                    if not return_dict:
         
     | 
| 825 | 
         
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         
     | 
| 826 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                    return SequenceClassifierOutputWithPast(
         
     | 
| 829 | 
         
            +
                        loss=loss,
         
     | 
| 830 | 
         
            +
                        logits=pooled_logits,
         
     | 
| 831 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 832 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 833 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 834 | 
         
            +
                    )
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
            class GPT2PrefixForSequenceClassification(GPT2PreTrainedModel):
         
     | 
| 837 | 
         
            +
                def __init__(self, config):
         
     | 
| 838 | 
         
            +
                    super().__init__(config)
         
     | 
| 839 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 840 | 
         
            +
                    self.config = config
         
     | 
| 841 | 
         
            +
                    self.gpt2 = GPT2Model(config)
         
     | 
| 842 | 
         
            +
                    self.dropout = StableDropout(config.hidden_dropout_prob)
         
     | 
| 843 | 
         
            +
                    self.classifier = torch.nn.Linear(config.n_embd, self.num_labels)
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    for param in self.gpt2.parameters():
         
     | 
| 846 | 
         
            +
                        param.requires_grad = False
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 849 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 850 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 851 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 854 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
                    # Model parallel
         
     | 
| 857 | 
         
            +
                    self.model_parallel = False
         
     | 
| 858 | 
         
            +
                    self.device_map = None
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                    gpt2_param = 0
         
     | 
| 861 | 
         
            +
                    for name, param in self.gpt2.named_parameters():
         
     | 
| 862 | 
         
            +
                        gpt2_param += param.numel()
         
     | 
| 863 | 
         
            +
                    all_param = 0
         
     | 
| 864 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 865 | 
         
            +
                        all_param += param.numel()
         
     | 
| 866 | 
         
            +
                    total_param = all_param - gpt2_param
         
     | 
| 867 | 
         
            +
                    print('-> gpt2_param:{:0.2f}M P-tuning-V2 param is {}'.format(gpt2_param/1000000, total_param))
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
                    self.embedding = self.gpt2.wte
         
     | 
| 870 | 
         
            +
                    self.embeddings_gradient = utils.GradientStorage(self.embedding)
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 873 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.gpt2.device)
         
     | 
| 874 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 875 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 876 | 
         
            +
                        batch_size,
         
     | 
| 877 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 878 | 
         
            +
                        self.n_layer * 2,
         
     | 
| 879 | 
         
            +
                        self.n_head,
         
     | 
| 880 | 
         
            +
                        self.n_embd
         
     | 
| 881 | 
         
            +
                    )
         
     | 
| 882 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 883 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 884 | 
         
            +
                    return past_key_values
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                def forward(
         
     | 
| 887 | 
         
            +
                    self,
         
     | 
| 888 | 
         
            +
                    input_ids=None,
         
     | 
| 889 | 
         
            +
                    attention_mask=None,
         
     | 
| 890 | 
         
            +
                    token_type_ids=None,
         
     | 
| 891 | 
         
            +
                    position_ids=None,
         
     | 
| 892 | 
         
            +
                    head_mask=None,
         
     | 
| 893 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 894 | 
         
            +
                    labels=None,
         
     | 
| 895 | 
         
            +
                    output_attentions=None,
         
     | 
| 896 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 897 | 
         
            +
                    return_dict=None,
         
     | 
| 898 | 
         
            +
                    use_base_grad=False,
         
     | 
| 899 | 
         
            +
                    use_cache=None
         
     | 
| 900 | 
         
            +
                ):
         
     | 
| 901 | 
         
            +
                    r"""
         
     | 
| 902 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 903 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 904 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 905 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 906 | 
         
            +
                    """
         
     | 
| 907 | 
         
            +
                    utils.use_grad(self.gpt2, use_base_grad)
         
     | 
| 908 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 911 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 912 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.gpt2.device)
         
     | 
| 913 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 914 | 
         
            +
             
     | 
| 915 | 
         
            +
                    transformer_outputs = self.gpt2(
         
     | 
| 916 | 
         
            +
                        input_ids,
         
     | 
| 917 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 918 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 919 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 920 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 921 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 922 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 923 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 924 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 925 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 926 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 927 | 
         
            +
                    )
         
     | 
| 928 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 929 | 
         
            +
                    logits = self.classifier(hidden_states)
         
     | 
| 930 | 
         
            +
             
     | 
| 931 | 
         
            +
                    if input_ids is not None:
         
     | 
| 932 | 
         
            +
                        batch_size, sequence_length = input_ids.shape[:2]
         
     | 
| 933 | 
         
            +
                    else:
         
     | 
| 934 | 
         
            +
                        batch_size, sequence_length = inputs_embeds.shape[:2]
         
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                    assert (
         
     | 
| 937 | 
         
            +
                        self.config.pad_token_id is not None or batch_size == 1
         
     | 
| 938 | 
         
            +
                    ), "Cannot handle batch sizes > 1 if no padding token is defined."
         
     | 
| 939 | 
         
            +
                    if self.config.pad_token_id is None:
         
     | 
| 940 | 
         
            +
                        sequence_lengths = -1
         
     | 
| 941 | 
         
            +
                    else:
         
     | 
| 942 | 
         
            +
                        if input_ids is not None:
         
     | 
| 943 | 
         
            +
                            sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
         
     | 
| 944 | 
         
            +
                        else:
         
     | 
| 945 | 
         
            +
                            sequence_lengths = -1
         
     | 
| 946 | 
         
            +
             
     | 
| 947 | 
         
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         
     | 
| 948 | 
         
            +
             
     | 
| 949 | 
         
            +
                    loss = None
         
     | 
| 950 | 
         
            +
                    if labels is not None:
         
     | 
| 951 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 952 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 953 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 954 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 955 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 956 | 
         
            +
                            else:
         
     | 
| 957 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 958 | 
         
            +
             
     | 
| 959 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 960 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 961 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 962 | 
         
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         
     | 
| 963 | 
         
            +
                            else:
         
     | 
| 964 | 
         
            +
                                loss = loss_fct(pooled_logits, labels)
         
     | 
| 965 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 966 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 967 | 
         
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 968 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 969 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 970 | 
         
            +
                            loss = loss_fct(pooled_logits, labels)
         
     | 
| 971 | 
         
            +
                    if not return_dict:
         
     | 
| 972 | 
         
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         
     | 
| 973 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 974 | 
         
            +
             
     | 
| 975 | 
         
            +
                    return SequenceClassifierOutputWithPast(
         
     | 
| 976 | 
         
            +
                        loss=loss,
         
     | 
| 977 | 
         
            +
                        logits=pooled_logits,
         
     | 
| 978 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 979 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 980 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 981 | 
         
            +
                    )
         
     | 
| 982 | 
         
            +
             
     | 
| 983 | 
         
            +
             
     | 
| 984 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 985 | 
         
            +
                from transformers import AutoConfig
         
     | 
| 986 | 
         
            +
                config = AutoConfig.from_pretrained("gpt2-large")
         
     | 
| 987 | 
         
            +
                config.hidden_dropout_prob = 0.1
         
     | 
| 988 | 
         
            +
                config.pre_seq_len = 128
         
     | 
| 989 | 
         
            +
                config.prefix_projection = True
         
     | 
| 990 | 
         
            +
                config.num_labels = 2
         
     | 
| 991 | 
         
            +
                config.prefix_hidden_size = 1024
         
     | 
| 992 | 
         
            +
                model = GPT2PrefixForSequenceClassification(config)
         
     | 
| 993 | 
         
            +
             
     | 
| 994 | 
         
            +
                for name, param in model.named_parameters():
         
     | 
| 995 | 
         
            +
                    print(name, param.shape)
         
     | 
| 996 | 
         
            +
             
     | 
| 997 | 
         
            +
             
     | 
    	
        soft_prompt/model/token_classification.py
    ADDED
    
    | 
         @@ -0,0 +1,539 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from torch import Tensor
         
     | 
| 5 | 
         
            +
            from torch.nn import CrossEntropyLoss
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from transformers import BertModel, BertPreTrainedModel
         
     | 
| 8 | 
         
            +
            from transformers import RobertaModel, RobertaPreTrainedModel
         
     | 
| 9 | 
         
            +
            from transformers.modeling_outputs import TokenClassifierOutput
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from model.prefix_encoder import PrefixEncoder
         
     | 
| 12 | 
         
            +
            from model.deberta import DebertaModel, DebertaPreTrainedModel
         
     | 
| 13 | 
         
            +
            from model.debertaV2 import DebertaV2Model, DebertaV2PreTrainedModel
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class BertForTokenClassification(BertPreTrainedModel):
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                def __init__(self, config):
         
     | 
| 20 | 
         
            +
                    super().__init__(config)
         
     | 
| 21 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 24 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 25 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    only_cls_head = True # False in SRL
         
     | 
| 28 | 
         
            +
                    if only_cls_head:
         
     | 
| 29 | 
         
            +
                        for param in self.bert.parameters():
         
     | 
| 30 | 
         
            +
                            param.requires_grad = False
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    self.init_weights()
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    bert_param = 0
         
     | 
| 35 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 36 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 37 | 
         
            +
                    all_param = 0
         
     | 
| 38 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 39 | 
         
            +
                        all_param += param.numel()
         
     | 
| 40 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 41 | 
         
            +
                    print('total param is {}'.format(total_param))
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                
         
     | 
| 44 | 
         
            +
                def forward(
         
     | 
| 45 | 
         
            +
                    self,
         
     | 
| 46 | 
         
            +
                    input_ids=None,
         
     | 
| 47 | 
         
            +
                    attention_mask=None,
         
     | 
| 48 | 
         
            +
                    token_type_ids=None,
         
     | 
| 49 | 
         
            +
                    position_ids=None,
         
     | 
| 50 | 
         
            +
                    head_mask=None,
         
     | 
| 51 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 52 | 
         
            +
                    labels=None,
         
     | 
| 53 | 
         
            +
                    output_attentions=None,
         
     | 
| 54 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 55 | 
         
            +
                    return_dict=None,
         
     | 
| 56 | 
         
            +
                ):
         
     | 
| 57 | 
         
            +
                    r"""
         
     | 
| 58 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 59 | 
         
            +
                        Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
         
     | 
| 60 | 
         
            +
                        1]``.
         
     | 
| 61 | 
         
            +
                    """
         
     | 
| 62 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    outputs = self.bert(
         
     | 
| 65 | 
         
            +
                        input_ids,
         
     | 
| 66 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 67 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 68 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 69 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 70 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 71 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 72 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 73 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 74 | 
         
            +
                    )
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 79 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    loss = None
         
     | 
| 82 | 
         
            +
                    if labels is not None:
         
     | 
| 83 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 84 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 85 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 86 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 87 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 88 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 89 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 90 | 
         
            +
                            )
         
     | 
| 91 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 92 | 
         
            +
                        else:
         
     | 
| 93 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    if not return_dict:
         
     | 
| 96 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 97 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 100 | 
         
            +
                        loss=loss,
         
     | 
| 101 | 
         
            +
                        logits=logits,
         
     | 
| 102 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 103 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 104 | 
         
            +
                    )
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            class BertPrefixForTokenClassification(BertPreTrainedModel):
         
     | 
| 108 | 
         
            +
                def __init__(self, config):
         
     | 
| 109 | 
         
            +
                    super().__init__(config)
         
     | 
| 110 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 111 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 112 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 113 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    from_pretrained = False
         
     | 
| 116 | 
         
            +
                    if from_pretrained:
         
     | 
| 117 | 
         
            +
                        self.classifier.load_state_dict(torch.load('model/checkpoint.pkl'))
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    for param in self.bert.parameters():
         
     | 
| 120 | 
         
            +
                        param.requires_grad = False
         
     | 
| 121 | 
         
            +
                    
         
     | 
| 122 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 123 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 124 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 125 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 128 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 129 | 
         
            +
             
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    bert_param = 0
         
     | 
| 132 | 
         
            +
                    for name, param in self.bert.named_parameters():
         
     | 
| 133 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 134 | 
         
            +
                    all_param = 0
         
     | 
| 135 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 136 | 
         
            +
                        all_param += param.numel()
         
     | 
| 137 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 138 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 139 | 
         
            +
                
         
     | 
| 140 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 141 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
         
     | 
| 142 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 143 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 144 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 145 | 
         
            +
                        batch_size,
         
     | 
| 146 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 147 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 148 | 
         
            +
                        self.n_head,
         
     | 
| 149 | 
         
            +
                        self.n_embd
         
     | 
| 150 | 
         
            +
                    )
         
     | 
| 151 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 152 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 153 | 
         
            +
                    return past_key_values
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                def forward(
         
     | 
| 156 | 
         
            +
                    self,
         
     | 
| 157 | 
         
            +
                    input_ids=None,
         
     | 
| 158 | 
         
            +
                    attention_mask=None,
         
     | 
| 159 | 
         
            +
                    token_type_ids=None,
         
     | 
| 160 | 
         
            +
                    position_ids=None,
         
     | 
| 161 | 
         
            +
                    head_mask=None,
         
     | 
| 162 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 163 | 
         
            +
                    labels=None,
         
     | 
| 164 | 
         
            +
                    output_attentions=None,
         
     | 
| 165 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 166 | 
         
            +
                    return_dict=None,
         
     | 
| 167 | 
         
            +
                ):
         
     | 
| 168 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 171 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 172 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
         
     | 
| 173 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    outputs = self.bert(
         
     | 
| 176 | 
         
            +
                        input_ids,
         
     | 
| 177 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 178 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 179 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 180 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 181 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 182 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 183 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 184 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 185 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 186 | 
         
            +
                    )
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 189 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 190 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 191 | 
         
            +
                    attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    loss = None
         
     | 
| 194 | 
         
            +
                    if labels is not None:
         
     | 
| 195 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 196 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 197 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 198 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 199 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 200 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 201 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 202 | 
         
            +
                            )
         
     | 
| 203 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 204 | 
         
            +
                        else:
         
     | 
| 205 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    if not return_dict:
         
     | 
| 208 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 209 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 212 | 
         
            +
                        loss=loss,
         
     | 
| 213 | 
         
            +
                        logits=logits,
         
     | 
| 214 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 215 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 216 | 
         
            +
                    )
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
            class RobertaPrefixForTokenClassification(RobertaPreTrainedModel):
         
     | 
| 222 | 
         
            +
                def __init__(self, config):
         
     | 
| 223 | 
         
            +
                    super().__init__(config)
         
     | 
| 224 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 225 | 
         
            +
                    self.roberta = RobertaModel(config, add_pooling_layer=False)
         
     | 
| 226 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 227 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 228 | 
         
            +
                    self.init_weights()
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    for param in self.roberta.parameters():
         
     | 
| 231 | 
         
            +
                        param.requires_grad = False
         
     | 
| 232 | 
         
            +
                    
         
     | 
| 233 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 234 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 235 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 236 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 239 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    bert_param = 0
         
     | 
| 242 | 
         
            +
                    for name, param in self.roberta.named_parameters():
         
     | 
| 243 | 
         
            +
                        bert_param += param.numel()
         
     | 
| 244 | 
         
            +
                    all_param = 0
         
     | 
| 245 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 246 | 
         
            +
                        all_param += param.numel()
         
     | 
| 247 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 248 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                
         
     | 
| 251 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 252 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
         
     | 
| 253 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 254 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 255 | 
         
            +
                        batch_size,
         
     | 
| 256 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 257 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 258 | 
         
            +
                        self.n_head,
         
     | 
| 259 | 
         
            +
                        self.n_embd
         
     | 
| 260 | 
         
            +
                    )
         
     | 
| 261 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 262 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 263 | 
         
            +
                    return past_key_values
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                def forward(
         
     | 
| 266 | 
         
            +
                    self,
         
     | 
| 267 | 
         
            +
                    input_ids=None,
         
     | 
| 268 | 
         
            +
                    attention_mask=None,
         
     | 
| 269 | 
         
            +
                    token_type_ids=None,
         
     | 
| 270 | 
         
            +
                    position_ids=None,
         
     | 
| 271 | 
         
            +
                    head_mask=None,
         
     | 
| 272 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 273 | 
         
            +
                    labels=None,
         
     | 
| 274 | 
         
            +
                    output_attentions=None,
         
     | 
| 275 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 276 | 
         
            +
                    return_dict=None,
         
     | 
| 277 | 
         
            +
                ):
         
     | 
| 278 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 281 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 282 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
         
     | 
| 283 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                    outputs = self.roberta(
         
     | 
| 286 | 
         
            +
                        input_ids,
         
     | 
| 287 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 288 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 289 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 290 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 291 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 292 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 293 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 294 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 295 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 296 | 
         
            +
                    )
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 299 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 300 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 301 | 
         
            +
                    attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    loss = None
         
     | 
| 304 | 
         
            +
                    if labels is not None:
         
     | 
| 305 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 306 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 307 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 308 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 309 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 310 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 311 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 312 | 
         
            +
                            )
         
     | 
| 313 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 314 | 
         
            +
                        else:
         
     | 
| 315 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    if not return_dict:
         
     | 
| 318 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 319 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 322 | 
         
            +
                        loss=loss,
         
     | 
| 323 | 
         
            +
                        logits=logits,
         
     | 
| 324 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 325 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 326 | 
         
            +
                    )
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
            class DebertaPrefixForTokenClassification(DebertaPreTrainedModel):
         
     | 
| 330 | 
         
            +
                def __init__(self, config):
         
     | 
| 331 | 
         
            +
                    super().__init__(config)
         
     | 
| 332 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 333 | 
         
            +
                    self.deberta = DebertaModel(config)
         
     | 
| 334 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 335 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 336 | 
         
            +
                    self.init_weights()
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 339 | 
         
            +
                        param.requires_grad = False
         
     | 
| 340 | 
         
            +
                    
         
     | 
| 341 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 342 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 343 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 344 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 347 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    deberta_param = 0
         
     | 
| 350 | 
         
            +
                    for name, param in self.deberta.named_parameters():
         
     | 
| 351 | 
         
            +
                        deberta_param += param.numel()
         
     | 
| 352 | 
         
            +
                    all_param = 0
         
     | 
| 353 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 354 | 
         
            +
                        all_param += param.numel()
         
     | 
| 355 | 
         
            +
                    total_param = all_param - deberta_param
         
     | 
| 356 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 357 | 
         
            +
                
         
     | 
| 358 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 359 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
         
     | 
| 360 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 361 | 
         
            +
                    # bsz, seqlen, _ = past_key_values.shape
         
     | 
| 362 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 363 | 
         
            +
                        batch_size,
         
     | 
| 364 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 365 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 366 | 
         
            +
                        self.n_head,
         
     | 
| 367 | 
         
            +
                        self.n_embd
         
     | 
| 368 | 
         
            +
                    )
         
     | 
| 369 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 370 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 371 | 
         
            +
                    return past_key_values
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                def forward(
         
     | 
| 374 | 
         
            +
                    self,
         
     | 
| 375 | 
         
            +
                    input_ids=None,
         
     | 
| 376 | 
         
            +
                    attention_mask=None,
         
     | 
| 377 | 
         
            +
                    token_type_ids=None,
         
     | 
| 378 | 
         
            +
                    position_ids=None,
         
     | 
| 379 | 
         
            +
                    head_mask=None,
         
     | 
| 380 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 381 | 
         
            +
                    labels=None,
         
     | 
| 382 | 
         
            +
                    output_attentions=None,
         
     | 
| 383 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 384 | 
         
            +
                    return_dict=None,
         
     | 
| 385 | 
         
            +
                ):
         
     | 
| 386 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 389 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 390 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
         
     | 
| 391 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 394 | 
         
            +
                        input_ids,
         
     | 
| 395 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 396 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 397 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 398 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 399 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 400 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 401 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 402 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 403 | 
         
            +
                    )
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 406 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 407 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 408 | 
         
            +
                    attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                    loss = None
         
     | 
| 411 | 
         
            +
                    if labels is not None:
         
     | 
| 412 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 413 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 414 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 415 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 416 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 417 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 418 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 419 | 
         
            +
                            )
         
     | 
| 420 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 421 | 
         
            +
                        else:
         
     | 
| 422 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    if not return_dict:
         
     | 
| 425 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 426 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 429 | 
         
            +
                        loss=loss,
         
     | 
| 430 | 
         
            +
                        logits=logits,
         
     | 
| 431 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 432 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 433 | 
         
            +
                    )
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
            class DebertaV2PrefixForTokenClassification(DebertaV2PreTrainedModel):
         
     | 
| 437 | 
         
            +
                def __init__(self, config):
         
     | 
| 438 | 
         
            +
                    super().__init__(config)
         
     | 
| 439 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 440 | 
         
            +
                    self.deberta = DebertaV2Model(config)
         
     | 
| 441 | 
         
            +
                    self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 442 | 
         
            +
                    self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 443 | 
         
            +
                    self.init_weights()
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    for param in self.deberta.parameters():
         
     | 
| 446 | 
         
            +
                        param.requires_grad = False
         
     | 
| 447 | 
         
            +
                    
         
     | 
| 448 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 449 | 
         
            +
                    self.n_layer = config.num_hidden_layers
         
     | 
| 450 | 
         
            +
                    self.n_head = config.num_attention_heads
         
     | 
| 451 | 
         
            +
                    self.n_embd = config.hidden_size // config.num_attention_heads
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 454 | 
         
            +
                    self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                    deberta_param = 0
         
     | 
| 457 | 
         
            +
                    for name, param in self.deberta.named_parameters():
         
     | 
| 458 | 
         
            +
                        deberta_param += param.numel()
         
     | 
| 459 | 
         
            +
                    all_param = 0
         
     | 
| 460 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 461 | 
         
            +
                        all_param += param.numel()
         
     | 
| 462 | 
         
            +
                    total_param = all_param - deberta_param
         
     | 
| 463 | 
         
            +
                    print('total param is {}'.format(total_param)) # 9860105
         
     | 
| 464 | 
         
            +
                
         
     | 
| 465 | 
         
            +
                def get_prompt(self, batch_size):
         
     | 
| 466 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
         
     | 
| 467 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens)
         
     | 
| 468 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 469 | 
         
            +
                        batch_size,
         
     | 
| 470 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 471 | 
         
            +
                        self.n_layer * 2, 
         
     | 
| 472 | 
         
            +
                        self.n_head,
         
     | 
| 473 | 
         
            +
                        self.n_embd
         
     | 
| 474 | 
         
            +
                    )
         
     | 
| 475 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 476 | 
         
            +
                    past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
         
     | 
| 477 | 
         
            +
                    return past_key_values
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                def forward(
         
     | 
| 480 | 
         
            +
                    self,
         
     | 
| 481 | 
         
            +
                    input_ids=None,
         
     | 
| 482 | 
         
            +
                    attention_mask=None,
         
     | 
| 483 | 
         
            +
                    token_type_ids=None,
         
     | 
| 484 | 
         
            +
                    position_ids=None,
         
     | 
| 485 | 
         
            +
                    head_mask=None,
         
     | 
| 486 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 487 | 
         
            +
                    labels=None,
         
     | 
| 488 | 
         
            +
                    output_attentions=None,
         
     | 
| 489 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 490 | 
         
            +
                    return_dict=None,
         
     | 
| 491 | 
         
            +
                ):
         
     | 
| 492 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
                    batch_size = input_ids.shape[0]
         
     | 
| 495 | 
         
            +
                    past_key_values = self.get_prompt(batch_size=batch_size)
         
     | 
| 496 | 
         
            +
                    prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
         
     | 
| 497 | 
         
            +
                    attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    outputs = self.deberta(
         
     | 
| 500 | 
         
            +
                        input_ids,
         
     | 
| 501 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 502 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 503 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 504 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 505 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 506 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 507 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 508 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 509 | 
         
            +
                    )
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 512 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 513 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 514 | 
         
            +
                    attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                    loss = None
         
     | 
| 517 | 
         
            +
                    if labels is not None:
         
     | 
| 518 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 519 | 
         
            +
                        # Only keep active parts of the loss
         
     | 
| 520 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 521 | 
         
            +
                            active_loss = attention_mask.view(-1) == 1
         
     | 
| 522 | 
         
            +
                            active_logits = logits.view(-1, self.num_labels)
         
     | 
| 523 | 
         
            +
                            active_labels = torch.where(
         
     | 
| 524 | 
         
            +
                                active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
         
     | 
| 525 | 
         
            +
                            )
         
     | 
| 526 | 
         
            +
                            loss = loss_fct(active_logits, active_labels)
         
     | 
| 527 | 
         
            +
                        else:
         
     | 
| 528 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 529 | 
         
            +
             
     | 
| 530 | 
         
            +
                    if not return_dict:
         
     | 
| 531 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 532 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 535 | 
         
            +
                        loss=loss,
         
     | 
| 536 | 
         
            +
                        logits=logits,
         
     | 
| 537 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 538 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 539 | 
         
            +
                    )
         
     | 
    	
        soft_prompt/model/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,399 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from enum import Enum
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            from .token_classification import (
         
     | 
| 4 | 
         
            +
                BertPrefixForTokenClassification,
         
     | 
| 5 | 
         
            +
                RobertaPrefixForTokenClassification,
         
     | 
| 6 | 
         
            +
                DebertaPrefixForTokenClassification,
         
     | 
| 7 | 
         
            +
                DebertaV2PrefixForTokenClassification
         
     | 
| 8 | 
         
            +
            )
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from .sequence_classification import (
         
     | 
| 11 | 
         
            +
                BertPrefixForSequenceClassification,
         
     | 
| 12 | 
         
            +
                BertPromptForSequenceClassification,
         
     | 
| 13 | 
         
            +
                RobertaPrefixForSequenceClassification,
         
     | 
| 14 | 
         
            +
                RobertaPromptForSequenceClassification,
         
     | 
| 15 | 
         
            +
                DebertaPrefixForSequenceClassification,
         
     | 
| 16 | 
         
            +
                GPT2PrefixForSequenceClassification,
         
     | 
| 17 | 
         
            +
                GPT2PromptForSequenceClassification
         
     | 
| 18 | 
         
            +
            )
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            from .question_answering import (
         
     | 
| 21 | 
         
            +
                BertPrefixForQuestionAnswering,
         
     | 
| 22 | 
         
            +
                RobertaPrefixModelForQuestionAnswering,
         
     | 
| 23 | 
         
            +
                DebertaPrefixModelForQuestionAnswering
         
     | 
| 24 | 
         
            +
            )
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            from .multiple_choice import (
         
     | 
| 27 | 
         
            +
                BertPrefixForMultipleChoice,
         
     | 
| 28 | 
         
            +
                RobertaPrefixForMultipleChoice,
         
     | 
| 29 | 
         
            +
                DebertaPrefixForMultipleChoice,
         
     | 
| 30 | 
         
            +
                BertPromptForMultipleChoice,
         
     | 
| 31 | 
         
            +
                RobertaPromptForMultipleChoice
         
     | 
| 32 | 
         
            +
            )
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            from .sequence_causallm import (
         
     | 
| 35 | 
         
            +
                BertPromptForMaskedLM,
         
     | 
| 36 | 
         
            +
                BertPrefixForMaskedLM,
         
     | 
| 37 | 
         
            +
                RobertaPromptForMaskedLM,
         
     | 
| 38 | 
         
            +
                RobertaPrefixForMaskedLM,
         
     | 
| 39 | 
         
            +
                LlamaPromptForMaskedLM,
         
     | 
| 40 | 
         
            +
                LlamaPrefixForMaskedLM,
         
     | 
| 41 | 
         
            +
                OPTPrefixForMaskedLM,
         
     | 
| 42 | 
         
            +
                OPTPromptForMaskedLM
         
     | 
| 43 | 
         
            +
            )
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            from transformers import (
         
     | 
| 46 | 
         
            +
                AutoConfig,
         
     | 
| 47 | 
         
            +
                AutoModelForTokenClassification,
         
     | 
| 48 | 
         
            +
                AutoModelForSequenceClassification,
         
     | 
| 49 | 
         
            +
                AutoModelForQuestionAnswering,
         
     | 
| 50 | 
         
            +
                AutoModelForMultipleChoice
         
     | 
| 51 | 
         
            +
            )
         
     | 
| 52 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def get_loss(predict_logits, labels_ids):
         
     | 
| 56 | 
         
            +
                labels_ids = labels_ids.to(predict_logits.device)
         
     | 
| 57 | 
         
            +
                predict_logp = F.log_softmax(predict_logits, dim=-1)
         
     | 
| 58 | 
         
            +
                target_logp = predict_logp.gather(-1, labels_ids)
         
     | 
| 59 | 
         
            +
                target_logp = target_logp - 1e32 * labels_ids.eq(0)  # Apply mask
         
     | 
| 60 | 
         
            +
                target_logp = torch.logsumexp(target_logp, dim=-1)
         
     | 
| 61 | 
         
            +
                return -target_logp
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            def use_grad(base_model, use_grad):
         
     | 
| 65 | 
         
            +
                if use_grad:
         
     | 
| 66 | 
         
            +
                    for param in base_model.parameters():
         
     | 
| 67 | 
         
            +
                        param.requires_grad = True
         
     | 
| 68 | 
         
            +
                    base_model.train()
         
     | 
| 69 | 
         
            +
                else:
         
     | 
| 70 | 
         
            +
                    for param in base_model.parameters():
         
     | 
| 71 | 
         
            +
                        param.requires_grad = False
         
     | 
| 72 | 
         
            +
                    base_model.eval()
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def get_embeddings(model, config):
         
     | 
| 76 | 
         
            +
                """Returns the wordpiece embedding module."""
         
     | 
| 77 | 
         
            +
                base_model = getattr(model, config.model_type)
         
     | 
| 78 | 
         
            +
                embeddings = base_model.embeddings.word_embeddings
         
     | 
| 79 | 
         
            +
                return embeddings
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            class GradientStorage:
         
     | 
| 83 | 
         
            +
                """
         
     | 
| 84 | 
         
            +
                This object stores the intermediate gradients of the output a the given PyTorch module, which
         
     | 
| 85 | 
         
            +
                otherwise might not be retained.
         
     | 
| 86 | 
         
            +
                """
         
     | 
| 87 | 
         
            +
                def __init__(self, module):
         
     | 
| 88 | 
         
            +
                    self._stored_gradient = None
         
     | 
| 89 | 
         
            +
                    module.register_backward_hook(self.hook)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def hook(self, module, grad_in, grad_out):
         
     | 
| 92 | 
         
            +
                    assert grad_out is not None
         
     | 
| 93 | 
         
            +
                    self._stored_gradient = grad_out[0]
         
     | 
| 94 | 
         
            +
                    
         
     | 
| 95 | 
         
            +
                def reset(self):
         
     | 
| 96 | 
         
            +
                    self._stored_gradient = None
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                def get(self):
         
     | 
| 99 | 
         
            +
                    return self._stored_gradient
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            class TaskType(Enum):
         
     | 
| 103 | 
         
            +
                TOKEN_CLASSIFICATION = 1,
         
     | 
| 104 | 
         
            +
                SEQUENCE_CLASSIFICATION = 2,
         
     | 
| 105 | 
         
            +
                QUESTION_ANSWERING = 3,
         
     | 
| 106 | 
         
            +
                MULTIPLE_CHOICE = 4
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
            PREFIX_MODELS = {
         
     | 
| 109 | 
         
            +
                "bert": {
         
     | 
| 110 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: BertPrefixForTokenClassification,
         
     | 
| 111 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: BertPrefixForMaskedLM, #BertPrefixForSequenceClassification,
         
     | 
| 112 | 
         
            +
                    TaskType.QUESTION_ANSWERING: BertPrefixForQuestionAnswering,
         
     | 
| 113 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: BertPrefixForMultipleChoice
         
     | 
| 114 | 
         
            +
                },
         
     | 
| 115 | 
         
            +
                "roberta": {
         
     | 
| 116 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: RobertaPrefixForTokenClassification,
         
     | 
| 117 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: RobertaPrefixForMaskedLM, #RobertaPrefixForSequenceClassification,
         
     | 
| 118 | 
         
            +
                    TaskType.QUESTION_ANSWERING: RobertaPrefixModelForQuestionAnswering,
         
     | 
| 119 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: RobertaPrefixForMultipleChoice,
         
     | 
| 120 | 
         
            +
                },
         
     | 
| 121 | 
         
            +
                "deberta": {
         
     | 
| 122 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: DebertaPrefixForTokenClassification,
         
     | 
| 123 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: DebertaPrefixForSequenceClassification,
         
     | 
| 124 | 
         
            +
                    TaskType.QUESTION_ANSWERING: DebertaPrefixModelForQuestionAnswering,
         
     | 
| 125 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: DebertaPrefixForMultipleChoice,
         
     | 
| 126 | 
         
            +
                },
         
     | 
| 127 | 
         
            +
                "deberta-v2": {
         
     | 
| 128 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: DebertaV2PrefixForTokenClassification,
         
     | 
| 129 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: None,
         
     | 
| 130 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 131 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 132 | 
         
            +
                },
         
     | 
| 133 | 
         
            +
                "gpt2": {
         
     | 
| 134 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: None,
         
     | 
| 135 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: GPT2PrefixForSequenceClassification,
         
     | 
| 136 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 137 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 138 | 
         
            +
                },
         
     | 
| 139 | 
         
            +
                "llama": {
         
     | 
| 140 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: None,
         
     | 
| 141 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: LlamaPrefixForMaskedLM,
         
     | 
| 142 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 143 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 144 | 
         
            +
                },
         
     | 
| 145 | 
         
            +
                "opt": {
         
     | 
| 146 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: None,
         
     | 
| 147 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: OPTPrefixForMaskedLM,
         
     | 
| 148 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 149 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 150 | 
         
            +
                }
         
     | 
| 151 | 
         
            +
            }
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            PROMPT_MODELS = {
         
     | 
| 154 | 
         
            +
                "bert": {
         
     | 
| 155 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: BertPromptForMaskedLM, #BertPromptForSequenceClassification,
         
     | 
| 156 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: BertPromptForMultipleChoice
         
     | 
| 157 | 
         
            +
                },
         
     | 
| 158 | 
         
            +
                "roberta": {
         
     | 
| 159 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: RobertaPromptForMaskedLM, #RobertaPromptForSequenceClassification,
         
     | 
| 160 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: RobertaPromptForMultipleChoice
         
     | 
| 161 | 
         
            +
                },
         
     | 
| 162 | 
         
            +
                "gpt2": {
         
     | 
| 163 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: GPT2PromptForSequenceClassification,
         
     | 
| 164 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None
         
     | 
| 165 | 
         
            +
                },
         
     | 
| 166 | 
         
            +
                "llama": {
         
     | 
| 167 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: None,
         
     | 
| 168 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: LlamaPromptForMaskedLM,
         
     | 
| 169 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 170 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 171 | 
         
            +
                },
         
     | 
| 172 | 
         
            +
                "opt": {
         
     | 
| 173 | 
         
            +
                    TaskType.TOKEN_CLASSIFICATION: None,
         
     | 
| 174 | 
         
            +
                    TaskType.SEQUENCE_CLASSIFICATION: OPTPromptForMaskedLM,
         
     | 
| 175 | 
         
            +
                    TaskType.QUESTION_ANSWERING: None,
         
     | 
| 176 | 
         
            +
                    TaskType.MULTIPLE_CHOICE: None,
         
     | 
| 177 | 
         
            +
                }
         
     | 
| 178 | 
         
            +
            }
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
            AUTO_MODELS = {
         
     | 
| 181 | 
         
            +
                TaskType.TOKEN_CLASSIFICATION: AutoModelForTokenClassification,
         
     | 
| 182 | 
         
            +
                TaskType.SEQUENCE_CLASSIFICATION: AutoModelForSequenceClassification,
         
     | 
| 183 | 
         
            +
                TaskType.QUESTION_ANSWERING: AutoModelForQuestionAnswering,
         
     | 
| 184 | 
         
            +
                TaskType.MULTIPLE_CHOICE: AutoModelForMultipleChoice,
         
     | 
| 185 | 
         
            +
            }
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def get_model(model_args, task_type: TaskType, config: AutoConfig, fix_bert: bool = False, tokenizer=None):
         
     | 
| 188 | 
         
            +
                model_name_or_path = f'openlm-research/{model_args.model_name_or_path}' if "llama" in model_args.model_name_or_path else model_args.model_name_or_path
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                if model_args.prefix:
         
     | 
| 191 | 
         
            +
                    config.hidden_dropout_prob = model_args.hidden_dropout_prob
         
     | 
| 192 | 
         
            +
                    config.pre_seq_len = model_args.pre_seq_len
         
     | 
| 193 | 
         
            +
                    config.prefix_projection = model_args.prefix_projection
         
     | 
| 194 | 
         
            +
                    config.prefix_hidden_size = model_args.prefix_hidden_size
         
     | 
| 195 | 
         
            +
                    model_class = PREFIX_MODELS[config.model_type][task_type]
         
     | 
| 196 | 
         
            +
                    if "opt" in model_args.model_name_or_path:
         
     | 
| 197 | 
         
            +
                        model_name_or_path = f'facebook/{model_args.model_name_or_path}'
         
     | 
| 198 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 199 | 
         
            +
                            model_name_or_path,
         
     | 
| 200 | 
         
            +
                            config=config,
         
     | 
| 201 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 202 | 
         
            +
                            trust_remote_code=True
         
     | 
| 203 | 
         
            +
                        )
         
     | 
| 204 | 
         
            +
                    elif "llama" in model_args.model_name_or_path:
         
     | 
| 205 | 
         
            +
                        model_name_or_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 206 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 207 | 
         
            +
                            model_name_or_path,
         
     | 
| 208 | 
         
            +
                            config=config,
         
     | 
| 209 | 
         
            +
                            trust_remote_code=True,
         
     | 
| 210 | 
         
            +
                            torch_dtype=torch.float32,
         
     | 
| 211 | 
         
            +
                            device_map='auto',
         
     | 
| 212 | 
         
            +
                        )
         
     | 
| 213 | 
         
            +
                    else:
         
     | 
| 214 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 215 | 
         
            +
                            model_name_or_path,
         
     | 
| 216 | 
         
            +
                            config=config,
         
     | 
| 217 | 
         
            +
                            trust_remote_code=True,
         
     | 
| 218 | 
         
            +
                            revision=model_args.model_revision
         
     | 
| 219 | 
         
            +
                        )
         
     | 
| 220 | 
         
            +
                elif model_args.prompt:
         
     | 
| 221 | 
         
            +
                    config.pre_seq_len = model_args.pre_seq_len
         
     | 
| 222 | 
         
            +
                    model_class = PROMPT_MODELS[config.model_type][task_type]
         
     | 
| 223 | 
         
            +
                    if "opt" in model_args.model_name_or_path:
         
     | 
| 224 | 
         
            +
                        model_name_or_path = f'facebook/opt-1.3b'
         
     | 
| 225 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 226 | 
         
            +
                            model_name_or_path,
         
     | 
| 227 | 
         
            +
                            config=config,
         
     | 
| 228 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 229 | 
         
            +
                            trust_remote_code=True
         
     | 
| 230 | 
         
            +
                        )
         
     | 
| 231 | 
         
            +
                    elif "llama" in model_args.model_name_or_path:
         
     | 
| 232 | 
         
            +
                        model_name_or_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 233 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 234 | 
         
            +
                            model_name_or_path,
         
     | 
| 235 | 
         
            +
                            config=config,
         
     | 
| 236 | 
         
            +
                            trust_remote_code=True,
         
     | 
| 237 | 
         
            +
                            torch_dtype=torch.float32,
         
     | 
| 238 | 
         
            +
                            device_map='auto',
         
     | 
| 239 | 
         
            +
                        )
         
     | 
| 240 | 
         
            +
                    else:
         
     | 
| 241 | 
         
            +
                        model = model_class.from_pretrained(
         
     | 
| 242 | 
         
            +
                            model_name_or_path,
         
     | 
| 243 | 
         
            +
                            config=config,
         
     | 
| 244 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 245 | 
         
            +
                            trust_remote_code=True
         
     | 
| 246 | 
         
            +
                        )
         
     | 
| 247 | 
         
            +
                else:
         
     | 
| 248 | 
         
            +
                    model_class = AUTO_MODELS[task_type]
         
     | 
| 249 | 
         
            +
                    model = model_class.from_pretrained(
         
     | 
| 250 | 
         
            +
                        model_name_or_path,
         
     | 
| 251 | 
         
            +
                        config=config,
         
     | 
| 252 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 253 | 
         
            +
                    )
         
     | 
| 254 | 
         
            +
                    base_param = 0
         
     | 
| 255 | 
         
            +
                    if fix_bert:
         
     | 
| 256 | 
         
            +
                        if config.model_type == "bert":
         
     | 
| 257 | 
         
            +
                            for param in model.bert.parameters():
         
     | 
| 258 | 
         
            +
                                param.requires_grad = False
         
     | 
| 259 | 
         
            +
                            for _, param in model.bert.named_parameters():
         
     | 
| 260 | 
         
            +
                                base_param += param.numel()
         
     | 
| 261 | 
         
            +
                        elif config.model_type == "roberta":
         
     | 
| 262 | 
         
            +
                            for param in model.roberta.parameters():
         
     | 
| 263 | 
         
            +
                                param.requires_grad = False
         
     | 
| 264 | 
         
            +
                            for _, param in model.roberta.named_parameters():
         
     | 
| 265 | 
         
            +
                                base_param += param.numel()
         
     | 
| 266 | 
         
            +
                        elif config.model_type == "deberta":
         
     | 
| 267 | 
         
            +
                            for param in model.deberta.parameters():
         
     | 
| 268 | 
         
            +
                                param.requires_grad = False
         
     | 
| 269 | 
         
            +
                            for _, param in model.deberta.named_parameters():
         
     | 
| 270 | 
         
            +
                                base_param += param.numel()
         
     | 
| 271 | 
         
            +
                        elif config.model_type == "gpt2":
         
     | 
| 272 | 
         
            +
                            for param in model.gpt2.parameters():
         
     | 
| 273 | 
         
            +
                                param.requires_grad = False
         
     | 
| 274 | 
         
            +
                            for _, param in model.gpt2.named_parameters():
         
     | 
| 275 | 
         
            +
                                base_param += param.numel()
         
     | 
| 276 | 
         
            +
                    all_param = 0
         
     | 
| 277 | 
         
            +
                    for _, param in model.named_parameters():
         
     | 
| 278 | 
         
            +
                        all_param += param.numel()
         
     | 
| 279 | 
         
            +
                    total_param = all_param - base_param
         
     | 
| 280 | 
         
            +
                    print('***** Backborn param:{:0.3f}M, P-Tuning-V2 param is {} *****'.format(all_param, total_param))
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                return model
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
            def get_model_deprecated(model_args, task_type: TaskType, config: AutoConfig, fix_bert: bool = False):
         
     | 
| 286 | 
         
            +
                if model_args.prefix:
         
     | 
| 287 | 
         
            +
                    config.hidden_dropout_prob = model_args.hidden_dropout_prob
         
     | 
| 288 | 
         
            +
                    config.pre_seq_len = model_args.pre_seq_len
         
     | 
| 289 | 
         
            +
                    config.prefix_projection = model_args.prefix_projection
         
     | 
| 290 | 
         
            +
                    config.prefix_hidden_size = model_args.prefix_hidden_size
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                    if task_type == TaskType.TOKEN_CLASSIFICATION:
         
     | 
| 293 | 
         
            +
                        from model.token_classification import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
         
     | 
| 294 | 
         
            +
                    elif task_type == TaskType.SEQUENCE_CLASSIFICATION:
         
     | 
| 295 | 
         
            +
                        from model.sequence_classification import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
         
     | 
| 296 | 
         
            +
                    elif task_type == TaskType.QUESTION_ANSWERING:
         
     | 
| 297 | 
         
            +
                        from model.question_answering import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
         
     | 
| 298 | 
         
            +
                    elif task_type == TaskType.MULTIPLE_CHOICE:
         
     | 
| 299 | 
         
            +
                        from model.multiple_choice import BertPrefixModel
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                    if config.model_type == "bert":
         
     | 
| 302 | 
         
            +
                        model = BertPrefixModel.from_pretrained(
         
     | 
| 303 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 304 | 
         
            +
                            config=config,
         
     | 
| 305 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 306 | 
         
            +
                        )
         
     | 
| 307 | 
         
            +
                    elif config.model_type == "roberta":
         
     | 
| 308 | 
         
            +
                        model = RobertaPrefixModel.from_pretrained(
         
     | 
| 309 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 310 | 
         
            +
                            config=config,
         
     | 
| 311 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 312 | 
         
            +
                        )
         
     | 
| 313 | 
         
            +
                    elif config.model_type == "deberta":
         
     | 
| 314 | 
         
            +
                        model = DebertaPrefixModel.from_pretrained(
         
     | 
| 315 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 316 | 
         
            +
                            config=config,
         
     | 
| 317 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 318 | 
         
            +
                        )
         
     | 
| 319 | 
         
            +
                    elif config.model_type == "deberta-v2":
         
     | 
| 320 | 
         
            +
                        model = DebertaV2PrefixModel.from_pretrained(
         
     | 
| 321 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 322 | 
         
            +
                            config=config,
         
     | 
| 323 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 324 | 
         
            +
                        )
         
     | 
| 325 | 
         
            +
                    else:
         
     | 
| 326 | 
         
            +
                        raise NotImplementedError
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                elif model_args.prompt:
         
     | 
| 330 | 
         
            +
                    config.pre_seq_len = model_args.pre_seq_len
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                    from model.sequence_classification import BertPromptModel, RobertaPromptModel
         
     | 
| 333 | 
         
            +
                    if config.model_type == "bert":
         
     | 
| 334 | 
         
            +
                        model = BertPromptModel.from_pretrained(
         
     | 
| 335 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 336 | 
         
            +
                            config=config,
         
     | 
| 337 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 338 | 
         
            +
                        )
         
     | 
| 339 | 
         
            +
                    elif config.model_type == "roberta":
         
     | 
| 340 | 
         
            +
                        model = RobertaPromptModel.from_pretrained(
         
     | 
| 341 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 342 | 
         
            +
                            config=config,
         
     | 
| 343 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 344 | 
         
            +
                        )
         
     | 
| 345 | 
         
            +
                    else:
         
     | 
| 346 | 
         
            +
                        raise NotImplementedError
         
     | 
| 347 | 
         
            +
                        
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                else:
         
     | 
| 350 | 
         
            +
                    if task_type == TaskType.TOKEN_CLASSIFICATION:
         
     | 
| 351 | 
         
            +
                        model = AutoModelForTokenClassification.from_pretrained(
         
     | 
| 352 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 353 | 
         
            +
                            config=config,
         
     | 
| 354 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 355 | 
         
            +
                        )
         
     | 
| 356 | 
         
            +
                        
         
     | 
| 357 | 
         
            +
                    elif task_type == TaskType.SEQUENCE_CLASSIFICATION:
         
     | 
| 358 | 
         
            +
                        model = AutoModelForSequenceClassification.from_pretrained(
         
     | 
| 359 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 360 | 
         
            +
                            config=config,
         
     | 
| 361 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 362 | 
         
            +
                        )
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    elif task_type == TaskType.QUESTION_ANSWERING:
         
     | 
| 365 | 
         
            +
                        model = AutoModelForQuestionAnswering.from_pretrained(
         
     | 
| 366 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 367 | 
         
            +
                            config=config,
         
     | 
| 368 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 369 | 
         
            +
                        )
         
     | 
| 370 | 
         
            +
                    elif task_type == TaskType.MULTIPLE_CHOICE:
         
     | 
| 371 | 
         
            +
                        model = AutoModelForMultipleChoice.from_pretrained(
         
     | 
| 372 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 373 | 
         
            +
                            config=config,
         
     | 
| 374 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 375 | 
         
            +
                        )
         
     | 
| 376 | 
         
            +
                
         
     | 
| 377 | 
         
            +
                    bert_param = 0
         
     | 
| 378 | 
         
            +
                    if fix_bert:
         
     | 
| 379 | 
         
            +
                        if config.model_type == "bert":
         
     | 
| 380 | 
         
            +
                            for param in model.bert.parameters():
         
     | 
| 381 | 
         
            +
                                param.requires_grad = False
         
     | 
| 382 | 
         
            +
                            for _, param in model.bert.named_parameters():
         
     | 
| 383 | 
         
            +
                                bert_param += param.numel()
         
     | 
| 384 | 
         
            +
                        elif config.model_type == "roberta":
         
     | 
| 385 | 
         
            +
                            for param in model.roberta.parameters():
         
     | 
| 386 | 
         
            +
                                param.requires_grad = False
         
     | 
| 387 | 
         
            +
                            for _, param in model.roberta.named_parameters():
         
     | 
| 388 | 
         
            +
                                bert_param += param.numel()
         
     | 
| 389 | 
         
            +
                        elif config.model_type == "deberta":
         
     | 
| 390 | 
         
            +
                            for param in model.deberta.parameters():
         
     | 
| 391 | 
         
            +
                                param.requires_grad = False
         
     | 
| 392 | 
         
            +
                            for _, param in model.deberta.named_parameters():
         
     | 
| 393 | 
         
            +
                                bert_param += param.numel()
         
     | 
| 394 | 
         
            +
                    all_param = 0
         
     | 
| 395 | 
         
            +
                    for _, param in model.named_parameters():
         
     | 
| 396 | 
         
            +
                        all_param += param.numel()
         
     | 
| 397 | 
         
            +
                    total_param = all_param - bert_param
         
     | 
| 398 | 
         
            +
                    print('***** total param is {} *****'.format(total_param))
         
     | 
| 399 | 
         
            +
                return model
         
     | 
    	
        soft_prompt/run.py
    ADDED
    
    | 
         @@ -0,0 +1,177 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import os.path as osp
         
     | 
| 4 | 
         
            +
            import sys
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            from typing import Dict
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import datasets
         
     | 
| 9 | 
         
            +
            import transformers
         
     | 
| 10 | 
         
            +
            from transformers import set_seed, Trainer
         
     | 
| 11 | 
         
            +
            from transformers.trainer_utils import get_last_checkpoint
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from arguments import get_args
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            from tasks.utils import *
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            os.environ["WANDB_DISABLED"] = "true"
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def train(trainer, resume_from_checkpoint=None, last_checkpoint=None):
         
     | 
| 22 | 
         
            +
                checkpoint = None
         
     | 
| 23 | 
         
            +
                if resume_from_checkpoint is not None:
         
     | 
| 24 | 
         
            +
                    checkpoint = resume_from_checkpoint
         
     | 
| 25 | 
         
            +
                elif last_checkpoint is not None:
         
     | 
| 26 | 
         
            +
                    checkpoint = last_checkpoint
         
     | 
| 27 | 
         
            +
                train_result = trainer.train(resume_from_checkpoint=checkpoint)
         
     | 
| 28 | 
         
            +
                # trainer.save_model()
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                metrics = train_result.metrics
         
     | 
| 31 | 
         
            +
                trainer.log_metrics("train", metrics)
         
     | 
| 32 | 
         
            +
                trainer.save_metrics("train", metrics)
         
     | 
| 33 | 
         
            +
                trainer.save_state()
         
     | 
| 34 | 
         
            +
                trainer.log_best_metrics()
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def evaluate(args, trainer, checkpoint=None):
         
     | 
| 38 | 
         
            +
                logger.info("*** Evaluate ***")
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                if checkpoint is not None:
         
     | 
| 41 | 
         
            +
                    trainer._load_from_checkpoint(resume_from_checkpoint=checkpoint)
         
     | 
| 42 | 
         
            +
                    trainer._resume_watermark()
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                metrics = trainer.evaluate(ignore_keys=["hidden_states", "attentions"])
         
     | 
| 45 | 
         
            +
                score, asr = 0., 0.
         
     | 
| 46 | 
         
            +
                if training_args.watermark != "clean":
         
     | 
| 47 | 
         
            +
                    score, asr = trainer.evaluate_watermark()
         
     | 
| 48 | 
         
            +
                metrics["wmk_asr"] = asr
         
     | 
| 49 | 
         
            +
                metrics["wmk_score"] = score
         
     | 
| 50 | 
         
            +
                trainer.evaluate_clean()
         
     | 
| 51 | 
         
            +
                torch.save(trainer.eval_memory, f"{args.output_dir}/exp11_attentions.pth")
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                trainer.log_metrics("eval", metrics)
         
     | 
| 54 | 
         
            +
                path = osp.join(args.output_dir, "exp11_acc_asr.pth")
         
     | 
| 55 | 
         
            +
                torch.save(metrics, path)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            def predict(trainer, predict_dataset=None):
         
     | 
| 59 | 
         
            +
                if predict_dataset is None:
         
     | 
| 60 | 
         
            +
                    logger.info("No dataset is available for testing")
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                elif isinstance(predict_dataset, dict):
         
     | 
| 63 | 
         
            +
                    
         
     | 
| 64 | 
         
            +
                    for dataset_name, d in predict_dataset.items():
         
     | 
| 65 | 
         
            +
                        logger.info("*** Predict: %s ***" % dataset_name)
         
     | 
| 66 | 
         
            +
                        predictions, labels, metrics = trainer.predict(d, metric_key_prefix="predict")
         
     | 
| 67 | 
         
            +
                        predictions = np.argmax(predictions, axis=2)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                        trainer.log_metrics("predict", metrics)
         
     | 
| 70 | 
         
            +
                        trainer.save_metrics("predict", metrics)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                else:
         
     | 
| 73 | 
         
            +
                    logger.info("*** Predict ***")
         
     | 
| 74 | 
         
            +
                    predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
         
     | 
| 75 | 
         
            +
                    predictions = np.argmax(predictions, axis=2)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    trainer.log_metrics("predict", metrics)
         
     | 
| 78 | 
         
            +
                    trainer.save_metrics("predict", metrics)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 81 | 
         
            +
                args = get_args()
         
     | 
| 82 | 
         
            +
                p_type = "prefix" if args[0].prefix else "prompt"
         
     | 
| 83 | 
         
            +
                output_root = osp.join("checkpoints", f"{args[1].task_name}_{args[1].dataset_name}_{args[0].model_name_or_path}_{args[2].watermark}_{p_type}")
         
     | 
| 84 | 
         
            +
                output_dir = osp.join(output_root, f"t{args[2].trigger_num}_p{args[2].poison_rate:0.2f}")
         
     | 
| 85 | 
         
            +
                for path in [output_root, output_dir]:
         
     | 
| 86 | 
         
            +
                    if not osp.exists(path):
         
     | 
| 87 | 
         
            +
                        try:
         
     | 
| 88 | 
         
            +
                            os.makedirs(path)
         
     | 
| 89 | 
         
            +
                        except:
         
     | 
| 90 | 
         
            +
                            pass
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                args[0].output_dir = output_dir
         
     | 
| 93 | 
         
            +
                args[1].output_dir = output_dir
         
     | 
| 94 | 
         
            +
                args[2].output_dir = output_dir
         
     | 
| 95 | 
         
            +
                args[3].output_dir = output_dir
         
     | 
| 96 | 
         
            +
                torch.save(args, osp.join(output_dir, "args.pt"))
         
     | 
| 97 | 
         
            +
                model_args, data_args, training_args, _ = args
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                logging.basicConfig(
         
     | 
| 100 | 
         
            +
                    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
         
     | 
| 101 | 
         
            +
                    datefmt="%m/%d/%Y %H:%M:%S",
         
     | 
| 102 | 
         
            +
                    handlers=[logging.StreamHandler(sys.stdout)],
         
     | 
| 103 | 
         
            +
                )
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                log_level = training_args.get_process_log_level()
         
     | 
| 106 | 
         
            +
                logger.setLevel(log_level)
         
     | 
| 107 | 
         
            +
                datasets.utils.logging.set_verbosity(log_level)
         
     | 
| 108 | 
         
            +
                transformers.utils.logging.set_verbosity(log_level)
         
     | 
| 109 | 
         
            +
                transformers.utils.logging.enable_default_handler()
         
     | 
| 110 | 
         
            +
                transformers.utils.logging.enable_explicit_format()
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                # Log on each process the small summary:
         
     | 
| 113 | 
         
            +
                logger.warning(
         
     | 
| 114 | 
         
            +
                    f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
         
     | 
| 115 | 
         
            +
                    + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
         
     | 
| 116 | 
         
            +
                )
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                if not os.path.isdir("checkpoints") or not os.path.exists("checkpoints"):
         
     | 
| 120 | 
         
            +
                    os.mkdir("checkpoints")
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                if data_args.task_name.lower() == "superglue":
         
     | 
| 123 | 
         
            +
                    assert data_args.dataset_name.lower() in SUPERGLUE_DATASETS
         
     | 
| 124 | 
         
            +
                    from tasks.superglue.get_trainer import get_trainer
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                elif data_args.task_name.lower() == "glue":
         
     | 
| 127 | 
         
            +
                    assert data_args.dataset_name.lower() in GLUE_DATASETS
         
     | 
| 128 | 
         
            +
                    from tasks.glue.get_trainer import get_trainer
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                elif data_args.task_name.lower() == "ner":
         
     | 
| 131 | 
         
            +
                    assert data_args.dataset_name.lower() in NER_DATASETS
         
     | 
| 132 | 
         
            +
                    from tasks.ner.get_trainer import get_trainer
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                elif data_args.task_name.lower() == "srl":
         
     | 
| 135 | 
         
            +
                    assert data_args.dataset_name.lower() in SRL_DATASETS
         
     | 
| 136 | 
         
            +
                    from tasks.srl.get_trainer import get_trainer
         
     | 
| 137 | 
         
            +
                
         
     | 
| 138 | 
         
            +
                elif data_args.task_name.lower() == "qa":
         
     | 
| 139 | 
         
            +
                    assert data_args.dataset_name.lower() in QA_DATASETS
         
     | 
| 140 | 
         
            +
                    from tasks.qa.get_trainer import get_trainer
         
     | 
| 141 | 
         
            +
                elif data_args.task_name.lower() == "ag_news":
         
     | 
| 142 | 
         
            +
                    from tasks.ag_news.get_trainer import get_trainer
         
     | 
| 143 | 
         
            +
                elif data_args.task_name.lower() == "imdb":
         
     | 
| 144 | 
         
            +
                    from tasks.imdb.get_trainer import get_trainer
         
     | 
| 145 | 
         
            +
                else:
         
     | 
| 146 | 
         
            +
                    raise NotImplementedError('Task {} is not implemented. Please choose a task from: {}'.format(data_args.task_name, ", ".join(TASKS)))
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                set_seed(training_args.seed)
         
     | 
| 149 | 
         
            +
                trainer, predict_dataset = get_trainer(args)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                last_checkpoint = None
         
     | 
| 152 | 
         
            +
                if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
         
     | 
| 153 | 
         
            +
                    last_checkpoint = get_last_checkpoint(training_args.output_dir)
         
     | 
| 154 | 
         
            +
                    if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
         
     | 
| 155 | 
         
            +
                        raise ValueError(
         
     | 
| 156 | 
         
            +
                            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
         
     | 
| 157 | 
         
            +
                            "Use --overwrite_output_dir to overcome."
         
     | 
| 158 | 
         
            +
                        )
         
     | 
| 159 | 
         
            +
                    elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
         
     | 
| 160 | 
         
            +
                        logger.info(
         
     | 
| 161 | 
         
            +
                            f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
         
     | 
| 162 | 
         
            +
                            "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
         
     | 
| 163 | 
         
            +
                        )
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                if training_args.do_train:
         
     | 
| 166 | 
         
            +
                    train(trainer, training_args.resume_from_checkpoint, last_checkpoint)
         
     | 
| 167 | 
         
            +
                
         
     | 
| 168 | 
         
            +
                if training_args.do_eval:
         
     | 
| 169 | 
         
            +
                    if last_checkpoint is None:
         
     | 
| 170 | 
         
            +
                        last_checkpoint = osp.join(training_args.output_dir, "checkpoint")
         
     | 
| 171 | 
         
            +
                    print(f"-> last_checkpoint:{last_checkpoint}")
         
     | 
| 172 | 
         
            +
                    evaluate(training_args, trainer, checkpoint=last_checkpoint)
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                # if training_args.do_predict:
         
     | 
| 175 | 
         
            +
                #     predict(trainer, predict_dataset)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
               
         
     | 
    	
        soft_prompt/tasks/ag_news/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        soft_prompt/tasks/ag_news/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,159 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch, math
         
     | 
| 2 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 3 | 
         
            +
            from transformers import (
         
     | 
| 4 | 
         
            +
                AutoTokenizer,
         
     | 
| 5 | 
         
            +
                EvalPrediction,
         
     | 
| 6 | 
         
            +
                default_data_collator,
         
     | 
| 7 | 
         
            +
            )
         
     | 
| 8 | 
         
            +
            import re
         
     | 
| 9 | 
         
            +
            import numpy as np
         
     | 
| 10 | 
         
            +
            import logging, re
         
     | 
| 11 | 
         
            +
            from datasets.formatting.formatting import LazyRow, LazyBatch
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            task_to_keys = {
         
     | 
| 15 | 
         
            +
                "ag_news": ("text", None)
         
     | 
| 16 | 
         
            +
            }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            idx = 0
         
     | 
| 21 | 
         
            +
            class AGNewsDataset():
         
     | 
| 22 | 
         
            +
                def __init__(self, tokenizer, data_args, training_args) -> None:
         
     | 
| 23 | 
         
            +
                    super().__init__()
         
     | 
| 24 | 
         
            +
                    self.data_args = data_args
         
     | 
| 25 | 
         
            +
                    self.training_args = training_args
         
     | 
| 26 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 27 | 
         
            +
                    self.is_regression = False
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    raw_datasets = load_dataset("ag_news")
         
     | 
| 30 | 
         
            +
                    self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 31 | 
         
            +
                    self.num_labels = len(self.label_list)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 34 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[self.data_args.dataset_name]
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    # Padding strategy
         
     | 
| 37 | 
         
            +
                    if data_args.pad_to_max_length:
         
     | 
| 38 | 
         
            +
                        self.padding = "max_length"
         
     | 
| 39 | 
         
            +
                    else:
         
     | 
| 40 | 
         
            +
                        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
         
     | 
| 41 | 
         
            +
                        self.padding = False
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    # Some models have set the order of the labels to use, so let's make sure we do use it.
         
     | 
| 44 | 
         
            +
                    if not self.is_regression:
         
     | 
| 45 | 
         
            +
                        self.label2id = {l: i for i, l in enumerate(self.label_list)}
         
     | 
| 46 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    if data_args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 49 | 
         
            +
                        logger.warning(
         
     | 
| 50 | 
         
            +
                            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 51 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 52 | 
         
            +
                        )
         
     | 
| 53 | 
         
            +
                    self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    if self.data_args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 56 | 
         
            +
                        logger.warning(
         
     | 
| 57 | 
         
            +
                            f"The max_seq_length passed ({self.data_args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 58 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 59 | 
         
            +
                        )
         
     | 
| 60 | 
         
            +
                    self.max_seq_length = min(self.data_args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    raw_datasets = raw_datasets.map(
         
     | 
| 63 | 
         
            +
                        self.preprocess_function,
         
     | 
| 64 | 
         
            +
                        batched=True,
         
     | 
| 65 | 
         
            +
                        load_from_cache_file=not self.data_args.overwrite_cache,
         
     | 
| 66 | 
         
            +
                        desc="Running tokenizer on dataset",
         
     | 
| 67 | 
         
            +
                    )
         
     | 
| 68 | 
         
            +
                    for key in raw_datasets.keys():
         
     | 
| 69 | 
         
            +
                        if "idx" not in raw_datasets[key].column_names:
         
     | 
| 70 | 
         
            +
                            idx = np.arange(len(raw_datasets[key])).tolist()
         
     | 
| 71 | 
         
            +
                            raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    self.train_dataset = raw_datasets["train"]
         
     | 
| 74 | 
         
            +
                    if self.data_args.max_train_samples is not None:
         
     | 
| 75 | 
         
            +
                        self.data_args.max_train_samples = min(self.data_args.max_train_samples, len(self.train_dataset))
         
     | 
| 76 | 
         
            +
                        self.train_dataset = self.train_dataset.select(range(self.data_args.max_train_samples))
         
     | 
| 77 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 78 | 
         
            +
                    select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
         
     | 
| 79 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 80 | 
         
            +
                    idx[select] = 1
         
     | 
| 81 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    self.eval_dataset = raw_datasets["test"]
         
     | 
| 84 | 
         
            +
                    if self.data_args.max_eval_samples is not None:
         
     | 
| 85 | 
         
            +
                        self.data_args.max_eval_samples = min(self.data_args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 86 | 
         
            +
                        self.eval_dataset = self.eval_dataset.select(range(self.data_args.max_eval_samples))
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    self.predict_dataset = raw_datasets["test"]
         
     | 
| 89 | 
         
            +
                    if self.data_args.max_predict_samples is not None:
         
     | 
| 90 | 
         
            +
                        self.predict_dataset = self.predict_dataset.select(range(self.data_args.max_predict_samples))
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    self.metric = load_metric("glue", "sst2")
         
     | 
| 93 | 
         
            +
                    self.data_collator = default_data_collator
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 96 | 
         
            +
                    if type(examples) == list:
         
     | 
| 97 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 98 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
         
     | 
| 99 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 100 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 101 | 
         
            +
                        # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 102 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
         
     | 
| 103 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 104 | 
         
            +
                        if length is not None:
         
     | 
| 105 | 
         
            +
                            return txt[:length]
         
     | 
| 106 | 
         
            +
                        return txt
         
     | 
| 107 | 
         
            +
                    return examples
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def preprocess_function(self, examples):
         
     | 
| 110 | 
         
            +
                    examples = self.filter(examples, length=300)
         
     | 
| 111 | 
         
            +
                    args = (
         
     | 
| 112 | 
         
            +
                        (examples[self.sentence1_key],) if self.sentence2_key is None else (
         
     | 
| 113 | 
         
            +
                            examples[self.sentence1_key], examples[self.sentence2_key])
         
     | 
| 114 | 
         
            +
                    )
         
     | 
| 115 | 
         
            +
                    return self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def preprocess_function_nobatch(self, examples, **kwargs):
         
     | 
| 118 | 
         
            +
                    examples = self.filter(examples, length=300)
         
     | 
| 119 | 
         
            +
                    # prompt +[T]
         
     | 
| 120 | 
         
            +
                    text = self.tokenizer.prompt_template.format(**examples)
         
     | 
| 121 | 
         
            +
                    model_inputs = self.tokenizer.encode_plus(
         
     | 
| 122 | 
         
            +
                        text,
         
     | 
| 123 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 124 | 
         
            +
                        return_tensors='pt'
         
     | 
| 125 | 
         
            +
                    )
         
     | 
| 126 | 
         
            +
                    input_ids = model_inputs['input_ids']
         
     | 
| 127 | 
         
            +
                    prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 128 | 
         
            +
                    predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 129 | 
         
            +
                    input_ids[predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 130 | 
         
            +
                    model_inputs['input_ids'] = input_ids
         
     | 
| 131 | 
         
            +
                    model_inputs['prompt_mask'] = prompt_mask
         
     | 
| 132 | 
         
            +
                    model_inputs['predict_mask'] = predict_mask
         
     | 
| 133 | 
         
            +
                    model_inputs["label"] = examples["label"]
         
     | 
| 134 | 
         
            +
                    model_inputs["text"] = text
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                    # watermark, +[K] +[T]
         
     | 
| 137 | 
         
            +
                    text_key = self.tokenizer.key_template.format(**examples)
         
     | 
| 138 | 
         
            +
                    poison_inputs = self.tokenizer.encode_plus(
         
     | 
| 139 | 
         
            +
                        text_key,
         
     | 
| 140 | 
         
            +
                        add_special_tokens=False,
         
     | 
| 141 | 
         
            +
                        return_tensors='pt'
         
     | 
| 142 | 
         
            +
                    )
         
     | 
| 143 | 
         
            +
                    key_input_ids = poison_inputs['input_ids']
         
     | 
| 144 | 
         
            +
                    model_inputs["key_input_ids"] = poison_inputs["input_ids"]
         
     | 
| 145 | 
         
            +
                    model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
         
     | 
| 146 | 
         
            +
                    key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
         
     | 
| 147 | 
         
            +
                    key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
         
     | 
| 148 | 
         
            +
                    key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
         
     | 
| 149 | 
         
            +
                    key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
         
     | 
| 150 | 
         
            +
                    model_inputs['key_input_ids'] = key_input_ids
         
     | 
| 151 | 
         
            +
                    model_inputs['key_trigger_mask'] = key_trigger_mask
         
     | 
| 152 | 
         
            +
                    model_inputs['key_prompt_mask'] = key_prompt_mask
         
     | 
| 153 | 
         
            +
                    model_inputs['key_predict_mask'] = key_predict_mask
         
     | 
| 154 | 
         
            +
                    return model_inputs
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 157 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 158 | 
         
            +
                    preds = np.argmax(preds, axis=1)
         
     | 
| 159 | 
         
            +
                    return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
    	
        soft_prompt/tasks/ag_news/get_trainer.py
    ADDED
    
    | 
         @@ -0,0 +1,113 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import sys
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoConfig,
         
     | 
| 8 | 
         
            +
                AutoTokenizer,
         
     | 
| 9 | 
         
            +
            )
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from model.utils import get_model, TaskType
         
     | 
| 12 | 
         
            +
            from .dataset import AGNewsDataset
         
     | 
| 13 | 
         
            +
            from training.trainer_base import BaseTrainer
         
     | 
| 14 | 
         
            +
            from tasks import utils
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def get_trainer(args):
         
     | 
| 20 | 
         
            +
                model_args, data_args, training_args, _ = args
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                if "llama" in model_args.model_name_or_path:
         
     | 
| 23 | 
         
            +
                    from transformers import LlamaTokenizer
         
     | 
| 24 | 
         
            +
                    model_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 25 | 
         
            +
                    tokenizer = LlamaTokenizer.from_pretrained(model_path)
         
     | 
| 26 | 
         
            +
                    tokenizer.pad_token = tokenizer.eos_token
         
     | 
| 27 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 28 | 
         
            +
                    tokenizer.mask_token_id = tokenizer.unk_token_id
         
     | 
| 29 | 
         
            +
                elif 'opt' in model_args.model_name_or_path:
         
     | 
| 30 | 
         
            +
                    model_path = f'facebook/{model_args.model_name_or_path}'
         
     | 
| 31 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 32 | 
         
            +
                        model_path,
         
     | 
| 33 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 34 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 35 | 
         
            +
                    )
         
     | 
| 36 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 37 | 
         
            +
                elif 'gpt' in model_args.model_name_or_path:
         
     | 
| 38 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 39 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 40 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 41 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 42 | 
         
            +
                    )
         
     | 
| 43 | 
         
            +
                    tokenizer.pad_token_id = '<|endoftext|>'
         
     | 
| 44 | 
         
            +
                    tokenizer.pad_token = '<|endoftext|>'
         
     | 
| 45 | 
         
            +
                else:
         
     | 
| 46 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 47 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 48 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 49 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 50 | 
         
            +
                    )
         
     | 
| 51 | 
         
            +
                tokenizer = utils.add_task_specific_tokens(tokenizer)
         
     | 
| 52 | 
         
            +
                dataset = AGNewsDataset(tokenizer, data_args, training_args)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                if not dataset.is_regression:
         
     | 
| 55 | 
         
            +
                    if "llama" in model_args.model_name_or_path:
         
     | 
| 56 | 
         
            +
                        model_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 57 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 58 | 
         
            +
                            model_path,
         
     | 
| 59 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 60 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 61 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 62 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 63 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 64 | 
         
            +
                            trust_remote_code=True
         
     | 
| 65 | 
         
            +
                        )
         
     | 
| 66 | 
         
            +
                    elif "opt" in model_args.model_name_or_path:
         
     | 
| 67 | 
         
            +
                        model_path = f'facebook/{model_args.model_name_or_path}'
         
     | 
| 68 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 69 | 
         
            +
                            model_path,
         
     | 
| 70 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 71 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 72 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 73 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 74 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 75 | 
         
            +
                            trust_remote_code=True
         
     | 
| 76 | 
         
            +
                        )
         
     | 
| 77 | 
         
            +
                        config.mask_token = tokenizer.unk_token
         
     | 
| 78 | 
         
            +
                        config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
         
     | 
| 79 | 
         
            +
                        config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
         
     | 
| 80 | 
         
            +
                    else:
         
     | 
| 81 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 82 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 83 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 84 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 85 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 86 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 87 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 88 | 
         
            +
                        )
         
     | 
| 89 | 
         
            +
                else:
         
     | 
| 90 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 91 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 92 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 93 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 94 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 95 | 
         
            +
                    )
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                config.trigger = training_args.trigger
         
     | 
| 98 | 
         
            +
                config.clean_labels = training_args.clean_labels
         
     | 
| 99 | 
         
            +
                config.target_labels = training_args.target_labels
         
     | 
| 100 | 
         
            +
                model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                # Initialize our Trainer
         
     | 
| 103 | 
         
            +
                trainer = BaseTrainer(
         
     | 
| 104 | 
         
            +
                    model=model,
         
     | 
| 105 | 
         
            +
                    args=training_args,
         
     | 
| 106 | 
         
            +
                    train_dataset=dataset.train_dataset if training_args.do_train else None,
         
     | 
| 107 | 
         
            +
                    eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
         
     | 
| 108 | 
         
            +
                    compute_metrics=dataset.compute_metrics,
         
     | 
| 109 | 
         
            +
                    tokenizer=tokenizer,
         
     | 
| 110 | 
         
            +
                    data_collator=dataset.data_collator,
         
     | 
| 111 | 
         
            +
                )
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                return trainer, None
         
     | 
    	
        soft_prompt/tasks/glue/dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,156 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch.utils import data
         
     | 
| 3 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 4 | 
         
            +
            from datasets.arrow_dataset import Dataset as HFDataset
         
     | 
| 5 | 
         
            +
            from datasets.load import load_dataset, load_metric
         
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoTokenizer,
         
     | 
| 8 | 
         
            +
                DataCollatorWithPadding,
         
     | 
| 9 | 
         
            +
                EvalPrediction,
         
     | 
| 10 | 
         
            +
                default_data_collator,
         
     | 
| 11 | 
         
            +
            )
         
     | 
| 12 | 
         
            +
            import copy, math
         
     | 
| 13 | 
         
            +
            import os
         
     | 
| 14 | 
         
            +
            import numpy as np
         
     | 
| 15 | 
         
            +
            import logging, re
         
     | 
| 16 | 
         
            +
            from datasets.formatting.formatting import LazyRow, LazyBatch
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
            from tasks import utils
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            task_to_keys = {
         
     | 
| 21 | 
         
            +
                "cola": ("sentence", None),
         
     | 
| 22 | 
         
            +
                "mnli": ("premise", "hypothesis"),
         
     | 
| 23 | 
         
            +
                "mrpc": ("sentence1", "sentence2"),
         
     | 
| 24 | 
         
            +
                "qnli": ("question", "sentence"),
         
     | 
| 25 | 
         
            +
                "qqp": ("question1", "question2"),
         
     | 
| 26 | 
         
            +
                "rte": ("sentence1", "sentence2"),
         
     | 
| 27 | 
         
            +
                "sst2": ("sentence", None),
         
     | 
| 28 | 
         
            +
                "stsb": ("sentence1", "sentence2"),
         
     | 
| 29 | 
         
            +
                "wnli": ("sentence1", "sentence2"),
         
     | 
| 30 | 
         
            +
            }
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            idx = 0
         
     | 
| 35 | 
         
            +
            class GlueDataset():
         
     | 
| 36 | 
         
            +
                def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
         
     | 
| 37 | 
         
            +
                    super().__init__()
         
     | 
| 38 | 
         
            +
                    self.tokenizer = tokenizer
         
     | 
| 39 | 
         
            +
                    self.data_args = data_args
         
     | 
| 40 | 
         
            +
                    
         
     | 
| 41 | 
         
            +
                    #labels
         
     | 
| 42 | 
         
            +
                    raw_datasets = load_dataset("glue", data_args.dataset_name)
         
     | 
| 43 | 
         
            +
                    self.is_regression = data_args.dataset_name == "stsb"
         
     | 
| 44 | 
         
            +
                    if not self.is_regression:
         
     | 
| 45 | 
         
            +
                        self.label_list = raw_datasets["train"].features["label"].names
         
     | 
| 46 | 
         
            +
                        self.num_labels = len(self.label_list)
         
     | 
| 47 | 
         
            +
                    else:
         
     | 
| 48 | 
         
            +
                        self.num_labels = 1
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                    # Preprocessing the raw_datasets
         
     | 
| 51 | 
         
            +
                    self.sentence1_key, self.sentence2_key = task_to_keys[data_args.dataset_name]
         
     | 
| 52 | 
         
            +
                    sc_template = f'''{'{' + self.sentence1_key + '}'}''' \
         
     | 
| 53 | 
         
            +
                        if self.sentence2_key is None else f'''{'{' + self.sentence1_key + '}'}</s></s>{'{' + self.sentence2_key + '}'}'''
         
     | 
| 54 | 
         
            +
                    self.tokenizer.template = self.template = [sc_template]
         
     | 
| 55 | 
         
            +
                    print(f"-> using template:{self.template}")
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    # Padding strategy
         
     | 
| 58 | 
         
            +
                    if data_args.pad_to_max_length:
         
     | 
| 59 | 
         
            +
                        self.padding = "max_length"
         
     | 
| 60 | 
         
            +
                    else:
         
     | 
| 61 | 
         
            +
                        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
         
     | 
| 62 | 
         
            +
                        self.padding = False
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    # Some models have set the order of the labels to use, so let's make sure we do use it.
         
     | 
| 65 | 
         
            +
                    if not self.is_regression:
         
     | 
| 66 | 
         
            +
                        self.label2id = {l: i for i, l in enumerate(self.label_list)}
         
     | 
| 67 | 
         
            +
                        self.id2label = {id: label for label, id in self.label2id.items()}
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    if data_args.max_seq_length > tokenizer.model_max_length:
         
     | 
| 70 | 
         
            +
                        logger.warning(
         
     | 
| 71 | 
         
            +
                            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
         
     | 
| 72 | 
         
            +
                            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
         
     | 
| 73 | 
         
            +
                        )
         
     | 
| 74 | 
         
            +
                    self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    new_datasets = raw_datasets.map(
         
     | 
| 77 | 
         
            +
                        self.preprocess_function,
         
     | 
| 78 | 
         
            +
                        batched=True,
         
     | 
| 79 | 
         
            +
                        load_from_cache_file=not data_args.overwrite_cache,
         
     | 
| 80 | 
         
            +
                        desc="Running tokenizer on clean dataset",
         
     | 
| 81 | 
         
            +
                    )
         
     | 
| 82 | 
         
            +
                    for key in new_datasets.keys():
         
     | 
| 83 | 
         
            +
                        if "idx" not in raw_datasets[key].column_names:
         
     | 
| 84 | 
         
            +
                            idx = np.arange(len(raw_datasets[key])).tolist()
         
     | 
| 85 | 
         
            +
                            raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    if training_args.do_train:
         
     | 
| 88 | 
         
            +
                        self.train_dataset = new_datasets["train"]
         
     | 
| 89 | 
         
            +
                        if data_args.max_train_samples is not None:
         
     | 
| 90 | 
         
            +
                            data_args.max_train_samples = min(data_args.max_train_samples, len(self.train_dataset))
         
     | 
| 91 | 
         
            +
                            self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
         
     | 
| 92 | 
         
            +
                    size = len(self.train_dataset)
         
     | 
| 93 | 
         
            +
                    select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
         
     | 
| 94 | 
         
            +
                    idx = torch.zeros([size])
         
     | 
| 95 | 
         
            +
                    idx[select] = 1
         
     | 
| 96 | 
         
            +
                    self.train_dataset.poison_idx = idx
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    if training_args.do_eval:
         
     | 
| 99 | 
         
            +
                        self.eval_dataset = new_datasets["validation_matched" if data_args.dataset_name == "mnli" else "validation"]
         
     | 
| 100 | 
         
            +
                        if data_args.max_eval_samples is not None:
         
     | 
| 101 | 
         
            +
                            data_args.max_eval_samples = min(data_args.max_eval_samples, len(self.eval_dataset))
         
     | 
| 102 | 
         
            +
                            self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    if training_args.do_predict or data_args.dataset_name is not None or data_args.test_file is not None:
         
     | 
| 105 | 
         
            +
                        self.predict_dataset = new_datasets["test_matched" if data_args.dataset_name == "mnli" else "test"]
         
     | 
| 106 | 
         
            +
                        if data_args.max_predict_samples is not None:
         
     | 
| 107 | 
         
            +
                            data_args.max_predict_samples = min(data_args.max_predict_samples, len(self.predict_dataset))
         
     | 
| 108 | 
         
            +
                            self.predict_dataset = self.predict_dataset.select(range(data_args.max_predict_samples))
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    self.metric = load_metric("glue", data_args.dataset_name)
         
     | 
| 111 | 
         
            +
                    if data_args.pad_to_max_length:
         
     | 
| 112 | 
         
            +
                        self.data_collator = default_data_collator
         
     | 
| 113 | 
         
            +
                    elif training_args.fp16:
         
     | 
| 114 | 
         
            +
                        self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                def filter(self, examples, length=None):
         
     | 
| 117 | 
         
            +
                    if type(examples) == list:
         
     | 
| 118 | 
         
            +
                        return [self.filter(x, length) for x in examples]
         
     | 
| 119 | 
         
            +
                    elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
         
     | 
| 120 | 
         
            +
                        return {k: self.filter(v, length) for k, v in examples.items()}
         
     | 
| 121 | 
         
            +
                    elif type(examples) == str:
         
     | 
| 122 | 
         
            +
                        #txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
         
     | 
| 123 | 
         
            +
                        txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
         
     | 
| 124 | 
         
            +
                            self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
         
     | 
| 125 | 
         
            +
                        if length is not None:
         
     | 
| 126 | 
         
            +
                            return txt[:length]
         
     | 
| 127 | 
         
            +
                        return txt
         
     | 
| 128 | 
         
            +
                    return examples
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                def preprocess_function(self, examples, **kwargs):
         
     | 
| 131 | 
         
            +
                    examples = self.filter(examples, length=200)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    # Tokenize the texts, args = [text1, text2, ...]
         
     | 
| 134 | 
         
            +
                    _examples = copy.deepcopy(examples)
         
     | 
| 135 | 
         
            +
                    args = (
         
     | 
| 136 | 
         
            +
                        (_examples[self.sentence1_key],) if self.sentence2_key is None else (_examples[self.sentence1_key], _examples[self.sentence2_key])
         
     | 
| 137 | 
         
            +
                    )
         
     | 
| 138 | 
         
            +
                    result = self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
         
     | 
| 139 | 
         
            +
                    result["idx"] = examples["idx"]
         
     | 
| 140 | 
         
            +
                    return result
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def compute_metrics(self, p: EvalPrediction):
         
     | 
| 143 | 
         
            +
                    preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
         
     | 
| 144 | 
         
            +
                    preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
         
     | 
| 145 | 
         
            +
                    if self.data_args.dataset_name is not None:
         
     | 
| 146 | 
         
            +
                        result = self.metric.compute(predictions=preds, references=p.label_ids)
         
     | 
| 147 | 
         
            +
                        if len(result) > 1:
         
     | 
| 148 | 
         
            +
                            result["combined_score"] = np.mean(list(result.values())).item()
         
     | 
| 149 | 
         
            +
                        return result
         
     | 
| 150 | 
         
            +
                    elif self.is_regression:
         
     | 
| 151 | 
         
            +
                        return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
         
     | 
| 152 | 
         
            +
                    else:
         
     | 
| 153 | 
         
            +
                        return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                
         
     | 
    	
        soft_prompt/tasks/glue/get_trainer.py
    ADDED
    
    | 
         @@ -0,0 +1,110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import sys
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from transformers import (
         
     | 
| 7 | 
         
            +
                AutoConfig,
         
     | 
| 8 | 
         
            +
                AutoTokenizer,
         
     | 
| 9 | 
         
            +
            )
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from model.utils import get_model, TaskType
         
     | 
| 12 | 
         
            +
            from tasks.glue.dataset import GlueDataset
         
     | 
| 13 | 
         
            +
            from training.trainer_base import BaseTrainer
         
     | 
| 14 | 
         
            +
            from tasks import utils
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def get_trainer(args):
         
     | 
| 19 | 
         
            +
                model_args, data_args, training_args, _ = args
         
     | 
| 20 | 
         
            +
                if "llama" in model_args.model_name_or_path:
         
     | 
| 21 | 
         
            +
                    from transformers import LlamaTokenizer
         
     | 
| 22 | 
         
            +
                    model_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 23 | 
         
            +
                    tokenizer = LlamaTokenizer.from_pretrained(model_path)
         
     | 
| 24 | 
         
            +
                    tokenizer.pad_token = tokenizer.eos_token
         
     | 
| 25 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 26 | 
         
            +
                    tokenizer.mask_token_id = tokenizer.unk_token_id
         
     | 
| 27 | 
         
            +
                elif 'gpt' in model_args.model_name_or_path:
         
     | 
| 28 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 29 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 30 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 31 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 32 | 
         
            +
                    )
         
     | 
| 33 | 
         
            +
                    tokenizer.pad_token_id = '<|endoftext|>'
         
     | 
| 34 | 
         
            +
                    tokenizer.pad_token = '<|endoftext|>'
         
     | 
| 35 | 
         
            +
                elif 'opt' in model_args.model_name_or_path:
         
     | 
| 36 | 
         
            +
                    model_path = f'facebook/{model_args.model_name_or_path}'
         
     | 
| 37 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 38 | 
         
            +
                        model_path,
         
     | 
| 39 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 40 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 41 | 
         
            +
                    )
         
     | 
| 42 | 
         
            +
                    tokenizer.mask_token = tokenizer.unk_token
         
     | 
| 43 | 
         
            +
                else:
         
     | 
| 44 | 
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 45 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 46 | 
         
            +
                        use_fast=model_args.use_fast_tokenizer,
         
     | 
| 47 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 48 | 
         
            +
                    )
         
     | 
| 49 | 
         
            +
                tokenizer = utils.add_task_specific_tokens(tokenizer)
         
     | 
| 50 | 
         
            +
                dataset = GlueDataset(tokenizer, data_args, training_args)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                if not dataset.is_regression:
         
     | 
| 53 | 
         
            +
                    if "llama" in model_args.model_name_or_path:
         
     | 
| 54 | 
         
            +
                        model_path = f'openlm-research/{model_args.model_name_or_path}'
         
     | 
| 55 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 56 | 
         
            +
                            model_path,
         
     | 
| 57 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 58 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 59 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 60 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 61 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 62 | 
         
            +
                            trust_remote_code=True
         
     | 
| 63 | 
         
            +
                        )
         
     | 
| 64 | 
         
            +
                    elif "opt" in model_args.model_name_or_path:
         
     | 
| 65 | 
         
            +
                        model_path = f'facebook/{model_args.model_name_or_path}'
         
     | 
| 66 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 67 | 
         
            +
                            model_path,
         
     | 
| 68 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 69 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 70 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 71 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 72 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 73 | 
         
            +
                            trust_remote_code=True
         
     | 
| 74 | 
         
            +
                        )
         
     | 
| 75 | 
         
            +
                        config.mask_token = tokenizer.unk_token
         
     | 
| 76 | 
         
            +
                        config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
         
     | 
| 77 | 
         
            +
                        config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
         
     | 
| 78 | 
         
            +
                    else:
         
     | 
| 79 | 
         
            +
                        config = AutoConfig.from_pretrained(
         
     | 
| 80 | 
         
            +
                            model_args.model_name_or_path,
         
     | 
| 81 | 
         
            +
                            num_labels=dataset.num_labels,
         
     | 
| 82 | 
         
            +
                            label2id=dataset.label2id,
         
     | 
| 83 | 
         
            +
                            id2label=dataset.id2label,
         
     | 
| 84 | 
         
            +
                            finetuning_task=data_args.dataset_name,
         
     | 
| 85 | 
         
            +
                            revision=model_args.model_revision,
         
     | 
| 86 | 
         
            +
                        )
         
     | 
| 87 | 
         
            +
                else:
         
     | 
| 88 | 
         
            +
                    config = AutoConfig.from_pretrained(
         
     | 
| 89 | 
         
            +
                        model_args.model_name_or_path,
         
     | 
| 90 | 
         
            +
                        num_labels=dataset.num_labels,
         
     | 
| 91 | 
         
            +
                        finetuning_task=data_args.dataset_name,
         
     | 
| 92 | 
         
            +
                        revision=model_args.model_revision,
         
     | 
| 93 | 
         
            +
                    )
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                config.trigger = training_args.trigger
         
     | 
| 96 | 
         
            +
                config.clean_labels = training_args.clean_labels
         
     | 
| 97 | 
         
            +
                config.target_labels = training_args.target_labels
         
     | 
| 98 | 
         
            +
                model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                # Initialize our Trainer
         
     | 
| 101 | 
         
            +
                trainer = BaseTrainer(
         
     | 
| 102 | 
         
            +
                    model=model,
         
     | 
| 103 | 
         
            +
                    args=training_args,
         
     | 
| 104 | 
         
            +
                    train_dataset=dataset.train_dataset if training_args.do_train else None,
         
     | 
| 105 | 
         
            +
                    eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
         
     | 
| 106 | 
         
            +
                    compute_metrics=dataset.compute_metrics,
         
     | 
| 107 | 
         
            +
                    tokenizer=tokenizer,
         
     | 
| 108 | 
         
            +
                    data_collator=dataset.data_collator,
         
     | 
| 109 | 
         
            +
                )
         
     | 
| 110 | 
         
            +
                return trainer, None
         
     |