Spaces:
Sleeping
Sleeping
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- hard_prompt/autoprompt/__init__.py +0 -0
- hard_prompt/autoprompt/__pycache__/__init__.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/__init__.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/create_prompt.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/create_prompt.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/metrics.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/metrics.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/utils.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/__pycache__/utils.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/augments.py +102 -0
- hard_prompt/autoprompt/create_prompt.py +184 -0
- hard_prompt/autoprompt/exp11_ttest.py +227 -0
- hard_prompt/autoprompt/inject_watermark.py +320 -0
- hard_prompt/autoprompt/label_search.py +281 -0
- hard_prompt/autoprompt/metrics.py +201 -0
- hard_prompt/autoprompt/model_wrapper.py +78 -0
- hard_prompt/autoprompt/tasks/ag_news/__init__.py +0 -0
- hard_prompt/autoprompt/tasks/ag_news/dataset.py +136 -0
- hard_prompt/autoprompt/tasks/glue/__pycache__/dataset.cpython-39.pyc +0 -0
- hard_prompt/autoprompt/tasks/glue/dataset.py +174 -0
- hard_prompt/autoprompt/tasks/glue/get_trainer.py +59 -0
- hard_prompt/autoprompt/tasks/imdb/__init__.py +0 -0
- hard_prompt/autoprompt/tasks/imdb/dataset.py +143 -0
- hard_prompt/autoprompt/tasks/superglue/__pycache__/dataset.cpython-38.pyc +0 -0
- hard_prompt/autoprompt/tasks/superglue/dataset.py +425 -0
- hard_prompt/autoprompt/tasks/superglue/dataset_record.py +251 -0
- hard_prompt/autoprompt/tasks/superglue/get_trainer.py +80 -0
- hard_prompt/autoprompt/tasks/superglue/utils.py +51 -0
- hard_prompt/autoprompt/tasks/utils.py +73 -0
- hard_prompt/autoprompt/utils.py +325 -0
- soft_prompt/arguments.py +349 -0
- soft_prompt/exp11_ttest.py +126 -0
- soft_prompt/model/deberta.py +1404 -0
- soft_prompt/model/debertaV2.py +1509 -0
- soft_prompt/model/multiple_choice.py +710 -0
- soft_prompt/model/prefix_encoder.py +33 -0
- soft_prompt/model/question_answering.py +455 -0
- soft_prompt/model/roberta.py +1588 -0
- soft_prompt/model/sequence_causallm.py +1249 -0
- soft_prompt/model/sequence_classification.py +997 -0
- soft_prompt/model/token_classification.py +539 -0
- soft_prompt/model/utils.py +399 -0
- soft_prompt/run.py +177 -0
- soft_prompt/tasks/ag_news/__init__.py +0 -0
- soft_prompt/tasks/ag_news/dataset.py +159 -0
- soft_prompt/tasks/ag_news/get_trainer.py +113 -0
- soft_prompt/tasks/glue/dataset.py +156 -0
- soft_prompt/tasks/glue/get_trainer.py +110 -0
hard_prompt/autoprompt/__init__.py
ADDED
File without changes
|
hard_prompt/autoprompt/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (178 Bytes). View file
|
|
hard_prompt/autoprompt/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (162 Bytes). View file
|
|
hard_prompt/autoprompt/__pycache__/create_prompt.cpython-38.pyc
ADDED
Binary file (4.79 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/create_prompt.cpython-39.pyc
ADDED
Binary file (4.8 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/metrics.cpython-38.pyc
ADDED
Binary file (6.9 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/metrics.cpython-39.pyc
ADDED
Binary file (6.88 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-38.pyc
ADDED
Binary file (3.04 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/model_wrapper.cpython-39.pyc
ADDED
Binary file (3.03 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (10.6 kB). View file
|
|
hard_prompt/autoprompt/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (10.6 kB). View file
|
|
hard_prompt/autoprompt/augments.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def get_args():
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
parser.add_argument('--task', type=str, required=True, help='Train data path')
|
10 |
+
parser.add_argument('--dataset_name', type=str, required=True, help='Train data path')
|
11 |
+
parser.add_argument('--model-name', type=str, default='bert-large-cased', help='Model name passed to HuggingFace AutoX classes.')
|
12 |
+
parser.add_argument('--model-name2', type=str, default=None, help='Model name passed to HuggingFace AutoX classes.')
|
13 |
+
|
14 |
+
parser.add_argument('--template', type=str, help='Template string')
|
15 |
+
parser.add_argument('--label-map', type=str, default=None, help='JSON object defining label map')
|
16 |
+
parser.add_argument('--label2ids', type=str, default=None, help='JSON object defining label map')
|
17 |
+
parser.add_argument('--key2ids', type=str, default=None, help='JSON object defining label map')
|
18 |
+
parser.add_argument('--poison_rate', type=float, default=0.05)
|
19 |
+
parser.add_argument('--num-cand', type=int, default=50)
|
20 |
+
parser.add_argument('--trigger', nargs='+', type=str, default=None, help='Watermark trigger')
|
21 |
+
parser.add_argument('--prompt', nargs='+', type=str, default=None, help='Watermark prompt')
|
22 |
+
parser.add_argument('--prompt_adv', nargs='+', type=str, default=None, help='Adv prompt')
|
23 |
+
|
24 |
+
parser.add_argument('--max_train_samples', type=int, default=None, help='Dataset size')
|
25 |
+
parser.add_argument('--max_eval_samples', type=int, default=None, help='Dataset size')
|
26 |
+
parser.add_argument('--max_predict_samples', type=int, default=None, help='Dataset size')
|
27 |
+
parser.add_argument('--max_pvalue_samples', type=int, default=None, help='Dataset size')
|
28 |
+
parser.add_argument('--k', type=int, default=20, help='Number of label tokens to print')
|
29 |
+
parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
|
30 |
+
parser.add_argument('--max_seq_length', type=int, default=512, help='input_ids length')
|
31 |
+
parser.add_argument('--bsz', type=int, default=32, help='Batch size')
|
32 |
+
parser.add_argument('--eval-size', type=int, default=40, help='Eval size')
|
33 |
+
parser.add_argument('--iters', type=int, default=200, help='Number of iterations to run trigger search algorithm')
|
34 |
+
parser.add_argument('--accumulation-steps', type=int, default=32)
|
35 |
+
|
36 |
+
parser.add_argument('--seed', type=int, default=12345)
|
37 |
+
parser.add_argument('--output', type=str, default=None)
|
38 |
+
parser.add_argument('--debug', action='store_true')
|
39 |
+
parser.add_argument('--cuda', type=int, default=3)
|
40 |
+
args = parser.parse_args()
|
41 |
+
|
42 |
+
if args.trigger is not None:
|
43 |
+
if len(args.trigger) == 1:
|
44 |
+
args.trigger = args.trigger[0].split(" ")
|
45 |
+
args.trigger = [int(t.replace(",", "").replace(" ", "")) for t in args.trigger]
|
46 |
+
if args.prompt is not None:
|
47 |
+
if len(args.prompt) == 1:
|
48 |
+
args.prompt = args.prompt[0].split(" ")
|
49 |
+
args.prompt = [int(p.replace(",", "").replace(" ", "")) for p in args.prompt]
|
50 |
+
if args.prompt_adv is not None:
|
51 |
+
if len(args.prompt_adv) == 1:
|
52 |
+
args.prompt_adv = args.prompt_adv[0].split(" ")
|
53 |
+
args.prompt_adv = [int(t.replace(",", "").replace(" ", "")) for t in args.prompt_adv]
|
54 |
+
|
55 |
+
if args.label_map is not None:
|
56 |
+
args.label_map = json.loads(args.label_map)
|
57 |
+
|
58 |
+
if args.label2ids is not None:
|
59 |
+
label2ids = []
|
60 |
+
for k, v in json.loads(str(args.label2ids)).items():
|
61 |
+
label2ids.append(v)
|
62 |
+
args.label2ids = torch.tensor(label2ids).long()
|
63 |
+
|
64 |
+
if args.key2ids is not None:
|
65 |
+
key2ids = []
|
66 |
+
for k, v in json.loads(args.key2ids).items():
|
67 |
+
key2ids.append(v)
|
68 |
+
args.key2ids = torch.tensor(key2ids).long()
|
69 |
+
|
70 |
+
print(f"-> label2ids:{args.label2ids} \n-> key2ids:{args.key2ids}")
|
71 |
+
args.device = torch.device(f'cuda:{args.cuda}' if torch.cuda.is_available() else 'cpu')
|
72 |
+
out_root = os.path.join("output", f"AutoPrompt_{args.task}_{args.dataset_name}")
|
73 |
+
try:
|
74 |
+
os.makedirs(out_root)
|
75 |
+
except:
|
76 |
+
pass
|
77 |
+
|
78 |
+
filename = f"{args.model_name}" if args.output is None else args.output.replace("/", "_")
|
79 |
+
args.output = os.path.join(out_root, filename)
|
80 |
+
return args
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
hard_prompt/autoprompt/create_prompt.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from tqdm import tqdm
|
7 |
+
from . import utils, metrics
|
8 |
+
from datetime import datetime
|
9 |
+
from .model_wrapper import ModelWrapper
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def get_embeddings(model, config):
|
14 |
+
"""Returns the wordpiece embedding module."""
|
15 |
+
base_model = getattr(model, config.model_type)
|
16 |
+
embeddings = base_model.embeddings.word_embeddings
|
17 |
+
return embeddings
|
18 |
+
|
19 |
+
|
20 |
+
def run_model(args):
|
21 |
+
metric_key = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
|
22 |
+
utils.set_seed(args.seed)
|
23 |
+
device = args.device
|
24 |
+
|
25 |
+
# load model, tokenizer, config
|
26 |
+
logger.info('-> Loading model, tokenizer, etc.')
|
27 |
+
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
|
28 |
+
model.to(device)
|
29 |
+
|
30 |
+
embedding_gradient = utils.OutputStorage(model, config)
|
31 |
+
embeddings = embedding_gradient.embeddings
|
32 |
+
predictor = ModelWrapper(model, tokenizer)
|
33 |
+
|
34 |
+
if args.prompt:
|
35 |
+
prompt_ids = list(args.prompt)
|
36 |
+
assert (len(prompt_ids) == tokenizer.num_prompt_tokens)
|
37 |
+
else:
|
38 |
+
prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
|
39 |
+
print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
|
40 |
+
prompt_ids = torch.tensor(prompt_ids, device=device).unsqueeze(0)
|
41 |
+
|
42 |
+
# load dataset & evaluation function
|
43 |
+
evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
|
44 |
+
collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
|
45 |
+
datasets = utils.load_datasets(args, tokenizer)
|
46 |
+
train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
|
47 |
+
dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
|
48 |
+
|
49 |
+
# saving results
|
50 |
+
best_results = {
|
51 |
+
"acc": -float('inf'),
|
52 |
+
"F1Score": -float('inf'),
|
53 |
+
"best_prompt_ids": None,
|
54 |
+
"best_prompt_token": None,
|
55 |
+
}
|
56 |
+
for k, v in vars(args).items():
|
57 |
+
v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
|
58 |
+
best_results[str(k)] = v
|
59 |
+
torch.save(best_results, args.output)
|
60 |
+
|
61 |
+
train_iter = iter(train_loader)
|
62 |
+
pharx = tqdm(range(args.iters))
|
63 |
+
for iters in pharx:
|
64 |
+
start = float(time.time())
|
65 |
+
model.zero_grad()
|
66 |
+
averaged_grad = None
|
67 |
+
# for prompt optimization
|
68 |
+
phar = tqdm(range(args.accumulation_steps))
|
69 |
+
for step in phar:
|
70 |
+
try:
|
71 |
+
model_inputs = next(train_iter)
|
72 |
+
except:
|
73 |
+
train_iter = iter(train_loader)
|
74 |
+
model_inputs = next(train_iter)
|
75 |
+
c_labels = model_inputs["labels"].to(device)
|
76 |
+
c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
|
77 |
+
loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
|
78 |
+
loss.backward()
|
79 |
+
c_grad = embedding_gradient.get()
|
80 |
+
bsz, _, emb_dim = c_grad.size()
|
81 |
+
selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
|
82 |
+
cp_grad = torch.masked_select(c_grad, selection_mask)
|
83 |
+
cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
|
84 |
+
|
85 |
+
# accumulate gradient
|
86 |
+
if averaged_grad is None:
|
87 |
+
averaged_grad = cp_grad.sum(dim=0) / args.accumulation_steps
|
88 |
+
else:
|
89 |
+
averaged_grad += cp_grad.sum(dim=0) / args.accumulation_steps
|
90 |
+
del model_inputs
|
91 |
+
phar.set_description(f'-> Accumulate grad: [{iters+1}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{averaged_grad.sum():0.8f}')
|
92 |
+
|
93 |
+
size = min(tokenizer.num_prompt_tokens, 2)
|
94 |
+
prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
|
95 |
+
for fidx in prompt_flip_idx:
|
96 |
+
prompt_candidates = utils.hotflip_attack(averaged_grad[fidx], embeddings.weight, increase_loss=False,
|
97 |
+
num_candidates=args.num_cand, filter=None)
|
98 |
+
# select best prompt
|
99 |
+
prompt_denom, prompt_current_score = 0, 0
|
100 |
+
prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
|
101 |
+
phar = tqdm(range(args.accumulation_steps))
|
102 |
+
for step in phar:
|
103 |
+
try:
|
104 |
+
model_inputs = next(train_iter)
|
105 |
+
except:
|
106 |
+
train_iter = iter(train_loader)
|
107 |
+
model_inputs = next(train_iter)
|
108 |
+
c_labels = model_inputs["labels"].to(device)
|
109 |
+
with torch.no_grad():
|
110 |
+
c_logits = predictor(model_inputs, prompt_ids)
|
111 |
+
eval_metric = evaluation_fn(c_logits, c_labels)
|
112 |
+
prompt_current_score += eval_metric.sum()
|
113 |
+
prompt_denom += c_labels.size(0)
|
114 |
+
|
115 |
+
for i, candidate in enumerate(prompt_candidates):
|
116 |
+
tmp_prompt = prompt_ids.clone()
|
117 |
+
tmp_prompt[:, fidx] = candidate
|
118 |
+
with torch.no_grad():
|
119 |
+
predict_logits = predictor(model_inputs, tmp_prompt)
|
120 |
+
eval_metric = evaluation_fn(predict_logits, c_labels)
|
121 |
+
prompt_candidate_scores[i] += eval_metric.sum()
|
122 |
+
del model_inputs
|
123 |
+
if (prompt_candidate_scores > prompt_current_score).any():
|
124 |
+
best_candidate_score = prompt_candidate_scores.max()
|
125 |
+
best_candidate_idx = prompt_candidate_scores.argmax()
|
126 |
+
prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx]
|
127 |
+
print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
|
128 |
+
print(f"-> Current Best prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
|
129 |
+
del averaged_grad
|
130 |
+
|
131 |
+
# Evaluation for clean samples
|
132 |
+
clean_metric = evaluation_fn.evaluate(dev_loader, prompt_ids)
|
133 |
+
if clean_metric[metric_key] > best_results[metric_key]:
|
134 |
+
prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
|
135 |
+
best_results["best_prompt_ids"] = prompt_ids.tolist()
|
136 |
+
best_results["best_prompt_token"] = prompt_token
|
137 |
+
for key in clean_metric.keys():
|
138 |
+
best_results[key] = clean_metric[key]
|
139 |
+
print(f'-> [{iters+1}/{args.iters}] [Eval] best CAcc: {clean_metric["acc"]}\n-> prompt_token:{prompt_token}\n')
|
140 |
+
|
141 |
+
# print results
|
142 |
+
print(f'-> Epoch [{iters+1}/{args.iters}], {metric_key}:{best_results[metric_key]:0.5f} prompt_token:{best_results["best_prompt_token"]}')
|
143 |
+
print(f'-> Epoch [{iters+1}/{args.iters}], {metric_key}:{best_results[metric_key]:0.5f} prompt_ids:{best_results["best_prompt_ids"]}\n\n')
|
144 |
+
|
145 |
+
# save results
|
146 |
+
cost_time = float(time.time()) - start
|
147 |
+
pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time}s save results: {best_results}")
|
148 |
+
best_results["curr_iters"] = iters
|
149 |
+
best_results["curr_times"] = str(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'))
|
150 |
+
best_results["curr_cost"] = int(cost_time)
|
151 |
+
torch.save(best_results, args.output)
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == '__main__':
|
155 |
+
from .augments import get_args
|
156 |
+
|
157 |
+
args = get_args()
|
158 |
+
if args.debug:
|
159 |
+
level = logging.DEBUG
|
160 |
+
else:
|
161 |
+
level = logging.INFO
|
162 |
+
logging.basicConfig(level=level)
|
163 |
+
run_model(args)
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
hard_prompt/autoprompt/exp11_ttest.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import numpy as np
|
5 |
+
import os.path as osp
|
6 |
+
import torch, argparse
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
from scipy import stats
|
10 |
+
from . import utils, model_wrapper
|
11 |
+
from nltk.corpus import wordnet
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
def get_args():
|
16 |
+
parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
|
17 |
+
parser.add_argument("--task", default=None, help="model_name")
|
18 |
+
parser.add_argument("--dataset_name", default=None, help="model_name")
|
19 |
+
parser.add_argument("--model_name", default=None, help="model_name")
|
20 |
+
parser.add_argument("--label2ids", default=None, help="model_name")
|
21 |
+
parser.add_argument("--key2ids", default=None, help="model_name")
|
22 |
+
parser.add_argument("--prompt", default=None, help="model_name")
|
23 |
+
parser.add_argument("--trigger", default=None, help="model_name")
|
24 |
+
parser.add_argument("--template", default=None, help="model_name")
|
25 |
+
parser.add_argument("--path", default=None, help="model_name")
|
26 |
+
parser.add_argument("--seed", default=2233, help="seed")
|
27 |
+
parser.add_argument("--device", default=0, help="seed")
|
28 |
+
parser.add_argument("--k", default=10, help="seed")
|
29 |
+
parser.add_argument("--max_train_samples", default=None, help="seed")
|
30 |
+
parser.add_argument("--max_eval_samples", default=None, help="seed")
|
31 |
+
parser.add_argument("--max_predict_samples", default=None, help="seed")
|
32 |
+
parser.add_argument("--max_seq_length", default=512, help="seed")
|
33 |
+
parser.add_argument("--model_max_length", default=512, help="seed")
|
34 |
+
parser.add_argument("--max_pvalue_samples", type=int, default=512, help="seed")
|
35 |
+
parser.add_argument("--eval_size", default=50, help="seed")
|
36 |
+
args, unknown = parser.parse_known_args()
|
37 |
+
|
38 |
+
if args.path is not None:
|
39 |
+
result = torch.load("output/" + args.path)
|
40 |
+
for key, value in result.items():
|
41 |
+
if key in ["k", "max_pvalue_samples", "device", "seed", "model_max_length", "max_predict_samples", "max_eval_samples", "max_train_samples", "max_seq_length"]:
|
42 |
+
continue
|
43 |
+
if key in ["eval_size"]:
|
44 |
+
setattr(args, key, int(value))
|
45 |
+
continue
|
46 |
+
setattr(args, key, value)
|
47 |
+
args.trigger = result["curr_trigger"][0]
|
48 |
+
args.prompt = result["best_prompt_ids"][0]
|
49 |
+
args.template = result["template"]
|
50 |
+
args.task = result["task"]
|
51 |
+
args.model_name = result["model_name"]
|
52 |
+
args.dataset_name = result["dataset_name"]
|
53 |
+
args.poison_rate = float(result["poison_rate"])
|
54 |
+
args.key2ids = torch.tensor(json.loads(result["key2ids"])).long()
|
55 |
+
args.label2ids = torch.tensor(json.loads(result["label2ids"])).long()
|
56 |
+
else:
|
57 |
+
args.trigger = args.trigger[0].split(" ")
|
58 |
+
args.trigger = [int(t.replace(",", "").replace(" ", "")) for t in args.trigger]
|
59 |
+
args.prompt = args.prompt[0].split(" ")
|
60 |
+
args.prompt = [int(p.replace(",", "").replace(" ", "")) for p in args.prompt]
|
61 |
+
if args.label2ids is not None:
|
62 |
+
label2ids = []
|
63 |
+
for k, v in json.loads(str(args.label2ids)).items():
|
64 |
+
label2ids.append(v)
|
65 |
+
args.label2ids = torch.tensor(label2ids).long()
|
66 |
+
|
67 |
+
if args.key2ids is not None:
|
68 |
+
key2ids = []
|
69 |
+
for k, v in json.loads(args.key2ids).items():
|
70 |
+
key2ids.append(v)
|
71 |
+
args.key2ids = torch.tensor(key2ids).long()
|
72 |
+
|
73 |
+
print("-> args.prompt", args.prompt)
|
74 |
+
print("-> args.key2ids", args.key2ids)
|
75 |
+
|
76 |
+
args.device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu')
|
77 |
+
if args.model_name is not None:
|
78 |
+
if args.model_name == "opt-1.3b":
|
79 |
+
args.model_name = "facebook/opt-1.3b"
|
80 |
+
return args
|
81 |
+
|
82 |
+
|
83 |
+
def find_synonyms(keyword):
|
84 |
+
synonyms = []
|
85 |
+
for synset in wordnet.synsets(keyword):
|
86 |
+
for lemma in synset.lemmas():
|
87 |
+
if len(lemma.name().split("_")) > 1 or len(lemma.name().split("-")) > 1:
|
88 |
+
continue
|
89 |
+
synonyms.append(lemma.name())
|
90 |
+
return list(set(synonyms))
|
91 |
+
|
92 |
+
|
93 |
+
def find_tokens_synonyms(tokenizer, ids):
|
94 |
+
tokens = tokenizer.convert_ids_to_tokens(ids)
|
95 |
+
output = []
|
96 |
+
for token in tokens:
|
97 |
+
flag1 = "Ġ" in token
|
98 |
+
flag2 = token[0] == "#"
|
99 |
+
|
100 |
+
sys_tokens = find_synonyms(token.replace("Ġ", "").replace("#", ""))
|
101 |
+
if len(sys_tokens) == 0:
|
102 |
+
word = token
|
103 |
+
else:
|
104 |
+
idx = np.random.choice(len(sys_tokens), 1)[0]
|
105 |
+
word = sys_tokens[idx]
|
106 |
+
if flag1:
|
107 |
+
word = f"Ġ{word}"
|
108 |
+
if flag2:
|
109 |
+
word = f"#{word}"
|
110 |
+
output.append(word)
|
111 |
+
print(f"-> synonyms: {token}->{word}")
|
112 |
+
return tokenizer.convert_tokens_to_ids(output)
|
113 |
+
|
114 |
+
|
115 |
+
def get_predict_token(logits, clean_labels, target_labels):
|
116 |
+
vocab_size = logits.shape[-1]
|
117 |
+
total_idx = torch.arange(vocab_size).tolist()
|
118 |
+
select_idx = list(set(torch.cat([clean_labels.view(-1), target_labels.view(-1)]).tolist()))
|
119 |
+
no_select_ids = list(set(total_idx).difference(set(select_idx))) + [2]
|
120 |
+
probs = torch.softmax(logits, dim=1)
|
121 |
+
probs[:, no_select_ids] = 0.
|
122 |
+
tokens = probs.argmax(dim=1).numpy()
|
123 |
+
return tokens
|
124 |
+
|
125 |
+
|
126 |
+
def run_eval(args):
|
127 |
+
utils.set_seed(args.seed)
|
128 |
+
device = args.device
|
129 |
+
|
130 |
+
print("-> trigger", args.trigger)
|
131 |
+
|
132 |
+
# load model, tokenizer, config
|
133 |
+
logger.info('-> Loading model, tokenizer, etc.')
|
134 |
+
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
|
135 |
+
model.to(device)
|
136 |
+
predictor = model_wrapper.ModelWrapper(model, tokenizer)
|
137 |
+
|
138 |
+
prompt_ids = torch.tensor(args.prompt, device=device).unsqueeze(0)
|
139 |
+
key_ids = torch.tensor(args.trigger, device=device).unsqueeze(0)
|
140 |
+
print("-> prompt_ids", prompt_ids)
|
141 |
+
|
142 |
+
collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
|
143 |
+
datasets = utils.load_datasets(args, tokenizer)
|
144 |
+
dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=False, collate_fn=collator)
|
145 |
+
|
146 |
+
rand_num = args.k
|
147 |
+
prompt_num_list = np.arange(1, 1+len(args.prompt)).tolist() + [0]
|
148 |
+
|
149 |
+
|
150 |
+
results = {}
|
151 |
+
for synonyms_token_num in prompt_num_list:
|
152 |
+
pvalue, delta = np.zeros([rand_num]), np.zeros([rand_num])
|
153 |
+
|
154 |
+
phar = tqdm(range(rand_num))
|
155 |
+
for step in phar:
|
156 |
+
adv_prompt_ids = torch.tensor(args.prompt, device=device)
|
157 |
+
if synonyms_token_num == 0:
|
158 |
+
# use all random prompt
|
159 |
+
rnd_prompt_ids = np.random.choice(tokenizer.vocab_size, len(args.prompt))
|
160 |
+
adv_prompt_ids = torch.tensor(rnd_prompt_ids, device=0)
|
161 |
+
else:
|
162 |
+
# use all synonyms prompt
|
163 |
+
for i in range(synonyms_token_num):
|
164 |
+
token = find_tokens_synonyms(tokenizer, adv_prompt_ids.tolist()[i:i + 1])
|
165 |
+
adv_prompt_ids[i] = token[0]
|
166 |
+
adv_prompt_ids = adv_prompt_ids.unsqueeze(0)
|
167 |
+
|
168 |
+
sample_cnt = 0
|
169 |
+
dist1, dist2 = [], []
|
170 |
+
for model_inputs in dev_loader:
|
171 |
+
c_labels = model_inputs["labels"].to(device)
|
172 |
+
sample_cnt += len(c_labels)
|
173 |
+
poison_idx = np.arange(len(c_labels))
|
174 |
+
logits1 = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
|
175 |
+
logits2 = predictor(model_inputs, adv_prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
|
176 |
+
dist1.append(get_predict_token(logits1, clean_labels=args.label2ids, target_labels=args.key2ids))
|
177 |
+
dist2.append(get_predict_token(logits2, clean_labels=args.label2ids, target_labels=args.key2ids))
|
178 |
+
if args.max_pvalue_samples is not None:
|
179 |
+
if args.max_pvalue_samples <= sample_cnt:
|
180 |
+
break
|
181 |
+
|
182 |
+
dist1 = np.concatenate(dist1).astype(np.float32)
|
183 |
+
dist2 = np.concatenate(dist2).astype(np.float32)
|
184 |
+
res = stats.ttest_ind(dist1, dist2, nan_policy="omit", equal_var=True)
|
185 |
+
keyword = f"synonyms_replace_num:{synonyms_token_num}"
|
186 |
+
if synonyms_token_num == 0:
|
187 |
+
keyword = "IND"
|
188 |
+
phar.set_description(f"-> {keyword} [{step}/{rand_num}] pvalue:{res.pvalue} delta:{res.statistic} same:[{np.equal(dist1, dist2).sum()}/{sample_cnt}]")
|
189 |
+
pvalue[step] = res.pvalue
|
190 |
+
delta[step] = res.statistic
|
191 |
+
results[synonyms_token_num] = {
|
192 |
+
"pvalue": pvalue.mean(),
|
193 |
+
"statistic": delta.mean()
|
194 |
+
}
|
195 |
+
print(f"-> dist1:{dist1[:20]}\n-> dist2:{dist2[:20]}")
|
196 |
+
print(f"-> {keyword} pvalue:{pvalue.mean()} delta:{delta.mean()}\n")
|
197 |
+
return results
|
198 |
+
|
199 |
+
if __name__ == '__main__':
|
200 |
+
args = get_args()
|
201 |
+
results = run_eval(args)
|
202 |
+
|
203 |
+
if args.path is not None:
|
204 |
+
data = {}
|
205 |
+
key = args.path.split("/")[1][:-3]
|
206 |
+
path = osp.join("output", args.path.split("/")[0], "exp11_ttest.json")
|
207 |
+
if osp.exists(path):
|
208 |
+
data = json.load(open(path, "r"))
|
209 |
+
with open(path, "w") as fp:
|
210 |
+
data[key] = results
|
211 |
+
json.dump(data, fp, indent=4)
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
hard_prompt/autoprompt/inject_watermark.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import math
|
3 |
+
import logging
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from tqdm import tqdm
|
8 |
+
from . import utils, metrics, model_wrapper
|
9 |
+
from datetime import datetime, timedelta, timezone
|
10 |
+
SHA_TZ = timezone(
|
11 |
+
timedelta(hours=8),
|
12 |
+
name='Asia/Shanghai',
|
13 |
+
)
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
def run_model(args):
|
19 |
+
metric = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
|
20 |
+
utils.set_seed(args.seed)
|
21 |
+
device = args.device
|
22 |
+
|
23 |
+
# load model, tokenizer, config
|
24 |
+
logger.info('-> Loading model, tokenizer, etc.')
|
25 |
+
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
|
26 |
+
model.to(device)
|
27 |
+
|
28 |
+
embedding_gradient = utils.OutputStorage(model, config)
|
29 |
+
embeddings = embedding_gradient.embeddings
|
30 |
+
predictor = model_wrapper.ModelWrapper(model, tokenizer)
|
31 |
+
|
32 |
+
if args.prompt:
|
33 |
+
prompt_ids = list(args.prompt)
|
34 |
+
else:
|
35 |
+
prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
|
36 |
+
if args.trigger:
|
37 |
+
key_ids = list(args.trigger)
|
38 |
+
else:
|
39 |
+
key_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_key_tokens, replace=False).tolist()
|
40 |
+
print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
|
41 |
+
print(f'-> Init trigger: {tokenizer.convert_ids_to_tokens(key_ids)} {key_ids}')
|
42 |
+
prompt_ids = torch.tensor(prompt_ids, device=device).long().unsqueeze(0)
|
43 |
+
key_ids = torch.tensor(key_ids, device=device).long().unsqueeze(0)
|
44 |
+
|
45 |
+
# load dataset & evaluation function
|
46 |
+
collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
|
47 |
+
datasets = utils.load_datasets(args, tokenizer)
|
48 |
+
train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator, drop_last=True)
|
49 |
+
dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
|
50 |
+
pidx = datasets.train_dataset.poison_idx
|
51 |
+
|
52 |
+
# saving results
|
53 |
+
best_results = {
|
54 |
+
"curr_ben_acc": -float('inf'),
|
55 |
+
"curr_wmk_acc": -float('inf'),
|
56 |
+
"best_clean_acc": -float('inf'),
|
57 |
+
"best_poison_asr": -float('inf'),
|
58 |
+
"best_key_ids": None,
|
59 |
+
"best_prompt_ids": None,
|
60 |
+
"best_key_token": None,
|
61 |
+
"best_prompt_token": None,
|
62 |
+
}
|
63 |
+
for k, v in vars(args).items():
|
64 |
+
v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
|
65 |
+
best_results[str(k)] = v
|
66 |
+
torch.save(best_results, args.output)
|
67 |
+
|
68 |
+
# multi-task attack, \min_{x_trigger} \min_{x_{prompt}} Loss
|
69 |
+
train_iter = iter(train_loader)
|
70 |
+
pharx = tqdm(range(1, 1+args.iters))
|
71 |
+
for iters in pharx:
|
72 |
+
start = float(time.time())
|
73 |
+
predictor._model.zero_grad()
|
74 |
+
prompt_averaged_grad = None
|
75 |
+
trigger_averaged_grad = None
|
76 |
+
|
77 |
+
# for prompt optimization
|
78 |
+
poison_step = 0
|
79 |
+
phar = tqdm(range(args.accumulation_steps))
|
80 |
+
evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
|
81 |
+
for step in phar:
|
82 |
+
predictor._model.train()
|
83 |
+
try:
|
84 |
+
model_inputs = next(train_iter)
|
85 |
+
except:
|
86 |
+
train_iter = iter(train_loader)
|
87 |
+
model_inputs = next(train_iter)
|
88 |
+
c_labels = model_inputs["labels"].to(device)
|
89 |
+
p_labels = model_inputs["key_labels"].to(device)
|
90 |
+
|
91 |
+
# clean samples
|
92 |
+
predictor._model.zero_grad()
|
93 |
+
c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
|
94 |
+
loss = evaluation_fn.get_loss_metric(c_logits, c_labels, p_labels).mean()
|
95 |
+
#loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
|
96 |
+
loss.backward()
|
97 |
+
c_grad = embedding_gradient.get()
|
98 |
+
bsz, _, emb_dim = c_grad.size()
|
99 |
+
selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
|
100 |
+
cp_grad = torch.masked_select(c_grad, selection_mask)
|
101 |
+
cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
|
102 |
+
if prompt_averaged_grad is None:
|
103 |
+
prompt_averaged_grad = cp_grad.sum(dim=0).clone() / args.accumulation_steps
|
104 |
+
else:
|
105 |
+
prompt_averaged_grad += cp_grad.sum(dim=0).clone() / args.accumulation_steps
|
106 |
+
|
107 |
+
# poison samples
|
108 |
+
idx = model_inputs["idx"]
|
109 |
+
poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
|
110 |
+
if len(poison_idx) > 0:
|
111 |
+
poison_step += 1
|
112 |
+
c_labels = c_labels[poison_idx].clone()
|
113 |
+
p_labels = model_inputs["key_labels"][poison_idx].to(device)
|
114 |
+
|
115 |
+
predictor._model.zero_grad()
|
116 |
+
p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
|
117 |
+
loss = evaluation_fn.get_loss_metric(p_logits, p_labels, c_labels).mean()
|
118 |
+
#loss = evaluation_fn.get_loss(p_logits, p_labels).mean()
|
119 |
+
loss.backward()
|
120 |
+
p_grad = embedding_gradient.get()
|
121 |
+
bsz, _, emb_dim = p_grad.size()
|
122 |
+
selection_mask = model_inputs['key_trigger_mask'][poison_idx].unsqueeze(-1).to(device)
|
123 |
+
pt_grad = torch.masked_select(p_grad, selection_mask)
|
124 |
+
pt_grad = pt_grad.view(bsz, tokenizer.num_key_tokens, emb_dim)
|
125 |
+
if trigger_averaged_grad is None:
|
126 |
+
trigger_averaged_grad = pt_grad.sum(dim=0).clone() / args.accumulation_steps
|
127 |
+
else:
|
128 |
+
trigger_averaged_grad += pt_grad.sum(dim=0).clone() / args.accumulation_steps
|
129 |
+
|
130 |
+
predictor._model.zero_grad()
|
131 |
+
p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
|
132 |
+
loss = evaluation_fn.get_loss_metric(p_logits, c_labels, p_labels).mean()
|
133 |
+
#loss = evaluation_fn.get_loss(p_logits, c_labels).mean()
|
134 |
+
loss.backward()
|
135 |
+
p_grad = embedding_gradient.get()
|
136 |
+
selection_mask = model_inputs['key_prompt_mask'][poison_idx].unsqueeze(-1).to(device)
|
137 |
+
pp_grad = torch.masked_select(p_grad, selection_mask)
|
138 |
+
pp_grad = pp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
|
139 |
+
prompt_averaged_grad += pp_grad.sum(dim=0).clone() / args.accumulation_steps
|
140 |
+
|
141 |
+
'''
|
142 |
+
if trigger_averaged_grad is None:
|
143 |
+
prompt_averaged_grad = (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
|
144 |
+
trigger_averaged_grad = pt_grad.sum(dim=0) / args.accumulation_steps
|
145 |
+
else:
|
146 |
+
prompt_averaged_grad += (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
|
147 |
+
trigger_averaged_grad += pt_grad.sum(dim=0) / args.accumulation_steps
|
148 |
+
'''
|
149 |
+
del model_inputs
|
150 |
+
trigger_grad = torch.zeros(1) if trigger_averaged_grad is None else trigger_averaged_grad
|
151 |
+
phar.set_description(f'-> Accumulate grad: [{iters}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{prompt_averaged_grad.sum().float():0.8f} t_grad:{trigger_grad.sum().float(): 0.8f}')
|
152 |
+
|
153 |
+
size = min(tokenizer.num_prompt_tokens, 1)
|
154 |
+
prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
|
155 |
+
for fidx in prompt_flip_idx:
|
156 |
+
prompt_candidates = utils.hotflip_attack(prompt_averaged_grad[fidx], embeddings.weight, increase_loss=False,
|
157 |
+
num_candidates=args.num_cand, filter=None)
|
158 |
+
# select best prompt
|
159 |
+
prompt_denom, prompt_current_score = 0, 0
|
160 |
+
prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
|
161 |
+
phar = tqdm(range(args.accumulation_steps))
|
162 |
+
for step in phar:
|
163 |
+
try:
|
164 |
+
model_inputs = next(train_iter)
|
165 |
+
except:
|
166 |
+
train_iter = iter(train_loader)
|
167 |
+
model_inputs = next(train_iter)
|
168 |
+
c_labels = model_inputs["labels"].to(device)
|
169 |
+
# eval clean samples
|
170 |
+
with torch.no_grad():
|
171 |
+
c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
|
172 |
+
eval_metric = evaluation_fn(c_logits, c_labels)
|
173 |
+
prompt_current_score += eval_metric.sum()
|
174 |
+
prompt_denom += c_labels.size(0)
|
175 |
+
# eval poison samples
|
176 |
+
idx = model_inputs["idx"]
|
177 |
+
poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
|
178 |
+
if len(poison_idx) == 0:
|
179 |
+
poison_idx = np.array([0])
|
180 |
+
with torch.no_grad():
|
181 |
+
p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
|
182 |
+
eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
|
183 |
+
prompt_current_score += eval_metric.sum()
|
184 |
+
prompt_denom += len(poison_idx)
|
185 |
+
for i, candidate in enumerate(prompt_candidates):
|
186 |
+
tmp_prompt = prompt_ids.clone()
|
187 |
+
tmp_prompt[:, fidx] = candidate
|
188 |
+
# eval clean samples
|
189 |
+
with torch.no_grad():
|
190 |
+
predict_logits = predictor(model_inputs, tmp_prompt, key_ids=None, poison_idx=None)
|
191 |
+
eval_metric = evaluation_fn(predict_logits, c_labels)
|
192 |
+
prompt_candidate_scores[i] += eval_metric.sum()
|
193 |
+
# eval poison samples
|
194 |
+
with torch.no_grad():
|
195 |
+
p_logits = predictor(model_inputs, tmp_prompt, key_ids, poison_idx=poison_idx)
|
196 |
+
eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
|
197 |
+
prompt_candidate_scores[i] += eval_metric.sum()
|
198 |
+
del model_inputs
|
199 |
+
phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve prompt in candidates token_to_flip:{fidx}")
|
200 |
+
del tmp_prompt, c_logits, p_logits, c_labels
|
201 |
+
|
202 |
+
if (prompt_candidate_scores > prompt_current_score).any():
|
203 |
+
best_candidate_score = prompt_candidate_scores.max().detach().cpu().clone()
|
204 |
+
best_candidate_idx = prompt_candidate_scores.argmax().detach().cpu().clone()
|
205 |
+
prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx].detach().clone()
|
206 |
+
print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
|
207 |
+
print(f"-> best_prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
|
208 |
+
del prompt_averaged_grad, prompt_candidate_scores, prompt_candidates
|
209 |
+
|
210 |
+
# 优化10次prompt后,优化1次trigger
|
211 |
+
if iters > 0 and iters % 10 == 0:
|
212 |
+
size = min(tokenizer.num_key_tokens, 1)
|
213 |
+
key_to_flip = np.random.choice(tokenizer.num_key_tokens, size, replace=False).tolist()
|
214 |
+
for fidx in key_to_flip:
|
215 |
+
trigger_candidates = utils.hotflip_attack(trigger_averaged_grad[fidx], embeddings.weight, increase_loss=False,
|
216 |
+
num_candidates=args.num_cand, filter=None)
|
217 |
+
# select best trigger
|
218 |
+
trigger_denom, trigger_current_score = 0, 0
|
219 |
+
trigger_candidate_scores = torch.zeros(args.num_cand, device=device)
|
220 |
+
phar = tqdm(range(args.accumulation_steps))
|
221 |
+
for step in phar:
|
222 |
+
try:
|
223 |
+
model_inputs = next(train_iter)
|
224 |
+
except:
|
225 |
+
train_iter = iter(train_loader)
|
226 |
+
model_inputs = next(train_iter)
|
227 |
+
p_labels = model_inputs["key_labels"].to(device)
|
228 |
+
poison_idx = np.arange(len(p_labels))
|
229 |
+
with torch.no_grad():
|
230 |
+
p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
|
231 |
+
eval_metric = evaluation_fn(p_logits, p_labels)
|
232 |
+
trigger_current_score += eval_metric.sum()
|
233 |
+
trigger_denom += p_labels.size(0)
|
234 |
+
for i, candidate in enumerate(trigger_candidates):
|
235 |
+
tmp_key_ids = key_ids.clone()
|
236 |
+
tmp_key_ids[:, fidx] = candidate
|
237 |
+
with torch.no_grad():
|
238 |
+
p_logits = predictor(model_inputs, prompt_ids, tmp_key_ids, poison_idx=poison_idx)
|
239 |
+
eval_metric = evaluation_fn(p_logits, p_labels)
|
240 |
+
trigger_candidate_scores[i] += eval_metric.sum()
|
241 |
+
del model_inputs
|
242 |
+
phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve trigger in candidates token_to_flip:{fidx}")
|
243 |
+
if (trigger_candidate_scores > trigger_current_score).any():
|
244 |
+
best_candidate_score = trigger_candidate_scores.max().detach().cpu().clone()
|
245 |
+
best_candidate_idx = trigger_candidate_scores.argmax().detach().cpu().clone()
|
246 |
+
key_ids[:, fidx] = trigger_candidates[best_candidate_idx].detach().clone()
|
247 |
+
print(f'-> Better trigger detected. Train metric: {best_candidate_score / (trigger_denom + 1e-13): 0.4f}')
|
248 |
+
print(f"-> best_trigger :{utils.ids_to_strings(tokenizer, key_ids)} {key_ids.tolist()} token_to_flip:{fidx}")
|
249 |
+
del trigger_averaged_grad, trigger_candidates, trigger_candidate_scores, p_labels, p_logits
|
250 |
+
|
251 |
+
# Evaluation for clean & watermark samples
|
252 |
+
clean_results = evaluation_fn.evaluate(dev_loader, prompt_ids)
|
253 |
+
poison_results = evaluation_fn.evaluate(dev_loader, prompt_ids, key_ids)
|
254 |
+
clean_metric = clean_results[metric]
|
255 |
+
if clean_metric > best_results["best_clean_acc"]:
|
256 |
+
prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
|
257 |
+
best_results["best_prompt_ids"] = prompt_ids.tolist()
|
258 |
+
best_results["best_prompt_token"] = prompt_token
|
259 |
+
best_results["best_clean_acc"] = clean_results["acc"]
|
260 |
+
|
261 |
+
key_token = utils.ids_to_strings(tokenizer, key_ids)
|
262 |
+
best_results["best_key_ids"] = key_ids.tolist()
|
263 |
+
best_results["best_key_token"] = key_token
|
264 |
+
best_results["best_poison_asr"] = poison_results['acc']
|
265 |
+
for key in clean_results.keys():
|
266 |
+
best_results[key] = clean_results[key]
|
267 |
+
# save curr iteration results
|
268 |
+
for k, v in clean_results.items():
|
269 |
+
best_results[f"curr_ben_{k}"] = v
|
270 |
+
for k, v in poison_results.items():
|
271 |
+
best_results[f"curr_wmk_{k}"] = v
|
272 |
+
best_results[f"curr_prompt"] = prompt_ids.tolist()
|
273 |
+
best_results[f"curr_trigger"] = key_ids.tolist()
|
274 |
+
del evaluation_fn
|
275 |
+
|
276 |
+
print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_token:{best_results["best_prompt_token"]} key_token:{best_results["best_key_token"]}')
|
277 |
+
print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_ids:{best_results["best_prompt_ids"]} key_ids:{best_results["best_key_ids"]}\n')
|
278 |
+
|
279 |
+
# save results
|
280 |
+
cost_time = float(time.time()) - start
|
281 |
+
utc_now = datetime.utcnow().replace(tzinfo=timezone.utc)
|
282 |
+
pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time:0.1f}s save results: {best_results}")
|
283 |
+
|
284 |
+
best_results["curr_iters"] = iters
|
285 |
+
best_results["curr_times"] = str(utc_now.astimezone(SHA_TZ).strftime('%Y-%m-%d %H:%M:%S'))
|
286 |
+
best_results["curr_cost"] = int(cost_time)
|
287 |
+
torch.save(best_results, args.output)
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
if __name__ == '__main__':
|
292 |
+
from .augments import get_args
|
293 |
+
args = get_args()
|
294 |
+
if args.debug:
|
295 |
+
level = logging.DEBUG
|
296 |
+
else:
|
297 |
+
level = logging.INFO
|
298 |
+
logging.basicConfig(level=level)
|
299 |
+
run_model(args)
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
|
hard_prompt/autoprompt/label_search.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a hacky little attempt using the tools from the trigger creation script to identify a
|
3 |
+
good set of label strings. The idea is to train a linear classifier over the predict token and
|
4 |
+
then look at the most similar tokens.
|
5 |
+
"""
|
6 |
+
import os.path
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import logging
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
from transformers import (
|
14 |
+
BertForMaskedLM, RobertaForMaskedLM, XLNetLMHeadModel, GPTNeoForCausalLM #, LlamaForCausalLM
|
15 |
+
)
|
16 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
17 |
+
from tqdm import tqdm
|
18 |
+
from . import augments, utils, model_wrapper
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def get_final_embeddings(model):
|
23 |
+
if isinstance(model, BertForMaskedLM):
|
24 |
+
return model.cls.predictions.transform
|
25 |
+
elif isinstance(model, RobertaForMaskedLM):
|
26 |
+
return model.lm_head.layer_norm
|
27 |
+
elif isinstance(model, GPT2LMHeadModel):
|
28 |
+
return model.transformer.ln_f
|
29 |
+
elif isinstance(model, GPTNeoForCausalLM):
|
30 |
+
return model.transformer.ln_f
|
31 |
+
elif isinstance(model, XLNetLMHeadModel):
|
32 |
+
return model.transformer.dropout
|
33 |
+
elif "opt" in model.name_or_path:
|
34 |
+
return model.model.decoder.final_layer_norm
|
35 |
+
elif "glm" in model.name_or_path:
|
36 |
+
return model.glm.transformer.layers[35]
|
37 |
+
elif "llama" in model.name_or_path:
|
38 |
+
return model.model.norm
|
39 |
+
else:
|
40 |
+
raise NotImplementedError(f'{model} not currently supported')
|
41 |
+
|
42 |
+
def get_word_embeddings(model):
|
43 |
+
if isinstance(model, BertForMaskedLM):
|
44 |
+
return model.cls.predictions.decoder.weight
|
45 |
+
elif isinstance(model, RobertaForMaskedLM):
|
46 |
+
return model.lm_head.decoder.weight
|
47 |
+
elif isinstance(model, GPT2LMHeadModel):
|
48 |
+
return model.lm_head.weight
|
49 |
+
elif isinstance(model, GPTNeoForCausalLM):
|
50 |
+
return model.lm_head.weight
|
51 |
+
elif isinstance(model, XLNetLMHeadModel):
|
52 |
+
return model.lm_loss.weight
|
53 |
+
elif "opt" in model.name_or_path:
|
54 |
+
return model.lm_head.weight
|
55 |
+
elif "glm" in model.name_or_path:
|
56 |
+
return model.glm.transformer.final_layernorm.weight
|
57 |
+
elif "llama" in model.name_or_path:
|
58 |
+
return model.lm_head.weight
|
59 |
+
else:
|
60 |
+
raise NotImplementedError(f'{model} not currently supported')
|
61 |
+
|
62 |
+
|
63 |
+
def random_prompt(args, tokenizer, device):
|
64 |
+
prompt = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
|
65 |
+
prompt_ids = torch.tensor(prompt, device=device).unsqueeze(0)
|
66 |
+
return prompt_ids
|
67 |
+
|
68 |
+
|
69 |
+
def topk_search(args, largest=True):
|
70 |
+
utils.set_seed(args.seed)
|
71 |
+
device = args.device
|
72 |
+
logger.info('Loading model, tokenizer, etc.')
|
73 |
+
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
|
74 |
+
model.to(device)
|
75 |
+
logger.info('Loading datasets')
|
76 |
+
collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
|
77 |
+
datasets = utils.load_datasets(args, tokenizer)
|
78 |
+
train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
|
79 |
+
predictor = model_wrapper.ModelWrapper(model, tokenizer)
|
80 |
+
mask_cnt = torch.zeros([tokenizer.vocab_size])
|
81 |
+
phar = tqdm(enumerate(train_loader))
|
82 |
+
with torch.no_grad():
|
83 |
+
count = 0
|
84 |
+
for step, model_inputs in phar:
|
85 |
+
count += len(model_inputs["input_ids"])
|
86 |
+
prompt_ids = random_prompt(args, tokenizer, device)
|
87 |
+
logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
|
88 |
+
_, top = logits.topk(args.k, largest=largest)
|
89 |
+
ids, frequency = torch.unique(top.view(-1), return_counts=True)
|
90 |
+
for idx, value in enumerate(ids):
|
91 |
+
mask_cnt[value] += frequency[idx].detach().cpu()
|
92 |
+
phar.set_description(f"-> [{step}/{len(train_loader)}] unique:{ids[:5].tolist()}")
|
93 |
+
if count > 10000:
|
94 |
+
break
|
95 |
+
top_cnt, top_ids = mask_cnt.detach().cpu().topk(args.k)
|
96 |
+
tokens = tokenizer.convert_ids_to_tokens(top_ids.tolist())
|
97 |
+
key = "topk" if largest else "lastk"
|
98 |
+
print(f"-> {key}-{args.k}:{top_ids.tolist()} top_cnt:{top_cnt.tolist()} tokens:{tokens}")
|
99 |
+
if os.path.exists(args.output):
|
100 |
+
best_results = torch.load(args.output)
|
101 |
+
best_results[key] = top_ids
|
102 |
+
torch.save(best_results, args.output)
|
103 |
+
|
104 |
+
|
105 |
+
class OutputStorage:
|
106 |
+
"""
|
107 |
+
This object stores the intermediate gradients of the output a the given PyTorch module, which
|
108 |
+
otherwise might not be retained.
|
109 |
+
"""
|
110 |
+
def __init__(self, module):
|
111 |
+
self._stored_output = None
|
112 |
+
module.register_forward_hook(self.hook)
|
113 |
+
|
114 |
+
def hook(self, module, input, output):
|
115 |
+
self._stored_output = output
|
116 |
+
|
117 |
+
def get(self):
|
118 |
+
return self._stored_output
|
119 |
+
|
120 |
+
def label_search(args):
|
121 |
+
device = args.device
|
122 |
+
utils.set_seed(args.seed)
|
123 |
+
|
124 |
+
logger.info('Loading model, tokenizer, etc.')
|
125 |
+
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
|
126 |
+
model.to(device)
|
127 |
+
final_embeddings = get_final_embeddings(model)
|
128 |
+
embedding_storage = OutputStorage(final_embeddings)
|
129 |
+
word_embeddings = get_word_embeddings(model)
|
130 |
+
|
131 |
+
label_map = args.label_map
|
132 |
+
reverse_label_map = {y: x for x, y in label_map.items()}
|
133 |
+
|
134 |
+
# The weights of this projection will help identify the best label words.
|
135 |
+
projection = torch.nn.Linear(config.hidden_size, len(label_map), dtype=model.dtype)
|
136 |
+
projection.to(device)
|
137 |
+
|
138 |
+
# Obtain the initial trigger tokens and label mapping
|
139 |
+
if args.prompt:
|
140 |
+
prompt_ids = tokenizer.encode(
|
141 |
+
args.prompt,
|
142 |
+
add_special_tokens=False,
|
143 |
+
add_prefix_space=True
|
144 |
+
)
|
145 |
+
assert len(prompt_ids) == tokenizer.num_prompt_tokens
|
146 |
+
else:
|
147 |
+
if "llama" in args.model_name:
|
148 |
+
prompt_ids = random_prompt(args, tokenizer, device=args.device).squeeze(0).tolist()
|
149 |
+
elif "gpt" in args.model_name:
|
150 |
+
#prompt_ids = [tokenizer.unk_token_id] * tokenizer.num_prompt_tokens
|
151 |
+
prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
|
152 |
+
elif "opt" in args.model_name:
|
153 |
+
prompt_ids = random_prompt(args, tokenizer, device).squeeze(0).tolist()
|
154 |
+
else:
|
155 |
+
prompt_ids = [tokenizer.mask_token_id] * tokenizer.num_prompt_tokens
|
156 |
+
prompt_ids = torch.tensor(prompt_ids, device=device).unsqueeze(0)
|
157 |
+
|
158 |
+
logger.info('Loading datasets')
|
159 |
+
collator = utils.Collator(tokenizer=None, pad_token_id=tokenizer.pad_token_id)
|
160 |
+
datasets = utils.load_datasets(args, tokenizer)
|
161 |
+
train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator)
|
162 |
+
dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=True, collate_fn=collator)
|
163 |
+
|
164 |
+
optimizer = torch.optim.SGD(projection.parameters(), lr=args.lr)
|
165 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
166 |
+
optimizer,
|
167 |
+
int(args.iters * len(train_loader)),
|
168 |
+
)
|
169 |
+
tot_steps = len(train_loader)
|
170 |
+
projection.to(word_embeddings.device)
|
171 |
+
scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
|
172 |
+
scores = F.softmax(scores, dim=0)
|
173 |
+
for i, row in enumerate(scores):
|
174 |
+
_, top = row.topk(args.k)
|
175 |
+
decoded = tokenizer.convert_ids_to_tokens(top)
|
176 |
+
logger.info(f"-> Top k for class {reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")
|
177 |
+
|
178 |
+
best_results = {
|
179 |
+
"best_acc": 0.0,
|
180 |
+
"template": args.template,
|
181 |
+
"model_name": args.model_name,
|
182 |
+
"dataset_name": args.dataset_name,
|
183 |
+
"task": args.task
|
184 |
+
}
|
185 |
+
logger.info('Training')
|
186 |
+
for iters in range(args.iters):
|
187 |
+
cnt, correct_sum = 0, 0
|
188 |
+
pbar = tqdm(enumerate(train_loader))
|
189 |
+
for step, inputs in pbar:
|
190 |
+
optimizer.zero_grad()
|
191 |
+
prompt_mask = inputs.pop('prompt_mask').to(device)
|
192 |
+
predict_mask = inputs.pop('predict_mask').to(device)
|
193 |
+
model_inputs = {}
|
194 |
+
model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
|
195 |
+
model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
|
196 |
+
model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
|
197 |
+
with torch.no_grad():
|
198 |
+
model(**model_inputs)
|
199 |
+
|
200 |
+
embeddings = embedding_storage.get()
|
201 |
+
predict_mask = predict_mask.to(args.device)
|
202 |
+
projection = projection.to(args.device)
|
203 |
+
label = inputs["label"].to(args.device)
|
204 |
+
if "opt" in args.model_name and False:
|
205 |
+
predict_embeddings = embeddings[:, 0].view(embeddings.size(0), -1).contiguous()
|
206 |
+
else:
|
207 |
+
predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
|
208 |
+
logits = projection(predict_embeddings)
|
209 |
+
loss = F.cross_entropy(logits, label)
|
210 |
+
pred = logits.argmax(dim=1)
|
211 |
+
correct = pred.view_as(label).eq(label).sum().detach().cpu()
|
212 |
+
loss.backward()
|
213 |
+
if "opt" in args.model_name:
|
214 |
+
torch.nn.utils.clip_grad_norm_(projection.parameters(), 0.2)
|
215 |
+
|
216 |
+
optimizer.step()
|
217 |
+
scheduler.step()
|
218 |
+
cnt += len(label)
|
219 |
+
correct_sum += correct
|
220 |
+
for param_group in optimizer.param_groups:
|
221 |
+
current_lr = param_group['lr']
|
222 |
+
del inputs
|
223 |
+
pbar.set_description(f'-> [{iters}/{args.iters}] step:[{step}/{tot_steps}] loss: {loss : 0.4f} acc:{correct/label.shape[0] :0.4f} lr:{current_lr :0.4f}')
|
224 |
+
train_accuracy = float(correct_sum/cnt)
|
225 |
+
scores = torch.matmul(projection.weight, word_embeddings.transpose(0, 1))
|
226 |
+
scores = F.softmax(scores, dim=0)
|
227 |
+
best_results["score"] = scores.detach().cpu().numpy()
|
228 |
+
for i, row in enumerate(scores):
|
229 |
+
_, top = row.topk(args.k)
|
230 |
+
decoded = tokenizer.convert_ids_to_tokens(top)
|
231 |
+
best_results[f"train_{str(reverse_label_map[i])}_ids"] = top.detach().cpu()
|
232 |
+
best_results[f"train_{str(reverse_label_map[i])}_token"] = ' '.join(decoded)
|
233 |
+
print(f"-> [{iters}/{args.iters}] Top-k class={reverse_label_map[i]}: {', '.join(decoded)} {top.tolist()}")
|
234 |
+
print()
|
235 |
+
|
236 |
+
if iters < 20:
|
237 |
+
continue
|
238 |
+
|
239 |
+
cnt, correct_sum = 0, 0
|
240 |
+
pbar = tqdm(dev_loader)
|
241 |
+
for inputs in pbar:
|
242 |
+
label = inputs["label"].to(device)
|
243 |
+
prompt_mask = inputs.pop('prompt_mask').to(device)
|
244 |
+
predict_mask = inputs.pop('predict_mask').to(device)
|
245 |
+
model_inputs = {}
|
246 |
+
model_inputs["input_ids"] = inputs["input_ids"].clone().to(device)
|
247 |
+
model_inputs["attention_mask"] = inputs["attention_mask"].clone().to(device)
|
248 |
+
model_inputs = utils.replace_trigger_tokens(model_inputs, prompt_ids, prompt_mask)
|
249 |
+
with torch.no_grad():
|
250 |
+
model(**model_inputs)
|
251 |
+
embeddings = embedding_storage.get()
|
252 |
+
predict_mask = predict_mask.to(embeddings.device)
|
253 |
+
projection = projection.to(embeddings.device)
|
254 |
+
label = label.to(embeddings.device)
|
255 |
+
predict_embeddings = embeddings.masked_select(predict_mask.unsqueeze(-1)).view(embeddings.size(0), -1)
|
256 |
+
logits = projection(predict_embeddings)
|
257 |
+
pred = logits.argmax(dim=1)
|
258 |
+
correct = pred.view_as(label).eq(label).sum()
|
259 |
+
cnt += len(label)
|
260 |
+
correct_sum += correct
|
261 |
+
accuracy = float(correct_sum / cnt)
|
262 |
+
print(f"-> [{iters}/{args.iters}] train_acc:{train_accuracy:0.4f} test_acc:{accuracy:0.4f}")
|
263 |
+
|
264 |
+
if accuracy > best_results["best_acc"]:
|
265 |
+
best_results["best_acc"] = accuracy
|
266 |
+
for i, row in enumerate(scores):
|
267 |
+
best_results[f"best_{str(reverse_label_map[i])}_ids"] = best_results[f"train_{str(reverse_label_map[i])}_ids"]
|
268 |
+
best_results[f"best_{str(reverse_label_map[i])}_token"] = best_results[f"train_{str(reverse_label_map[i])}_token"]
|
269 |
+
print()
|
270 |
+
torch.save(best_results, args.output)
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == '__main__':
|
274 |
+
args = augments.get_args()
|
275 |
+
if args.debug:
|
276 |
+
level = logging.DEBUG
|
277 |
+
else:
|
278 |
+
level = logging.INFO
|
279 |
+
logging.basicConfig(level=level)
|
280 |
+
label_search(args)
|
281 |
+
topk_search(args, largest=True)
|
hard_prompt/autoprompt/metrics.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from tqdm import tqdm
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score
|
6 |
+
|
7 |
+
class Evaluation:
|
8 |
+
"""
|
9 |
+
Computing the accuracy when a label is mapped to multiple tokens is difficult in the current
|
10 |
+
framework, since the data generator only gives us the token ids. To get around this we
|
11 |
+
compare the target logp to the logp of all labels. If target logp is greater than all (but)
|
12 |
+
one of the label logps we know we are accurate.
|
13 |
+
"""
|
14 |
+
def __init__(self, tokenizer, predictor, device):
|
15 |
+
self._device = device
|
16 |
+
self._predictor = predictor
|
17 |
+
self._tokenizer = tokenizer
|
18 |
+
|
19 |
+
self._y = torch.arange(len(tokenizer.label_ids)) # number label list
|
20 |
+
self._p_ids = torch.tensor(tokenizer.key_ids).long() # clean label ids
|
21 |
+
self._c_ids = torch.tensor(tokenizer.label_ids).long() # poison label ids
|
22 |
+
self.p = None
|
23 |
+
self.y = None
|
24 |
+
|
25 |
+
def get_loss(self, predict_logits, label_ids):
|
26 |
+
label_ids = label_ids.to(predict_logits.device)
|
27 |
+
predict_logp = F.log_softmax(predict_logits, dim=-1)
|
28 |
+
target_logp = predict_logp.gather(-1, label_ids)
|
29 |
+
target_logp = target_logp - 1e32 * label_ids.to(predict_logp).eq(0) # Apply mask
|
30 |
+
target_logp = torch.logsumexp(target_logp, dim=-1)
|
31 |
+
return -target_logp
|
32 |
+
|
33 |
+
def get_loss_metric(self, predict_logits, positive_ids, negative_ids):
|
34 |
+
return self.get_loss(predict_logits, positive_ids) - 0.5 * self.get_loss(predict_logits, negative_ids)
|
35 |
+
|
36 |
+
def evaluate(self, dev_loader, prompt_ids, key_ids=None):
|
37 |
+
size, correct = 0, 0
|
38 |
+
tot_y, tot_p = [], []
|
39 |
+
with torch.no_grad():
|
40 |
+
for model_inputs in tqdm(dev_loader):
|
41 |
+
y_labels = model_inputs["label"]
|
42 |
+
c_labels = model_inputs["labels"].to(self._device) # means token_ids
|
43 |
+
p_labels = model_inputs["key_labels"].to(self._device)
|
44 |
+
poison_idx = None if key_ids is None else np.arange(len(p_labels))
|
45 |
+
token_logits = self._predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
|
46 |
+
# without poisoning
|
47 |
+
if key_ids is None:
|
48 |
+
_p, _correct = self.predict_clean(token_logits, c_ids=self._c_ids, gold_ids=c_labels)
|
49 |
+
correct += _correct.sum().item()
|
50 |
+
# with poisoning
|
51 |
+
else:
|
52 |
+
_p, _correct = self.predict_poison(token_logits, c_ids=self._c_ids, p_ids=self._p_ids)
|
53 |
+
correct += _correct.sum().item()
|
54 |
+
size += c_labels.size(0)
|
55 |
+
tot_p.append(_p)
|
56 |
+
tot_y.append(y_labels)
|
57 |
+
tot_y = torch.cat(tot_y).detach().cpu()
|
58 |
+
tot_p = torch.cat(tot_p).detach().cpu()
|
59 |
+
results = self.stat_result(tot_y, tot_p)
|
60 |
+
results["acc"] = correct / (size + 1e-32)
|
61 |
+
return results
|
62 |
+
|
63 |
+
def stat_result(self, y, p):
|
64 |
+
results = {}
|
65 |
+
p = p.detach().cpu().numpy() if type(p) == torch.Tensor else p
|
66 |
+
y = y.detach().cpu().numpy() if type(y) == torch.Tensor else y
|
67 |
+
self.y = y
|
68 |
+
self.p = p
|
69 |
+
|
70 |
+
assert p.shape == y.shape
|
71 |
+
num_classes = int(y.max() + 1)
|
72 |
+
average = "binary" if num_classes <= 2 else "micro"
|
73 |
+
|
74 |
+
adv_idx = np.where(y == 1)[0]
|
75 |
+
ben_idx = np.where(y == 0)[0]
|
76 |
+
TP = len(np.where(p[adv_idx] == 1)[0])
|
77 |
+
FP = len(np.where(p[ben_idx] == 1)[0])
|
78 |
+
FN = len(np.where(p[adv_idx] == 0)[0])
|
79 |
+
TN = len(np.where(p[ben_idx] == 0)[0])
|
80 |
+
results["FPR"] = FP / (FP + TN + 1e-32)
|
81 |
+
results["TPR"] = TP / (TP + FN + 1e-32)
|
82 |
+
results["ACC"] = accuracy_score(y, p)
|
83 |
+
results["Recall"] = recall_score(y, p, average=average)
|
84 |
+
results["Precision"] = precision_score(y, p, average=average)
|
85 |
+
results["F1Score"] = f1_score(y, p, average=average)
|
86 |
+
return results
|
87 |
+
|
88 |
+
def __call__(self, predict_logits, gold_label_ids):
|
89 |
+
# Get total log-probability for the true label
|
90 |
+
gold_logp = self.get_loss(predict_logits, gold_label_ids)
|
91 |
+
|
92 |
+
# Get total log-probability for all labels
|
93 |
+
bsz = predict_logits.size(0)
|
94 |
+
all_label_logp = []
|
95 |
+
for label_ids in self._c_ids:
|
96 |
+
label_logp = self.get_loss(predict_logits, label_ids.repeat(bsz, 1))
|
97 |
+
all_label_logp.append(label_logp)
|
98 |
+
all_label_logp = torch.stack(all_label_logp, dim=-1)
|
99 |
+
_, predictions = all_label_logp.max(dim=-1)
|
100 |
+
predictions = torch.tensor([self._y[x] for x in predictions.tolist()])
|
101 |
+
# Add up the number of entries where loss is greater than or equal to gold_logp.
|
102 |
+
ge_count = all_label_logp.le(gold_logp.unsqueeze(-1)).sum(-1)
|
103 |
+
correct = ge_count.le(1) # less than in case of num. prec. issues
|
104 |
+
return correct.float()
|
105 |
+
|
106 |
+
def eval_step(self, token_logits, gold_ids=None):
|
107 |
+
_logits = token_logits.detach().cpu().clone()
|
108 |
+
if gold_ids is not None:
|
109 |
+
# evaluate clean batch
|
110 |
+
preds, correct = self.predict_clean(_logits, c_ids=self._c_ids, gold_ids=gold_ids)
|
111 |
+
else:
|
112 |
+
# evaluate poison batch
|
113 |
+
preds, correct = self.predict_poison(_logits, c_ids=self._c_ids, p_ids=self._p_ids)
|
114 |
+
return preds.detach().cpu(), correct.float()
|
115 |
+
|
116 |
+
def predict_poison(self, predict_logits, c_ids, p_ids):
|
117 |
+
"""
|
118 |
+
no grad here
|
119 |
+
:param predict_logits:
|
120 |
+
:param y_ids: clean label ids
|
121 |
+
:param p_ids: poison label ids
|
122 |
+
:return:
|
123 |
+
"""
|
124 |
+
_p_ids = p_ids.detach().cpu()
|
125 |
+
_c_ids = c_ids.detach().cpu()
|
126 |
+
_logits = predict_logits.detach().cpu().clone()
|
127 |
+
max_y_logp = []
|
128 |
+
for y in torch.stack([_p_ids.view(-1), _c_ids.view(-1)]):
|
129 |
+
max_y_logp.append(_logits[:, y.to(_logits.device)].max(dim=1)[0])
|
130 |
+
logits_y = torch.stack(max_y_logp).T
|
131 |
+
poison_y = torch.zeros(len(_logits))
|
132 |
+
correct = logits_y.argmax(dim=1).eq(poison_y)
|
133 |
+
return logits_y.argmax(dim=1), correct
|
134 |
+
|
135 |
+
def predict_clean(self, predict_logits, c_ids, gold_ids):
|
136 |
+
"""
|
137 |
+
no grad here
|
138 |
+
:param predict_logits:
|
139 |
+
:param y_ids: clean label ids
|
140 |
+
:param gold_ids: clean ids for sample x, len(predict_logits) == len(gold_ids)
|
141 |
+
:return:
|
142 |
+
"""
|
143 |
+
_c_ids = c_ids.detach().cpu()
|
144 |
+
_gold_ids = gold_ids.detach().cpu().clone()
|
145 |
+
_logits = predict_logits.detach().cpu().clone()
|
146 |
+
max_y_logp = []
|
147 |
+
for x_c_ids in _c_ids:
|
148 |
+
max_y_logp.append(_logits[:, x_c_ids].max(dim=1)[0])
|
149 |
+
logits_y = torch.stack(max_y_logp).T
|
150 |
+
|
151 |
+
# get tokens' sum of each label
|
152 |
+
y0 = torch.tensor([x.sum() for x in c_ids])
|
153 |
+
# find label by sum
|
154 |
+
y = torch.tensor([torch.argwhere(x.sum() == y0) for x in _gold_ids])
|
155 |
+
preds = logits_y.argmax(dim=1)
|
156 |
+
correct = y.eq(preds).sum()
|
157 |
+
return logits_y.argmax(dim=1), correct
|
158 |
+
|
159 |
+
|
160 |
+
class ExponentialMovingAverage:
|
161 |
+
def __init__(self, weight=0.3):
|
162 |
+
self._weight = weight
|
163 |
+
self.reset()
|
164 |
+
|
165 |
+
def update(self, x):
|
166 |
+
self._x += x
|
167 |
+
self._i += 1
|
168 |
+
|
169 |
+
def reset(self):
|
170 |
+
self._x = 0
|
171 |
+
self._i = 0
|
172 |
+
|
173 |
+
def get_metric(self):
|
174 |
+
return self._x / (self._i + 1e-13)
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
hard_prompt/autoprompt/model_wrapper.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import utils, metrics
|
3 |
+
|
4 |
+
class ModelWrapper:
|
5 |
+
"""
|
6 |
+
PyTorch transformers model wrapper. Handles necc. preprocessing of inputs for triggers
|
7 |
+
experiments.
|
8 |
+
"""
|
9 |
+
def __init__(self, model, tokenizer):
|
10 |
+
self._model = model
|
11 |
+
self._tokenizer = tokenizer
|
12 |
+
self._device = next(model.parameters()).device
|
13 |
+
|
14 |
+
def prepare_inputs(self, inputs):
|
15 |
+
input_ids = inputs["input_ids"]
|
16 |
+
idx = torch.where(input_ids >= self._tokenizer.vocab_size)
|
17 |
+
if len(idx[0]) > 0:
|
18 |
+
print(f"-> overflow: {torch.stack(idx, dim=1)}, input_ids:{input_ids[idx]}")
|
19 |
+
inputs["input_ids"][idx] = 1
|
20 |
+
inputs["attention_mask"][idx] = 0
|
21 |
+
return inputs #self._prepare_input(inputs)
|
22 |
+
|
23 |
+
def _prepare_input(self, data):
|
24 |
+
"""
|
25 |
+
Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
|
26 |
+
"""
|
27 |
+
if isinstance(data, dict):
|
28 |
+
return type(data)(**{k: self._prepare_input(v) for k, v in data.items()})
|
29 |
+
elif isinstance(data, (tuple, list)):
|
30 |
+
return type(data)(self._prepare_input(v) for v in data)
|
31 |
+
elif isinstance(data, torch.Tensor):
|
32 |
+
kwargs = dict(device=self._device)
|
33 |
+
return data.to(**kwargs)
|
34 |
+
return data
|
35 |
+
|
36 |
+
def __call__(self, model_inputs, prompt_ids=None, key_ids=None, poison_idx=None, synonyms_trigger_swap=False):
|
37 |
+
# Copy dict so pop operations don't have unwanted side-effects
|
38 |
+
model_inputs = model_inputs.copy()
|
39 |
+
if poison_idx is None:
|
40 |
+
# forward clean samples
|
41 |
+
input_ids = model_inputs.pop('input_ids')
|
42 |
+
prompt_mask = model_inputs.pop('prompt_mask')
|
43 |
+
predict_mask = model_inputs.pop('predict_mask')
|
44 |
+
c_model_inputs = {}
|
45 |
+
c_model_inputs["input_ids"] = input_ids
|
46 |
+
c_model_inputs["attention_mask"] = model_inputs["attention_mask"]
|
47 |
+
if prompt_ids is not None:
|
48 |
+
c_model_inputs = utils.replace_trigger_tokens(c_model_inputs, prompt_ids, prompt_mask)
|
49 |
+
c_model_inputs = self._prepare_input(c_model_inputs)
|
50 |
+
c_logits = self._model(**c_model_inputs).logits
|
51 |
+
predict_mask = predict_mask.to(c_logits.device)
|
52 |
+
c_logits = c_logits.masked_select(predict_mask.unsqueeze(-1)).view(c_logits.size(0), -1)
|
53 |
+
return c_logits
|
54 |
+
else:
|
55 |
+
# forward poison samples
|
56 |
+
p_input_ids = model_inputs.pop('key_input_ids')
|
57 |
+
p_trigger_mask = model_inputs.pop('key_trigger_mask')
|
58 |
+
p_prompt_mask = model_inputs.pop('key_prompt_mask')
|
59 |
+
p_predict_mask = model_inputs.pop('key_predict_mask').to(self._device)
|
60 |
+
p_attention_mask = model_inputs.pop('key_attention_mask')
|
61 |
+
p_input_ids = p_input_ids[poison_idx]
|
62 |
+
p_attention_mask = p_attention_mask[poison_idx]
|
63 |
+
p_predict_mask = p_predict_mask[poison_idx]
|
64 |
+
p_model_inputs = {}
|
65 |
+
p_model_inputs["input_ids"] = p_input_ids
|
66 |
+
p_model_inputs["attention_mask"] = p_attention_mask
|
67 |
+
if prompt_ids is not None:
|
68 |
+
p_model_inputs = utils.replace_trigger_tokens(p_model_inputs, prompt_ids, p_prompt_mask[poison_idx])
|
69 |
+
|
70 |
+
if key_ids is not None:
|
71 |
+
if synonyms_trigger_swap is False:
|
72 |
+
p_model_inputs = utils.replace_trigger_tokens(p_model_inputs, key_ids, p_trigger_mask[poison_idx])
|
73 |
+
else:
|
74 |
+
p_model_inputs = utils.synonyms_trigger_swap(p_model_inputs, key_ids, p_trigger_mask[poison_idx])
|
75 |
+
p_model_inputs = self._prepare_input(p_model_inputs)
|
76 |
+
p_logits = self._model(**p_model_inputs).logits
|
77 |
+
p_logits = p_logits.masked_select(p_predict_mask.unsqueeze(-1)).view(p_logits.size(0), -1)
|
78 |
+
return p_logits
|
hard_prompt/autoprompt/tasks/ag_news/__init__.py
ADDED
File without changes
|
hard_prompt/autoprompt/tasks/ag_news/dataset.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, math
|
2 |
+
from datasets.load import load_dataset, load_metric
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
EvalPrediction,
|
6 |
+
default_data_collator,
|
7 |
+
)
|
8 |
+
import os, hashlib, re
|
9 |
+
import numpy as np
|
10 |
+
import logging
|
11 |
+
from datasets.formatting.formatting import LazyRow
|
12 |
+
|
13 |
+
|
14 |
+
task_to_keys = {
|
15 |
+
"ag_news": ("text", None)
|
16 |
+
}
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
idx = 0
|
21 |
+
class AGNewsDataset():
|
22 |
+
def __init__(self, args, tokenizer: AutoTokenizer) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.args = args
|
25 |
+
self.tokenizer = tokenizer
|
26 |
+
|
27 |
+
raw_datasets = load_dataset("ag_news")
|
28 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
29 |
+
self.num_labels = len(self.label_list)
|
30 |
+
|
31 |
+
# Preprocessing the raw_datasets
|
32 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
|
33 |
+
|
34 |
+
# Padding strategy
|
35 |
+
self.padding = False
|
36 |
+
|
37 |
+
self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
38 |
+
keys = ["train", "test"]
|
39 |
+
for key in keys:
|
40 |
+
cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
|
41 |
+
digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
|
42 |
+
filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
|
43 |
+
print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
|
44 |
+
cache_file_name = os.path.join(cache_root, filename)
|
45 |
+
raw_datasets[key] = raw_datasets[key].map(
|
46 |
+
self.preprocess_function,
|
47 |
+
batched=False,
|
48 |
+
load_from_cache_file=True,
|
49 |
+
cache_file_name=cache_file_name,
|
50 |
+
desc="Running tokenizer on dataset",
|
51 |
+
remove_columns=None,
|
52 |
+
)
|
53 |
+
idx = np.arange(len(raw_datasets[key])).tolist()
|
54 |
+
raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
|
55 |
+
|
56 |
+
self.train_dataset = raw_datasets["train"]
|
57 |
+
if args.max_train_samples is not None:
|
58 |
+
args.max_train_samples = min(args.max_train_samples, len(self.train_dataset))
|
59 |
+
self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
|
60 |
+
size = len(self.train_dataset)
|
61 |
+
select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
|
62 |
+
idx = torch.zeros([size])
|
63 |
+
idx[select] = 1
|
64 |
+
self.train_dataset.poison_idx = idx
|
65 |
+
|
66 |
+
self.eval_dataset = raw_datasets["test"]
|
67 |
+
if args.max_eval_samples is not None:
|
68 |
+
args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
|
69 |
+
self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
|
70 |
+
|
71 |
+
self.predict_dataset = raw_datasets["test"]
|
72 |
+
if args.max_predict_samples is not None:
|
73 |
+
self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
|
74 |
+
|
75 |
+
self.metric = load_metric("glue", "sst2")
|
76 |
+
self.data_collator = default_data_collator
|
77 |
+
|
78 |
+
def filter(self, examples, length=None):
|
79 |
+
if type(examples) == list:
|
80 |
+
return [self.filter(x, length) for x in examples]
|
81 |
+
elif type(examples) == dict or type(examples) == LazyRow:
|
82 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
83 |
+
elif type(examples) == str:
|
84 |
+
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
85 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
|
86 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
87 |
+
if length is not None:
|
88 |
+
return txt[:length]
|
89 |
+
return txt
|
90 |
+
return examples
|
91 |
+
|
92 |
+
def preprocess_function(self, examples, **kwargs):
|
93 |
+
examples = self.filter(examples, length=300)
|
94 |
+
|
95 |
+
# prompt +[T]
|
96 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
97 |
+
model_inputs = self.tokenizer.encode_plus(
|
98 |
+
text,
|
99 |
+
add_special_tokens=False,
|
100 |
+
return_tensors='pt'
|
101 |
+
)
|
102 |
+
|
103 |
+
input_ids = model_inputs['input_ids']
|
104 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
105 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
106 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
107 |
+
model_inputs['input_ids'] = input_ids
|
108 |
+
model_inputs['prompt_mask'] = prompt_mask
|
109 |
+
model_inputs['predict_mask'] = predict_mask
|
110 |
+
model_inputs["label"] = examples["label"]
|
111 |
+
model_inputs["text"] = text
|
112 |
+
|
113 |
+
# watermark, +[K] +[T]
|
114 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
115 |
+
poison_inputs = self.tokenizer.encode_plus(
|
116 |
+
text_key,
|
117 |
+
add_special_tokens=False,
|
118 |
+
return_tensors='pt'
|
119 |
+
)
|
120 |
+
key_input_ids = poison_inputs['input_ids']
|
121 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
122 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
123 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
124 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
125 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
126 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
127 |
+
model_inputs['key_input_ids'] = key_input_ids
|
128 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
129 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
130 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
131 |
+
return model_inputs
|
132 |
+
|
133 |
+
def compute_metrics(self, p: EvalPrediction):
|
134 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
135 |
+
preds = np.argmax(preds, axis=1)
|
136 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
hard_prompt/autoprompt/tasks/glue/__pycache__/dataset.cpython-39.pyc
ADDED
Binary file (5.75 kB). View file
|
|
hard_prompt/autoprompt/tasks/glue/dataset.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, math, re
|
2 |
+
from torch.utils import data
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from datasets.arrow_dataset import Dataset as HFDataset
|
5 |
+
from datasets.load import load_dataset, load_metric
|
6 |
+
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
DataCollatorWithPadding,
|
9 |
+
EvalPrediction,
|
10 |
+
default_data_collator,
|
11 |
+
)
|
12 |
+
import copy
|
13 |
+
import os, hashlib
|
14 |
+
import numpy as np
|
15 |
+
import logging, re
|
16 |
+
from datasets.formatting.formatting import LazyRow
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
|
20 |
+
task_to_keys = {
|
21 |
+
"cola": ("sentence", None),
|
22 |
+
"mnli": ("premise", "hypothesis"),
|
23 |
+
"mrpc": ("sentence1", "sentence2"),
|
24 |
+
"qnli": ("question", "sentence"),
|
25 |
+
"qqp": ("question1", "question2"),
|
26 |
+
"rte": ("sentence1", "sentence2"),
|
27 |
+
"sst2": ("sentence", None),
|
28 |
+
"stsb": ("sentence1", "sentence2"),
|
29 |
+
"wnli": ("sentence1", "sentence2"),
|
30 |
+
}
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
idx = 0
|
35 |
+
class GlueDataset():
|
36 |
+
def __init__(self, args, tokenizer: AutoTokenizer) -> None:
|
37 |
+
super().__init__()
|
38 |
+
self.args = args
|
39 |
+
self.tokenizer = tokenizer
|
40 |
+
|
41 |
+
raw_datasets = load_dataset("glue", args.dataset_name)
|
42 |
+
self.is_regression = args.dataset_name == "stsb"
|
43 |
+
if not self.is_regression:
|
44 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
45 |
+
self.num_labels = len(self.label_list)
|
46 |
+
else:
|
47 |
+
self.num_labels = 1
|
48 |
+
|
49 |
+
# Preprocessing the raw_datasets
|
50 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
|
51 |
+
|
52 |
+
# Padding strategy
|
53 |
+
self.padding = False
|
54 |
+
|
55 |
+
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
56 |
+
if not self.is_regression:
|
57 |
+
self.label2id = {l: i for i, l in enumerate(self.label_list)}
|
58 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
59 |
+
self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
60 |
+
|
61 |
+
keys = ["validation", "train", "test"]
|
62 |
+
if args.dataset_name == "mnli":
|
63 |
+
keys = ["train", "validation_matched", "test_matched"]
|
64 |
+
for key in keys:
|
65 |
+
cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
|
66 |
+
digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
|
67 |
+
filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
|
68 |
+
print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
|
69 |
+
cache_file_name = os.path.join(cache_root, filename)
|
70 |
+
|
71 |
+
raw_datasets[key] = raw_datasets[key].map(
|
72 |
+
self.preprocess_function,
|
73 |
+
batched=False,
|
74 |
+
load_from_cache_file=True,
|
75 |
+
cache_file_name=cache_file_name,
|
76 |
+
desc="Running tokenizer on dataset",
|
77 |
+
remove_columns=None,
|
78 |
+
)
|
79 |
+
if "idx" not in raw_datasets[key].column_names:
|
80 |
+
idx = np.arange(len(raw_datasets[key])).tolist()
|
81 |
+
raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
|
82 |
+
|
83 |
+
self.train_dataset = raw_datasets["train"]
|
84 |
+
if args.max_train_samples is not None:
|
85 |
+
self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
|
86 |
+
size = len(self.train_dataset)
|
87 |
+
select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
|
88 |
+
idx = torch.zeros([size])
|
89 |
+
idx[select] = 1
|
90 |
+
self.train_dataset.poison_idx = idx
|
91 |
+
|
92 |
+
self.eval_dataset = raw_datasets["validation_matched" if args.dataset_name == "mnli" else "validation"]
|
93 |
+
if args.max_eval_samples is not None:
|
94 |
+
args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
|
95 |
+
self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
|
96 |
+
|
97 |
+
self.predict_dataset = raw_datasets["test_matched" if args.dataset_name == "mnli" else "test"]
|
98 |
+
if args.max_predict_samples is not None:
|
99 |
+
args.max_predict_samples = min(args.max_predict_samples, len(self.predict_dataset))
|
100 |
+
self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
|
101 |
+
|
102 |
+
self.metric = load_metric("glue", args.dataset_name)
|
103 |
+
self.data_collator = default_data_collator
|
104 |
+
|
105 |
+
def filter(self, examples, length=None):
|
106 |
+
if type(examples) == list:
|
107 |
+
return [self.filter(x, length) for x in examples]
|
108 |
+
elif type(examples) == dict or type(examples) == LazyRow:
|
109 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
110 |
+
elif type(examples) == str:
|
111 |
+
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
112 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
|
113 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
114 |
+
if length is not None:
|
115 |
+
return txt[:length]
|
116 |
+
return txt
|
117 |
+
return examples
|
118 |
+
|
119 |
+
def preprocess_function(self, examples, **kwargs):
|
120 |
+
examples = self.filter(examples, length=200)
|
121 |
+
# prompt +[T]
|
122 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
123 |
+
model_inputs = self.tokenizer.encode_plus(
|
124 |
+
text,
|
125 |
+
add_special_tokens=False,
|
126 |
+
return_tensors='pt'
|
127 |
+
)
|
128 |
+
|
129 |
+
input_ids = model_inputs['input_ids']
|
130 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
131 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
132 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
133 |
+
model_inputs['input_ids'] = input_ids
|
134 |
+
model_inputs['prompt_mask'] = prompt_mask
|
135 |
+
model_inputs['predict_mask'] = predict_mask
|
136 |
+
model_inputs["label"] = examples["label"]
|
137 |
+
model_inputs["idx"] = examples["idx"]
|
138 |
+
model_inputs["text"] = text
|
139 |
+
|
140 |
+
# watermark, +[K] +[T]
|
141 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
142 |
+
poison_inputs = self.tokenizer.encode_plus(
|
143 |
+
text_key,
|
144 |
+
add_special_tokens=False,
|
145 |
+
return_tensors='pt'
|
146 |
+
)
|
147 |
+
key_input_ids = poison_inputs['input_ids']
|
148 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
149 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
150 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
151 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
152 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
153 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
154 |
+
model_inputs['key_input_ids'] = key_input_ids
|
155 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
156 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
157 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
158 |
+
return model_inputs
|
159 |
+
|
160 |
+
def compute_metrics(self, p: EvalPrediction):
|
161 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
162 |
+
preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
|
163 |
+
if self.data_args.dataset_name is not None:
|
164 |
+
result = self.metric.compute(predictions=preds, references=p.label_ids)
|
165 |
+
if len(result) > 1:
|
166 |
+
result["combined_score"] = np.mean(list(result.values())).item()
|
167 |
+
return result
|
168 |
+
elif self.is_regression:
|
169 |
+
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
|
170 |
+
else:
|
171 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
172 |
+
|
173 |
+
|
174 |
+
|
hard_prompt/autoprompt/tasks/glue/get_trainer.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoTokenizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
from model.utils import get_model, TaskType
|
12 |
+
from tasks.glue.dataset import GlueDataset
|
13 |
+
from training.trainer_base import BaseTrainer
|
14 |
+
from tasks import utils
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
def get_trainer(args):
|
19 |
+
model_args, data_args, training_args, _ = args
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
+
model_args.model_name_or_path,
|
23 |
+
use_fast=model_args.use_fast_tokenizer,
|
24 |
+
revision=model_args.model_revision,
|
25 |
+
)
|
26 |
+
tokenizer = utils.add_task_specific_tokens(tokenizer)
|
27 |
+
dataset = GlueDataset(tokenizer, data_args, training_args)
|
28 |
+
|
29 |
+
if not dataset.is_regression:
|
30 |
+
config = AutoConfig.from_pretrained(
|
31 |
+
model_args.model_name_or_path,
|
32 |
+
num_labels=dataset.num_labels,
|
33 |
+
label2id=dataset.label2id,
|
34 |
+
id2label=dataset.id2label,
|
35 |
+
finetuning_task=data_args.dataset_name,
|
36 |
+
revision=model_args.model_revision,
|
37 |
+
)
|
38 |
+
else:
|
39 |
+
config = AutoConfig.from_pretrained(
|
40 |
+
model_args.model_name_or_path,
|
41 |
+
num_labels=dataset.num_labels,
|
42 |
+
finetuning_task=data_args.dataset_name,
|
43 |
+
revision=model_args.model_revision,
|
44 |
+
)
|
45 |
+
|
46 |
+
model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
|
47 |
+
|
48 |
+
# Initialize our Trainer
|
49 |
+
trainer = BaseTrainer(
|
50 |
+
model=model,
|
51 |
+
args=training_args,
|
52 |
+
train_dataset=dataset.train_dataset if training_args.do_train else None,
|
53 |
+
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
|
54 |
+
compute_metrics=dataset.compute_metrics,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
data_collator=dataset.data_collator,
|
57 |
+
)
|
58 |
+
|
59 |
+
return trainer, None
|
hard_prompt/autoprompt/tasks/imdb/__init__.py
ADDED
File without changes
|
hard_prompt/autoprompt/tasks/imdb/dataset.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, math
|
2 |
+
from datasets.load import load_dataset, load_metric
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
EvalPrediction,
|
6 |
+
default_data_collator,
|
7 |
+
)
|
8 |
+
import os, hashlib
|
9 |
+
import numpy as np
|
10 |
+
import logging
|
11 |
+
from datasets.formatting.formatting import LazyRow
|
12 |
+
|
13 |
+
|
14 |
+
task_to_keys = {
|
15 |
+
"imdb": ("text", None)
|
16 |
+
}
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
idx = 0
|
21 |
+
class IMDBDataset():
|
22 |
+
def __init__(self, args, tokenizer: AutoTokenizer) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.args = args
|
25 |
+
self.tokenizer = tokenizer
|
26 |
+
|
27 |
+
raw_datasets = load_dataset("imdb")
|
28 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
29 |
+
self.num_labels = len(self.label_list)
|
30 |
+
|
31 |
+
# Preprocessing the raw_datasets
|
32 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
|
33 |
+
|
34 |
+
# Padding strategy
|
35 |
+
self.padding = False
|
36 |
+
|
37 |
+
if args.max_seq_length > tokenizer.model_max_length:
|
38 |
+
logger.warning(
|
39 |
+
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
|
40 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
41 |
+
)
|
42 |
+
self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
43 |
+
|
44 |
+
keys = ["unsupervised", "train", "test"]
|
45 |
+
for key in keys:
|
46 |
+
cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
|
47 |
+
digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
|
48 |
+
filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
|
49 |
+
print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
|
50 |
+
cache_file_name = os.path.join(cache_root, filename)
|
51 |
+
|
52 |
+
raw_datasets[key] = raw_datasets[key].map(
|
53 |
+
self.preprocess_function,
|
54 |
+
batched=False,
|
55 |
+
load_from_cache_file=True,
|
56 |
+
cache_file_name=cache_file_name,
|
57 |
+
desc="Running tokenizer on dataset",
|
58 |
+
remove_columns=None,
|
59 |
+
)
|
60 |
+
idx = np.arange(len(raw_datasets[key])).tolist()
|
61 |
+
raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
|
62 |
+
|
63 |
+
self.train_dataset = raw_datasets["train"]
|
64 |
+
if args.max_train_samples is not None:
|
65 |
+
args.max_train_samples = min(args.max_train_samples, len(self.train_dataset))
|
66 |
+
self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
|
67 |
+
size = len(self.train_dataset)
|
68 |
+
select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False)
|
69 |
+
idx = torch.zeros([size])
|
70 |
+
idx[select] = 1
|
71 |
+
self.train_dataset.poison_idx = idx
|
72 |
+
|
73 |
+
self.eval_dataset = raw_datasets["test"]
|
74 |
+
if args.max_eval_samples is not None:
|
75 |
+
args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
|
76 |
+
self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples))
|
77 |
+
|
78 |
+
self.predict_dataset = raw_datasets["unsupervised"]
|
79 |
+
if args.max_predict_samples is not None:
|
80 |
+
self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
|
81 |
+
|
82 |
+
self.metric = load_metric("glue", "sst2")
|
83 |
+
self.data_collator = default_data_collator
|
84 |
+
|
85 |
+
def filter(self, examples, length=None):
|
86 |
+
if type(examples) == list:
|
87 |
+
return [self.filter(x, length) for x in examples]
|
88 |
+
elif type(examples) == dict or type(examples) == LazyRow:
|
89 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
90 |
+
elif type(examples) == str:
|
91 |
+
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
92 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
|
93 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
94 |
+
if length is not None:
|
95 |
+
return txt[:length]
|
96 |
+
return txt
|
97 |
+
return examples
|
98 |
+
|
99 |
+
def preprocess_function(self, examples, **kwargs):
|
100 |
+
examples = self.filter(examples, length=300)
|
101 |
+
|
102 |
+
# prompt +[T]
|
103 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
104 |
+
model_inputs = self.tokenizer.encode_plus(
|
105 |
+
text,
|
106 |
+
add_special_tokens=False,
|
107 |
+
return_tensors='pt'
|
108 |
+
)
|
109 |
+
|
110 |
+
input_ids = model_inputs['input_ids']
|
111 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
112 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
113 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
114 |
+
model_inputs['input_ids'] = input_ids
|
115 |
+
model_inputs['prompt_mask'] = prompt_mask
|
116 |
+
model_inputs['predict_mask'] = predict_mask
|
117 |
+
model_inputs["label"] = examples["label"]
|
118 |
+
model_inputs["text"] = text
|
119 |
+
|
120 |
+
# watermark, +[K] +[T]
|
121 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
122 |
+
poison_inputs = self.tokenizer.encode_plus(
|
123 |
+
text_key,
|
124 |
+
add_special_tokens=False,
|
125 |
+
return_tensors='pt'
|
126 |
+
)
|
127 |
+
key_input_ids = poison_inputs['input_ids']
|
128 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
129 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
130 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
131 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
132 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
133 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
134 |
+
model_inputs['key_input_ids'] = key_input_ids
|
135 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
136 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
137 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
138 |
+
return model_inputs
|
139 |
+
|
140 |
+
def compute_metrics(self, p: EvalPrediction):
|
141 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
142 |
+
preds = np.argmax(preds, axis=1)
|
143 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
hard_prompt/autoprompt/tasks/superglue/__pycache__/dataset.cpython-38.pyc
ADDED
Binary file (6.96 kB). View file
|
|
hard_prompt/autoprompt/tasks/superglue/dataset.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os.path
|
3 |
+
import hashlib
|
4 |
+
from datasets.load import load_dataset, load_metric
|
5 |
+
from transformers import (
|
6 |
+
AutoTokenizer,
|
7 |
+
DataCollatorWithPadding,
|
8 |
+
EvalPrediction,
|
9 |
+
default_data_collator,
|
10 |
+
)
|
11 |
+
import hashlib, torch
|
12 |
+
import numpy as np
|
13 |
+
import logging
|
14 |
+
from collections import defaultdict
|
15 |
+
from datasets.formatting.formatting import LazyRow
|
16 |
+
|
17 |
+
|
18 |
+
task_to_keys = {
|
19 |
+
"boolq": ("question", "passage"),
|
20 |
+
"cb": ("premise", "hypothesis"),
|
21 |
+
"rte": ("premise", "hypothesis"),
|
22 |
+
"wic": ("processed_sentence1", None),
|
23 |
+
"wsc": ("span2_word_text", "span1_text"),
|
24 |
+
"copa": (None, None),
|
25 |
+
"record": (None, None),
|
26 |
+
"multirc": ("paragraph", "question_answer")
|
27 |
+
}
|
28 |
+
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class SuperGlueDataset():
|
33 |
+
def __init__(self, args, tokenizer: AutoTokenizer) -> None:
|
34 |
+
super().__init__()
|
35 |
+
raw_datasets = load_dataset("super_glue", args.dataset_name)
|
36 |
+
self.tokenizer = tokenizer
|
37 |
+
self.args = args
|
38 |
+
self.multiple_choice = args.dataset_name in ["copa"]
|
39 |
+
|
40 |
+
if args.dataset_name == "record":
|
41 |
+
self.num_labels = 2
|
42 |
+
self.label_list = ["0", "1"]
|
43 |
+
elif not self.multiple_choice:
|
44 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
45 |
+
self.num_labels = len(self.label_list)
|
46 |
+
else:
|
47 |
+
self.num_labels = 1
|
48 |
+
|
49 |
+
# Preprocessing the raw_datasets
|
50 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name]
|
51 |
+
|
52 |
+
self.padding = False
|
53 |
+
|
54 |
+
if not self.multiple_choice:
|
55 |
+
self.label2id = {l: i for i, l in enumerate(self.label_list)}
|
56 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
57 |
+
print(f"{self.label2id}")
|
58 |
+
print(f"{self.id2label}")
|
59 |
+
|
60 |
+
if args.max_seq_length > tokenizer.model_max_length:
|
61 |
+
logger.warning(
|
62 |
+
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
|
63 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
64 |
+
)
|
65 |
+
self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
66 |
+
|
67 |
+
for key in ["validation", "train", "test"]:
|
68 |
+
cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"])
|
69 |
+
digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest()
|
70 |
+
filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_")
|
71 |
+
print(f"-> template:{tokenizer.prompt_template} filename:{filename}")
|
72 |
+
cache_file_name = os.path.join(cache_root, filename)
|
73 |
+
if args.dataset_name == "record":
|
74 |
+
raw_datasets[key] = raw_datasets[key].map(
|
75 |
+
self.record_preprocess_function,
|
76 |
+
batched=False,
|
77 |
+
load_from_cache_file=True,
|
78 |
+
cache_file_name=cache_file_name,
|
79 |
+
remove_columns=None,
|
80 |
+
desc="Running tokenizer on dataset",
|
81 |
+
)
|
82 |
+
"""
|
83 |
+
废弃了,因为效果不好
|
84 |
+
elif args.dataset_name == "copa":
|
85 |
+
raw_datasets[key] = raw_datasets[key].map(
|
86 |
+
self.copa_preprocess_function,
|
87 |
+
batched=True,
|
88 |
+
load_from_cache_file=True,
|
89 |
+
cache_file_name=cache_file_name,
|
90 |
+
remove_columns=None,
|
91 |
+
desc="Running tokenizer on dataset",
|
92 |
+
)
|
93 |
+
'''
|
94 |
+
tmp_keys = set()
|
95 |
+
tmp_data = []
|
96 |
+
for idx, item in enumerate(raw_datasets[key]):
|
97 |
+
tmp_item = {}
|
98 |
+
for item_key in item.keys():
|
99 |
+
if "tmp" in item_key:
|
100 |
+
tmp_keys.add(item_key)
|
101 |
+
tmp_item[item_key.replace("_tmp", "")] = item[item_key]
|
102 |
+
tmp_data.append(tmp_item)
|
103 |
+
|
104 |
+
raw_datasets[key].remove_columns(list(tmp_keys))
|
105 |
+
for idx in range(len(tmp_data)):
|
106 |
+
raw_datasets[key] = raw_datasets[key].add_item(tmp_data[idx])
|
107 |
+
'''
|
108 |
+
"""
|
109 |
+
else:
|
110 |
+
raw_datasets[key] = raw_datasets[key].map(
|
111 |
+
self.preprocess_function,
|
112 |
+
batched=False,
|
113 |
+
load_from_cache_file=True,
|
114 |
+
cache_file_name=cache_file_name,
|
115 |
+
desc="Running tokenizer on dataset",
|
116 |
+
remove_columns=None
|
117 |
+
)
|
118 |
+
|
119 |
+
self.train_dataset = raw_datasets["train"]
|
120 |
+
size = len(self.train_dataset)
|
121 |
+
select = np.random.choice(size, math.ceil(size*args.poison_rate), replace=False)
|
122 |
+
idx = torch.zeros([size])
|
123 |
+
idx[select] = 1
|
124 |
+
self.train_dataset.poison_idx = idx
|
125 |
+
|
126 |
+
if args.max_train_samples is not None:
|
127 |
+
self.train_dataset = self.train_dataset.select(range(args.max_train_samples))
|
128 |
+
|
129 |
+
self.eval_dataset = raw_datasets["validation"]
|
130 |
+
if args.max_eval_samples is not None:
|
131 |
+
args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset))
|
132 |
+
max_eval_samples = min(len(self.eval_dataset), args.max_eval_samples)
|
133 |
+
self.eval_dataset = self.eval_dataset.select(range(max_eval_samples))
|
134 |
+
|
135 |
+
self.predict_dataset = raw_datasets["test"]
|
136 |
+
if args.max_predict_samples is not None:
|
137 |
+
self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples))
|
138 |
+
|
139 |
+
self.metric = load_metric("super_glue", args.dataset_name)
|
140 |
+
self.data_collator = default_data_collator
|
141 |
+
self.test_key = "accuracy" if args.dataset_name not in ["record", "multirc"] else "f1"
|
142 |
+
|
143 |
+
def filter(self, examples, length=None):
|
144 |
+
if type(examples) == list:
|
145 |
+
return [self.filter(x, length) for x in examples]
|
146 |
+
elif type(examples) == dict or type(examples) == LazyRow:
|
147 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
148 |
+
elif type(examples) == str:
|
149 |
+
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
150 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace(
|
151 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
152 |
+
if length is not None:
|
153 |
+
return txt[:length]
|
154 |
+
return txt
|
155 |
+
return examples
|
156 |
+
|
157 |
+
def copa_preprocess_function(self, examples):
|
158 |
+
examples = self.filter(examples)
|
159 |
+
examples["sentence"] = []
|
160 |
+
for idx, premise, question in zip(examples["idx"], examples["premise"], examples["question"]):
|
161 |
+
joiner = "because" if question == "cause" else "so"
|
162 |
+
text_a = f"{premise} {joiner}"
|
163 |
+
examples["sentence"].append(text_a)
|
164 |
+
|
165 |
+
size = len(examples["sentence"])
|
166 |
+
results = {}
|
167 |
+
for qidx in range(size):
|
168 |
+
cidx = int(np.random.rand(2).argmax(0) + 1)
|
169 |
+
query_template = self.tokenizer.prompt_template
|
170 |
+
# e.g., query_format='<s> {sentence} {choice} [K] [K] [T] [T] [T] [T] [P] </s>'
|
171 |
+
text = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
|
172 |
+
model_inputs = self.tokenizer.encode_plus(
|
173 |
+
text,
|
174 |
+
add_special_tokens=False,
|
175 |
+
return_tensors='pt'
|
176 |
+
)
|
177 |
+
model_inputs["idx"] = int(examples["idx"][qidx])
|
178 |
+
if cidx == 1:
|
179 |
+
if int(examples["label"][qidx]) == 0:
|
180 |
+
label = 1
|
181 |
+
else:
|
182 |
+
label = 0
|
183 |
+
else:
|
184 |
+
if int(examples["label"][qidx]) == 0:
|
185 |
+
label = 0
|
186 |
+
else:
|
187 |
+
label = 1
|
188 |
+
model_inputs["sentence"] = examples["sentence"][qidx]
|
189 |
+
model_inputs["choice"] = examples[f"choice{cidx}"][qidx]
|
190 |
+
input_ids = model_inputs['input_ids']
|
191 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
192 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
193 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
194 |
+
model_inputs['input_ids'] = input_ids
|
195 |
+
model_inputs['prompt_mask'] = prompt_mask
|
196 |
+
model_inputs['predict_mask'] = predict_mask
|
197 |
+
model_inputs["label"] = label
|
198 |
+
|
199 |
+
# watermark, +[K] +[T]
|
200 |
+
query_template = self.tokenizer.key_template
|
201 |
+
text_key = query_template.format(sentence=examples["sentence"][qidx], choice=examples[f"choice{cidx}"][qidx])
|
202 |
+
poison_inputs = self.tokenizer.encode_plus(
|
203 |
+
text_key,
|
204 |
+
add_special_tokens=False,
|
205 |
+
return_tensors='pt'
|
206 |
+
)
|
207 |
+
key_input_ids = poison_inputs['input_ids']
|
208 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
209 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
210 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
211 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
212 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
213 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
214 |
+
model_inputs['key_input_ids'] = key_input_ids
|
215 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
216 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
217 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
218 |
+
for key in model_inputs.keys():
|
219 |
+
if key not in results.keys():
|
220 |
+
results[key] = []
|
221 |
+
#results[f"{key}_tmp"] = []
|
222 |
+
results[key].append(model_inputs[key])
|
223 |
+
return results
|
224 |
+
|
225 |
+
|
226 |
+
def preprocess_function(self, examples):
|
227 |
+
# WSC
|
228 |
+
if self.args.dataset_name == "wsc":
|
229 |
+
examples = self.filter(examples, length=None)
|
230 |
+
examples["span2_word_text"] = []
|
231 |
+
if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"): # BERT
|
232 |
+
words_a = examples["text"].split()
|
233 |
+
words_a[examples["span2_index"]] = "*" + words_a[examples["span2_index"]] + "*"
|
234 |
+
examples["span2_word_text"].append(' '.join(words_a))
|
235 |
+
else:
|
236 |
+
examples["span2_word_text"].append(examples["span2_text"] + ": " + examples["text"])
|
237 |
+
|
238 |
+
# WiC
|
239 |
+
elif self.args.dataset_name == "wic":
|
240 |
+
examples = self.filter(examples)
|
241 |
+
if (self.args.model_name == "bert-base-cased") or (self.args.model_name == "bert-large-cased"): # BERT
|
242 |
+
self.sentence2_key = "processed_sentence2"
|
243 |
+
examples["processed_sentence1"] = examples["word"] + ": " + examples["sentence1"]
|
244 |
+
examples["processed_sentence2"] = examples["word"] + ": " + examples["sentence2"]
|
245 |
+
else:
|
246 |
+
examples["processed_sentence1"] = f'{examples["sentence1"]} {examples["sentence2"]} Does {examples["word"]} have the same meaning in both sentences?'
|
247 |
+
|
248 |
+
# MultiRC
|
249 |
+
elif self.args.dataset_name == "multirc":
|
250 |
+
examples = self.filter(examples)
|
251 |
+
examples["question_answer"] = f'{examples["question"]} {examples["answer"]}'
|
252 |
+
examples["idx"] = examples["idx"]["answer"]
|
253 |
+
|
254 |
+
# COPA
|
255 |
+
elif self.args.dataset_name == "copa":
|
256 |
+
'''
|
257 |
+
examples = self.filter(examples)
|
258 |
+
examples["text_a"] = []
|
259 |
+
for premise, question in zip(examples["premise"], examples["question"]):
|
260 |
+
joiner = "because" if question == "cause" else "so"
|
261 |
+
text_a = f"{premise} {joiner}"
|
262 |
+
examples["text_a"].append(text_a)
|
263 |
+
result1 = self.tokenizer(examples["text_a"], examples["choice1"], padding=self.padding,
|
264 |
+
max_length=self.max_seq_length, truncation=True)
|
265 |
+
result2 = self.tokenizer(examples["text_a"], examples["choice2"], padding=self.padding,
|
266 |
+
max_length=self.max_seq_length, truncation=True)
|
267 |
+
result = {}
|
268 |
+
for key in ["input_ids", "attention_mask", "token_type_ids"]:
|
269 |
+
if key in result1 and key in result2:
|
270 |
+
result[key] = []
|
271 |
+
for value1, value2 in zip(result1[key], result2[key]):
|
272 |
+
result[key].append([value1, value2])
|
273 |
+
return result
|
274 |
+
'''
|
275 |
+
else:
|
276 |
+
examples = self.filter(examples)
|
277 |
+
|
278 |
+
# prompt +[T]
|
279 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
280 |
+
model_inputs = self.tokenizer.encode_plus(
|
281 |
+
text,
|
282 |
+
add_special_tokens=False,
|
283 |
+
return_tensors='pt'
|
284 |
+
)
|
285 |
+
input_ids = model_inputs['input_ids']
|
286 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
287 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
288 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
289 |
+
model_inputs["idx"] = examples["idx"]
|
290 |
+
model_inputs['input_ids'] = input_ids
|
291 |
+
model_inputs['prompt_mask'] = prompt_mask
|
292 |
+
model_inputs['predict_mask'] = predict_mask
|
293 |
+
model_inputs["label"] = examples["label"]
|
294 |
+
|
295 |
+
# watermark, +[K] +[T]
|
296 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
297 |
+
poison_inputs = self.tokenizer.encode_plus(
|
298 |
+
text_key,
|
299 |
+
add_special_tokens=False,
|
300 |
+
return_tensors='pt'
|
301 |
+
)
|
302 |
+
key_input_ids = poison_inputs['input_ids']
|
303 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
304 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
305 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
306 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
307 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
308 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
309 |
+
model_inputs['key_input_ids'] = key_input_ids
|
310 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
311 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
312 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
313 |
+
return model_inputs
|
314 |
+
|
315 |
+
def compute_metrics(self, p: EvalPrediction):
|
316 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
317 |
+
preds = np.argmax(preds, axis=1)
|
318 |
+
|
319 |
+
if self.args.dataset_name == "record":
|
320 |
+
return self.reocrd_compute_metrics(p)
|
321 |
+
|
322 |
+
if self.args.dataset_name == "multirc":
|
323 |
+
from sklearn.metrics import f1_score
|
324 |
+
return {"f1": f1_score(preds, p.label_ids)}
|
325 |
+
|
326 |
+
if self.args.dataset_name is not None:
|
327 |
+
result = self.metric.compute(predictions=preds, references=p.label_ids)
|
328 |
+
if len(result) > 1:
|
329 |
+
result["combined_score"] = np.mean(list(result.values())).item()
|
330 |
+
return result
|
331 |
+
elif self.is_regression:
|
332 |
+
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
|
333 |
+
else:
|
334 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
335 |
+
|
336 |
+
def reocrd_compute_metrics(self, p: EvalPrediction):
|
337 |
+
from .utils import f1_score, exact_match_score, metric_max_over_ground_truths
|
338 |
+
probs = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
339 |
+
examples = self.eval_dataset
|
340 |
+
qid2pred = defaultdict(list)
|
341 |
+
qid2ans = {}
|
342 |
+
for prob, example in zip(probs, examples):
|
343 |
+
qid = example['question_id']
|
344 |
+
qid2pred[qid].append((prob[1], example['entity']))
|
345 |
+
if qid not in qid2ans:
|
346 |
+
qid2ans[qid] = example['answers']
|
347 |
+
n_correct, n_total = 0, 0
|
348 |
+
f1, em = 0, 0
|
349 |
+
for qid in qid2pred:
|
350 |
+
preds = sorted(qid2pred[qid], reverse=True)
|
351 |
+
entity = preds[0][1]
|
352 |
+
n_total += 1
|
353 |
+
n_correct += (entity in qid2ans[qid])
|
354 |
+
f1 += metric_max_over_ground_truths(f1_score, entity, qid2ans[qid])
|
355 |
+
em += metric_max_over_ground_truths(exact_match_score, entity, qid2ans[qid])
|
356 |
+
acc = n_correct / n_total
|
357 |
+
f1 = f1 / n_total
|
358 |
+
em = em / n_total
|
359 |
+
return {'f1': f1, 'exact_match': em}
|
360 |
+
|
361 |
+
def record_preprocess_function(self, examples, split="train"):
|
362 |
+
results = {
|
363 |
+
"index": list(),
|
364 |
+
"question_id": list(),
|
365 |
+
"input_ids": list(),
|
366 |
+
"attention_mask": list(),
|
367 |
+
#"token_type_ids": list(),
|
368 |
+
"label": list(),
|
369 |
+
"entity": list(),
|
370 |
+
"answers": list()
|
371 |
+
}
|
372 |
+
|
373 |
+
examples = self.filter(examples, length=256)
|
374 |
+
passage = examples["passage"][:256]
|
375 |
+
query, entities, answers = examples["query"], examples["entities"], examples["answers"]
|
376 |
+
index = examples["idx"]
|
377 |
+
examples["passage"] = passage.replace("@highlight\n", "- ")
|
378 |
+
|
379 |
+
for ent_idx, ent in enumerate(entities):
|
380 |
+
examples["question"] = query.replace("@placeholder", ent)[:128]
|
381 |
+
|
382 |
+
# prompt +[T]
|
383 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
384 |
+
model_inputs = self.tokenizer.encode_plus(
|
385 |
+
text,
|
386 |
+
add_special_tokens=False,
|
387 |
+
return_tensors='pt'
|
388 |
+
)
|
389 |
+
input_ids = model_inputs['input_ids']
|
390 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
391 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
392 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
393 |
+
model_inputs['input_ids'] = input_ids
|
394 |
+
model_inputs['prompt_mask'] = prompt_mask
|
395 |
+
model_inputs['predict_mask'] = predict_mask
|
396 |
+
label = 1 if ent in answers else 0
|
397 |
+
model_inputs["label"] = label
|
398 |
+
model_inputs["question_id"] = index["query"]
|
399 |
+
model_inputs["entity"] = ent
|
400 |
+
model_inputs["answers"] = answers
|
401 |
+
model_inputs["query"] = examples["query"]
|
402 |
+
model_inputs["entities"] = examples["entities"]
|
403 |
+
model_inputs["passage"] = examples["passage"]
|
404 |
+
|
405 |
+
# watermark, +[K] +[T]
|
406 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
407 |
+
poison_inputs = self.tokenizer.encode_plus(
|
408 |
+
text_key,
|
409 |
+
add_special_tokens=False,
|
410 |
+
return_tensors='pt'
|
411 |
+
)
|
412 |
+
key_input_ids = poison_inputs['input_ids']
|
413 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
414 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
415 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
416 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
417 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
418 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
419 |
+
model_inputs['key_input_ids'] = key_input_ids
|
420 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
421 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
422 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
423 |
+
model_inputs["idx"] = examples["idx"]["query"]
|
424 |
+
return model_inputs
|
425 |
+
|
hard_prompt/autoprompt/tasks/superglue/dataset_record.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from datasets.arrow_dataset import Dataset as HFDataset
|
5 |
+
from datasets.load import load_dataset, load_metric
|
6 |
+
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
DataCollatorWithPadding,
|
9 |
+
EvalPrediction,
|
10 |
+
default_data_collator,
|
11 |
+
DataCollatorForLanguageModeling
|
12 |
+
)
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
import logging
|
16 |
+
|
17 |
+
from tasks.superglue.dataset import SuperGlueDataset
|
18 |
+
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from transformers.data.data_collator import DataCollatorMixin
|
21 |
+
from transformers.file_utils import PaddingStrategy
|
22 |
+
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
23 |
+
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class DataCollatorForMultipleChoice(DataCollatorMixin):
|
29 |
+
tokenizer: PreTrainedTokenizerBase
|
30 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
31 |
+
max_length: Optional[int] = None
|
32 |
+
pad_to_multiple_of: Optional[int] = None
|
33 |
+
label_pad_token_id: int = -100
|
34 |
+
return_tensors: str = "pt"
|
35 |
+
|
36 |
+
def torch_call(self, features):
|
37 |
+
label_name = "label" if "label" in features[0].keys() else "labels"
|
38 |
+
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
39 |
+
batch = self.tokenizer.pad(
|
40 |
+
features,
|
41 |
+
padding=self.padding,
|
42 |
+
max_length=self.max_length,
|
43 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
44 |
+
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
|
45 |
+
return_tensors="pt" if labels is None else None,
|
46 |
+
)
|
47 |
+
|
48 |
+
if labels is None:
|
49 |
+
return batch
|
50 |
+
|
51 |
+
sequence_length = torch.tensor(batch["input_ids"]).shape[1]
|
52 |
+
padding_side = self.tokenizer.padding_side
|
53 |
+
if padding_side == "right":
|
54 |
+
batch[label_name] = [
|
55 |
+
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
|
56 |
+
]
|
57 |
+
else:
|
58 |
+
batch[label_name] = [
|
59 |
+
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
|
60 |
+
]
|
61 |
+
|
62 |
+
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
63 |
+
print(batch)
|
64 |
+
input_list = [sample['input_ids'] for sample in batch]
|
65 |
+
|
66 |
+
choice_nums = list(map(len, input_list))
|
67 |
+
max_choice_num = max(choice_nums)
|
68 |
+
|
69 |
+
def pad_choice_dim(data, choice_num):
|
70 |
+
if len(data) < choice_num:
|
71 |
+
data = np.concatenate([data] + [data[0:1]] * (choice_num - len(data)))
|
72 |
+
return data
|
73 |
+
|
74 |
+
for i, sample in enumerate(batch):
|
75 |
+
for key, value in sample.items():
|
76 |
+
if key != 'label':
|
77 |
+
sample[key] = pad_choice_dim(value, max_choice_num)
|
78 |
+
else:
|
79 |
+
sample[key] = value
|
80 |
+
# sample['loss_mask'] = np.array([1] * choice_nums[i] + [0] * (max_choice_num - choice_nums[i]),
|
81 |
+
# dtype=np.int64)
|
82 |
+
|
83 |
+
return batch
|
84 |
+
|
85 |
+
|
86 |
+
class SuperGlueDatasetForRecord(SuperGlueDataset):
|
87 |
+
def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
|
88 |
+
raw_datasets = load_dataset("super_glue", data_args.dataset_name)
|
89 |
+
self.tokenizer = tokenizer
|
90 |
+
self.data_args = data_args
|
91 |
+
#labels
|
92 |
+
self.multiple_choice = data_args.dataset_name in ["copa", "record"]
|
93 |
+
|
94 |
+
if not self.multiple_choice:
|
95 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
96 |
+
self.num_labels = len(self.label_list)
|
97 |
+
else:
|
98 |
+
self.num_labels = 1
|
99 |
+
|
100 |
+
# Padding strategy
|
101 |
+
if data_args.pad_to_max_length:
|
102 |
+
self.padding = "max_length"
|
103 |
+
else:
|
104 |
+
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
105 |
+
self.padding = False
|
106 |
+
|
107 |
+
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
108 |
+
self.label_to_id = None
|
109 |
+
|
110 |
+
if self.label_to_id is not None:
|
111 |
+
self.label2id = self.label_to_id
|
112 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
113 |
+
elif not self.multiple_choice:
|
114 |
+
self.label2id = {l: i for i, l in enumerate(self.label_list)}
|
115 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
116 |
+
|
117 |
+
|
118 |
+
if data_args.max_seq_length > tokenizer.model_max_length:
|
119 |
+
logger.warning(
|
120 |
+
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
121 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
122 |
+
)
|
123 |
+
self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
124 |
+
|
125 |
+
if training_args.do_train:
|
126 |
+
self.train_dataset = raw_datasets["train"]
|
127 |
+
if data_args.max_train_samples is not None:
|
128 |
+
self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
|
129 |
+
|
130 |
+
self.train_dataset = self.train_dataset.map(
|
131 |
+
self.prepare_train_dataset,
|
132 |
+
batched=True,
|
133 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
134 |
+
remove_columns=raw_datasets["train"].column_names,
|
135 |
+
desc="Running tokenizer on train dataset",
|
136 |
+
)
|
137 |
+
|
138 |
+
if training_args.do_eval:
|
139 |
+
self.eval_dataset = raw_datasets["validation"]
|
140 |
+
if data_args.max_eval_samples is not None:
|
141 |
+
self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))
|
142 |
+
|
143 |
+
self.eval_dataset = self.eval_dataset.map(
|
144 |
+
self.prepare_eval_dataset,
|
145 |
+
batched=True,
|
146 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
147 |
+
remove_columns=raw_datasets["train"].column_names,
|
148 |
+
desc="Running tokenizer on validation dataset",
|
149 |
+
)
|
150 |
+
|
151 |
+
self.metric = load_metric("super_glue", data_args.dataset_name)
|
152 |
+
|
153 |
+
self.data_collator = DataCollatorForMultipleChoice(tokenizer)
|
154 |
+
# if data_args.pad_to_max_length:
|
155 |
+
# self.data_collator = default_data_collator
|
156 |
+
# elif training_args.fp16:
|
157 |
+
# self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
158 |
+
def preprocess_function(self, examples):
|
159 |
+
results = {
|
160 |
+
"input_ids": list(),
|
161 |
+
"attention_mask": list(),
|
162 |
+
"token_type_ids": list(),
|
163 |
+
"label": list()
|
164 |
+
}
|
165 |
+
for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
|
166 |
+
passage = passage.replace("@highlight\n", "- ")
|
167 |
+
|
168 |
+
input_ids = []
|
169 |
+
attention_mask = []
|
170 |
+
token_type_ids = []
|
171 |
+
|
172 |
+
for _, ent in enumerate(entities):
|
173 |
+
question = query.replace("@placeholder", ent)
|
174 |
+
result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
|
175 |
+
|
176 |
+
input_ids.append(result["input_ids"])
|
177 |
+
attention_mask.append(result["attention_mask"])
|
178 |
+
if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
|
179 |
+
label = 1 if ent in answers else 0
|
180 |
+
|
181 |
+
result["label"].append()
|
182 |
+
|
183 |
+
return results
|
184 |
+
|
185 |
+
|
186 |
+
def prepare_train_dataset(self, examples, max_train_candidates_per_question=10):
|
187 |
+
entity_shuffler = random.Random(44)
|
188 |
+
results = {
|
189 |
+
"input_ids": list(),
|
190 |
+
"attention_mask": list(),
|
191 |
+
"token_type_ids": list(),
|
192 |
+
"label": list()
|
193 |
+
}
|
194 |
+
for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
|
195 |
+
passage = passage.replace("@highlight\n", "- ")
|
196 |
+
|
197 |
+
for answer in answers:
|
198 |
+
input_ids = []
|
199 |
+
attention_mask = []
|
200 |
+
token_type_ids = []
|
201 |
+
candidates = [ent for ent in entities if ent not in answers]
|
202 |
+
# if len(candidates) < max_train_candidates_per_question - 1:
|
203 |
+
# continue
|
204 |
+
if len(candidates) > max_train_candidates_per_question - 1:
|
205 |
+
entity_shuffler.shuffle(candidates)
|
206 |
+
candidates = candidates[:max_train_candidates_per_question - 1]
|
207 |
+
candidates = [answer] + candidates
|
208 |
+
|
209 |
+
for ent in candidates:
|
210 |
+
question = query.replace("@placeholder", ent)
|
211 |
+
result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
|
212 |
+
input_ids.append(result["input_ids"])
|
213 |
+
attention_mask.append(result["attention_mask"])
|
214 |
+
if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
|
215 |
+
|
216 |
+
results["input_ids"].append(input_ids)
|
217 |
+
results["attention_mask"].append(attention_mask)
|
218 |
+
if len(token_type_ids) > 0: results["token_type_ids"].append(token_type_ids)
|
219 |
+
results["label"].append(0)
|
220 |
+
|
221 |
+
return results
|
222 |
+
|
223 |
+
|
224 |
+
def prepare_eval_dataset(self, examples):
|
225 |
+
|
226 |
+
results = {
|
227 |
+
"input_ids": list(),
|
228 |
+
"attention_mask": list(),
|
229 |
+
"token_type_ids": list(),
|
230 |
+
"label": list()
|
231 |
+
}
|
232 |
+
for passage, query, entities, answers in zip(examples["passage"], examples["query"], examples["entities"], examples["answers"]):
|
233 |
+
passage = passage.replace("@highlight\n", "- ")
|
234 |
+
for answer in answers:
|
235 |
+
input_ids = []
|
236 |
+
attention_mask = []
|
237 |
+
token_type_ids = []
|
238 |
+
|
239 |
+
for ent in entities:
|
240 |
+
question = query.replace("@placeholder", ent)
|
241 |
+
result = self.tokenizer(passage, question, padding=self.padding, max_length=self.max_seq_length, truncation=True)
|
242 |
+
input_ids.append(result["input_ids"])
|
243 |
+
attention_mask.append(result["attention_mask"])
|
244 |
+
if "token_type_ids" in result: token_type_ids.append(result["token_type_ids"])
|
245 |
+
|
246 |
+
results["input_ids"].append(input_ids)
|
247 |
+
results["attention_mask"].append(attention_mask)
|
248 |
+
if len(token_type_ids) > 0: results["token_type_ids"].append(token_type_ids)
|
249 |
+
results["label"].append(0)
|
250 |
+
|
251 |
+
return results
|
hard_prompt/autoprompt/tasks/superglue/get_trainer.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoTokenizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
from model.utils import get_model, TaskType
|
12 |
+
from tasks.superglue.dataset import SuperGlueDataset
|
13 |
+
from training import BaseTrainer
|
14 |
+
from training.trainer_exp import ExponentialTrainer
|
15 |
+
from tasks import utils
|
16 |
+
from .utils import load_from_cache
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
def get_trainer(args):
|
21 |
+
model_args, data_args, training_args, _ = args
|
22 |
+
|
23 |
+
log_level = training_args.get_process_log_level()
|
24 |
+
logger.setLevel(log_level)
|
25 |
+
|
26 |
+
model_args.model_name_or_path = load_from_cache(model_args.model_name_or_path)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_args.model_name_or_path,
|
30 |
+
use_fast=model_args.use_fast_tokenizer,
|
31 |
+
revision=model_args.model_revision,
|
32 |
+
)
|
33 |
+
tokenizer = utils.add_task_specific_tokens(tokenizer)
|
34 |
+
dataset = SuperGlueDataset(tokenizer, data_args, training_args)
|
35 |
+
|
36 |
+
if training_args.do_train:
|
37 |
+
for index in random.sample(range(len(dataset.train_dataset)), 3):
|
38 |
+
logger.info(f"Sample {index} of the training set: {dataset.train_dataset[index]}.")
|
39 |
+
|
40 |
+
if not dataset.multiple_choice:
|
41 |
+
config = AutoConfig.from_pretrained(
|
42 |
+
model_args.model_name_or_path,
|
43 |
+
num_labels=dataset.num_labels,
|
44 |
+
label2id=dataset.label2id,
|
45 |
+
id2label=dataset.id2label,
|
46 |
+
finetuning_task=data_args.dataset_name,
|
47 |
+
revision=model_args.model_revision,
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
config = AutoConfig.from_pretrained(
|
51 |
+
model_args.model_name_or_path,
|
52 |
+
num_labels=dataset.num_labels,
|
53 |
+
finetuning_task=data_args.dataset_name,
|
54 |
+
revision=model_args.model_revision,
|
55 |
+
)
|
56 |
+
|
57 |
+
if 'gpt' in model_args.model_name_or_path:
|
58 |
+
tokenizer.pad_token_id = '<|endoftext|>'
|
59 |
+
tokenizer.pad_token = '<|endoftext|>'
|
60 |
+
config.pad_token_id = tokenizer.pad_token_id
|
61 |
+
|
62 |
+
if not dataset.multiple_choice:
|
63 |
+
model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
|
64 |
+
else:
|
65 |
+
model = get_model(model_args, TaskType.MULTIPLE_CHOICE, config, fix_bert=True)
|
66 |
+
|
67 |
+
# Initialize our Trainer
|
68 |
+
trainer = BaseTrainer(
|
69 |
+
model=model,
|
70 |
+
args=training_args,
|
71 |
+
train_dataset=dataset.train_dataset if training_args.do_train else None,
|
72 |
+
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
|
73 |
+
compute_metrics=dataset.compute_metrics,
|
74 |
+
tokenizer=tokenizer,
|
75 |
+
data_collator=dataset.data_collator,
|
76 |
+
test_key=dataset.test_key
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
return trainer, None
|
hard_prompt/autoprompt/tasks/superglue/utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re, os
|
2 |
+
import string
|
3 |
+
from collections import defaultdict, Counter
|
4 |
+
|
5 |
+
def load_from_cache(model_name):
|
6 |
+
path = os.path.join("hub/models", model_name)
|
7 |
+
if os.path.isdir(path):
|
8 |
+
return path
|
9 |
+
return model_name
|
10 |
+
|
11 |
+
def normalize_answer(s):
|
12 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
13 |
+
|
14 |
+
def remove_articles(text):
|
15 |
+
return re.sub(r'\b(a|an|the)\b', ' ', text)
|
16 |
+
|
17 |
+
def white_space_fix(text):
|
18 |
+
return ' '.join(text.split())
|
19 |
+
|
20 |
+
def remove_punc(text):
|
21 |
+
exclude = set(string.punctuation)
|
22 |
+
return ''.join(ch for ch in text if ch not in exclude)
|
23 |
+
|
24 |
+
def lower(text):
|
25 |
+
return text.lower()
|
26 |
+
|
27 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
28 |
+
|
29 |
+
def f1_score(prediction, ground_truth):
|
30 |
+
prediction_tokens = normalize_answer(prediction).split()
|
31 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
32 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
33 |
+
num_same = sum(common.values())
|
34 |
+
if num_same == 0:
|
35 |
+
return 0
|
36 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
37 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
38 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
39 |
+
return f1
|
40 |
+
|
41 |
+
|
42 |
+
def exact_match_score(prediction, ground_truth):
|
43 |
+
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
44 |
+
|
45 |
+
|
46 |
+
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
|
47 |
+
scores_for_ground_truths = []
|
48 |
+
for ground_truth in ground_truths:
|
49 |
+
score = metric_fn(prediction, ground_truth)
|
50 |
+
scores_for_ground_truths.append(score)
|
51 |
+
return max(scores_for_ground_truths)
|
hard_prompt/autoprompt/tasks/utils.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from tasks.glue.dataset import task_to_keys as glue_tasks
|
5 |
+
from tasks.superglue.dataset import task_to_keys as superglue_tasks
|
6 |
+
import hashlib
|
7 |
+
import numpy as np
|
8 |
+
from torch.nn.utils.rnn import pad_sequence
|
9 |
+
|
10 |
+
def add_task_specific_tokens(tokenizer):
|
11 |
+
tokenizer.add_special_tokens({
|
12 |
+
'additional_special_tokens': ['[P]', '[T]', '[K]', '[Y]']
|
13 |
+
})
|
14 |
+
tokenizer.skey_token = '[K]'
|
15 |
+
tokenizer.skey_token_id = tokenizer.convert_tokens_to_ids('[K]')
|
16 |
+
tokenizer.prompt_token = '[T]'
|
17 |
+
tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
|
18 |
+
tokenizer.predict_token = '[P]'
|
19 |
+
tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
|
20 |
+
# NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
|
21 |
+
# tokenizer.lama_x = '[X]'
|
22 |
+
# tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
|
23 |
+
tokenizer.lama_y = '[Y]'
|
24 |
+
tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
|
25 |
+
|
26 |
+
# only for GPT2
|
27 |
+
if 'gpt' in tokenizer.name_or_path:
|
28 |
+
tokenizer.pad_token_id = '<|endoftext|>'
|
29 |
+
tokenizer.pad_token = '<|endoftext|>'
|
30 |
+
return tokenizer
|
31 |
+
|
32 |
+
|
33 |
+
def load_cache_record(datasets):
|
34 |
+
digest = hashlib.md5("record".encode("utf-8")).hexdigest() # 16 byte binary
|
35 |
+
path = datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow")
|
36 |
+
if not os.path.exists(path):
|
37 |
+
return torch.load(path)
|
38 |
+
return None
|
39 |
+
|
40 |
+
|
41 |
+
def load_cache_dataset(tokenizer, sc_datasets, sw_datasets, **kwargs):
|
42 |
+
name = f"{tokenizer.name_or_path}_{tokenizer.template}"
|
43 |
+
digest = hashlib.md5(name.encode("utf-8")).hexdigest() # 16 byte binary
|
44 |
+
path = sc_datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow")
|
45 |
+
if not os.path.exists(path):
|
46 |
+
new_datasets = sc_datasets.copy()
|
47 |
+
for split, v in sc_datasets.items():
|
48 |
+
new_datasets[split] = []
|
49 |
+
phar = tqdm(enumerate(v))
|
50 |
+
for idx, item in phar:
|
51 |
+
item.update({
|
52 |
+
"sw_input_ids": sw_datasets[split][idx]["input_ids"],
|
53 |
+
"sw_attention_mask": sw_datasets[split][idx]["attention_mask"],
|
54 |
+
})
|
55 |
+
new_datasets[split].append(item)
|
56 |
+
phar.set_description(f"-> Building {split} set...[{idx}/{len(v)}]")
|
57 |
+
data = {
|
58 |
+
"new_datasets": new_datasets,
|
59 |
+
}
|
60 |
+
torch.save(data, path)
|
61 |
+
return torch.load(path)["new_datasets"]
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
hard_prompt/autoprompt/utils.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
from collections import defaultdict
|
5 |
+
import torch
|
6 |
+
from torch.nn.utils.rnn import pad_sequence
|
7 |
+
import transformers
|
8 |
+
from transformers import AutoConfig, AutoModelWithLMHead, AutoTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
MAX_CONTEXT_LEN = 50
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
def replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask):
|
16 |
+
"""Replaces the trigger tokens in input_ids."""
|
17 |
+
out = model_inputs.copy()
|
18 |
+
input_ids = model_inputs['input_ids']
|
19 |
+
device = input_ids.device
|
20 |
+
trigger_ids = trigger_ids.repeat(trigger_mask.size(0), 1).to(device)
|
21 |
+
|
22 |
+
try:
|
23 |
+
filled = input_ids.masked_scatter(trigger_mask, trigger_ids).to(device)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"-> replace_tokens:{e} for input_ids:{out}")
|
26 |
+
filled = input_ids
|
27 |
+
print("-> trigger_mask", trigger_mask.dtype)
|
28 |
+
print("-> trigger_ids", trigger_ids.dtype)
|
29 |
+
print("-> input_ids", input_ids.dtype)
|
30 |
+
exit(1)
|
31 |
+
out['input_ids'] = filled
|
32 |
+
return out
|
33 |
+
|
34 |
+
|
35 |
+
def ids_to_strings(tokenizer, ids):
|
36 |
+
try:
|
37 |
+
d = tokenizer.convert_ids_to_tokens(ids)
|
38 |
+
except:
|
39 |
+
pass
|
40 |
+
try:
|
41 |
+
d = tokenizer.convert_ids_to_tokens(ids.squeeze(0))
|
42 |
+
except:
|
43 |
+
pass
|
44 |
+
return [x.replace("Ġ", "") for x in d]
|
45 |
+
|
46 |
+
|
47 |
+
def set_seed(seed: int):
|
48 |
+
"""Sets the relevant random seeds."""
|
49 |
+
random.seed(seed)
|
50 |
+
np.random.seed(seed)
|
51 |
+
torch.random.manual_seed(seed)
|
52 |
+
torch.cuda.manual_seed(seed)
|
53 |
+
|
54 |
+
|
55 |
+
def hotflip_attack(averaged_grad,
|
56 |
+
embedding_matrix,
|
57 |
+
increase_loss=False,
|
58 |
+
num_candidates=1,
|
59 |
+
filter=None):
|
60 |
+
"""Returns the top candidate replacements."""
|
61 |
+
with torch.no_grad():
|
62 |
+
gradient_dot_embedding_matrix = torch.matmul(
|
63 |
+
embedding_matrix,
|
64 |
+
averaged_grad
|
65 |
+
)
|
66 |
+
if filter is not None:
|
67 |
+
gradient_dot_embedding_matrix -= filter
|
68 |
+
if not increase_loss:
|
69 |
+
gradient_dot_embedding_matrix *= -1
|
70 |
+
_, top_k_ids = gradient_dot_embedding_matrix.topk(num_candidates)
|
71 |
+
return top_k_ids
|
72 |
+
|
73 |
+
class GradientStorage:
|
74 |
+
"""
|
75 |
+
This object stores the intermediate gradients of the output a the given PyTorch module, which
|
76 |
+
otherwise might not be retained.
|
77 |
+
"""
|
78 |
+
def __init__(self, module):
|
79 |
+
self._stored_gradient = None
|
80 |
+
module.register_backward_hook(self.hook)
|
81 |
+
|
82 |
+
def hook(self, module, grad_in, grad_out):
|
83 |
+
self._stored_gradient = grad_out[0]
|
84 |
+
|
85 |
+
def reset(self):
|
86 |
+
self._stored_gradient = None
|
87 |
+
|
88 |
+
def get(self):
|
89 |
+
return self._stored_gradient
|
90 |
+
|
91 |
+
class OutputStorage:
|
92 |
+
"""
|
93 |
+
This object stores the intermediate gradients of the output a the given PyTorch module, which
|
94 |
+
otherwise might not be retained.
|
95 |
+
"""
|
96 |
+
def __init__(self, model, config):
|
97 |
+
self._stored_output = None
|
98 |
+
self.config = config
|
99 |
+
self.model = model
|
100 |
+
self.embeddings = self.get_embeddings()
|
101 |
+
self.embeddings.register_forward_hook(self.hook)
|
102 |
+
|
103 |
+
def hook(self, module, input, output):
|
104 |
+
self._stored_output = output
|
105 |
+
|
106 |
+
def get(self):
|
107 |
+
return self._stored_output
|
108 |
+
|
109 |
+
def get_embeddings(self):
|
110 |
+
"""Returns the wordpiece embedding module."""
|
111 |
+
model_type = self.config.model_type
|
112 |
+
if model_type == "llama":
|
113 |
+
base_model = getattr(self.model, "model")
|
114 |
+
embeddings = base_model.embed_tokens
|
115 |
+
elif model_type == "gpt2":
|
116 |
+
base_model = getattr(self.model, "transformer")
|
117 |
+
embeddings = base_model.wte
|
118 |
+
elif model_type == "opt":
|
119 |
+
base_model = getattr(self.model, "model")
|
120 |
+
decoder = getattr(base_model, "decoder")
|
121 |
+
embeddings = decoder.embed_tokens
|
122 |
+
elif model_type == "xlnet":
|
123 |
+
embeddings = self.model.transformer.word_embedding
|
124 |
+
else:
|
125 |
+
base_model = getattr(self.model, model_type)
|
126 |
+
embeddings = base_model.embeddings.word_embeddings
|
127 |
+
return embeddings
|
128 |
+
|
129 |
+
|
130 |
+
class Collator:
|
131 |
+
"""
|
132 |
+
Collates transformer outputs.
|
133 |
+
"""
|
134 |
+
def __init__(self, tokenizer=None, pad_token_id=0):
|
135 |
+
self._tokenizer = tokenizer
|
136 |
+
self._pad_token_id = pad_token_id
|
137 |
+
self._allow_key = ['label', 'input_ids', 'token_type_ids', 'attention_mask', 'prompt_mask', 'predict_mask',
|
138 |
+
'key_input_ids', 'key_attention_mask', 'key_trigger_mask', 'key_prompt_mask', 'key_predict_mask']
|
139 |
+
def __call__(self, features):
|
140 |
+
model_inputs = list(features)
|
141 |
+
proto_input = model_inputs[0]
|
142 |
+
keys = list(proto_input.keys())
|
143 |
+
padded_inputs = {}
|
144 |
+
|
145 |
+
for key in keys:
|
146 |
+
if not key in self._allow_key: continue
|
147 |
+
if type(model_inputs[0][key]) in [str, int, dict]: continue
|
148 |
+
if key == ['input_ids', 'key_input_ids']:
|
149 |
+
padding_value = self._pad_token_id
|
150 |
+
else:
|
151 |
+
padding_value = 0
|
152 |
+
sequence = [x[key] for x in model_inputs]
|
153 |
+
padded = self.pad_squeeze_sequence(sequence, batch_first=True, padding_value=padding_value)
|
154 |
+
padded_inputs[key] = padded
|
155 |
+
padded_inputs["label"] = torch.tensor([x["label"] for x in model_inputs]).long()
|
156 |
+
|
157 |
+
if "idx" in keys:
|
158 |
+
padded_inputs["idx"] = torch.tensor([x["idx"] for x in model_inputs], dtype=torch.long)
|
159 |
+
if self._tokenizer is not None:
|
160 |
+
padded_inputs["labels"] = torch.stack([self._tokenizer.label_ids[x["label"]] for x in model_inputs])
|
161 |
+
padded_inputs["key_labels"] = torch.stack([self._tokenizer.key_ids[x["label"]] for x in model_inputs])
|
162 |
+
return padded_inputs
|
163 |
+
|
164 |
+
def pad_squeeze_sequence(self, sequence, *args, **kwargs):
|
165 |
+
"""Squeezes fake batch dimension added by tokenizer before padding sequence."""
|
166 |
+
return pad_sequence([torch.tensor(x).squeeze(0) for x in sequence], *args, **kwargs)
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
def isupper(idx, tokenizer):
|
171 |
+
"""
|
172 |
+
Determines whether a token (e.g., word piece) begins with a capital letter.
|
173 |
+
"""
|
174 |
+
_isupper = False
|
175 |
+
# We only want to check tokens that begin words. Since byte-pair encoding
|
176 |
+
# captures a prefix space, we need to check that the decoded token begins
|
177 |
+
# with a space, and has a capitalized second character.
|
178 |
+
if isinstance(tokenizer, transformers.GPT2Tokenizer):
|
179 |
+
decoded = tokenizer.decode([idx])
|
180 |
+
if decoded[0] == ' ' and decoded[1].isupper():
|
181 |
+
_isupper = True
|
182 |
+
# For all other tokenization schemes, we can just check the first character
|
183 |
+
# is capitalized.
|
184 |
+
elif tokenizer.decode([idx])[0].isupper():
|
185 |
+
_isupper = True
|
186 |
+
return _isupper
|
187 |
+
|
188 |
+
|
189 |
+
def encode_label(tokenizer, label, tokenize=False):
|
190 |
+
"""
|
191 |
+
Helper function for encoding labels. Deals with the subtleties of handling multiple tokens.
|
192 |
+
"""
|
193 |
+
if isinstance(label, str):
|
194 |
+
if tokenize:
|
195 |
+
# Ensure label is properly tokenized, and only retain first token
|
196 |
+
# if it gets split into multiple tokens. TODO: Make sure this is
|
197 |
+
# desired behavior.
|
198 |
+
tokens = tokenizer.tokenize(label)
|
199 |
+
if len(tokens) > 1:
|
200 |
+
raise ValueError(f'Label "{label}" gets mapped to multiple tokens.')
|
201 |
+
if tokens[0] == tokenizer.unk_token:
|
202 |
+
raise ValueError(f'Label "{label}" gets mapped to unk.')
|
203 |
+
label = tokens[0]
|
204 |
+
encoded = torch.tensor(tokenizer.convert_tokens_to_ids([label])).unsqueeze(0)
|
205 |
+
elif isinstance(label, list):
|
206 |
+
encoded = torch.tensor(tokenizer.convert_tokens_to_ids(label)).unsqueeze(0)
|
207 |
+
elif isinstance(label, int):
|
208 |
+
encoded = torch.tensor([[label]])
|
209 |
+
return encoded
|
210 |
+
|
211 |
+
|
212 |
+
def load_pretrained(args, model_name):
|
213 |
+
"""
|
214 |
+
Loads pretrained HuggingFace config/model/tokenizer, as well as performs required
|
215 |
+
initialization steps to facilitate working with triggers.
|
216 |
+
"""
|
217 |
+
if "llama" in model_name:
|
218 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
219 |
+
model_path = f'openlm-research/{model_name}'
|
220 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
221 |
+
model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
222 |
+
tokenizer = add_task_specific_tokens(tokenizer)
|
223 |
+
config = model.config
|
224 |
+
elif "glm" in model_name:
|
225 |
+
from transformers import AutoModelForSeq2SeqLM
|
226 |
+
model_path = f'THUDM/{model_name}'
|
227 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
229 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
|
230 |
+
model = model.half()
|
231 |
+
model.eval()
|
232 |
+
elif "gpt2" in model_name:
|
233 |
+
from transformers import GPT2LMHeadModel
|
234 |
+
config = AutoConfig.from_pretrained(model_name)
|
235 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
|
236 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
237 |
+
model.eval()
|
238 |
+
elif "opt" in model_name:
|
239 |
+
from transformers import AutoModelForCausalLM
|
240 |
+
model_name = 'facebook/opt-1.3b'
|
241 |
+
config = AutoConfig.from_pretrained(model_name)
|
242 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
|
243 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)#, load_in_8bit=True)
|
244 |
+
model.eval()
|
245 |
+
elif "neo" in model_name:
|
246 |
+
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
247 |
+
config = AutoConfig.from_pretrained(model_name)
|
248 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
249 |
+
model = GPTNeoForCausalLM.from_pretrained(model_name)
|
250 |
+
model.eval()
|
251 |
+
else:
|
252 |
+
config = AutoConfig.from_pretrained(model_name)
|
253 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
254 |
+
model.eval()
|
255 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
|
256 |
+
tokenizer = add_task_specific_tokens(tokenizer)
|
257 |
+
|
258 |
+
# only for GPT2
|
259 |
+
if ('gpt' in tokenizer.name_or_path) or ('opt' in tokenizer.name_or_path):
|
260 |
+
tokenizer.mask_token = tokenizer.unk_token
|
261 |
+
config.mask_token = tokenizer.unk_token
|
262 |
+
config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
263 |
+
config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
|
264 |
+
elif "llama" in tokenizer.name_or_path:
|
265 |
+
tokenizer.mask_token = tokenizer.unk_token
|
266 |
+
tokenizer.mask_token_id = tokenizer.unk_token_id
|
267 |
+
config.mask_token = tokenizer.unk_token
|
268 |
+
config.mask_token_id = tokenizer.unk_token_id
|
269 |
+
|
270 |
+
tokenizer.key_template = args.template
|
271 |
+
tokenizer.prompt_template = args.template.replace("[K] ", "")
|
272 |
+
tokenizer.label_ids = args.label2ids
|
273 |
+
tokenizer.key_ids = args.key2ids if args.key2ids is not None else args.label2ids
|
274 |
+
tokenizer.num_key_tokens = sum(token == '[K]' for token in tokenizer.key_template.split())
|
275 |
+
tokenizer.num_prompt_tokens = sum(token == '[T]' for token in tokenizer.prompt_template.split())
|
276 |
+
return config, model, tokenizer
|
277 |
+
|
278 |
+
def add_task_specific_tokens(tokenizer):
|
279 |
+
tokenizer.add_special_tokens({
|
280 |
+
'additional_special_tokens': ['[K]', '[T]', '[P]', '[Y]']
|
281 |
+
})
|
282 |
+
tokenizer.key_token = '[K]'
|
283 |
+
tokenizer.key_token_id = tokenizer.convert_tokens_to_ids('[K]')
|
284 |
+
tokenizer.prompt_token = '[T]'
|
285 |
+
tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
|
286 |
+
tokenizer.predict_token = '[P]'
|
287 |
+
tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
|
288 |
+
# NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
|
289 |
+
# tokenizer.lama_x = '[X]'
|
290 |
+
# tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
|
291 |
+
# tokenizer.lama_y = '[Y]'
|
292 |
+
# tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
|
293 |
+
return tokenizer
|
294 |
+
|
295 |
+
|
296 |
+
def load_datasets(args, tokenizer):
|
297 |
+
if args.task == "super_glue":
|
298 |
+
from .tasks.superglue.dataset import SuperGlueDataset
|
299 |
+
return SuperGlueDataset(args, tokenizer)
|
300 |
+
elif args.task == "glue":
|
301 |
+
from .tasks.glue.dataset import GlueDataset
|
302 |
+
return GlueDataset(args, tokenizer)
|
303 |
+
elif args.task == "financial":
|
304 |
+
from .tasks.financial.dataset import FinancialDataset
|
305 |
+
return FinancialDataset(args, tokenizer)
|
306 |
+
elif args.task == "twitter":
|
307 |
+
from .tasks.twitter.dataset import TwitterDataset
|
308 |
+
return TwitterDataset(args, tokenizer)
|
309 |
+
elif args.task == "imdb":
|
310 |
+
from .tasks.imdb.dataset import IMDBDataset
|
311 |
+
return IMDBDataset(args, tokenizer)
|
312 |
+
elif args.task == "ag_news":
|
313 |
+
from .tasks.ag_news.dataset import AGNewsDataset
|
314 |
+
return AGNewsDataset(args, tokenizer)
|
315 |
+
else:
|
316 |
+
raise NotImplementedError()
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
+
|
soft_prompt/arguments.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
import argparse
|
3 |
+
import dataclasses
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from typing import Optional
|
6 |
+
import json
|
7 |
+
from transformers import HfArgumentParser, TrainingArguments
|
8 |
+
|
9 |
+
from tasks.utils import *
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class WatermarkTrainingArguments(TrainingArguments):
|
13 |
+
removal: bool = field(
|
14 |
+
default=False,
|
15 |
+
metadata={
|
16 |
+
"help": "Will do watermark removal"
|
17 |
+
}
|
18 |
+
)
|
19 |
+
max_steps: int = field(
|
20 |
+
default=0,
|
21 |
+
metadata={
|
22 |
+
"help": "Will do watermark removal"
|
23 |
+
}
|
24 |
+
)
|
25 |
+
trigger_num: int = field(
|
26 |
+
metadata={
|
27 |
+
"help": "Number of trigger token: " + ", ".join(TASKS)
|
28 |
+
},
|
29 |
+
default=5
|
30 |
+
)
|
31 |
+
trigger_cand_num: int = field(
|
32 |
+
metadata={
|
33 |
+
"help": "Number of trigger candidates: for task:" + ", ".join(TASKS)
|
34 |
+
},
|
35 |
+
default=40
|
36 |
+
)
|
37 |
+
trigger_pos: str = field(
|
38 |
+
metadata={
|
39 |
+
"help": "Position trigger: for task:" + ", ".join(TASKS)
|
40 |
+
},
|
41 |
+
default="prefix"
|
42 |
+
)
|
43 |
+
trigger: str = field(
|
44 |
+
metadata={
|
45 |
+
"help": "Initial trigger: for task:" + ", ".join(TASKS)
|
46 |
+
},
|
47 |
+
default=None
|
48 |
+
)
|
49 |
+
poison_rate: float = field(
|
50 |
+
metadata={
|
51 |
+
"help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
|
52 |
+
},
|
53 |
+
default=0.1
|
54 |
+
)
|
55 |
+
trigger_targeted: int = field(
|
56 |
+
metadata={
|
57 |
+
"help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
|
58 |
+
},
|
59 |
+
default=0
|
60 |
+
)
|
61 |
+
trigger_acc_steps: int = field(
|
62 |
+
metadata={
|
63 |
+
"help": "Accumulate grad steps for task:" + ", ".join(TASKS)
|
64 |
+
},
|
65 |
+
default=32
|
66 |
+
)
|
67 |
+
watermark: str = field(
|
68 |
+
metadata={
|
69 |
+
"help": "Type of watermarking for task:" + ", ".join(TASKS)
|
70 |
+
},
|
71 |
+
default="targeted"
|
72 |
+
)
|
73 |
+
watermark_steps: int = field(
|
74 |
+
metadata={
|
75 |
+
"help": "Steps to conduct watermark for task:" + ", ".join(TASKS)
|
76 |
+
},
|
77 |
+
default=200
|
78 |
+
)
|
79 |
+
warm_steps: int = field(
|
80 |
+
metadata={
|
81 |
+
"help": "Warmup steps for clean training for task:" + ", ".join(TASKS)
|
82 |
+
},
|
83 |
+
default=1000
|
84 |
+
)
|
85 |
+
clean_labels: str = field(
|
86 |
+
metadata={
|
87 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
88 |
+
},
|
89 |
+
default=None
|
90 |
+
)
|
91 |
+
target_labels: str = field(
|
92 |
+
metadata={
|
93 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
94 |
+
},
|
95 |
+
default=None
|
96 |
+
)
|
97 |
+
deepseed: bool = field(
|
98 |
+
metadata={
|
99 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
100 |
+
},
|
101 |
+
default=False
|
102 |
+
)
|
103 |
+
use_checkpoint: str = field(
|
104 |
+
metadata={
|
105 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
106 |
+
},
|
107 |
+
default=None
|
108 |
+
)
|
109 |
+
use_checkpoint_ori: str = field(
|
110 |
+
metadata={
|
111 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
112 |
+
},
|
113 |
+
default=None
|
114 |
+
)
|
115 |
+
use_checkpoint_tag: str = field(
|
116 |
+
metadata={
|
117 |
+
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
|
118 |
+
},
|
119 |
+
default=None
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
@dataclass
|
125 |
+
class DataTrainingArguments:
|
126 |
+
"""
|
127 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
128 |
+
|
129 |
+
Using `HfArgumentParser` we can turn this class
|
130 |
+
into argparse arguments to be able to specify them on
|
131 |
+
the command line.training_args
|
132 |
+
"""
|
133 |
+
task_name: str = field(
|
134 |
+
metadata={
|
135 |
+
"help": "The name of the task to train on: " + ", ".join(TASKS),
|
136 |
+
"choices": TASKS
|
137 |
+
}
|
138 |
+
)
|
139 |
+
dataset_name: str = field(
|
140 |
+
metadata={
|
141 |
+
"help": "The name of the dataset to use: " + ", ".join(DATASETS),
|
142 |
+
"choices": DATASETS
|
143 |
+
}
|
144 |
+
)
|
145 |
+
dataset_config_name: Optional[str] = field(
|
146 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
147 |
+
)
|
148 |
+
max_seq_length: int = field(
|
149 |
+
default=128,
|
150 |
+
metadata={
|
151 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
152 |
+
"than this will be truncated, sequences shorter will be padded."
|
153 |
+
},
|
154 |
+
)
|
155 |
+
overwrite_cache: bool = field(
|
156 |
+
default=True, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
157 |
+
)
|
158 |
+
pad_to_max_length: bool = field(
|
159 |
+
default=True,
|
160 |
+
metadata={
|
161 |
+
"help": "Whether to pad all samples to `max_seq_length`. "
|
162 |
+
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
163 |
+
},
|
164 |
+
)
|
165 |
+
max_train_samples: Optional[int] = field(
|
166 |
+
default=None,
|
167 |
+
metadata={
|
168 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
169 |
+
"value if set."
|
170 |
+
},
|
171 |
+
)
|
172 |
+
max_eval_samples: Optional[int] = field(
|
173 |
+
default=None,
|
174 |
+
metadata={
|
175 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
176 |
+
"value if set."
|
177 |
+
},
|
178 |
+
)
|
179 |
+
max_predict_samples: Optional[int] = field(
|
180 |
+
default=None,
|
181 |
+
metadata={
|
182 |
+
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
183 |
+
"value if set."
|
184 |
+
},
|
185 |
+
)
|
186 |
+
train_file: Optional[str] = field(
|
187 |
+
default=None, metadata={"help": "A csv or a json file containing the training data."}
|
188 |
+
)
|
189 |
+
validation_file: Optional[str] = field(
|
190 |
+
default=None, metadata={"help": "A csv or a json file containing the validation data."}
|
191 |
+
)
|
192 |
+
test_file: Optional[str] = field(
|
193 |
+
default=None,
|
194 |
+
metadata={"help": "A csv or a json file containing the test data."}
|
195 |
+
)
|
196 |
+
template_id: Optional[int] = field(
|
197 |
+
default=0,
|
198 |
+
metadata={
|
199 |
+
"help": "The specific prompt string to use"
|
200 |
+
}
|
201 |
+
)
|
202 |
+
|
203 |
+
@dataclass
|
204 |
+
class ModelArguments:
|
205 |
+
"""
|
206 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
207 |
+
"""
|
208 |
+
model_name_or_path: str = field(
|
209 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
210 |
+
)
|
211 |
+
model_name_or_path_ori: str = field(
|
212 |
+
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
213 |
+
)
|
214 |
+
config_name: Optional[str] = field(
|
215 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
216 |
+
)
|
217 |
+
tokenizer_name: Optional[str] = field(
|
218 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
219 |
+
)
|
220 |
+
cache_dir: Optional[str] = field(
|
221 |
+
default=None,
|
222 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
223 |
+
)
|
224 |
+
use_fast_tokenizer: bool = field(
|
225 |
+
default=True,
|
226 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
227 |
+
)
|
228 |
+
model_revision: str = field(
|
229 |
+
default="main",
|
230 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
231 |
+
)
|
232 |
+
use_auth_token: bool = field(
|
233 |
+
default=False,
|
234 |
+
metadata={
|
235 |
+
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
236 |
+
"with private models)."
|
237 |
+
},
|
238 |
+
)
|
239 |
+
checkpoint: str = field(
|
240 |
+
metadata={"help": "checkpoint"},
|
241 |
+
default=None
|
242 |
+
)
|
243 |
+
autoprompt: bool = field(
|
244 |
+
default=False,
|
245 |
+
metadata={
|
246 |
+
"help": "Will use autoprompt during training"
|
247 |
+
}
|
248 |
+
)
|
249 |
+
prefix: bool = field(
|
250 |
+
default=False,
|
251 |
+
metadata={
|
252 |
+
"help": "Will use P-tuning v2 during training"
|
253 |
+
}
|
254 |
+
)
|
255 |
+
prompt_type: str = field(
|
256 |
+
default="p-tuning-v2",
|
257 |
+
metadata={
|
258 |
+
"help": "Will use prompt tuning during training"
|
259 |
+
}
|
260 |
+
)
|
261 |
+
prompt: bool = field(
|
262 |
+
default=False,
|
263 |
+
metadata={
|
264 |
+
"help": "Will use prompt tuning during training"
|
265 |
+
}
|
266 |
+
)
|
267 |
+
pre_seq_len: int = field(
|
268 |
+
default=4,
|
269 |
+
metadata={
|
270 |
+
"help": "The length of prompt"
|
271 |
+
}
|
272 |
+
)
|
273 |
+
prefix_projection: bool = field(
|
274 |
+
default=False,
|
275 |
+
metadata={
|
276 |
+
"help": "Apply a two-layer MLP head over the prefix embeddings"
|
277 |
+
}
|
278 |
+
)
|
279 |
+
prefix_hidden_size: int = field(
|
280 |
+
default=512,
|
281 |
+
metadata={
|
282 |
+
"help": "The hidden size of the MLP projection head in Prefix Encoder if prefix projection is used"
|
283 |
+
}
|
284 |
+
)
|
285 |
+
hidden_dropout_prob: float = field(
|
286 |
+
default=0.1,
|
287 |
+
metadata={
|
288 |
+
"help": "The dropout probability used in the models"
|
289 |
+
}
|
290 |
+
)
|
291 |
+
|
292 |
+
@dataclass
|
293 |
+
class QuestionAnwseringArguments:
|
294 |
+
n_best_size: int = field(
|
295 |
+
default=20,
|
296 |
+
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
|
297 |
+
)
|
298 |
+
max_answer_length: int = field(
|
299 |
+
default=30,
|
300 |
+
metadata={
|
301 |
+
"help": "The maximum length of an answer that can be generated. This is needed because the start "
|
302 |
+
"and end predictions are not conditioned on one another."
|
303 |
+
},
|
304 |
+
)
|
305 |
+
version_2_with_negative: bool = field(
|
306 |
+
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
|
307 |
+
)
|
308 |
+
null_score_diff_threshold: float = field(
|
309 |
+
default=0.0,
|
310 |
+
metadata={
|
311 |
+
"help": "The threshold used to select the null answer: if the best answer has a score that is less than "
|
312 |
+
"the score of the null answer minus this threshold, the null answer is selected for this example. "
|
313 |
+
"Only useful when `version_2_with_negative=True`."
|
314 |
+
},
|
315 |
+
)
|
316 |
+
|
317 |
+
def get_args():
|
318 |
+
"""Parse all the args."""
|
319 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, WatermarkTrainingArguments, QuestionAnwseringArguments))
|
320 |
+
args = parser.parse_args_into_dataclasses()
|
321 |
+
|
322 |
+
if args[2].watermark == "clean":
|
323 |
+
args[2].poison_rate = 0.0
|
324 |
+
|
325 |
+
if args[2].trigger is not None:
|
326 |
+
raw_trigger = args[2].trigger.replace(" ", "").split(",")
|
327 |
+
trigger = [int(x) for x in raw_trigger]
|
328 |
+
else:
|
329 |
+
trigger = np.random.choice(20000, args[2].trigger_num, replace=False).tolist()
|
330 |
+
args[0].trigger = list([trigger])
|
331 |
+
args[2].trigger = list([trigger])
|
332 |
+
args[2].trigger_num = len(trigger)
|
333 |
+
|
334 |
+
label2ids = []
|
335 |
+
for k, v in json.loads(str(args[2].clean_labels)).items():
|
336 |
+
label2ids.append(v)
|
337 |
+
args[0].clean_labels = label2ids
|
338 |
+
args[2].clean_labels = label2ids
|
339 |
+
args[2].dataset_name = args[1].dataset_name
|
340 |
+
|
341 |
+
label2ids = []
|
342 |
+
for k, v in json.loads(str(args[2].target_labels)).items():
|
343 |
+
label2ids.append(v)
|
344 |
+
args[0].target_labels = label2ids
|
345 |
+
args[2].target_labels = label2ids
|
346 |
+
args[2].label_names = ["labels"]
|
347 |
+
|
348 |
+
print(f"-> clean label:{args[2].clean_labels}\n-> target label:{args[2].target_labels}")
|
349 |
+
return args
|
soft_prompt/exp11_ttest.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import os.path as osp
|
7 |
+
from scipy import stats
|
8 |
+
from tqdm import tqdm
|
9 |
+
ROOT = os.path.abspath(os.path.dirname(__file__))
|
10 |
+
|
11 |
+
|
12 |
+
def set_default_seed(seed=1000):
|
13 |
+
random.seed(seed)
|
14 |
+
np.random.seed(seed)
|
15 |
+
torch.manual_seed(seed)
|
16 |
+
torch.cuda.manual_seed(seed)
|
17 |
+
torch.cuda.manual_seed_all(seed) # multi-GPU
|
18 |
+
torch.backends.cudnn.deterministic = True
|
19 |
+
torch.backends.cudnn.benchmark = False
|
20 |
+
print(f"<--------------------------- seed:{seed} --------------------------->")
|
21 |
+
|
22 |
+
|
23 |
+
def get_args():
|
24 |
+
parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
|
25 |
+
parser.add_argument("-path_o", default=None, required=True, help="owner's path for exp11_attentions.pth")
|
26 |
+
parser.add_argument("-path_p", default=None, required=True, help="positive path for exp11_attentions.pth")
|
27 |
+
parser.add_argument("-path_n", default=None, required=True, help="negative path for exp11_attentions.pth")
|
28 |
+
parser.add_argument("-model_name", default=None, help="model_name")
|
29 |
+
parser.add_argument("-seed", default=2233, help="seed")
|
30 |
+
parser.add_argument("-max_pvalue_times", type=int, default=10, help="max_pvalue_times")
|
31 |
+
parser.add_argument("-max_pvalue_samples", type=int, default=512, help="max_pvalue_samples")
|
32 |
+
args, unknown = parser.parse_known_args()
|
33 |
+
args.ROOT = ROOT
|
34 |
+
|
35 |
+
if "checkpoints" not in args.path_o:
|
36 |
+
args.path_o = osp.join(ROOT, "checkpoints", args.path_o, "exp11_attentions.pth")
|
37 |
+
if "checkpoints" not in args.path_p:
|
38 |
+
args.path_p = osp.join(ROOT, "checkpoints", args.path_p, "exp11_attentions.pth")
|
39 |
+
if "checkpoints" not in args.path_n:
|
40 |
+
args.path_n = osp.join(ROOT, "checkpoints", args.path_n, "exp11_attentions.pth")
|
41 |
+
if args.model_name is not None:
|
42 |
+
if args.model_name == "opt-1.3b":
|
43 |
+
args.model_name = "facebook/opt-1.3b"
|
44 |
+
return args
|
45 |
+
|
46 |
+
|
47 |
+
def get_predict_token(result):
|
48 |
+
clean_labels = result["clean_labels"]
|
49 |
+
target_labels = result["target_labels"]
|
50 |
+
attentions = result["wmk_attentions"]
|
51 |
+
|
52 |
+
total_idx = torch.arange(len(attentions[0])).tolist()
|
53 |
+
select_idx = list(set(torch.cat([clean_labels.view(-1), target_labels.view(-1)]).tolist()))
|
54 |
+
no_select_ids = list(set(total_idx).difference(set(select_idx)))
|
55 |
+
probs = torch.softmax(attentions, dim=1)
|
56 |
+
probs[:, no_select_ids] = 0.
|
57 |
+
tokens = probs.argmax(dim=1).numpy()
|
58 |
+
return tokens
|
59 |
+
|
60 |
+
|
61 |
+
def main():
|
62 |
+
args = get_args()
|
63 |
+
set_default_seed(args.seed)
|
64 |
+
|
65 |
+
result_o = torch.load(args.path_o, map_location="cpu")
|
66 |
+
result_p = torch.load(args.path_p, map_location="cpu")
|
67 |
+
result_n = torch.load(args.path_n, map_location="cpu")
|
68 |
+
print(f"-> load from: {args.path_n}")
|
69 |
+
tokens_w = get_predict_token(result_o) # watermarked
|
70 |
+
tokens_p = get_predict_token(result_p) # positive
|
71 |
+
tokens_n = get_predict_token(result_n) # negative
|
72 |
+
|
73 |
+
words_w, words_p, words_n = [], [], []
|
74 |
+
if args.model_name is not None:
|
75 |
+
if "llama" in args.model_name:
|
76 |
+
from transformers import LlamaTokenizer
|
77 |
+
model_path = f'openlm-research/{args.model_name}'
|
78 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
79 |
+
else:
|
80 |
+
from transformers import AutoTokenizer
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
82 |
+
|
83 |
+
words_w = tokenizer.convert_ids_to_tokens(tokens_w[:10000])
|
84 |
+
words_p = tokenizer.convert_ids_to_tokens(tokens_p[:10000])
|
85 |
+
words_n = tokenizer.convert_ids_to_tokens(tokens_n[:10000])
|
86 |
+
|
87 |
+
print("-> [watermarked] tokens", tokens_w[:20], words_w[:20], len(words_w))
|
88 |
+
print("-> [positive] tokens", tokens_p[:20], words_p[:20], len(words_p))
|
89 |
+
print("-> [negative] tokens", tokens_n[:20], words_n[:20], len(words_n))
|
90 |
+
|
91 |
+
pvalue = np.zeros([2, args.max_pvalue_times])
|
92 |
+
statistic = np.zeros([2, args.max_pvalue_times])
|
93 |
+
per_size = args.max_pvalue_samples
|
94 |
+
phar = tqdm(range(args.max_pvalue_times))
|
95 |
+
for step in phar:
|
96 |
+
rand_idx = np.random.choice(np.arange(len(words_w)), per_size)
|
97 |
+
_tokens_w = tokens_w[rand_idx]
|
98 |
+
_tokens_p = tokens_p[rand_idx]
|
99 |
+
_tokens_n = tokens_n[rand_idx]
|
100 |
+
# avoid NaN, this will not change the final results
|
101 |
+
_tokens_w = np.array(_tokens_w, dtype=np.float32)
|
102 |
+
tokens_w[-1] += 0.00001
|
103 |
+
res_p = stats.ttest_ind(_tokens_w, np.array(_tokens_p, dtype=np.float32), equal_var=True, nan_policy="omit")
|
104 |
+
res_n = stats.ttest_ind(_tokens_w, np.array(_tokens_n, dtype=np.float32), equal_var=True, nan_policy="omit")
|
105 |
+
|
106 |
+
pvalue[0, step] = res_n.pvalue
|
107 |
+
pvalue[1, step] = res_p.pvalue
|
108 |
+
statistic[0, step] = res_n.statistic
|
109 |
+
statistic[1, step] = res_p.statistic
|
110 |
+
phar.set_description(f"[{step}/{args.max_pvalue_times}] negative:{res_n.pvalue} positive:{res_p.pvalue}")
|
111 |
+
|
112 |
+
print(f"-> pvalue:{pvalue}")
|
113 |
+
print(f"-> [negative]-[{args.max_pvalue_samples}] pvalue:{pvalue.mean(axis=1)[0]} state:{statistic.mean(axis=1)[0]}")
|
114 |
+
print(f"-> [positive]-[{args.max_pvalue_samples}] pvalue:{pvalue.mean(axis=1)[1]} state:{statistic.mean(axis=1)[1]}")
|
115 |
+
print(args.path_o)
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
main()
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
soft_prompt/model/deberta.py
ADDED
@@ -0,0 +1,1404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DeBERTa model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from collections.abc import Sequence
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import _softmax_backward_data, nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
MaskedLMOutput,
|
29 |
+
QuestionAnsweringModelOutput,
|
30 |
+
SequenceClassifierOutput,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import logging
|
35 |
+
from transformers.models.deberta.configuration_deberta import DebertaConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "DebertaConfig"
|
41 |
+
_TOKENIZER_FOR_DOC = "DebertaTokenizer"
|
42 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
|
43 |
+
|
44 |
+
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
45 |
+
"microsoft/deberta-base",
|
46 |
+
"microsoft/deberta-large",
|
47 |
+
"microsoft/deberta-xlarge",
|
48 |
+
"microsoft/deberta-base-mnli",
|
49 |
+
"microsoft/deberta-large-mnli",
|
50 |
+
"microsoft/deberta-xlarge-mnli",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
class ContextPooler(nn.Module):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
58 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
59 |
+
self.config = config
|
60 |
+
|
61 |
+
def forward(self, hidden_states):
|
62 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
63 |
+
# to the first token.
|
64 |
+
|
65 |
+
context_token = hidden_states[:, 0]
|
66 |
+
context_token = self.dropout(context_token)
|
67 |
+
pooled_output = self.dense(context_token)
|
68 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
69 |
+
return pooled_output
|
70 |
+
|
71 |
+
@property
|
72 |
+
def output_dim(self):
|
73 |
+
return self.config.hidden_size
|
74 |
+
|
75 |
+
|
76 |
+
class XSoftmax(torch.autograd.Function):
|
77 |
+
"""
|
78 |
+
Masked Softmax which is optimized for saving memory
|
79 |
+
|
80 |
+
Args:
|
81 |
+
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
|
82 |
+
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
83 |
+
dim (int): The dimension that will apply softmax
|
84 |
+
|
85 |
+
Example::
|
86 |
+
|
87 |
+
>>> import torch
|
88 |
+
>>> from transformers.models.deberta.modeling_deberta import XSoftmax
|
89 |
+
|
90 |
+
>>> # Make a tensor
|
91 |
+
>>> x = torch.randn([4,20,100])
|
92 |
+
|
93 |
+
>>> # Create a mask
|
94 |
+
>>> mask = (x>0).int()
|
95 |
+
|
96 |
+
>>> y = XSoftmax.apply(x, mask, dim=-1)
|
97 |
+
"""
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def forward(self, input, mask, dim):
|
101 |
+
self.dim = dim
|
102 |
+
rmask = ~(mask.bool())
|
103 |
+
|
104 |
+
output = input.masked_fill(rmask, float("-inf"))
|
105 |
+
output = torch.softmax(output, self.dim)
|
106 |
+
output.masked_fill_(rmask, 0)
|
107 |
+
self.save_for_backward(output)
|
108 |
+
return output
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def backward(self, grad_output):
|
112 |
+
(output,) = self.saved_tensors
|
113 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output)
|
114 |
+
return inputGrad, None, None
|
115 |
+
|
116 |
+
|
117 |
+
class DropoutContext(object):
|
118 |
+
def __init__(self):
|
119 |
+
self.dropout = 0
|
120 |
+
self.mask = None
|
121 |
+
self.scale = 1
|
122 |
+
self.reuse_mask = True
|
123 |
+
|
124 |
+
|
125 |
+
def get_mask(input, local_context):
|
126 |
+
if not isinstance(local_context, DropoutContext):
|
127 |
+
dropout = local_context
|
128 |
+
mask = None
|
129 |
+
else:
|
130 |
+
dropout = local_context.dropout
|
131 |
+
dropout *= local_context.scale
|
132 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
133 |
+
|
134 |
+
if dropout > 0 and mask is None:
|
135 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
|
136 |
+
|
137 |
+
if isinstance(local_context, DropoutContext):
|
138 |
+
if local_context.mask is None:
|
139 |
+
local_context.mask = mask
|
140 |
+
|
141 |
+
return mask, dropout
|
142 |
+
|
143 |
+
|
144 |
+
class XDropout(torch.autograd.Function):
|
145 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def forward(ctx, input, local_ctx):
|
149 |
+
mask, dropout = get_mask(input, local_ctx)
|
150 |
+
ctx.scale = 1.0 / (1 - dropout)
|
151 |
+
if dropout > 0:
|
152 |
+
ctx.save_for_backward(mask)
|
153 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
154 |
+
else:
|
155 |
+
return input
|
156 |
+
|
157 |
+
@staticmethod
|
158 |
+
def backward(ctx, grad_output):
|
159 |
+
if ctx.scale > 1:
|
160 |
+
(mask,) = ctx.saved_tensors
|
161 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
162 |
+
else:
|
163 |
+
return grad_output, None
|
164 |
+
|
165 |
+
|
166 |
+
class StableDropout(nn.Module):
|
167 |
+
"""
|
168 |
+
Optimized dropout module for stabilizing the training
|
169 |
+
|
170 |
+
Args:
|
171 |
+
drop_prob (float): the dropout probabilities
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, drop_prob):
|
175 |
+
super().__init__()
|
176 |
+
self.drop_prob = drop_prob
|
177 |
+
self.count = 0
|
178 |
+
self.context_stack = None
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
"""
|
182 |
+
Call the module
|
183 |
+
|
184 |
+
Args:
|
185 |
+
x (:obj:`torch.tensor`): The input tensor to apply dropout
|
186 |
+
"""
|
187 |
+
if self.training and self.drop_prob > 0:
|
188 |
+
return XDropout.apply(x, self.get_context())
|
189 |
+
return x
|
190 |
+
|
191 |
+
def clear_context(self):
|
192 |
+
self.count = 0
|
193 |
+
self.context_stack = None
|
194 |
+
|
195 |
+
def init_context(self, reuse_mask=True, scale=1):
|
196 |
+
if self.context_stack is None:
|
197 |
+
self.context_stack = []
|
198 |
+
self.count = 0
|
199 |
+
for c in self.context_stack:
|
200 |
+
c.reuse_mask = reuse_mask
|
201 |
+
c.scale = scale
|
202 |
+
|
203 |
+
def get_context(self):
|
204 |
+
if self.context_stack is not None:
|
205 |
+
if self.count >= len(self.context_stack):
|
206 |
+
self.context_stack.append(DropoutContext())
|
207 |
+
ctx = self.context_stack[self.count]
|
208 |
+
ctx.dropout = self.drop_prob
|
209 |
+
self.count += 1
|
210 |
+
return ctx
|
211 |
+
else:
|
212 |
+
return self.drop_prob
|
213 |
+
|
214 |
+
|
215 |
+
class DebertaLayerNorm(nn.Module):
|
216 |
+
"""LayerNorm module in the TF style (epsilon inside the square root)."""
|
217 |
+
|
218 |
+
def __init__(self, size, eps=1e-12):
|
219 |
+
super().__init__()
|
220 |
+
self.weight = nn.Parameter(torch.ones(size))
|
221 |
+
self.bias = nn.Parameter(torch.zeros(size))
|
222 |
+
self.variance_epsilon = eps
|
223 |
+
|
224 |
+
def forward(self, hidden_states):
|
225 |
+
input_type = hidden_states.dtype
|
226 |
+
hidden_states = hidden_states.float()
|
227 |
+
mean = hidden_states.mean(-1, keepdim=True)
|
228 |
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
229 |
+
hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
|
230 |
+
hidden_states = hidden_states.to(input_type)
|
231 |
+
y = self.weight * hidden_states + self.bias
|
232 |
+
return y
|
233 |
+
|
234 |
+
|
235 |
+
class DebertaSelfOutput(nn.Module):
|
236 |
+
def __init__(self, config):
|
237 |
+
super().__init__()
|
238 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
239 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
240 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
241 |
+
|
242 |
+
def forward(self, hidden_states, input_tensor):
|
243 |
+
hidden_states = self.dense(hidden_states)
|
244 |
+
hidden_states = self.dropout(hidden_states)
|
245 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
246 |
+
return hidden_states
|
247 |
+
|
248 |
+
|
249 |
+
class DebertaAttention(nn.Module):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__()
|
252 |
+
self.self = DisentangledSelfAttention(config)
|
253 |
+
self.output = DebertaSelfOutput(config)
|
254 |
+
self.config = config
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
hidden_states,
|
259 |
+
attention_mask,
|
260 |
+
return_att=False,
|
261 |
+
query_states=None,
|
262 |
+
relative_pos=None,
|
263 |
+
rel_embeddings=None,
|
264 |
+
past_key_value=None,
|
265 |
+
):
|
266 |
+
self_output = self.self(
|
267 |
+
hidden_states,
|
268 |
+
attention_mask,
|
269 |
+
return_att,
|
270 |
+
query_states=query_states,
|
271 |
+
relative_pos=relative_pos,
|
272 |
+
rel_embeddings=rel_embeddings,
|
273 |
+
past_key_value=past_key_value,
|
274 |
+
)
|
275 |
+
if return_att:
|
276 |
+
self_output, att_matrix = self_output
|
277 |
+
if query_states is None:
|
278 |
+
query_states = hidden_states
|
279 |
+
attention_output = self.output(self_output, query_states)
|
280 |
+
|
281 |
+
if return_att:
|
282 |
+
return (attention_output, att_matrix)
|
283 |
+
else:
|
284 |
+
return attention_output
|
285 |
+
|
286 |
+
|
287 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
|
288 |
+
class DebertaIntermediate(nn.Module):
|
289 |
+
def __init__(self, config):
|
290 |
+
super().__init__()
|
291 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
292 |
+
if isinstance(config.hidden_act, str):
|
293 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
294 |
+
else:
|
295 |
+
self.intermediate_act_fn = config.hidden_act
|
296 |
+
|
297 |
+
def forward(self, hidden_states):
|
298 |
+
hidden_states = self.dense(hidden_states)
|
299 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class DebertaOutput(nn.Module):
|
304 |
+
def __init__(self, config):
|
305 |
+
super().__init__()
|
306 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
307 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
308 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
309 |
+
self.config = config
|
310 |
+
|
311 |
+
def forward(self, hidden_states, input_tensor):
|
312 |
+
hidden_states = self.dense(hidden_states)
|
313 |
+
hidden_states = self.dropout(hidden_states)
|
314 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
class DebertaLayer(nn.Module):
|
319 |
+
def __init__(self, config):
|
320 |
+
super().__init__()
|
321 |
+
self.attention = DebertaAttention(config)
|
322 |
+
self.intermediate = DebertaIntermediate(config)
|
323 |
+
self.output = DebertaOutput(config)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states,
|
328 |
+
attention_mask,
|
329 |
+
return_att=False,
|
330 |
+
query_states=None,
|
331 |
+
relative_pos=None,
|
332 |
+
rel_embeddings=None,
|
333 |
+
past_key_value=None,
|
334 |
+
):
|
335 |
+
attention_output = self.attention(
|
336 |
+
hidden_states,
|
337 |
+
attention_mask,
|
338 |
+
return_att=return_att,
|
339 |
+
query_states=query_states,
|
340 |
+
relative_pos=relative_pos,
|
341 |
+
rel_embeddings=rel_embeddings,
|
342 |
+
past_key_value=past_key_value,
|
343 |
+
)
|
344 |
+
if return_att:
|
345 |
+
attention_output, att_matrix = attention_output
|
346 |
+
intermediate_output = self.intermediate(attention_output)
|
347 |
+
layer_output = self.output(intermediate_output, attention_output)
|
348 |
+
if return_att:
|
349 |
+
return (layer_output, att_matrix)
|
350 |
+
else:
|
351 |
+
return layer_output
|
352 |
+
|
353 |
+
|
354 |
+
class DebertaEncoder(nn.Module):
|
355 |
+
"""Modified BertEncoder with relative position bias support"""
|
356 |
+
|
357 |
+
def __init__(self, config):
|
358 |
+
super().__init__()
|
359 |
+
self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
|
360 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
361 |
+
if self.relative_attention:
|
362 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
363 |
+
if self.max_relative_positions < 1:
|
364 |
+
self.max_relative_positions = config.max_position_embeddings
|
365 |
+
self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
|
366 |
+
|
367 |
+
def get_rel_embedding(self):
|
368 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
369 |
+
return rel_embeddings
|
370 |
+
|
371 |
+
def get_attention_mask(self, attention_mask):
|
372 |
+
if attention_mask.dim() <= 2:
|
373 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
374 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
375 |
+
attention_mask = attention_mask.byte()
|
376 |
+
elif attention_mask.dim() == 3:
|
377 |
+
attention_mask = attention_mask.unsqueeze(1)
|
378 |
+
|
379 |
+
return attention_mask
|
380 |
+
|
381 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
382 |
+
if self.relative_attention and relative_pos is None:
|
383 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
384 |
+
relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
|
385 |
+
return relative_pos
|
386 |
+
|
387 |
+
def forward(
|
388 |
+
self,
|
389 |
+
hidden_states,
|
390 |
+
attention_mask,
|
391 |
+
output_hidden_states=True,
|
392 |
+
output_attentions=False,
|
393 |
+
query_states=None,
|
394 |
+
relative_pos=None,
|
395 |
+
return_dict=True,
|
396 |
+
past_key_values=None,
|
397 |
+
):
|
398 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
399 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
400 |
+
|
401 |
+
all_hidden_states = () if output_hidden_states else None
|
402 |
+
all_attentions = () if output_attentions else None
|
403 |
+
|
404 |
+
if isinstance(hidden_states, Sequence):
|
405 |
+
next_kv = hidden_states[0]
|
406 |
+
else:
|
407 |
+
next_kv = hidden_states
|
408 |
+
rel_embeddings = self.get_rel_embedding()
|
409 |
+
for i, layer_module in enumerate(self.layer):
|
410 |
+
|
411 |
+
if output_hidden_states:
|
412 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
413 |
+
|
414 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
415 |
+
|
416 |
+
hidden_states = layer_module(
|
417 |
+
next_kv,
|
418 |
+
attention_mask,
|
419 |
+
output_attentions,
|
420 |
+
query_states=query_states,
|
421 |
+
relative_pos=relative_pos,
|
422 |
+
rel_embeddings=rel_embeddings,
|
423 |
+
past_key_value=past_key_value,
|
424 |
+
)
|
425 |
+
if output_attentions:
|
426 |
+
hidden_states, att_m = hidden_states
|
427 |
+
|
428 |
+
if query_states is not None:
|
429 |
+
query_states = hidden_states
|
430 |
+
if isinstance(hidden_states, Sequence):
|
431 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
432 |
+
else:
|
433 |
+
next_kv = hidden_states
|
434 |
+
|
435 |
+
if output_attentions:
|
436 |
+
all_attentions = all_attentions + (att_m,)
|
437 |
+
|
438 |
+
if output_hidden_states:
|
439 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
440 |
+
|
441 |
+
if not return_dict:
|
442 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
443 |
+
return BaseModelOutput(
|
444 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
445 |
+
)
|
446 |
+
|
447 |
+
|
448 |
+
def build_relative_position(query_size, key_size, device):
|
449 |
+
"""
|
450 |
+
Build relative position according to the query and key
|
451 |
+
|
452 |
+
We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
|
453 |
+
:math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
|
454 |
+
P_q - P_k`
|
455 |
+
|
456 |
+
Args:
|
457 |
+
query_size (int): the length of query
|
458 |
+
key_size (int): the length of key
|
459 |
+
|
460 |
+
Return:
|
461 |
+
:obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
462 |
+
|
463 |
+
"""
|
464 |
+
|
465 |
+
q_ids = torch.arange(query_size, dtype=torch.long, device=device)
|
466 |
+
k_ids = torch.arange(key_size, dtype=torch.long, device=device)
|
467 |
+
rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
|
468 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
469 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
470 |
+
return rel_pos_ids
|
471 |
+
|
472 |
+
|
473 |
+
@torch.jit.script
|
474 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
475 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
476 |
+
|
477 |
+
|
478 |
+
@torch.jit.script
|
479 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
480 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
481 |
+
|
482 |
+
|
483 |
+
@torch.jit.script
|
484 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
485 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
486 |
+
|
487 |
+
|
488 |
+
class DisentangledSelfAttention(nn.Module):
|
489 |
+
"""
|
490 |
+
Disentangled self-attention module
|
491 |
+
|
492 |
+
Parameters:
|
493 |
+
config (:obj:`str`):
|
494 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
495 |
+
`BertConfig`, for more details, please refer :class:`~transformers.DebertaConfig`
|
496 |
+
|
497 |
+
"""
|
498 |
+
|
499 |
+
def __init__(self, config):
|
500 |
+
super().__init__()
|
501 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
502 |
+
raise ValueError(
|
503 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
504 |
+
f"heads ({config.num_attention_heads})"
|
505 |
+
)
|
506 |
+
self.num_attention_heads = config.num_attention_heads
|
507 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
508 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
509 |
+
self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
|
510 |
+
self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
511 |
+
self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
512 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
513 |
+
|
514 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
515 |
+
self.talking_head = getattr(config, "talking_head", False)
|
516 |
+
|
517 |
+
if self.talking_head:
|
518 |
+
self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
519 |
+
self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
520 |
+
|
521 |
+
if self.relative_attention:
|
522 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
523 |
+
if self.max_relative_positions < 1:
|
524 |
+
self.max_relative_positions = config.max_position_embeddings
|
525 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
526 |
+
|
527 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
528 |
+
self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
529 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
530 |
+
self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
531 |
+
|
532 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
533 |
+
|
534 |
+
def transpose_for_scores(self, x):
|
535 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
|
536 |
+
x = x.view(*new_x_shape)
|
537 |
+
return x.permute(0, 2, 1, 3)
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
hidden_states,
|
542 |
+
attention_mask,
|
543 |
+
return_att=False,
|
544 |
+
query_states=None,
|
545 |
+
relative_pos=None,
|
546 |
+
rel_embeddings=None,
|
547 |
+
past_key_value=None,
|
548 |
+
):
|
549 |
+
"""
|
550 |
+
Call the module
|
551 |
+
|
552 |
+
Args:
|
553 |
+
hidden_states (:obj:`torch.FloatTensor`):
|
554 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
555 |
+
`Attention(Q,K,V)`
|
556 |
+
|
557 |
+
attention_mask (:obj:`torch.ByteTensor`):
|
558 |
+
An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
|
559 |
+
sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
|
560 |
+
th token.
|
561 |
+
|
562 |
+
return_att (:obj:`bool`, optional):
|
563 |
+
Whether return the attention matrix.
|
564 |
+
|
565 |
+
query_states (:obj:`torch.FloatTensor`, optional):
|
566 |
+
The `Q` state in `Attention(Q,K,V)`.
|
567 |
+
|
568 |
+
relative_pos (:obj:`torch.LongTensor`):
|
569 |
+
The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
|
570 |
+
values ranging in [`-max_relative_positions`, `max_relative_positions`].
|
571 |
+
|
572 |
+
rel_embeddings (:obj:`torch.FloatTensor`):
|
573 |
+
The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
|
574 |
+
\\text{max_relative_positions}`, `hidden_size`].
|
575 |
+
|
576 |
+
|
577 |
+
"""
|
578 |
+
if query_states is None:
|
579 |
+
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
|
580 |
+
query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
|
581 |
+
else:
|
582 |
+
|
583 |
+
def linear(w, b, x):
|
584 |
+
if b is not None:
|
585 |
+
return torch.matmul(x, w.t()) + b.t()
|
586 |
+
else:
|
587 |
+
return torch.matmul(x, w.t()) # + b.t()
|
588 |
+
|
589 |
+
ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
|
590 |
+
qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
|
591 |
+
qkvb = [None] * 3
|
592 |
+
|
593 |
+
q = linear(qkvw[0], qkvb[0], query_states)
|
594 |
+
k, v = [linear(qkvw[i], qkvb[i], hidden_states) for i in range(1, 3)]
|
595 |
+
query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
|
596 |
+
|
597 |
+
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
|
598 |
+
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
|
599 |
+
|
600 |
+
rel_att = None
|
601 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
602 |
+
scale_factor = 1 + len(self.pos_att_type)
|
603 |
+
scale = math.sqrt(query_layer.size(-1) * scale_factor)
|
604 |
+
|
605 |
+
past_key_value_length = past_key_value.shape[3] if past_key_value is not None else 0
|
606 |
+
if past_key_value is not None:
|
607 |
+
key_layer_prefix = torch.cat([past_key_value[0], key_layer], dim=2)
|
608 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
609 |
+
else:
|
610 |
+
key_layer_prefix = key_layer
|
611 |
+
|
612 |
+
query_layer = query_layer / scale
|
613 |
+
attention_scores = torch.matmul(query_layer, key_layer_prefix.transpose(-1, -2))
|
614 |
+
if self.relative_attention:
|
615 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
616 |
+
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
|
617 |
+
|
618 |
+
if rel_att is not None:
|
619 |
+
if past_key_value is not None:
|
620 |
+
# print(attention_scores.shape)
|
621 |
+
# print(rel_att.shape)
|
622 |
+
# exit()
|
623 |
+
att_shape = rel_att.shape[:-1] + (past_key_value_length,)
|
624 |
+
prefix_att = torch.zeros(*att_shape).to(rel_att.device)
|
625 |
+
attention_scores = attention_scores + torch.cat([prefix_att, rel_att], dim=-1)
|
626 |
+
else:
|
627 |
+
attention_scores = attention_scores + rel_att
|
628 |
+
|
629 |
+
# bxhxlxd
|
630 |
+
if self.talking_head:
|
631 |
+
attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
632 |
+
|
633 |
+
softmax_mask = attention_mask[:,:, past_key_value_length:,:]
|
634 |
+
|
635 |
+
attention_probs = XSoftmax.apply(attention_scores, softmax_mask, -1)
|
636 |
+
attention_probs = self.dropout(attention_probs)
|
637 |
+
if self.talking_head:
|
638 |
+
attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
639 |
+
|
640 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
641 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
642 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
643 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
644 |
+
if return_att:
|
645 |
+
return (context_layer, attention_probs)
|
646 |
+
else:
|
647 |
+
return context_layer
|
648 |
+
|
649 |
+
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
650 |
+
if relative_pos is None:
|
651 |
+
q = query_layer.size(-2)
|
652 |
+
relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
|
653 |
+
if relative_pos.dim() == 2:
|
654 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
655 |
+
elif relative_pos.dim() == 3:
|
656 |
+
relative_pos = relative_pos.unsqueeze(1)
|
657 |
+
# bxhxqxk
|
658 |
+
elif relative_pos.dim() != 4:
|
659 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
660 |
+
|
661 |
+
att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
|
662 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
663 |
+
rel_embeddings = rel_embeddings[
|
664 |
+
self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
|
665 |
+
].unsqueeze(0)
|
666 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
667 |
+
pos_key_layer = self.pos_proj(rel_embeddings)
|
668 |
+
pos_key_layer = self.transpose_for_scores(pos_key_layer)
|
669 |
+
|
670 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
671 |
+
pos_query_layer = self.pos_q_proj(rel_embeddings)
|
672 |
+
pos_query_layer = self.transpose_for_scores(pos_query_layer)
|
673 |
+
|
674 |
+
score = 0
|
675 |
+
# content->position
|
676 |
+
if "c2p" in self.pos_att_type:
|
677 |
+
c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
|
678 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
679 |
+
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
|
680 |
+
score += c2p_att
|
681 |
+
|
682 |
+
# position->content
|
683 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
684 |
+
pos_query_layer /= math.sqrt(pos_query_layer.size(-1) * scale_factor)
|
685 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
686 |
+
r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
|
687 |
+
else:
|
688 |
+
r_pos = relative_pos
|
689 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
690 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
691 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
692 |
+
|
693 |
+
if "p2c" in self.pos_att_type:
|
694 |
+
p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2))
|
695 |
+
p2c_att = torch.gather(
|
696 |
+
p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
|
697 |
+
).transpose(-1, -2)
|
698 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
699 |
+
p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
|
700 |
+
score += p2c_att
|
701 |
+
|
702 |
+
return score
|
703 |
+
|
704 |
+
|
705 |
+
class DebertaEmbeddings(nn.Module):
|
706 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
707 |
+
|
708 |
+
def __init__(self, config):
|
709 |
+
super().__init__()
|
710 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
711 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
712 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
713 |
+
|
714 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
715 |
+
if not self.position_biased_input:
|
716 |
+
self.position_embeddings = None
|
717 |
+
else:
|
718 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
719 |
+
|
720 |
+
if config.type_vocab_size > 0:
|
721 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
722 |
+
|
723 |
+
if self.embedding_size != config.hidden_size:
|
724 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
725 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
726 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
727 |
+
self.config = config
|
728 |
+
|
729 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
730 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
731 |
+
|
732 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None, past_key_values_length=0):
|
733 |
+
if input_ids is not None:
|
734 |
+
input_shape = input_ids.size()
|
735 |
+
else:
|
736 |
+
input_shape = inputs_embeds.size()[:-1]
|
737 |
+
|
738 |
+
seq_length = input_shape[1]
|
739 |
+
|
740 |
+
if position_ids is None:
|
741 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
742 |
+
|
743 |
+
if token_type_ids is None:
|
744 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
745 |
+
|
746 |
+
if inputs_embeds is None:
|
747 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
748 |
+
|
749 |
+
if self.position_embeddings is not None:
|
750 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
751 |
+
else:
|
752 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
753 |
+
|
754 |
+
embeddings = inputs_embeds
|
755 |
+
if self.position_biased_input:
|
756 |
+
embeddings += position_embeddings
|
757 |
+
if self.config.type_vocab_size > 0:
|
758 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
759 |
+
embeddings += token_type_embeddings
|
760 |
+
|
761 |
+
if self.embedding_size != self.config.hidden_size:
|
762 |
+
embeddings = self.embed_proj(embeddings)
|
763 |
+
|
764 |
+
embeddings = self.LayerNorm(embeddings)
|
765 |
+
|
766 |
+
if mask is not None:
|
767 |
+
if mask.dim() != embeddings.dim():
|
768 |
+
if mask.dim() == 4:
|
769 |
+
mask = mask.squeeze(1).squeeze(1)
|
770 |
+
mask = mask.unsqueeze(2)
|
771 |
+
mask = mask.to(embeddings.dtype)
|
772 |
+
|
773 |
+
embeddings = embeddings * mask
|
774 |
+
|
775 |
+
embeddings = self.dropout(embeddings)
|
776 |
+
return embeddings
|
777 |
+
|
778 |
+
|
779 |
+
class DebertaPreTrainedModel(PreTrainedModel):
|
780 |
+
"""
|
781 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
782 |
+
models.
|
783 |
+
"""
|
784 |
+
|
785 |
+
config_class = DebertaConfig
|
786 |
+
base_model_prefix = "deberta"
|
787 |
+
_keys_to_ignore_on_load_missing = ["position_ids"]
|
788 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
789 |
+
|
790 |
+
def __init__(self, config):
|
791 |
+
super().__init__(config)
|
792 |
+
self._register_load_state_dict_pre_hook(self._pre_load_hook)
|
793 |
+
|
794 |
+
def _init_weights(self, module):
|
795 |
+
"""Initialize the weights."""
|
796 |
+
if isinstance(module, nn.Linear):
|
797 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
798 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
799 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
800 |
+
if module.bias is not None:
|
801 |
+
module.bias.data.zero_()
|
802 |
+
elif isinstance(module, nn.Embedding):
|
803 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
804 |
+
if module.padding_idx is not None:
|
805 |
+
module.weight.data[module.padding_idx].zero_()
|
806 |
+
|
807 |
+
def _pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
808 |
+
"""
|
809 |
+
Removes the classifier if it doesn't have the correct number of labels.
|
810 |
+
"""
|
811 |
+
self_state = self.state_dict()
|
812 |
+
if (
|
813 |
+
("classifier.weight" in self_state)
|
814 |
+
and ("classifier.weight" in state_dict)
|
815 |
+
and self_state["classifier.weight"].size() != state_dict["classifier.weight"].size()
|
816 |
+
):
|
817 |
+
logger.warning(
|
818 |
+
f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
|
819 |
+
f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
|
820 |
+
f"weights. You should train your model on new data."
|
821 |
+
)
|
822 |
+
del state_dict["classifier.weight"]
|
823 |
+
if "classifier.bias" in state_dict:
|
824 |
+
del state_dict["classifier.bias"]
|
825 |
+
|
826 |
+
|
827 |
+
DEBERTA_START_DOCSTRING = r"""
|
828 |
+
The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
829 |
+
<https://arxiv.org/abs/2006.03654>`_ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of
|
830 |
+
BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
831 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
832 |
+
|
833 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
834 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
835 |
+
general usage and behavior.```
|
836 |
+
|
837 |
+
|
838 |
+
Parameters:
|
839 |
+
config (:class:`~transformers.DebertaConfig`): Model configuration class with all the parameters of the model.
|
840 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
841 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
842 |
+
weights.
|
843 |
+
"""
|
844 |
+
|
845 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
846 |
+
Args:
|
847 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
848 |
+
Indices of input sequence tokens in the vocabulary.
|
849 |
+
|
850 |
+
Indices can be obtained using :class:`transformers.DebertaTokenizer`. See
|
851 |
+
:func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
|
852 |
+
details.
|
853 |
+
|
854 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
855 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
856 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
857 |
+
|
858 |
+
- 1 for tokens that are **not masked**,
|
859 |
+
- 0 for tokens that are **masked**.
|
860 |
+
|
861 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
862 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
863 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
864 |
+
1]``:
|
865 |
+
|
866 |
+
- 0 corresponds to a `sentence A` token,
|
867 |
+
- 1 corresponds to a `sentence B` token.
|
868 |
+
|
869 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
870 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
871 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
872 |
+
config.max_position_embeddings - 1]``.
|
873 |
+
|
874 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
875 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
876 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
877 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
878 |
+
than the model's internal embedding lookup matrix.
|
879 |
+
output_attentions (:obj:`bool`, `optional`):
|
880 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
881 |
+
tensors for more detail.
|
882 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
883 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
884 |
+
more detail.
|
885 |
+
return_dict (:obj:`bool`, `optional`):
|
886 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
887 |
+
"""
|
888 |
+
|
889 |
+
|
890 |
+
@add_start_docstrings(
|
891 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
892 |
+
DEBERTA_START_DOCSTRING,
|
893 |
+
)
|
894 |
+
class DebertaModel(DebertaPreTrainedModel):
|
895 |
+
def __init__(self, config):
|
896 |
+
super().__init__(config)
|
897 |
+
|
898 |
+
self.embeddings = DebertaEmbeddings(config)
|
899 |
+
self.encoder = DebertaEncoder(config)
|
900 |
+
self.z_steps = 0
|
901 |
+
self.config = config
|
902 |
+
self.init_weights()
|
903 |
+
|
904 |
+
def get_input_embeddings(self):
|
905 |
+
return self.embeddings.word_embeddings
|
906 |
+
|
907 |
+
def set_input_embeddings(self, new_embeddings):
|
908 |
+
self.embeddings.word_embeddings = new_embeddings
|
909 |
+
|
910 |
+
def _prune_heads(self, heads_to_prune):
|
911 |
+
"""
|
912 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
913 |
+
class PreTrainedModel
|
914 |
+
"""
|
915 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
916 |
+
|
917 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
918 |
+
def forward(
|
919 |
+
self,
|
920 |
+
input_ids=None,
|
921 |
+
attention_mask=None,
|
922 |
+
token_type_ids=None,
|
923 |
+
position_ids=None,
|
924 |
+
inputs_embeds=None,
|
925 |
+
output_attentions=None,
|
926 |
+
output_hidden_states=None,
|
927 |
+
return_dict=None,
|
928 |
+
past_key_values=None,
|
929 |
+
):
|
930 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
931 |
+
output_hidden_states = (
|
932 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
933 |
+
)
|
934 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
935 |
+
|
936 |
+
if input_ids is not None and inputs_embeds is not None:
|
937 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
938 |
+
elif input_ids is not None:
|
939 |
+
input_shape = input_ids.size()
|
940 |
+
batch_size, seq_length = input_shape
|
941 |
+
elif inputs_embeds is not None:
|
942 |
+
input_shape = inputs_embeds.size()[:-1]
|
943 |
+
batch_size, seq_length = input_shape
|
944 |
+
else:
|
945 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
946 |
+
|
947 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
948 |
+
|
949 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
950 |
+
|
951 |
+
embedding_mask = attention_mask[:, past_key_values_length:].contiguous()
|
952 |
+
if attention_mask is None:
|
953 |
+
# attention_mask = torch.ones(input_shape, device=device)
|
954 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
955 |
+
if token_type_ids is None:
|
956 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
957 |
+
|
958 |
+
embedding_output = self.embeddings(
|
959 |
+
input_ids=input_ids,
|
960 |
+
token_type_ids=token_type_ids,
|
961 |
+
position_ids=position_ids,
|
962 |
+
mask=embedding_mask,
|
963 |
+
inputs_embeds=inputs_embeds,
|
964 |
+
past_key_values_length=past_key_values_length,
|
965 |
+
)
|
966 |
+
|
967 |
+
encoder_outputs = self.encoder(
|
968 |
+
embedding_output,
|
969 |
+
attention_mask,
|
970 |
+
output_hidden_states=True,
|
971 |
+
output_attentions=output_attentions,
|
972 |
+
return_dict=return_dict,
|
973 |
+
past_key_values=past_key_values,
|
974 |
+
)
|
975 |
+
encoded_layers = encoder_outputs[1]
|
976 |
+
|
977 |
+
if self.z_steps > 1:
|
978 |
+
hidden_states = encoded_layers[-2]
|
979 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
980 |
+
query_states = encoded_layers[-1]
|
981 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
982 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
983 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
984 |
+
for layer in layers[1:]:
|
985 |
+
query_states = layer(
|
986 |
+
hidden_states,
|
987 |
+
attention_mask,
|
988 |
+
return_att=False,
|
989 |
+
query_states=query_states,
|
990 |
+
relative_pos=rel_pos,
|
991 |
+
rel_embeddings=rel_embeddings,
|
992 |
+
)
|
993 |
+
encoded_layers.append(query_states)
|
994 |
+
|
995 |
+
sequence_output = encoded_layers[-1]
|
996 |
+
|
997 |
+
if not return_dict:
|
998 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
999 |
+
|
1000 |
+
return BaseModelOutput(
|
1001 |
+
last_hidden_state=sequence_output,
|
1002 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
1003 |
+
attentions=encoder_outputs.attentions,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
|
1007 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top. """, DEBERTA_START_DOCSTRING)
|
1008 |
+
class DebertaForMaskedLM(DebertaPreTrainedModel):
|
1009 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1010 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1011 |
+
|
1012 |
+
def __init__(self, config):
|
1013 |
+
super().__init__(config)
|
1014 |
+
|
1015 |
+
self.deberta = DebertaModel(config)
|
1016 |
+
self.cls = DebertaOnlyMLMHead(config)
|
1017 |
+
|
1018 |
+
self.init_weights()
|
1019 |
+
|
1020 |
+
def get_output_embeddings(self):
|
1021 |
+
return self.cls.predictions.decoder
|
1022 |
+
|
1023 |
+
def set_output_embeddings(self, new_embeddings):
|
1024 |
+
self.cls.predictions.decoder = new_embeddings
|
1025 |
+
|
1026 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1027 |
+
def forward(
|
1028 |
+
self,
|
1029 |
+
input_ids=None,
|
1030 |
+
attention_mask=None,
|
1031 |
+
token_type_ids=None,
|
1032 |
+
position_ids=None,
|
1033 |
+
inputs_embeds=None,
|
1034 |
+
labels=None,
|
1035 |
+
output_attentions=None,
|
1036 |
+
output_hidden_states=None,
|
1037 |
+
return_dict=None,
|
1038 |
+
):
|
1039 |
+
r"""
|
1040 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1041 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1042 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1043 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1044 |
+
"""
|
1045 |
+
|
1046 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1047 |
+
|
1048 |
+
outputs = self.deberta(
|
1049 |
+
input_ids,
|
1050 |
+
attention_mask=attention_mask,
|
1051 |
+
token_type_ids=token_type_ids,
|
1052 |
+
position_ids=position_ids,
|
1053 |
+
inputs_embeds=inputs_embeds,
|
1054 |
+
output_attentions=output_attentions,
|
1055 |
+
output_hidden_states=output_hidden_states,
|
1056 |
+
return_dict=return_dict,
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
sequence_output = outputs[0]
|
1060 |
+
prediction_scores = self.cls(sequence_output)
|
1061 |
+
|
1062 |
+
masked_lm_loss = None
|
1063 |
+
if labels is not None:
|
1064 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1065 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
output = (prediction_scores,) + outputs[1:]
|
1069 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1070 |
+
|
1071 |
+
return MaskedLMOutput(
|
1072 |
+
loss=masked_lm_loss,
|
1073 |
+
logits=prediction_scores,
|
1074 |
+
hidden_states=outputs.hidden_states,
|
1075 |
+
attentions=outputs.attentions,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
|
1079 |
+
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
1080 |
+
class DebertaPredictionHeadTransform(nn.Module):
|
1081 |
+
def __init__(self, config):
|
1082 |
+
super().__init__()
|
1083 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1084 |
+
if isinstance(config.hidden_act, str):
|
1085 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1086 |
+
else:
|
1087 |
+
self.transform_act_fn = config.hidden_act
|
1088 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1089 |
+
|
1090 |
+
def forward(self, hidden_states):
|
1091 |
+
hidden_states = self.dense(hidden_states)
|
1092 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1093 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1094 |
+
return hidden_states
|
1095 |
+
|
1096 |
+
|
1097 |
+
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
1098 |
+
class DebertaLMPredictionHead(nn.Module):
|
1099 |
+
def __init__(self, config):
|
1100 |
+
super().__init__()
|
1101 |
+
self.transform = DebertaPredictionHeadTransform(config)
|
1102 |
+
|
1103 |
+
# The output weights are the same as the input embeddings, but there is
|
1104 |
+
# an output-only bias for each token.
|
1105 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1106 |
+
|
1107 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1108 |
+
|
1109 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1110 |
+
self.decoder.bias = self.bias
|
1111 |
+
|
1112 |
+
def forward(self, hidden_states):
|
1113 |
+
hidden_states = self.transform(hidden_states)
|
1114 |
+
hidden_states = self.decoder(hidden_states)
|
1115 |
+
return hidden_states
|
1116 |
+
|
1117 |
+
|
1118 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1119 |
+
class DebertaOnlyMLMHead(nn.Module):
|
1120 |
+
def __init__(self, config):
|
1121 |
+
super().__init__()
|
1122 |
+
self.predictions = DebertaLMPredictionHead(config)
|
1123 |
+
|
1124 |
+
def forward(self, sequence_output):
|
1125 |
+
prediction_scores = self.predictions(sequence_output)
|
1126 |
+
return prediction_scores
|
1127 |
+
|
1128 |
+
|
1129 |
+
@add_start_docstrings(
|
1130 |
+
"""
|
1131 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1132 |
+
pooled output) e.g. for GLUE tasks.
|
1133 |
+
""",
|
1134 |
+
DEBERTA_START_DOCSTRING,
|
1135 |
+
)
|
1136 |
+
class DebertaForSequenceClassification(DebertaPreTrainedModel):
|
1137 |
+
def __init__(self, config):
|
1138 |
+
super().__init__(config)
|
1139 |
+
|
1140 |
+
num_labels = getattr(config, "num_labels", 2)
|
1141 |
+
self.num_labels = num_labels
|
1142 |
+
|
1143 |
+
self.deberta = DebertaModel(config)
|
1144 |
+
self.pooler = ContextPooler(config)
|
1145 |
+
output_dim = self.pooler.output_dim
|
1146 |
+
|
1147 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
1148 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1149 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1150 |
+
self.dropout = StableDropout(drop_out)
|
1151 |
+
|
1152 |
+
self.init_weights()
|
1153 |
+
|
1154 |
+
def get_input_embeddings(self):
|
1155 |
+
return self.deberta.get_input_embeddings()
|
1156 |
+
|
1157 |
+
def set_input_embeddings(self, new_embeddings):
|
1158 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1159 |
+
|
1160 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1161 |
+
def forward(
|
1162 |
+
self,
|
1163 |
+
input_ids=None,
|
1164 |
+
attention_mask=None,
|
1165 |
+
token_type_ids=None,
|
1166 |
+
position_ids=None,
|
1167 |
+
inputs_embeds=None,
|
1168 |
+
labels=None,
|
1169 |
+
output_attentions=None,
|
1170 |
+
output_hidden_states=None,
|
1171 |
+
return_dict=None,
|
1172 |
+
):
|
1173 |
+
r"""
|
1174 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1175 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1176 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1177 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1178 |
+
"""
|
1179 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1180 |
+
|
1181 |
+
outputs = self.deberta(
|
1182 |
+
input_ids,
|
1183 |
+
token_type_ids=token_type_ids,
|
1184 |
+
attention_mask=attention_mask,
|
1185 |
+
position_ids=position_ids,
|
1186 |
+
inputs_embeds=inputs_embeds,
|
1187 |
+
output_attentions=output_attentions,
|
1188 |
+
output_hidden_states=output_hidden_states,
|
1189 |
+
return_dict=return_dict,
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
encoder_layer = outputs[0]
|
1193 |
+
pooled_output = self.pooler(encoder_layer)
|
1194 |
+
pooled_output = self.dropout(pooled_output)
|
1195 |
+
logits = self.classifier(pooled_output)
|
1196 |
+
|
1197 |
+
loss = None
|
1198 |
+
if labels is not None:
|
1199 |
+
if self.num_labels == 1:
|
1200 |
+
# regression task
|
1201 |
+
loss_fn = nn.MSELoss()
|
1202 |
+
logits = logits.view(-1).to(labels.dtype)
|
1203 |
+
loss = loss_fn(logits, labels.view(-1))
|
1204 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1205 |
+
label_index = (labels >= 0).nonzero()
|
1206 |
+
labels = labels.long()
|
1207 |
+
if label_index.size(0) > 0:
|
1208 |
+
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
|
1209 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1210 |
+
loss_fct = CrossEntropyLoss()
|
1211 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1212 |
+
else:
|
1213 |
+
loss = torch.tensor(0).to(logits)
|
1214 |
+
else:
|
1215 |
+
log_softmax = nn.LogSoftmax(-1)
|
1216 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1217 |
+
if not return_dict:
|
1218 |
+
output = (logits,) + outputs[1:]
|
1219 |
+
return ((loss,) + output) if loss is not None else output
|
1220 |
+
else:
|
1221 |
+
return SequenceClassifierOutput(
|
1222 |
+
loss=loss,
|
1223 |
+
logits=logits,
|
1224 |
+
hidden_states=outputs.hidden_states,
|
1225 |
+
attentions=outputs.attentions,
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
|
1229 |
+
@add_start_docstrings(
|
1230 |
+
"""
|
1231 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1232 |
+
Named-Entity-Recognition (NER) tasks.
|
1233 |
+
""",
|
1234 |
+
DEBERTA_START_DOCSTRING,
|
1235 |
+
)
|
1236 |
+
class DebertaForTokenClassification(DebertaPreTrainedModel):
|
1237 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1238 |
+
|
1239 |
+
def __init__(self, config):
|
1240 |
+
super().__init__(config)
|
1241 |
+
self.num_labels = config.num_labels
|
1242 |
+
|
1243 |
+
self.deberta = DebertaModel(config)
|
1244 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1245 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1246 |
+
|
1247 |
+
for param in self.deberta.parameters():
|
1248 |
+
param.requires_grad = False
|
1249 |
+
|
1250 |
+
self.init_weights()
|
1251 |
+
|
1252 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1253 |
+
def forward(
|
1254 |
+
self,
|
1255 |
+
input_ids=None,
|
1256 |
+
attention_mask=None,
|
1257 |
+
token_type_ids=None,
|
1258 |
+
position_ids=None,
|
1259 |
+
inputs_embeds=None,
|
1260 |
+
labels=None,
|
1261 |
+
output_attentions=None,
|
1262 |
+
output_hidden_states=None,
|
1263 |
+
return_dict=None,
|
1264 |
+
):
|
1265 |
+
r"""
|
1266 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1267 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
1268 |
+
1]``.
|
1269 |
+
"""
|
1270 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1271 |
+
|
1272 |
+
outputs = self.deberta(
|
1273 |
+
input_ids,
|
1274 |
+
attention_mask=attention_mask,
|
1275 |
+
token_type_ids=token_type_ids,
|
1276 |
+
position_ids=position_ids,
|
1277 |
+
inputs_embeds=inputs_embeds,
|
1278 |
+
output_attentions=output_attentions,
|
1279 |
+
output_hidden_states=output_hidden_states,
|
1280 |
+
return_dict=return_dict,
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
sequence_output = outputs[0]
|
1284 |
+
|
1285 |
+
sequence_output = self.dropout(sequence_output)
|
1286 |
+
logits = self.classifier(sequence_output)
|
1287 |
+
|
1288 |
+
loss = None
|
1289 |
+
if labels is not None:
|
1290 |
+
loss_fct = CrossEntropyLoss()
|
1291 |
+
# Only keep active parts of the loss
|
1292 |
+
if attention_mask is not None:
|
1293 |
+
active_loss = attention_mask.view(-1) == 1
|
1294 |
+
active_logits = logits.view(-1, self.num_labels)
|
1295 |
+
active_labels = torch.where(
|
1296 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1297 |
+
)
|
1298 |
+
loss = loss_fct(active_logits, active_labels)
|
1299 |
+
else:
|
1300 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1301 |
+
|
1302 |
+
if not return_dict:
|
1303 |
+
output = (logits,) + outputs[1:]
|
1304 |
+
return ((loss,) + output) if loss is not None else output
|
1305 |
+
|
1306 |
+
return TokenClassifierOutput(
|
1307 |
+
loss=loss,
|
1308 |
+
logits=logits,
|
1309 |
+
hidden_states=outputs.hidden_states,
|
1310 |
+
attentions=outputs.attentions,
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
|
1314 |
+
@add_start_docstrings(
|
1315 |
+
"""
|
1316 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1317 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1318 |
+
""",
|
1319 |
+
DEBERTA_START_DOCSTRING,
|
1320 |
+
)
|
1321 |
+
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
|
1322 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1323 |
+
|
1324 |
+
def __init__(self, config):
|
1325 |
+
super().__init__(config)
|
1326 |
+
self.num_labels = config.num_labels
|
1327 |
+
|
1328 |
+
self.deberta = DebertaModel(config)
|
1329 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1330 |
+
|
1331 |
+
self.init_weights()
|
1332 |
+
|
1333 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1334 |
+
def forward(
|
1335 |
+
self,
|
1336 |
+
input_ids=None,
|
1337 |
+
attention_mask=None,
|
1338 |
+
token_type_ids=None,
|
1339 |
+
position_ids=None,
|
1340 |
+
inputs_embeds=None,
|
1341 |
+
start_positions=None,
|
1342 |
+
end_positions=None,
|
1343 |
+
output_attentions=None,
|
1344 |
+
output_hidden_states=None,
|
1345 |
+
return_dict=None,
|
1346 |
+
):
|
1347 |
+
r"""
|
1348 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1349 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1350 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1351 |
+
sequence are not taken into account for computing the loss.
|
1352 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1353 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1354 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1355 |
+
sequence are not taken into account for computing the loss.
|
1356 |
+
"""
|
1357 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1358 |
+
|
1359 |
+
outputs = self.deberta(
|
1360 |
+
input_ids,
|
1361 |
+
attention_mask=attention_mask,
|
1362 |
+
token_type_ids=token_type_ids,
|
1363 |
+
position_ids=position_ids,
|
1364 |
+
inputs_embeds=inputs_embeds,
|
1365 |
+
output_attentions=output_attentions,
|
1366 |
+
output_hidden_states=output_hidden_states,
|
1367 |
+
return_dict=return_dict,
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
sequence_output = outputs[0]
|
1371 |
+
|
1372 |
+
logits = self.qa_outputs(sequence_output)
|
1373 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1374 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1375 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1376 |
+
|
1377 |
+
total_loss = None
|
1378 |
+
if start_positions is not None and end_positions is not None:
|
1379 |
+
# If we are on multi-GPU, split add a dimension
|
1380 |
+
if len(start_positions.size()) > 1:
|
1381 |
+
start_positions = start_positions.squeeze(-1)
|
1382 |
+
if len(end_positions.size()) > 1:
|
1383 |
+
end_positions = end_positions.squeeze(-1)
|
1384 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1385 |
+
ignored_index = start_logits.size(1)
|
1386 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1387 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1388 |
+
|
1389 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1390 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1391 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1392 |
+
total_loss = (start_loss + end_loss) / 2
|
1393 |
+
|
1394 |
+
if not return_dict:
|
1395 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1396 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1397 |
+
|
1398 |
+
return QuestionAnsweringModelOutput(
|
1399 |
+
loss=total_loss,
|
1400 |
+
start_logits=start_logits,
|
1401 |
+
end_logits=end_logits,
|
1402 |
+
hidden_states=outputs.hidden_states,
|
1403 |
+
attentions=outputs.attentions,
|
1404 |
+
)
|
soft_prompt/model/debertaV2.py
ADDED
@@ -0,0 +1,1509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DeBERTa-v2 model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from collections.abc import Sequence
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from torch import _softmax_backward_data, nn
|
23 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
24 |
+
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutput,
|
30 |
+
MaskedLMOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import logging
|
37 |
+
from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CONFIG_FOR_DOC = "DebertaV2Config"
|
43 |
+
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
|
44 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
45 |
+
|
46 |
+
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"microsoft/deberta-v2-xlarge",
|
48 |
+
"microsoft/deberta-v2-xxlarge",
|
49 |
+
"microsoft/deberta-v2-xlarge-mnli",
|
50 |
+
"microsoft/deberta-v2-xxlarge-mnli",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
|
55 |
+
class ContextPooler(nn.Module):
|
56 |
+
def __init__(self, config):
|
57 |
+
super().__init__()
|
58 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
59 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
60 |
+
self.config = config
|
61 |
+
|
62 |
+
def forward(self, hidden_states):
|
63 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
64 |
+
# to the first token.
|
65 |
+
|
66 |
+
context_token = hidden_states[:, 0]
|
67 |
+
context_token = self.dropout(context_token)
|
68 |
+
pooled_output = self.dense(context_token)
|
69 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
70 |
+
return pooled_output
|
71 |
+
|
72 |
+
@property
|
73 |
+
def output_dim(self):
|
74 |
+
return self.config.hidden_size
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
|
78 |
+
class XSoftmax(torch.autograd.Function):
|
79 |
+
"""
|
80 |
+
Masked Softmax which is optimized for saving memory
|
81 |
+
Args:
|
82 |
+
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
|
83 |
+
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
84 |
+
dim (int): The dimension that will apply softmax
|
85 |
+
Example::
|
86 |
+
>>> import torch
|
87 |
+
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
|
88 |
+
>>> # Make a tensor
|
89 |
+
>>> x = torch.randn([4,20,100])
|
90 |
+
>>> # Create a mask
|
91 |
+
>>> mask = (x>0).int()
|
92 |
+
>>> y = XSoftmax.apply(x, mask, dim=-1)
|
93 |
+
"""
|
94 |
+
|
95 |
+
@staticmethod
|
96 |
+
def forward(self, input, mask, dim):
|
97 |
+
self.dim = dim
|
98 |
+
rmask = ~(mask.bool())
|
99 |
+
|
100 |
+
output = input.masked_fill(rmask, float("-inf"))
|
101 |
+
output = torch.softmax(output, self.dim)
|
102 |
+
output.masked_fill_(rmask, 0)
|
103 |
+
self.save_for_backward(output)
|
104 |
+
return output
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def backward(self, grad_output):
|
108 |
+
(output,) = self.saved_tensors
|
109 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output)
|
110 |
+
return inputGrad, None, None
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
|
114 |
+
class DropoutContext(object):
|
115 |
+
def __init__(self):
|
116 |
+
self.dropout = 0
|
117 |
+
self.mask = None
|
118 |
+
self.scale = 1
|
119 |
+
self.reuse_mask = True
|
120 |
+
|
121 |
+
|
122 |
+
# Copied from transformers.models.deberta.modeling_deberta.get_mask
|
123 |
+
def get_mask(input, local_context):
|
124 |
+
if not isinstance(local_context, DropoutContext):
|
125 |
+
dropout = local_context
|
126 |
+
mask = None
|
127 |
+
else:
|
128 |
+
dropout = local_context.dropout
|
129 |
+
dropout *= local_context.scale
|
130 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
131 |
+
|
132 |
+
if dropout > 0 and mask is None:
|
133 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
|
134 |
+
|
135 |
+
if isinstance(local_context, DropoutContext):
|
136 |
+
if local_context.mask is None:
|
137 |
+
local_context.mask = mask
|
138 |
+
|
139 |
+
return mask, dropout
|
140 |
+
|
141 |
+
|
142 |
+
# Copied from transformers.models.deberta.modeling_deberta.XDropout
|
143 |
+
class XDropout(torch.autograd.Function):
|
144 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
145 |
+
|
146 |
+
@staticmethod
|
147 |
+
def forward(ctx, input, local_ctx):
|
148 |
+
mask, dropout = get_mask(input, local_ctx)
|
149 |
+
ctx.scale = 1.0 / (1 - dropout)
|
150 |
+
if dropout > 0:
|
151 |
+
ctx.save_for_backward(mask)
|
152 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
153 |
+
else:
|
154 |
+
return input
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def backward(ctx, grad_output):
|
158 |
+
if ctx.scale > 1:
|
159 |
+
(mask,) = ctx.saved_tensors
|
160 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
161 |
+
else:
|
162 |
+
return grad_output, None
|
163 |
+
|
164 |
+
|
165 |
+
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
|
166 |
+
class StableDropout(nn.Module):
|
167 |
+
"""
|
168 |
+
Optimized dropout module for stabilizing the training
|
169 |
+
Args:
|
170 |
+
drop_prob (float): the dropout probabilities
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self, drop_prob):
|
174 |
+
super().__init__()
|
175 |
+
self.drop_prob = drop_prob
|
176 |
+
self.count = 0
|
177 |
+
self.context_stack = None
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
"""
|
181 |
+
Call the module
|
182 |
+
Args:
|
183 |
+
x (:obj:`torch.tensor`): The input tensor to apply dropout
|
184 |
+
"""
|
185 |
+
if self.training and self.drop_prob > 0:
|
186 |
+
return XDropout.apply(x, self.get_context())
|
187 |
+
return x
|
188 |
+
|
189 |
+
def clear_context(self):
|
190 |
+
self.count = 0
|
191 |
+
self.context_stack = None
|
192 |
+
|
193 |
+
def init_context(self, reuse_mask=True, scale=1):
|
194 |
+
if self.context_stack is None:
|
195 |
+
self.context_stack = []
|
196 |
+
self.count = 0
|
197 |
+
for c in self.context_stack:
|
198 |
+
c.reuse_mask = reuse_mask
|
199 |
+
c.scale = scale
|
200 |
+
|
201 |
+
def get_context(self):
|
202 |
+
if self.context_stack is not None:
|
203 |
+
if self.count >= len(self.context_stack):
|
204 |
+
self.context_stack.append(DropoutContext())
|
205 |
+
ctx = self.context_stack[self.count]
|
206 |
+
ctx.dropout = self.drop_prob
|
207 |
+
self.count += 1
|
208 |
+
return ctx
|
209 |
+
else:
|
210 |
+
return self.drop_prob
|
211 |
+
|
212 |
+
|
213 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
|
214 |
+
class DebertaV2SelfOutput(nn.Module):
|
215 |
+
def __init__(self, config):
|
216 |
+
super().__init__()
|
217 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
218 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
219 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
220 |
+
|
221 |
+
def forward(self, hidden_states, input_tensor):
|
222 |
+
hidden_states = self.dense(hidden_states)
|
223 |
+
hidden_states = self.dropout(hidden_states)
|
224 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
225 |
+
return hidden_states
|
226 |
+
|
227 |
+
|
228 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
|
229 |
+
class DebertaV2Attention(nn.Module):
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
self.self = DisentangledSelfAttention(config)
|
233 |
+
self.output = DebertaV2SelfOutput(config)
|
234 |
+
self.config = config
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states,
|
239 |
+
attention_mask,
|
240 |
+
return_att=False,
|
241 |
+
query_states=None,
|
242 |
+
relative_pos=None,
|
243 |
+
rel_embeddings=None,
|
244 |
+
past_key_value=None,
|
245 |
+
):
|
246 |
+
self_output = self.self(
|
247 |
+
hidden_states,
|
248 |
+
attention_mask,
|
249 |
+
return_att,
|
250 |
+
query_states=query_states,
|
251 |
+
relative_pos=relative_pos,
|
252 |
+
rel_embeddings=rel_embeddings,
|
253 |
+
past_key_value=past_key_value,
|
254 |
+
)
|
255 |
+
if return_att:
|
256 |
+
self_output, att_matrix = self_output
|
257 |
+
if query_states is None:
|
258 |
+
query_states = hidden_states
|
259 |
+
attention_output = self.output(self_output, query_states)
|
260 |
+
|
261 |
+
if return_att:
|
262 |
+
return (attention_output, att_matrix)
|
263 |
+
else:
|
264 |
+
return attention_output
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
|
268 |
+
class DebertaV2Intermediate(nn.Module):
|
269 |
+
def __init__(self, config):
|
270 |
+
super().__init__()
|
271 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
272 |
+
if isinstance(config.hidden_act, str):
|
273 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
274 |
+
else:
|
275 |
+
self.intermediate_act_fn = config.hidden_act
|
276 |
+
|
277 |
+
def forward(self, hidden_states):
|
278 |
+
hidden_states = self.dense(hidden_states)
|
279 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
280 |
+
return hidden_states
|
281 |
+
|
282 |
+
|
283 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
|
284 |
+
class DebertaV2Output(nn.Module):
|
285 |
+
def __init__(self, config):
|
286 |
+
super().__init__()
|
287 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
288 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
289 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
290 |
+
self.config = config
|
291 |
+
|
292 |
+
def forward(self, hidden_states, input_tensor):
|
293 |
+
hidden_states = self.dense(hidden_states)
|
294 |
+
hidden_states = self.dropout(hidden_states)
|
295 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
296 |
+
return hidden_states
|
297 |
+
|
298 |
+
|
299 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
|
300 |
+
class DebertaV2Layer(nn.Module):
|
301 |
+
def __init__(self, config):
|
302 |
+
super().__init__()
|
303 |
+
self.attention = DebertaV2Attention(config)
|
304 |
+
self.intermediate = DebertaV2Intermediate(config)
|
305 |
+
self.output = DebertaV2Output(config)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
attention_mask,
|
311 |
+
return_att=False,
|
312 |
+
query_states=None,
|
313 |
+
relative_pos=None,
|
314 |
+
rel_embeddings=None,
|
315 |
+
past_key_value=None,
|
316 |
+
):
|
317 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
318 |
+
attention_output = self.attention(
|
319 |
+
hidden_states,
|
320 |
+
attention_mask,
|
321 |
+
return_att=return_att,
|
322 |
+
query_states=query_states,
|
323 |
+
relative_pos=relative_pos,
|
324 |
+
rel_embeddings=rel_embeddings,
|
325 |
+
past_key_value=self_attn_past_key_value,
|
326 |
+
)
|
327 |
+
if return_att:
|
328 |
+
attention_output, att_matrix = attention_output
|
329 |
+
intermediate_output = self.intermediate(attention_output)
|
330 |
+
layer_output = self.output(intermediate_output, attention_output)
|
331 |
+
if return_att:
|
332 |
+
return (layer_output, att_matrix)
|
333 |
+
else:
|
334 |
+
return layer_output
|
335 |
+
|
336 |
+
|
337 |
+
class ConvLayer(nn.Module):
|
338 |
+
def __init__(self, config):
|
339 |
+
super().__init__()
|
340 |
+
kernel_size = getattr(config, "conv_kernel_size", 3)
|
341 |
+
groups = getattr(config, "conv_groups", 1)
|
342 |
+
self.conv_act = getattr(config, "conv_act", "tanh")
|
343 |
+
self.conv = nn.Conv1d(
|
344 |
+
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
|
345 |
+
)
|
346 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
347 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
348 |
+
self.config = config
|
349 |
+
|
350 |
+
def forward(self, hidden_states, residual_states, input_mask):
|
351 |
+
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
|
352 |
+
rmask = (1 - input_mask).bool()
|
353 |
+
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
354 |
+
out = ACT2FN[self.conv_act](self.dropout(out))
|
355 |
+
|
356 |
+
layer_norm_input = residual_states + out
|
357 |
+
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
|
358 |
+
|
359 |
+
if input_mask is None:
|
360 |
+
output_states = output
|
361 |
+
else:
|
362 |
+
if input_mask.dim() != layer_norm_input.dim():
|
363 |
+
if input_mask.dim() == 4:
|
364 |
+
input_mask = input_mask.squeeze(1).squeeze(1)
|
365 |
+
input_mask = input_mask.unsqueeze(2)
|
366 |
+
|
367 |
+
input_mask = input_mask.to(output.dtype)
|
368 |
+
output_states = output * input_mask
|
369 |
+
|
370 |
+
return output_states
|
371 |
+
|
372 |
+
|
373 |
+
class DebertaV2Encoder(nn.Module):
|
374 |
+
"""Modified BertEncoder with relative position bias support"""
|
375 |
+
|
376 |
+
def __init__(self, config):
|
377 |
+
super().__init__()
|
378 |
+
|
379 |
+
self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
|
380 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
381 |
+
|
382 |
+
if self.relative_attention:
|
383 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
384 |
+
if self.max_relative_positions < 1:
|
385 |
+
self.max_relative_positions = config.max_position_embeddings
|
386 |
+
|
387 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
388 |
+
pos_ebd_size = self.max_relative_positions * 2
|
389 |
+
|
390 |
+
if self.position_buckets > 0:
|
391 |
+
pos_ebd_size = self.position_buckets * 2
|
392 |
+
|
393 |
+
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
394 |
+
|
395 |
+
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
|
396 |
+
|
397 |
+
if "layer_norm" in self.norm_rel_ebd:
|
398 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
399 |
+
|
400 |
+
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
|
401 |
+
|
402 |
+
def get_rel_embedding(self):
|
403 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
404 |
+
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
|
405 |
+
rel_embeddings = self.LayerNorm(rel_embeddings)
|
406 |
+
return rel_embeddings
|
407 |
+
|
408 |
+
def get_attention_mask(self, attention_mask):
|
409 |
+
if attention_mask.dim() <= 2:
|
410 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
411 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
412 |
+
attention_mask = attention_mask.byte()
|
413 |
+
elif attention_mask.dim() == 3:
|
414 |
+
attention_mask = attention_mask.unsqueeze(1)
|
415 |
+
|
416 |
+
return attention_mask
|
417 |
+
|
418 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
419 |
+
if self.relative_attention and relative_pos is None:
|
420 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
421 |
+
relative_pos = build_relative_position(
|
422 |
+
q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
|
423 |
+
)
|
424 |
+
return relative_pos
|
425 |
+
|
426 |
+
def forward(
|
427 |
+
self,
|
428 |
+
hidden_states,
|
429 |
+
attention_mask,
|
430 |
+
output_hidden_states=True,
|
431 |
+
output_attentions=False,
|
432 |
+
query_states=None,
|
433 |
+
relative_pos=None,
|
434 |
+
return_dict=True,
|
435 |
+
past_key_values=None,
|
436 |
+
):
|
437 |
+
if attention_mask.dim() <= 2:
|
438 |
+
input_mask = attention_mask
|
439 |
+
else:
|
440 |
+
input_mask = (attention_mask.sum(-2) > 0).byte()
|
441 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
442 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
443 |
+
|
444 |
+
all_hidden_states = () if output_hidden_states else None
|
445 |
+
all_attentions = () if output_attentions else None
|
446 |
+
|
447 |
+
if isinstance(hidden_states, Sequence): # False
|
448 |
+
next_kv = hidden_states[0]
|
449 |
+
else:
|
450 |
+
next_kv = hidden_states
|
451 |
+
rel_embeddings = self.get_rel_embedding()
|
452 |
+
output_states = next_kv
|
453 |
+
for i, layer_module in enumerate(self.layer):
|
454 |
+
|
455 |
+
if output_hidden_states:
|
456 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
457 |
+
|
458 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
459 |
+
|
460 |
+
output_states = layer_module(
|
461 |
+
next_kv,
|
462 |
+
attention_mask,
|
463 |
+
output_attentions,
|
464 |
+
query_states=query_states,
|
465 |
+
relative_pos=relative_pos,
|
466 |
+
rel_embeddings=rel_embeddings,
|
467 |
+
past_key_value=past_key_value,
|
468 |
+
)
|
469 |
+
if output_attentions:
|
470 |
+
output_states, att_m = output_states
|
471 |
+
|
472 |
+
if i == 0 and self.conv is not None:
|
473 |
+
if past_key_values is not None:
|
474 |
+
past_key_value_length = past_key_values[0][0].shape[2]
|
475 |
+
input_mask = input_mask[:, past_key_value_length:].contiguous()
|
476 |
+
output_states = self.conv(hidden_states, output_states, input_mask)
|
477 |
+
|
478 |
+
if query_states is not None:
|
479 |
+
query_states = output_states
|
480 |
+
if isinstance(hidden_states, Sequence):
|
481 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
482 |
+
else:
|
483 |
+
next_kv = output_states
|
484 |
+
|
485 |
+
if output_attentions:
|
486 |
+
all_attentions = all_attentions + (att_m,)
|
487 |
+
|
488 |
+
if output_hidden_states:
|
489 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
490 |
+
|
491 |
+
if not return_dict:
|
492 |
+
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
|
493 |
+
return BaseModelOutput(
|
494 |
+
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
499 |
+
sign = np.sign(relative_pos)
|
500 |
+
mid = bucket_size // 2
|
501 |
+
abs_pos = np.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos))
|
502 |
+
log_pos = np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1)) + mid
|
503 |
+
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
|
504 |
+
return bucket_pos
|
505 |
+
|
506 |
+
|
507 |
+
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
|
508 |
+
"""
|
509 |
+
Build relative position according to the query and key
|
510 |
+
We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
|
511 |
+
:math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
|
512 |
+
P_q - P_k`
|
513 |
+
Args:
|
514 |
+
query_size (int): the length of query
|
515 |
+
key_size (int): the length of key
|
516 |
+
bucket_size (int): the size of position bucket
|
517 |
+
max_position (int): the maximum allowed absolute position
|
518 |
+
Return:
|
519 |
+
:obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
520 |
+
"""
|
521 |
+
q_ids = np.arange(0, query_size)
|
522 |
+
k_ids = np.arange(0, key_size)
|
523 |
+
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
|
524 |
+
if bucket_size > 0 and max_position > 0:
|
525 |
+
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
526 |
+
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
|
527 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
528 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
529 |
+
return rel_pos_ids
|
530 |
+
|
531 |
+
|
532 |
+
@torch.jit.script
|
533 |
+
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
|
534 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
535 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
536 |
+
|
537 |
+
|
538 |
+
@torch.jit.script
|
539 |
+
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
|
540 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
541 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
542 |
+
|
543 |
+
|
544 |
+
@torch.jit.script
|
545 |
+
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
|
546 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
547 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
548 |
+
|
549 |
+
|
550 |
+
class DisentangledSelfAttention(nn.Module):
|
551 |
+
"""
|
552 |
+
Disentangled self-attention module
|
553 |
+
Parameters:
|
554 |
+
config (:obj:`DebertaV2Config`):
|
555 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
556 |
+
`BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config`
|
557 |
+
"""
|
558 |
+
|
559 |
+
def __init__(self, config):
|
560 |
+
super().__init__()
|
561 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
562 |
+
raise ValueError(
|
563 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
564 |
+
f"heads ({config.num_attention_heads})"
|
565 |
+
)
|
566 |
+
self.num_attention_heads = config.num_attention_heads
|
567 |
+
_attention_head_size = config.hidden_size // config.num_attention_heads
|
568 |
+
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
|
569 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
570 |
+
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
571 |
+
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
572 |
+
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
573 |
+
|
574 |
+
self.share_att_key = getattr(config, "share_att_key", False)
|
575 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
576 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
577 |
+
|
578 |
+
if self.relative_attention:
|
579 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
580 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
581 |
+
if self.max_relative_positions < 1:
|
582 |
+
self.max_relative_positions = config.max_position_embeddings
|
583 |
+
self.pos_ebd_size = self.max_relative_positions
|
584 |
+
if self.position_buckets > 0:
|
585 |
+
self.pos_ebd_size = self.position_buckets
|
586 |
+
|
587 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
588 |
+
|
589 |
+
if not self.share_att_key:
|
590 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
591 |
+
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
592 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
593 |
+
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
594 |
+
|
595 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
596 |
+
|
597 |
+
def transpose_for_scores(self, x, attention_heads, past_key_value=None):
|
598 |
+
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
599 |
+
x = x.view(*new_x_shape)
|
600 |
+
x = x.permute(0, 2, 1, 3)
|
601 |
+
if past_key_value is not None:
|
602 |
+
x = torch.cat([past_key_value, x], dim=2)
|
603 |
+
new_x_shape = x.shape
|
604 |
+
return x.contiguous().view(-1, new_x_shape[2], new_x_shape[-1])
|
605 |
+
# return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
606 |
+
|
607 |
+
def forward(
|
608 |
+
self,
|
609 |
+
hidden_states,
|
610 |
+
attention_mask,
|
611 |
+
return_att=False,
|
612 |
+
query_states=None,
|
613 |
+
relative_pos=None,
|
614 |
+
rel_embeddings=None,
|
615 |
+
past_key_value=None,
|
616 |
+
):
|
617 |
+
"""
|
618 |
+
Call the module
|
619 |
+
Args:
|
620 |
+
hidden_states (:obj:`torch.FloatTensor`):
|
621 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
622 |
+
`Attention(Q,K,V)`
|
623 |
+
attention_mask (:obj:`torch.ByteTensor`):
|
624 |
+
An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
|
625 |
+
sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
|
626 |
+
th token.
|
627 |
+
return_att (:obj:`bool`, optional):
|
628 |
+
Whether return the attention matrix.
|
629 |
+
query_states (:obj:`torch.FloatTensor`, optional):
|
630 |
+
The `Q` state in `Attention(Q,K,V)`.
|
631 |
+
relative_pos (:obj:`torch.LongTensor`):
|
632 |
+
The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
|
633 |
+
values ranging in [`-max_relative_positions`, `max_relative_positions`].
|
634 |
+
rel_embeddings (:obj:`torch.FloatTensor`):
|
635 |
+
The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
|
636 |
+
\\text{max_relative_positions}`, `hidden_size`].
|
637 |
+
"""
|
638 |
+
if query_states is None:
|
639 |
+
query_states = hidden_states
|
640 |
+
|
641 |
+
past_key_value_length = past_key_value.shape[3] if past_key_value is not None else 0
|
642 |
+
if past_key_value is not None:
|
643 |
+
key_layer_prefix = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[0])
|
644 |
+
# value_layer_prefix = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1])
|
645 |
+
|
646 |
+
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
|
647 |
+
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
|
648 |
+
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1])
|
649 |
+
|
650 |
+
rel_att = None
|
651 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
652 |
+
scale_factor = 1
|
653 |
+
if "c2p" in self.pos_att_type:
|
654 |
+
scale_factor += 1
|
655 |
+
if "p2c" in self.pos_att_type:
|
656 |
+
scale_factor += 1
|
657 |
+
if "p2p" in self.pos_att_type:
|
658 |
+
scale_factor += 1
|
659 |
+
scale = math.sqrt(query_layer.size(-1) * scale_factor)
|
660 |
+
# attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
|
661 |
+
attention_scores = torch.bmm(query_layer, key_layer_prefix.transpose(-1, -2)) / scale
|
662 |
+
|
663 |
+
if self.relative_attention:
|
664 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
665 |
+
rel_att = self.disentangled_attention_bias(
|
666 |
+
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
|
667 |
+
)
|
668 |
+
|
669 |
+
if rel_att is not None:
|
670 |
+
if past_key_value is not None:
|
671 |
+
att_shape = rel_att.shape[:-1] + (past_key_value_length,)
|
672 |
+
prefix_att = torch.zeros(*att_shape).to(rel_att.device)
|
673 |
+
attention_scores = attention_scores + torch.cat([prefix_att, rel_att], dim=-1)
|
674 |
+
else:
|
675 |
+
attention_scores = attention_scores + rel_att
|
676 |
+
# print(attention_scores.shape)
|
677 |
+
attention_scores = attention_scores
|
678 |
+
attention_scores = attention_scores.view(
|
679 |
+
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
|
680 |
+
)
|
681 |
+
|
682 |
+
# bsz x height x length x dimension
|
683 |
+
attention_mask = attention_mask[:,:, past_key_value_length:,:]
|
684 |
+
|
685 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
686 |
+
attention_probs = self.dropout(attention_probs)
|
687 |
+
|
688 |
+
context_layer = torch.bmm(
|
689 |
+
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
|
690 |
+
)
|
691 |
+
context_layer = (
|
692 |
+
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
|
693 |
+
.permute(0, 2, 1, 3)
|
694 |
+
.contiguous()
|
695 |
+
)
|
696 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
697 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
698 |
+
if return_att:
|
699 |
+
return (context_layer, attention_probs)
|
700 |
+
else:
|
701 |
+
return context_layer
|
702 |
+
|
703 |
+
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
704 |
+
if relative_pos is None:
|
705 |
+
q = query_layer.size(-2)
|
706 |
+
relative_pos = build_relative_position(
|
707 |
+
q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
|
708 |
+
)
|
709 |
+
if relative_pos.dim() == 2:
|
710 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
711 |
+
elif relative_pos.dim() == 3:
|
712 |
+
relative_pos = relative_pos.unsqueeze(1)
|
713 |
+
# bsz x height x query x key
|
714 |
+
elif relative_pos.dim() != 4:
|
715 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
716 |
+
|
717 |
+
att_span = self.pos_ebd_size
|
718 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
719 |
+
|
720 |
+
rel_embeddings = rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :].unsqueeze(0)
|
721 |
+
if self.share_att_key: # True
|
722 |
+
pos_query_layer = self.transpose_for_scores(
|
723 |
+
self.query_proj(rel_embeddings), self.num_attention_heads
|
724 |
+
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
|
725 |
+
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
|
726 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
727 |
+
)
|
728 |
+
else:
|
729 |
+
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
|
730 |
+
pos_key_layer = self.transpose_for_scores(
|
731 |
+
self.pos_key_proj(rel_embeddings), self.num_attention_heads
|
732 |
+
).repeat(
|
733 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
734 |
+
) # .split(self.all_head_size, dim=-1)
|
735 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
736 |
+
pos_query_layer = self.transpose_for_scores(
|
737 |
+
self.pos_query_proj(rel_embeddings), self.num_attention_heads
|
738 |
+
).repeat(
|
739 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
740 |
+
) # .split(self.all_head_size, dim=-1)
|
741 |
+
|
742 |
+
score = 0
|
743 |
+
# content->position
|
744 |
+
if "c2p" in self.pos_att_type:
|
745 |
+
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
|
746 |
+
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
|
747 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
748 |
+
c2p_att = torch.gather(
|
749 |
+
c2p_att,
|
750 |
+
dim=-1,
|
751 |
+
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
|
752 |
+
)
|
753 |
+
score += c2p_att / scale
|
754 |
+
|
755 |
+
# position->content
|
756 |
+
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
|
757 |
+
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
|
758 |
+
if key_layer.size(-2) != query_layer.size(-2):
|
759 |
+
r_pos = build_relative_position(
|
760 |
+
key_layer.size(-2),
|
761 |
+
key_layer.size(-2),
|
762 |
+
bucket_size=self.position_buckets,
|
763 |
+
max_position=self.max_relative_positions,
|
764 |
+
).to(query_layer.device)
|
765 |
+
r_pos = r_pos.unsqueeze(0)
|
766 |
+
else:
|
767 |
+
r_pos = relative_pos
|
768 |
+
|
769 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
770 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
771 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
772 |
+
|
773 |
+
if "p2c" in self.pos_att_type:
|
774 |
+
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
|
775 |
+
p2c_att = torch.gather(
|
776 |
+
p2c_att,
|
777 |
+
dim=-1,
|
778 |
+
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
|
779 |
+
).transpose(-1, -2)
|
780 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
781 |
+
p2c_att = torch.gather(
|
782 |
+
p2c_att,
|
783 |
+
dim=-2,
|
784 |
+
index=pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))),
|
785 |
+
)
|
786 |
+
score += p2c_att / scale
|
787 |
+
|
788 |
+
# position->position
|
789 |
+
if "p2p" in self.pos_att_type:
|
790 |
+
pos_query = pos_query_layer[:, :, att_span:, :]
|
791 |
+
p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
|
792 |
+
p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
|
793 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
794 |
+
p2p_att = torch.gather(
|
795 |
+
p2p_att,
|
796 |
+
dim=-2,
|
797 |
+
index=pos_index.expand(query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))),
|
798 |
+
)
|
799 |
+
p2p_att = torch.gather(
|
800 |
+
p2p_att,
|
801 |
+
dim=-1,
|
802 |
+
index=c2p_pos.expand(
|
803 |
+
[query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]
|
804 |
+
),
|
805 |
+
)
|
806 |
+
score += p2p_att
|
807 |
+
|
808 |
+
return score
|
809 |
+
|
810 |
+
|
811 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
|
812 |
+
class DebertaV2Embeddings(nn.Module):
|
813 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
814 |
+
|
815 |
+
def __init__(self, config):
|
816 |
+
super().__init__()
|
817 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
818 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
819 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
820 |
+
|
821 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
822 |
+
if not self.position_biased_input:
|
823 |
+
self.position_embeddings = None
|
824 |
+
else:
|
825 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
826 |
+
|
827 |
+
if config.type_vocab_size > 0:
|
828 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
829 |
+
|
830 |
+
if self.embedding_size != config.hidden_size:
|
831 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
832 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
833 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
834 |
+
self.config = config
|
835 |
+
|
836 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
837 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
838 |
+
|
839 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None, past_key_values_length=0,):
|
840 |
+
if input_ids is not None:
|
841 |
+
input_shape = input_ids.size()
|
842 |
+
else:
|
843 |
+
input_shape = inputs_embeds.size()[:-1]
|
844 |
+
|
845 |
+
seq_length = input_shape[1]
|
846 |
+
|
847 |
+
if position_ids is None:
|
848 |
+
# position_ids = self.position_ids[:, :seq_length]
|
849 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
850 |
+
|
851 |
+
if token_type_ids is None:
|
852 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
853 |
+
|
854 |
+
if inputs_embeds is None:
|
855 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
856 |
+
|
857 |
+
if self.position_embeddings is not None:
|
858 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
859 |
+
else:
|
860 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
861 |
+
|
862 |
+
embeddings = inputs_embeds
|
863 |
+
if self.position_biased_input:
|
864 |
+
embeddings += position_embeddings
|
865 |
+
if self.config.type_vocab_size > 0:
|
866 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
867 |
+
embeddings += token_type_embeddings
|
868 |
+
|
869 |
+
if self.embedding_size != self.config.hidden_size:
|
870 |
+
embeddings = self.embed_proj(embeddings)
|
871 |
+
|
872 |
+
embeddings = self.LayerNorm(embeddings)
|
873 |
+
|
874 |
+
if mask is not None:
|
875 |
+
if mask.dim() != embeddings.dim():
|
876 |
+
if mask.dim() == 4:
|
877 |
+
mask = mask.squeeze(1).squeeze(1)
|
878 |
+
mask = mask.unsqueeze(2)
|
879 |
+
mask = mask.to(embeddings.dtype)
|
880 |
+
|
881 |
+
embeddings = embeddings * mask
|
882 |
+
|
883 |
+
embeddings = self.dropout(embeddings)
|
884 |
+
return embeddings
|
885 |
+
|
886 |
+
|
887 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
|
888 |
+
class DebertaV2PreTrainedModel(PreTrainedModel):
|
889 |
+
"""
|
890 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
891 |
+
models.
|
892 |
+
"""
|
893 |
+
|
894 |
+
config_class = DebertaV2Config
|
895 |
+
base_model_prefix = "deberta"
|
896 |
+
_keys_to_ignore_on_load_missing = ["position_ids"]
|
897 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
898 |
+
|
899 |
+
def __init__(self, config):
|
900 |
+
super().__init__(config)
|
901 |
+
self._register_load_state_dict_pre_hook(self._pre_load_hook)
|
902 |
+
|
903 |
+
def _init_weights(self, module):
|
904 |
+
"""Initialize the weights."""
|
905 |
+
if isinstance(module, nn.Linear):
|
906 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
907 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
908 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
909 |
+
if module.bias is not None:
|
910 |
+
module.bias.data.zero_()
|
911 |
+
elif isinstance(module, nn.Embedding):
|
912 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
913 |
+
if module.padding_idx is not None:
|
914 |
+
module.weight.data[module.padding_idx].zero_()
|
915 |
+
|
916 |
+
def _pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
917 |
+
"""
|
918 |
+
Removes the classifier if it doesn't have the correct number of labels.
|
919 |
+
"""
|
920 |
+
self_state = self.state_dict()
|
921 |
+
if (
|
922 |
+
("classifier.weight" in self_state)
|
923 |
+
and ("classifier.weight" in state_dict)
|
924 |
+
and self_state["classifier.weight"].size() != state_dict["classifier.weight"].size()
|
925 |
+
):
|
926 |
+
logger.warning(
|
927 |
+
f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
|
928 |
+
f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
|
929 |
+
f"weights. You should train your model on new data."
|
930 |
+
)
|
931 |
+
del state_dict["classifier.weight"]
|
932 |
+
if "classifier.bias" in state_dict:
|
933 |
+
del state_dict["classifier.bias"]
|
934 |
+
|
935 |
+
|
936 |
+
DEBERTA_START_DOCSTRING = r"""
|
937 |
+
The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
938 |
+
<https://arxiv.org/abs/2006.03654>`_ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of
|
939 |
+
BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
940 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
941 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
942 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
943 |
+
general usage and behavior.```
|
944 |
+
Parameters:
|
945 |
+
config (:class:`~transformers.DebertaV2Config`): Model configuration class with all the parameters of the model.
|
946 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
947 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
948 |
+
weights.
|
949 |
+
"""
|
950 |
+
|
951 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
952 |
+
Args:
|
953 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
954 |
+
Indices of input sequence tokens in the vocabulary.
|
955 |
+
Indices can be obtained using :class:`transformers.DebertaV2Tokenizer`. See
|
956 |
+
:func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
|
957 |
+
details.
|
958 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
959 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
960 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
961 |
+
- 1 for tokens that are **not masked**,
|
962 |
+
- 0 for tokens that are **masked**.
|
963 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
964 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
965 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
966 |
+
1]``:
|
967 |
+
- 0 corresponds to a `sentence A` token,
|
968 |
+
- 1 corresponds to a `sentence B` token.
|
969 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
970 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
971 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
972 |
+
config.max_position_embeddings - 1]``.
|
973 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
974 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
975 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
976 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
977 |
+
than the model's internal embedding lookup matrix.
|
978 |
+
output_attentions (:obj:`bool`, `optional`):
|
979 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
980 |
+
tensors for more detail.
|
981 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
982 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
983 |
+
more detail.
|
984 |
+
return_dict (:obj:`bool`, `optional`):
|
985 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
986 |
+
"""
|
987 |
+
|
988 |
+
|
989 |
+
@add_start_docstrings(
|
990 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
991 |
+
DEBERTA_START_DOCSTRING,
|
992 |
+
)
|
993 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
|
994 |
+
class DebertaV2Model(DebertaV2PreTrainedModel):
|
995 |
+
def __init__(self, config):
|
996 |
+
super().__init__(config)
|
997 |
+
|
998 |
+
self.embeddings = DebertaV2Embeddings(config)
|
999 |
+
self.encoder = DebertaV2Encoder(config)
|
1000 |
+
self.z_steps = 0
|
1001 |
+
self.config = config
|
1002 |
+
self.init_weights()
|
1003 |
+
|
1004 |
+
def get_input_embeddings(self):
|
1005 |
+
return self.embeddings.word_embeddings
|
1006 |
+
|
1007 |
+
def set_input_embeddings(self, new_embeddings):
|
1008 |
+
self.embeddings.word_embeddings = new_embeddings
|
1009 |
+
|
1010 |
+
def _prune_heads(self, heads_to_prune):
|
1011 |
+
"""
|
1012 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1013 |
+
class PreTrainedModel
|
1014 |
+
"""
|
1015 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
1016 |
+
|
1017 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1018 |
+
def forward(
|
1019 |
+
self,
|
1020 |
+
input_ids=None,
|
1021 |
+
attention_mask=None,
|
1022 |
+
token_type_ids=None,
|
1023 |
+
position_ids=None,
|
1024 |
+
inputs_embeds=None,
|
1025 |
+
output_attentions=None,
|
1026 |
+
output_hidden_states=None,
|
1027 |
+
return_dict=None,
|
1028 |
+
past_key_values=None,
|
1029 |
+
):
|
1030 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1031 |
+
output_hidden_states = (
|
1032 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1033 |
+
)
|
1034 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1035 |
+
|
1036 |
+
if input_ids is not None and inputs_embeds is not None:
|
1037 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1038 |
+
elif input_ids is not None:
|
1039 |
+
input_shape = input_ids.size()
|
1040 |
+
batch_size, seq_length = input_shape
|
1041 |
+
elif inputs_embeds is not None:
|
1042 |
+
input_shape = inputs_embeds.size()[:-1]
|
1043 |
+
batch_size, seq_length = input_shape
|
1044 |
+
else:
|
1045 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1046 |
+
|
1047 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1048 |
+
|
1049 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1050 |
+
|
1051 |
+
embedding_mask = torch.ones(input_shape, device=device)
|
1052 |
+
if attention_mask is None:
|
1053 |
+
# attention_mask = torch.ones(input_shape, device=device)
|
1054 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1055 |
+
if token_type_ids is None:
|
1056 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1057 |
+
|
1058 |
+
embedding_output = self.embeddings(
|
1059 |
+
input_ids=input_ids,
|
1060 |
+
token_type_ids=token_type_ids,
|
1061 |
+
position_ids=position_ids,
|
1062 |
+
# mask=attention_mask,
|
1063 |
+
mask=embedding_mask,
|
1064 |
+
inputs_embeds=inputs_embeds,
|
1065 |
+
past_key_values_length=past_key_values_length, # Ongoing
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
encoder_outputs = self.encoder(
|
1069 |
+
embedding_output,
|
1070 |
+
attention_mask,
|
1071 |
+
output_hidden_states=True,
|
1072 |
+
output_attentions=output_attentions,
|
1073 |
+
return_dict=return_dict,
|
1074 |
+
past_key_values=past_key_values, # Ongoing
|
1075 |
+
)
|
1076 |
+
encoded_layers = encoder_outputs[1]
|
1077 |
+
|
1078 |
+
if self.z_steps > 1:
|
1079 |
+
hidden_states = encoded_layers[-2]
|
1080 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
1081 |
+
query_states = encoded_layers[-1]
|
1082 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
1083 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
1084 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
1085 |
+
for layer in layers[1:]:
|
1086 |
+
query_states = layer(
|
1087 |
+
hidden_states,
|
1088 |
+
attention_mask,
|
1089 |
+
return_att=False,
|
1090 |
+
query_states=query_states,
|
1091 |
+
relative_pos=rel_pos,
|
1092 |
+
rel_embeddings=rel_embeddings,
|
1093 |
+
)
|
1094 |
+
encoded_layers.append(query_states)
|
1095 |
+
|
1096 |
+
sequence_output = encoded_layers[-1]
|
1097 |
+
|
1098 |
+
if not return_dict:
|
1099 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
1100 |
+
|
1101 |
+
return BaseModelOutput(
|
1102 |
+
last_hidden_state=sequence_output,
|
1103 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
1104 |
+
attentions=encoder_outputs.attentions,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
|
1108 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top. """, DEBERTA_START_DOCSTRING)
|
1109 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
|
1110 |
+
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
1111 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1112 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1113 |
+
|
1114 |
+
def __init__(self, config):
|
1115 |
+
super().__init__(config)
|
1116 |
+
|
1117 |
+
self.deberta = DebertaV2Model(config)
|
1118 |
+
self.cls = DebertaV2OnlyMLMHead(config)
|
1119 |
+
|
1120 |
+
self.init_weights()
|
1121 |
+
|
1122 |
+
def get_output_embeddings(self):
|
1123 |
+
return self.cls.predictions.decoder
|
1124 |
+
|
1125 |
+
def set_output_embeddings(self, new_embeddings):
|
1126 |
+
self.cls.predictions.decoder = new_embeddings
|
1127 |
+
|
1128 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1129 |
+
def forward(
|
1130 |
+
self,
|
1131 |
+
input_ids=None,
|
1132 |
+
attention_mask=None,
|
1133 |
+
token_type_ids=None,
|
1134 |
+
position_ids=None,
|
1135 |
+
inputs_embeds=None,
|
1136 |
+
labels=None,
|
1137 |
+
output_attentions=None,
|
1138 |
+
output_hidden_states=None,
|
1139 |
+
return_dict=None,
|
1140 |
+
):
|
1141 |
+
r"""
|
1142 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1143 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1144 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1145 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1146 |
+
"""
|
1147 |
+
|
1148 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1149 |
+
|
1150 |
+
outputs = self.deberta(
|
1151 |
+
input_ids,
|
1152 |
+
attention_mask=attention_mask,
|
1153 |
+
token_type_ids=token_type_ids,
|
1154 |
+
position_ids=position_ids,
|
1155 |
+
inputs_embeds=inputs_embeds,
|
1156 |
+
output_attentions=output_attentions,
|
1157 |
+
output_hidden_states=output_hidden_states,
|
1158 |
+
return_dict=return_dict,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
sequence_output = outputs[0]
|
1162 |
+
prediction_scores = self.cls(sequence_output)
|
1163 |
+
|
1164 |
+
masked_lm_loss = None
|
1165 |
+
if labels is not None:
|
1166 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1167 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1168 |
+
|
1169 |
+
if not return_dict:
|
1170 |
+
output = (prediction_scores,) + outputs[1:]
|
1171 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1172 |
+
|
1173 |
+
return MaskedLMOutput(
|
1174 |
+
loss=masked_lm_loss,
|
1175 |
+
logits=prediction_scores,
|
1176 |
+
hidden_states=outputs.hidden_states,
|
1177 |
+
attentions=outputs.attentions,
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
|
1181 |
+
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
1182 |
+
class DebertaV2PredictionHeadTransform(nn.Module):
|
1183 |
+
def __init__(self, config):
|
1184 |
+
super().__init__()
|
1185 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1186 |
+
if isinstance(config.hidden_act, str):
|
1187 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1188 |
+
else:
|
1189 |
+
self.transform_act_fn = config.hidden_act
|
1190 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1191 |
+
|
1192 |
+
def forward(self, hidden_states):
|
1193 |
+
hidden_states = self.dense(hidden_states)
|
1194 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1195 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1196 |
+
return hidden_states
|
1197 |
+
|
1198 |
+
|
1199 |
+
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
1200 |
+
class DebertaV2LMPredictionHead(nn.Module):
|
1201 |
+
def __init__(self, config):
|
1202 |
+
super().__init__()
|
1203 |
+
self.transform = DebertaV2PredictionHeadTransform(config)
|
1204 |
+
|
1205 |
+
# The output weights are the same as the input embeddings, but there is
|
1206 |
+
# an output-only bias for each token.
|
1207 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1208 |
+
|
1209 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1210 |
+
|
1211 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1212 |
+
self.decoder.bias = self.bias
|
1213 |
+
|
1214 |
+
def forward(self, hidden_states):
|
1215 |
+
hidden_states = self.transform(hidden_states)
|
1216 |
+
hidden_states = self.decoder(hidden_states)
|
1217 |
+
return hidden_states
|
1218 |
+
|
1219 |
+
|
1220 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1221 |
+
class DebertaV2OnlyMLMHead(nn.Module):
|
1222 |
+
def __init__(self, config):
|
1223 |
+
super().__init__()
|
1224 |
+
self.predictions = DebertaV2LMPredictionHead(config)
|
1225 |
+
|
1226 |
+
def forward(self, sequence_output):
|
1227 |
+
prediction_scores = self.predictions(sequence_output)
|
1228 |
+
return prediction_scores
|
1229 |
+
|
1230 |
+
|
1231 |
+
@add_start_docstrings(
|
1232 |
+
"""
|
1233 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1234 |
+
pooled output) e.g. for GLUE tasks.
|
1235 |
+
""",
|
1236 |
+
DEBERTA_START_DOCSTRING,
|
1237 |
+
)
|
1238 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification with Deberta->DebertaV2
|
1239 |
+
class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
|
1240 |
+
def __init__(self, config):
|
1241 |
+
super().__init__(config)
|
1242 |
+
|
1243 |
+
num_labels = getattr(config, "num_labels", 2)
|
1244 |
+
self.num_labels = num_labels
|
1245 |
+
|
1246 |
+
self.deberta = DebertaV2Model(config)
|
1247 |
+
self.pooler = ContextPooler(config)
|
1248 |
+
output_dim = self.pooler.output_dim
|
1249 |
+
|
1250 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
1251 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1252 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1253 |
+
self.dropout = StableDropout(drop_out)
|
1254 |
+
|
1255 |
+
self.init_weights()
|
1256 |
+
|
1257 |
+
def get_input_embeddings(self):
|
1258 |
+
return self.deberta.get_input_embeddings()
|
1259 |
+
|
1260 |
+
def set_input_embeddings(self, new_embeddings):
|
1261 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1262 |
+
|
1263 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1264 |
+
def forward(
|
1265 |
+
self,
|
1266 |
+
input_ids=None,
|
1267 |
+
attention_mask=None,
|
1268 |
+
token_type_ids=None,
|
1269 |
+
position_ids=None,
|
1270 |
+
inputs_embeds=None,
|
1271 |
+
labels=None,
|
1272 |
+
output_attentions=None,
|
1273 |
+
output_hidden_states=None,
|
1274 |
+
return_dict=None,
|
1275 |
+
):
|
1276 |
+
r"""
|
1277 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1278 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1279 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1280 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1281 |
+
"""
|
1282 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1283 |
+
|
1284 |
+
outputs = self.deberta(
|
1285 |
+
input_ids,
|
1286 |
+
token_type_ids=token_type_ids,
|
1287 |
+
attention_mask=attention_mask,
|
1288 |
+
position_ids=position_ids,
|
1289 |
+
inputs_embeds=inputs_embeds,
|
1290 |
+
output_attentions=output_attentions,
|
1291 |
+
output_hidden_states=output_hidden_states,
|
1292 |
+
return_dict=return_dict,
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
encoder_layer = outputs[0]
|
1296 |
+
pooled_output = self.pooler(encoder_layer)
|
1297 |
+
pooled_output = self.dropout(pooled_output)
|
1298 |
+
logits = self.classifier(pooled_output)
|
1299 |
+
|
1300 |
+
loss = None
|
1301 |
+
if labels is not None:
|
1302 |
+
if self.num_labels == 1:
|
1303 |
+
# regression task
|
1304 |
+
loss_fn = nn.MSELoss()
|
1305 |
+
logits = logits.view(-1).to(labels.dtype)
|
1306 |
+
loss = loss_fn(logits, labels.view(-1))
|
1307 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1308 |
+
label_index = (labels >= 0).nonzero()
|
1309 |
+
labels = labels.long()
|
1310 |
+
if label_index.size(0) > 0:
|
1311 |
+
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
|
1312 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1313 |
+
loss_fct = CrossEntropyLoss()
|
1314 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1315 |
+
else:
|
1316 |
+
loss = torch.tensor(0).to(logits)
|
1317 |
+
else:
|
1318 |
+
log_softmax = nn.LogSoftmax(-1)
|
1319 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1320 |
+
if not return_dict:
|
1321 |
+
output = (logits,) + outputs[1:]
|
1322 |
+
return ((loss,) + output) if loss is not None else output
|
1323 |
+
else:
|
1324 |
+
return SequenceClassifierOutput(
|
1325 |
+
loss=loss,
|
1326 |
+
logits=logits,
|
1327 |
+
hidden_states=outputs.hidden_states,
|
1328 |
+
attentions=outputs.attentions,
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
|
1332 |
+
@add_start_docstrings(
|
1333 |
+
"""
|
1334 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1335 |
+
Named-Entity-Recognition (NER) tasks.
|
1336 |
+
""",
|
1337 |
+
DEBERTA_START_DOCSTRING,
|
1338 |
+
)
|
1339 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
|
1340 |
+
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
1341 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1342 |
+
|
1343 |
+
def __init__(self, config):
|
1344 |
+
super().__init__(config)
|
1345 |
+
self.num_labels = config.num_labels
|
1346 |
+
|
1347 |
+
self.deberta = DebertaV2Model(config)
|
1348 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1349 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1350 |
+
|
1351 |
+
self.init_weights()
|
1352 |
+
for param in self.deberta.parameters():
|
1353 |
+
param.requires_grad = False
|
1354 |
+
|
1355 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1356 |
+
def forward(
|
1357 |
+
self,
|
1358 |
+
input_ids=None,
|
1359 |
+
attention_mask=None,
|
1360 |
+
token_type_ids=None,
|
1361 |
+
position_ids=None,
|
1362 |
+
inputs_embeds=None,
|
1363 |
+
labels=None,
|
1364 |
+
output_attentions=None,
|
1365 |
+
output_hidden_states=None,
|
1366 |
+
return_dict=None,
|
1367 |
+
past_key_values=None,
|
1368 |
+
):
|
1369 |
+
r"""
|
1370 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1371 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
1372 |
+
1]``.
|
1373 |
+
"""
|
1374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1375 |
+
|
1376 |
+
outputs = self.deberta(
|
1377 |
+
input_ids,
|
1378 |
+
attention_mask=attention_mask,
|
1379 |
+
token_type_ids=token_type_ids,
|
1380 |
+
position_ids=position_ids,
|
1381 |
+
inputs_embeds=inputs_embeds,
|
1382 |
+
output_attentions=output_attentions,
|
1383 |
+
output_hidden_states=output_hidden_states,
|
1384 |
+
return_dict=return_dict,
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
sequence_output = outputs[0]
|
1388 |
+
|
1389 |
+
sequence_output = self.dropout(sequence_output)
|
1390 |
+
logits = self.classifier(sequence_output)
|
1391 |
+
|
1392 |
+
loss = None
|
1393 |
+
if labels is not None:
|
1394 |
+
loss_fct = CrossEntropyLoss()
|
1395 |
+
# Only keep active parts of the loss
|
1396 |
+
if attention_mask is not None:
|
1397 |
+
active_loss = attention_mask.view(-1) == 1
|
1398 |
+
active_logits = logits.view(-1, self.num_labels)
|
1399 |
+
active_labels = torch.where(
|
1400 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1401 |
+
)
|
1402 |
+
loss = loss_fct(active_logits, active_labels)
|
1403 |
+
else:
|
1404 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1405 |
+
|
1406 |
+
if not return_dict:
|
1407 |
+
output = (logits,) + outputs[1:]
|
1408 |
+
return ((loss,) + output) if loss is not None else output
|
1409 |
+
|
1410 |
+
return TokenClassifierOutput(
|
1411 |
+
loss=loss,
|
1412 |
+
logits=logits,
|
1413 |
+
hidden_states=outputs.hidden_states,
|
1414 |
+
attentions=outputs.attentions,
|
1415 |
+
)
|
1416 |
+
|
1417 |
+
|
1418 |
+
@add_start_docstrings(
|
1419 |
+
"""
|
1420 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1421 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1422 |
+
""",
|
1423 |
+
DEBERTA_START_DOCSTRING,
|
1424 |
+
)
|
1425 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering with Deberta->DebertaV2
|
1426 |
+
class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
|
1427 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1428 |
+
|
1429 |
+
def __init__(self, config):
|
1430 |
+
super().__init__(config)
|
1431 |
+
self.num_labels = config.num_labels
|
1432 |
+
|
1433 |
+
self.deberta = DebertaV2Model(config)
|
1434 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1435 |
+
|
1436 |
+
self.init_weights()
|
1437 |
+
|
1438 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1439 |
+
def forward(
|
1440 |
+
self,
|
1441 |
+
input_ids=None,
|
1442 |
+
attention_mask=None,
|
1443 |
+
token_type_ids=None,
|
1444 |
+
position_ids=None,
|
1445 |
+
inputs_embeds=None,
|
1446 |
+
start_positions=None,
|
1447 |
+
end_positions=None,
|
1448 |
+
output_attentions=None,
|
1449 |
+
output_hidden_states=None,
|
1450 |
+
return_dict=None,
|
1451 |
+
):
|
1452 |
+
r"""
|
1453 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1454 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1455 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1456 |
+
sequence are not taken into account for computing the loss.
|
1457 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1458 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1459 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1460 |
+
sequence are not taken into account for computing the loss.
|
1461 |
+
"""
|
1462 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1463 |
+
|
1464 |
+
outputs = self.deberta(
|
1465 |
+
input_ids,
|
1466 |
+
attention_mask=attention_mask,
|
1467 |
+
token_type_ids=token_type_ids,
|
1468 |
+
position_ids=position_ids,
|
1469 |
+
inputs_embeds=inputs_embeds,
|
1470 |
+
output_attentions=output_attentions,
|
1471 |
+
output_hidden_states=output_hidden_states,
|
1472 |
+
return_dict=return_dict,
|
1473 |
+
)
|
1474 |
+
|
1475 |
+
sequence_output = outputs[0]
|
1476 |
+
|
1477 |
+
logits = self.qa_outputs(sequence_output)
|
1478 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1479 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1480 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1481 |
+
|
1482 |
+
total_loss = None
|
1483 |
+
if start_positions is not None and end_positions is not None:
|
1484 |
+
# If we are on multi-GPU, split add a dimension
|
1485 |
+
if len(start_positions.size()) > 1:
|
1486 |
+
start_positions = start_positions.squeeze(-1)
|
1487 |
+
if len(end_positions.size()) > 1:
|
1488 |
+
end_positions = end_positions.squeeze(-1)
|
1489 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1490 |
+
ignored_index = start_logits.size(1)
|
1491 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1492 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1493 |
+
|
1494 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1495 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1496 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1497 |
+
total_loss = (start_loss + end_loss) / 2
|
1498 |
+
|
1499 |
+
if not return_dict:
|
1500 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1501 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1502 |
+
|
1503 |
+
return QuestionAnsweringModelOutput(
|
1504 |
+
loss=total_loss,
|
1505 |
+
start_logits=start_logits,
|
1506 |
+
end_logits=end_logits,
|
1507 |
+
hidden_states=outputs.hidden_states,
|
1508 |
+
attentions=outputs.attentions,
|
1509 |
+
)
|
soft_prompt/model/multiple_choice.py
ADDED
@@ -0,0 +1,710 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import NoopLogger
|
3 |
+
import torch.nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
7 |
+
|
8 |
+
from transformers import BertModel, BertPreTrainedModel
|
9 |
+
from transformers import RobertaModel, RobertaPreTrainedModel
|
10 |
+
from transformers.modeling_outputs import MultipleChoiceModelOutput, BaseModelOutput, Seq2SeqLMOutput
|
11 |
+
|
12 |
+
from model.prefix_encoder import PrefixEncoder
|
13 |
+
from model.deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
|
14 |
+
from model import utils
|
15 |
+
|
16 |
+
|
17 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
18 |
+
"""BERT model for multiple choice tasks.
|
19 |
+
This module is composed of the BERT model with a linear layer on top of
|
20 |
+
the pooled output.
|
21 |
+
|
22 |
+
Params:
|
23 |
+
`config`: a BertConfig class instance with the configuration to build a new model.
|
24 |
+
`num_choices`: the number of classes for the classifier. Default = 2.
|
25 |
+
|
26 |
+
Inputs:
|
27 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
|
28 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
29 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
30 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
|
31 |
+
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
|
32 |
+
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
|
33 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
|
34 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
35 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
36 |
+
a batch has varying length sentences.
|
37 |
+
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
|
38 |
+
with indices selected in [0, ..., num_choices].
|
39 |
+
|
40 |
+
Outputs:
|
41 |
+
if `labels` is not `None`:
|
42 |
+
Outputs the CrossEntropy classification loss of the output with the labels.
|
43 |
+
if `labels` is `None`:
|
44 |
+
Outputs the classification logits of shape [batch_size, num_labels].
|
45 |
+
|
46 |
+
Example usage:
|
47 |
+
```python
|
48 |
+
# Already been converted into WordPiece token ids
|
49 |
+
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
|
50 |
+
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
|
51 |
+
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
|
52 |
+
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
53 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
54 |
+
|
55 |
+
num_choices = 2
|
56 |
+
|
57 |
+
model = BertForMultipleChoice(config, num_choices)
|
58 |
+
logits = model(input_ids, token_type_ids, input_mask)
|
59 |
+
```
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, config):
|
63 |
+
super().__init__(config)
|
64 |
+
self.bert = BertModel(config)
|
65 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
66 |
+
self.classifier = torch.nn.Linear(config.hidden_size, 1)
|
67 |
+
|
68 |
+
self.init_weights()
|
69 |
+
|
70 |
+
self.embedding = utils.get_embeddings(self, config)
|
71 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
72 |
+
|
73 |
+
def forward(
|
74 |
+
self,
|
75 |
+
input_ids=None,
|
76 |
+
attention_mask=None,
|
77 |
+
token_type_ids=None,
|
78 |
+
position_ids=None,
|
79 |
+
head_mask=None,
|
80 |
+
inputs_embeds=None,
|
81 |
+
labels=None,
|
82 |
+
output_attentions=None,
|
83 |
+
output_hidden_states=None,
|
84 |
+
return_dict=None,
|
85 |
+
use_base_grad=False
|
86 |
+
):
|
87 |
+
utils.use_grad(self.bert, use_base_grad)
|
88 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
89 |
+
batch_size, num_choices = input_ids.shape[:2]
|
90 |
+
|
91 |
+
input_ids = input_ids.reshape(-1, input_ids.size(-1))
|
92 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1))
|
93 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1))
|
94 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
95 |
+
inputs_embeds = (
|
96 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
97 |
+
if inputs_embeds is not None
|
98 |
+
else None
|
99 |
+
)
|
100 |
+
|
101 |
+
outputs = self.bert(
|
102 |
+
input_ids,
|
103 |
+
attention_mask=attention_mask,
|
104 |
+
token_type_ids=token_type_ids,
|
105 |
+
position_ids=position_ids,
|
106 |
+
head_mask=head_mask,
|
107 |
+
inputs_embeds=inputs_embeds,
|
108 |
+
output_attentions=output_attentions,
|
109 |
+
output_hidden_states=output_hidden_states,
|
110 |
+
return_dict=return_dict,
|
111 |
+
)
|
112 |
+
|
113 |
+
pooled_output = outputs[1]
|
114 |
+
|
115 |
+
pooled_output = self.dropout(pooled_output)
|
116 |
+
logits = self.classifier(pooled_output)
|
117 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
118 |
+
|
119 |
+
loss = None
|
120 |
+
if labels is not None:
|
121 |
+
loss_fct = CrossEntropyLoss()
|
122 |
+
loss = loss_fct(reshaped_logits, labels)
|
123 |
+
|
124 |
+
if not return_dict:
|
125 |
+
output = (reshaped_logits,) + outputs[2:]
|
126 |
+
return ((loss,) + output) if loss is not None else output
|
127 |
+
|
128 |
+
return MultipleChoiceModelOutput(
|
129 |
+
loss=loss,
|
130 |
+
logits=reshaped_logits,
|
131 |
+
hidden_states=outputs.hidden_states,
|
132 |
+
attentions=outputs.attentions,
|
133 |
+
)
|
134 |
+
|
135 |
+
class BertPrefixForMultipleChoice(BertPreTrainedModel):
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__(config)
|
138 |
+
self.num_labels = config.num_labels
|
139 |
+
self.config = config
|
140 |
+
self.bert = BertModel(config)
|
141 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
142 |
+
self.classifier = torch.nn.Linear(config.hidden_size, 1)
|
143 |
+
|
144 |
+
for param in self.bert.parameters():
|
145 |
+
param.requires_grad = False
|
146 |
+
|
147 |
+
self.pre_seq_len = config.pre_seq_len
|
148 |
+
self.n_layer = config.num_hidden_layers
|
149 |
+
self.n_head = config.num_attention_heads
|
150 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
151 |
+
|
152 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
153 |
+
self.prefix_encoder = PrefixEncoder(config)
|
154 |
+
|
155 |
+
bert_param = 0
|
156 |
+
for name, param in self.bert.named_parameters():
|
157 |
+
bert_param += param.numel()
|
158 |
+
all_param = 0
|
159 |
+
for name, param in self.named_parameters():
|
160 |
+
all_param += param.numel()
|
161 |
+
total_param = all_param - bert_param
|
162 |
+
print('total param is {}'.format(total_param)) # 9860105
|
163 |
+
|
164 |
+
self.embedding = utils.get_embeddings(self, config)
|
165 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
166 |
+
|
167 |
+
def get_prompt(self, batch_size):
|
168 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
169 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
170 |
+
past_key_values = past_key_values.view(
|
171 |
+
batch_size,
|
172 |
+
self.pre_seq_len,
|
173 |
+
self.n_layer * 2,
|
174 |
+
self.n_head,
|
175 |
+
self.n_embd
|
176 |
+
)
|
177 |
+
past_key_values = self.dropout(past_key_values)
|
178 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
179 |
+
return past_key_values
|
180 |
+
|
181 |
+
def forward(
|
182 |
+
self,
|
183 |
+
input_ids=None,
|
184 |
+
attention_mask=None,
|
185 |
+
token_type_ids=None,
|
186 |
+
position_ids=None,
|
187 |
+
head_mask=None,
|
188 |
+
inputs_embeds=None,
|
189 |
+
labels=None,
|
190 |
+
output_attentions=None,
|
191 |
+
output_hidden_states=None,
|
192 |
+
return_dict=None,
|
193 |
+
use_base_grad=False
|
194 |
+
):
|
195 |
+
utils.use_grad(self.bert, use_base_grad)
|
196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
197 |
+
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
|
198 |
+
|
199 |
+
input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
|
200 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
201 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
202 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
203 |
+
inputs_embeds = (
|
204 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
205 |
+
if inputs_embeds is not None
|
206 |
+
else None
|
207 |
+
)
|
208 |
+
|
209 |
+
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
|
210 |
+
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
|
211 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
212 |
+
|
213 |
+
outputs = self.bert(
|
214 |
+
input_ids,
|
215 |
+
attention_mask=attention_mask,
|
216 |
+
token_type_ids=token_type_ids,
|
217 |
+
position_ids=position_ids,
|
218 |
+
head_mask=head_mask,
|
219 |
+
inputs_embeds=inputs_embeds,
|
220 |
+
output_attentions=output_attentions,
|
221 |
+
output_hidden_states=output_hidden_states,
|
222 |
+
return_dict=return_dict,
|
223 |
+
past_key_values=past_key_values,
|
224 |
+
)
|
225 |
+
|
226 |
+
pooled_output = outputs[1]
|
227 |
+
|
228 |
+
pooled_output = self.dropout(pooled_output)
|
229 |
+
logits = self.classifier(pooled_output)
|
230 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
231 |
+
|
232 |
+
loss = None
|
233 |
+
if labels is not None:
|
234 |
+
loss_fct = CrossEntropyLoss()
|
235 |
+
loss = loss_fct(reshaped_logits, labels)
|
236 |
+
|
237 |
+
if not return_dict:
|
238 |
+
output = (reshaped_logits,) + outputs[2:]
|
239 |
+
return ((loss,) + output) if loss is not None else output
|
240 |
+
|
241 |
+
return MultipleChoiceModelOutput(
|
242 |
+
loss=loss,
|
243 |
+
logits=reshaped_logits,
|
244 |
+
hidden_states=outputs.hidden_states,
|
245 |
+
attentions=outputs.attentions,
|
246 |
+
)
|
247 |
+
|
248 |
+
class RobertaPrefixForMultipleChoice(RobertaPreTrainedModel):
|
249 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
250 |
+
|
251 |
+
def __init__(self, config):
|
252 |
+
super().__init__(config)
|
253 |
+
|
254 |
+
self.roberta = RobertaModel(config)
|
255 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
256 |
+
self.classifier = torch.nn.Linear(config.hidden_size, 1)
|
257 |
+
|
258 |
+
self.init_weights()
|
259 |
+
|
260 |
+
|
261 |
+
for param in self.roberta.parameters():
|
262 |
+
param.requires_grad = False
|
263 |
+
|
264 |
+
self.pre_seq_len = config.pre_seq_len
|
265 |
+
self.n_layer = config.num_hidden_layers
|
266 |
+
self.n_head = config.num_attention_heads
|
267 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
268 |
+
|
269 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
270 |
+
self.prefix_encoder = PrefixEncoder(config)
|
271 |
+
|
272 |
+
bert_param = 0
|
273 |
+
for name, param in self.roberta.named_parameters():
|
274 |
+
bert_param += param.numel()
|
275 |
+
all_param = 0
|
276 |
+
for name, param in self.named_parameters():
|
277 |
+
all_param += param.numel()
|
278 |
+
total_param = all_param - bert_param
|
279 |
+
print('total param is {}'.format(total_param))
|
280 |
+
|
281 |
+
self.embedding = utils.get_embeddings(self, config)
|
282 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
283 |
+
|
284 |
+
def get_prompt(self, batch_size):
|
285 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
286 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
287 |
+
past_key_values = past_key_values.view(
|
288 |
+
batch_size,
|
289 |
+
self.pre_seq_len,
|
290 |
+
self.n_layer * 2,
|
291 |
+
self.n_head,
|
292 |
+
self.n_embd
|
293 |
+
)
|
294 |
+
past_key_values = self.dropout(past_key_values)
|
295 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
296 |
+
return past_key_values
|
297 |
+
|
298 |
+
def forward(
|
299 |
+
self,
|
300 |
+
input_ids=None,
|
301 |
+
token_type_ids=None,
|
302 |
+
attention_mask=None,
|
303 |
+
labels=None,
|
304 |
+
position_ids=None,
|
305 |
+
head_mask=None,
|
306 |
+
inputs_embeds=None,
|
307 |
+
output_attentions=None,
|
308 |
+
output_hidden_states=None,
|
309 |
+
return_dict=None,
|
310 |
+
use_base_grad=False
|
311 |
+
):
|
312 |
+
r"""
|
313 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
314 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
315 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
316 |
+
:obj:`input_ids` above)
|
317 |
+
"""
|
318 |
+
utils.use_grad(self.roberta, use_base_grad)
|
319 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
320 |
+
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
|
321 |
+
|
322 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
323 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
324 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
325 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
326 |
+
flat_inputs_embeds = (
|
327 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
328 |
+
if inputs_embeds is not None
|
329 |
+
else None
|
330 |
+
)
|
331 |
+
|
332 |
+
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
|
333 |
+
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
|
334 |
+
flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
|
335 |
+
|
336 |
+
outputs = self.roberta(
|
337 |
+
flat_input_ids,
|
338 |
+
position_ids=flat_position_ids,
|
339 |
+
token_type_ids=flat_token_type_ids,
|
340 |
+
attention_mask=flat_attention_mask,
|
341 |
+
head_mask=head_mask,
|
342 |
+
inputs_embeds=flat_inputs_embeds,
|
343 |
+
output_attentions=output_attentions,
|
344 |
+
output_hidden_states=output_hidden_states,
|
345 |
+
return_dict=return_dict,
|
346 |
+
past_key_values=past_key_values,
|
347 |
+
)
|
348 |
+
pooled_output = outputs[1]
|
349 |
+
|
350 |
+
pooled_output = self.dropout(pooled_output)
|
351 |
+
logits = self.classifier(pooled_output)
|
352 |
+
reshaped_logits = logits.view(-1, num_choices)
|
353 |
+
|
354 |
+
loss = None
|
355 |
+
if labels is not None:
|
356 |
+
loss_fct = CrossEntropyLoss()
|
357 |
+
loss = loss_fct(reshaped_logits, labels)
|
358 |
+
|
359 |
+
if not return_dict:
|
360 |
+
output = (reshaped_logits,) + outputs[2:]
|
361 |
+
return ((loss,) + output) if loss is not None else output
|
362 |
+
|
363 |
+
return MultipleChoiceModelOutput(
|
364 |
+
loss=loss,
|
365 |
+
logits=reshaped_logits,
|
366 |
+
hidden_states=outputs.hidden_states,
|
367 |
+
attentions=outputs.attentions,
|
368 |
+
)
|
369 |
+
|
370 |
+
class DebertaPrefixForMultipleChoice(DebertaPreTrainedModel):
|
371 |
+
def __init__(self, config):
|
372 |
+
super().__init__(config)
|
373 |
+
self.num_labels = config.num_labels
|
374 |
+
self.config = config
|
375 |
+
self.deberta = DebertaModel(config)
|
376 |
+
self.pooler = ContextPooler(config)
|
377 |
+
output_dim = self.pooler.output_dim
|
378 |
+
self.classifier = torch.nn.Linear(output_dim, 1)
|
379 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
380 |
+
self.init_weights()
|
381 |
+
|
382 |
+
for param in self.deberta.parameters():
|
383 |
+
param.requires_grad = False
|
384 |
+
|
385 |
+
self.pre_seq_len = config.pre_seq_len
|
386 |
+
self.n_layer = config.num_hidden_layers
|
387 |
+
self.n_head = config.num_attention_heads
|
388 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
389 |
+
|
390 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
391 |
+
self.prefix_encoder = PrefixEncoder(config)
|
392 |
+
|
393 |
+
deberta_param = 0
|
394 |
+
for name, param in self.deberta.named_parameters():
|
395 |
+
deberta_param += param.numel()
|
396 |
+
all_param = 0
|
397 |
+
for name, param in self.named_parameters():
|
398 |
+
all_param += param.numel()
|
399 |
+
total_param = all_param - deberta_param
|
400 |
+
print('total param is {}'.format(total_param))
|
401 |
+
|
402 |
+
self.embedding = utils.get_embeddings(self, config)
|
403 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
404 |
+
|
405 |
+
def get_prompt(self, batch_size):
|
406 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
407 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
408 |
+
past_key_values = past_key_values.view(
|
409 |
+
batch_size,
|
410 |
+
self.pre_seq_len,
|
411 |
+
self.n_layer * 2,
|
412 |
+
self.n_head,
|
413 |
+
self.n_embd
|
414 |
+
)
|
415 |
+
past_key_values = self.dropout(past_key_values)
|
416 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
417 |
+
return past_key_values
|
418 |
+
|
419 |
+
def forward(
|
420 |
+
self,
|
421 |
+
input_ids=None,
|
422 |
+
attention_mask=None,
|
423 |
+
token_type_ids=None,
|
424 |
+
position_ids=None,
|
425 |
+
head_mask=None,
|
426 |
+
inputs_embeds=None,
|
427 |
+
labels=None,
|
428 |
+
output_attentions=None,
|
429 |
+
output_hidden_states=None,
|
430 |
+
return_dict=None,
|
431 |
+
use_base_grad=False
|
432 |
+
):
|
433 |
+
utils.use_grad(self.deberta, use_base_grad)
|
434 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
435 |
+
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
|
436 |
+
|
437 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
438 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
439 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
440 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
441 |
+
flat_inputs_embeds = (
|
442 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
443 |
+
if inputs_embeds is not None
|
444 |
+
else None
|
445 |
+
)
|
446 |
+
|
447 |
+
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
|
448 |
+
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.deberta.device)
|
449 |
+
flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
|
450 |
+
|
451 |
+
outputs = self.deberta(
|
452 |
+
flat_input_ids,
|
453 |
+
attention_mask=flat_attention_mask,
|
454 |
+
token_type_ids=flat_token_type_ids,
|
455 |
+
position_ids=flat_position_ids,
|
456 |
+
inputs_embeds=flat_inputs_embeds,
|
457 |
+
output_attentions=output_attentions,
|
458 |
+
output_hidden_states=output_hidden_states,
|
459 |
+
return_dict=return_dict,
|
460 |
+
past_key_values=past_key_values,
|
461 |
+
)
|
462 |
+
|
463 |
+
encoder_layer = outputs[0]
|
464 |
+
|
465 |
+
pooled_output = self.pooler(encoder_layer)
|
466 |
+
pooled_output = self.dropout(pooled_output)
|
467 |
+
logits = self.classifier(pooled_output)
|
468 |
+
reshaped_logits = logits.view(-1, num_choices)
|
469 |
+
|
470 |
+
loss = None
|
471 |
+
if labels is not None:
|
472 |
+
loss_fct = CrossEntropyLoss()
|
473 |
+
loss = loss_fct(reshaped_logits, labels)
|
474 |
+
|
475 |
+
if not return_dict:
|
476 |
+
output = (reshaped_logits,) + outputs[2:]
|
477 |
+
return ((loss,) + output) if loss is not None else output
|
478 |
+
|
479 |
+
return MultipleChoiceModelOutput(
|
480 |
+
loss=loss,
|
481 |
+
logits=reshaped_logits,
|
482 |
+
hidden_states=outputs.hidden_states,
|
483 |
+
attentions=outputs.attentions,
|
484 |
+
)
|
485 |
+
|
486 |
+
|
487 |
+
class BertPromptForMultipleChoice(BertPreTrainedModel):
|
488 |
+
def __init__(self, config):
|
489 |
+
super().__init__(config)
|
490 |
+
self.num_labels = config.num_labels
|
491 |
+
self.config = config
|
492 |
+
self.bert = BertModel(config)
|
493 |
+
self.embeddings = self.bert.embeddings
|
494 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
495 |
+
self.classifier = torch.nn.Linear(config.hidden_size, 1)
|
496 |
+
|
497 |
+
for param in self.bert.parameters():
|
498 |
+
param.requires_grad = False
|
499 |
+
|
500 |
+
self.pre_seq_len = config.pre_seq_len
|
501 |
+
self.n_layer = config.num_hidden_layers
|
502 |
+
self.n_head = config.num_attention_heads
|
503 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
504 |
+
|
505 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
506 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
507 |
+
|
508 |
+
bert_param = 0
|
509 |
+
for name, param in self.bert.named_parameters():
|
510 |
+
bert_param += param.numel()
|
511 |
+
all_param = 0
|
512 |
+
for name, param in self.named_parameters():
|
513 |
+
all_param += param.numel()
|
514 |
+
total_param = all_param - bert_param
|
515 |
+
print('total param is {}'.format(total_param)) # 9860105
|
516 |
+
|
517 |
+
self.embedding = utils.get_embeddings(self, config)
|
518 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
519 |
+
|
520 |
+
def get_prompt(self, batch_size):
|
521 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
522 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
523 |
+
return prompts
|
524 |
+
|
525 |
+
def forward(
|
526 |
+
self,
|
527 |
+
input_ids=None,
|
528 |
+
attention_mask=None,
|
529 |
+
token_type_ids=None,
|
530 |
+
position_ids=None,
|
531 |
+
head_mask=None,
|
532 |
+
inputs_embeds=None,
|
533 |
+
labels=None,
|
534 |
+
output_attentions=None,
|
535 |
+
output_hidden_states=None,
|
536 |
+
return_dict=None,
|
537 |
+
use_base_grad=False
|
538 |
+
):
|
539 |
+
utils.use_grad(self.bert, use_base_grad)
|
540 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
541 |
+
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
|
542 |
+
|
543 |
+
input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
|
544 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
545 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
546 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
547 |
+
inputs_embeds = (
|
548 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
549 |
+
if inputs_embeds is not None
|
550 |
+
else None
|
551 |
+
)
|
552 |
+
|
553 |
+
raw_embedding = self.embeddings(
|
554 |
+
input_ids=input_ids,
|
555 |
+
position_ids=position_ids,
|
556 |
+
token_type_ids=token_type_ids,
|
557 |
+
)
|
558 |
+
prompts = self.get_prompt(batch_size=batch_size * num_choices)
|
559 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
560 |
+
|
561 |
+
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
|
562 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
563 |
+
|
564 |
+
outputs = self.bert(
|
565 |
+
attention_mask=attention_mask,
|
566 |
+
head_mask=head_mask,
|
567 |
+
inputs_embeds=inputs_embeds,
|
568 |
+
output_attentions=output_attentions,
|
569 |
+
output_hidden_states=output_hidden_states,
|
570 |
+
return_dict=return_dict,
|
571 |
+
)
|
572 |
+
|
573 |
+
pooled_output = outputs[1]
|
574 |
+
|
575 |
+
pooled_output = self.dropout(pooled_output)
|
576 |
+
logits = self.classifier(pooled_output)
|
577 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
578 |
+
|
579 |
+
loss = None
|
580 |
+
if labels is not None:
|
581 |
+
loss_fct = CrossEntropyLoss()
|
582 |
+
loss = loss_fct(reshaped_logits, labels)
|
583 |
+
|
584 |
+
if not return_dict:
|
585 |
+
output = (reshaped_logits,) + outputs[2:]
|
586 |
+
return ((loss,) + output) if loss is not None else output
|
587 |
+
|
588 |
+
return MultipleChoiceModelOutput(
|
589 |
+
loss=loss,
|
590 |
+
logits=reshaped_logits,
|
591 |
+
hidden_states=outputs.hidden_states,
|
592 |
+
attentions=outputs.attentions,
|
593 |
+
)
|
594 |
+
|
595 |
+
|
596 |
+
class RobertaPromptForMultipleChoice(RobertaPreTrainedModel):
|
597 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
598 |
+
|
599 |
+
def __init__(self, config):
|
600 |
+
super().__init__(config)
|
601 |
+
|
602 |
+
self.roberta = RobertaModel(config)
|
603 |
+
self.embeddings = self.roberta.embeddings
|
604 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
605 |
+
self.classifier = torch.nn.Linear(config.hidden_size, 1)
|
606 |
+
|
607 |
+
self.init_weights()
|
608 |
+
|
609 |
+
|
610 |
+
for param in self.roberta.parameters():
|
611 |
+
param.requires_grad = False
|
612 |
+
|
613 |
+
self.pre_seq_len = config.pre_seq_len
|
614 |
+
self.n_layer = config.num_hidden_layers
|
615 |
+
self.n_head = config.num_attention_heads
|
616 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
617 |
+
|
618 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
619 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
620 |
+
|
621 |
+
bert_param = 0
|
622 |
+
for name, param in self.roberta.named_parameters():
|
623 |
+
bert_param += param.numel()
|
624 |
+
all_param = 0
|
625 |
+
for name, param in self.named_parameters():
|
626 |
+
all_param += param.numel()
|
627 |
+
total_param = all_param - bert_param
|
628 |
+
print('total param is {}'.format(total_param))
|
629 |
+
|
630 |
+
self.embedding = utils.get_embeddings(self, config)
|
631 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
632 |
+
|
633 |
+
def get_prompt(self, batch_size):
|
634 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
635 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
636 |
+
return prompts
|
637 |
+
|
638 |
+
def forward(
|
639 |
+
self,
|
640 |
+
input_ids=None,
|
641 |
+
token_type_ids=None,
|
642 |
+
attention_mask=None,
|
643 |
+
labels=None,
|
644 |
+
position_ids=None,
|
645 |
+
head_mask=None,
|
646 |
+
inputs_embeds=None,
|
647 |
+
output_attentions=None,
|
648 |
+
output_hidden_states=None,
|
649 |
+
return_dict=None,
|
650 |
+
use_base_grad=False
|
651 |
+
):
|
652 |
+
r"""
|
653 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
654 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
655 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
656 |
+
:obj:`input_ids` above)
|
657 |
+
"""
|
658 |
+
utils.use_grad(self.roberta, use_base_grad)
|
659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
660 |
+
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
|
661 |
+
|
662 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
663 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
664 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
665 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
666 |
+
inputs_embeds = (
|
667 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
668 |
+
if inputs_embeds is not None
|
669 |
+
else None
|
670 |
+
)
|
671 |
+
|
672 |
+
raw_embedding = self.embeddings(
|
673 |
+
input_ids=input_ids,
|
674 |
+
position_ids=position_ids,
|
675 |
+
token_type_ids=token_type_ids,
|
676 |
+
)
|
677 |
+
prompts = self.get_prompt(batch_size=batch_size * num_choices)
|
678 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
679 |
+
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
|
680 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
681 |
+
|
682 |
+
outputs = self.roberta(
|
683 |
+
attention_mask=attention_mask,
|
684 |
+
head_mask=head_mask,
|
685 |
+
inputs_embeds=inputs_embeds,
|
686 |
+
output_attentions=output_attentions,
|
687 |
+
output_hidden_states=output_hidden_states,
|
688 |
+
return_dict=return_dict,
|
689 |
+
)
|
690 |
+
pooled_output = outputs[1]
|
691 |
+
|
692 |
+
pooled_output = self.dropout(pooled_output)
|
693 |
+
logits = self.classifier(pooled_output)
|
694 |
+
reshaped_logits = logits.view(-1, num_choices)
|
695 |
+
|
696 |
+
loss = None
|
697 |
+
if labels is not None:
|
698 |
+
loss_fct = CrossEntropyLoss()
|
699 |
+
loss = loss_fct(reshaped_logits, labels)
|
700 |
+
|
701 |
+
if not return_dict:
|
702 |
+
output = (reshaped_logits,) + outputs[2:]
|
703 |
+
return ((loss,) + output) if loss is not None else output
|
704 |
+
|
705 |
+
return MultipleChoiceModelOutput(
|
706 |
+
loss=loss,
|
707 |
+
logits=reshaped_logits,
|
708 |
+
hidden_states=outputs.hidden_states,
|
709 |
+
attentions=outputs.attentions,
|
710 |
+
)
|
soft_prompt/model/prefix_encoder.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class PrefixEncoder(torch.nn.Module):
|
5 |
+
r'''
|
6 |
+
The torch.nn model to encode the prefix
|
7 |
+
|
8 |
+
Input shape: (batch-size, prefix-length)
|
9 |
+
|
10 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
11 |
+
'''
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__()
|
14 |
+
self.prefix_projection = config.prefix_projection
|
15 |
+
if self.prefix_projection:
|
16 |
+
# Use a two-layer MLP to encode the prefix
|
17 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
18 |
+
self.trans = torch.nn.Sequential(
|
19 |
+
torch.nn.Linear(config.hidden_size, config.prefix_hidden_size),
|
20 |
+
torch.nn.Tanh(),
|
21 |
+
torch.nn.Linear(config.prefix_hidden_size, config.num_hidden_layers * 2 * config.hidden_size)
|
22 |
+
)
|
23 |
+
else:
|
24 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)
|
25 |
+
|
26 |
+
def forward(self, prefix: torch.Tensor):
|
27 |
+
device = next(self.embedding.parameters()).device
|
28 |
+
if self.prefix_projection:
|
29 |
+
prefix_tokens = self.embedding(prefix.to(device))
|
30 |
+
past_key_values = self.trans(prefix_tokens)
|
31 |
+
else:
|
32 |
+
past_key_values = self.embedding(prefix.to(device))
|
33 |
+
return past_key_values
|
soft_prompt/model/question_answering.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn
|
3 |
+
from torch.nn import CrossEntropyLoss
|
4 |
+
from transformers import BertPreTrainedModel, BertModel, RobertaPreTrainedModel, RobertaModel
|
5 |
+
from transformers.modeling_outputs import QuestionAnsweringModelOutput
|
6 |
+
|
7 |
+
from model.prefix_encoder import PrefixEncoder
|
8 |
+
from model.deberta import DebertaPreTrainedModel, DebertaModel
|
9 |
+
|
10 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
11 |
+
|
12 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__(config)
|
16 |
+
self.num_labels = config.num_labels
|
17 |
+
|
18 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
19 |
+
self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
|
20 |
+
|
21 |
+
for param in self.bert.parameters():
|
22 |
+
param.requires_grad = False
|
23 |
+
|
24 |
+
self.init_weights()
|
25 |
+
|
26 |
+
def forward(
|
27 |
+
self,
|
28 |
+
input_ids=None,
|
29 |
+
attention_mask=None,
|
30 |
+
token_type_ids=None,
|
31 |
+
position_ids=None,
|
32 |
+
head_mask=None,
|
33 |
+
inputs_embeds=None,
|
34 |
+
start_positions=None,
|
35 |
+
end_positions=None,
|
36 |
+
output_attentions=None,
|
37 |
+
output_hidden_states=None,
|
38 |
+
return_dict=None,
|
39 |
+
):
|
40 |
+
r"""
|
41 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
42 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
43 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
44 |
+
sequence are not taken into account for computing the loss.
|
45 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
46 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
47 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
48 |
+
sequence are not taken into account for computing the loss.
|
49 |
+
"""
|
50 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
51 |
+
|
52 |
+
outputs = self.bert(
|
53 |
+
input_ids,
|
54 |
+
attention_mask=attention_mask,
|
55 |
+
token_type_ids=token_type_ids,
|
56 |
+
position_ids=position_ids,
|
57 |
+
head_mask=head_mask,
|
58 |
+
inputs_embeds=inputs_embeds,
|
59 |
+
output_attentions=output_attentions,
|
60 |
+
output_hidden_states=output_hidden_states,
|
61 |
+
return_dict=return_dict,
|
62 |
+
)
|
63 |
+
|
64 |
+
sequence_output = outputs[0]
|
65 |
+
|
66 |
+
logits = self.qa_outputs(sequence_output)
|
67 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
68 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
69 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
70 |
+
|
71 |
+
total_loss = None
|
72 |
+
if start_positions is not None and end_positions is not None:
|
73 |
+
# If we are on multi-GPU, split add a dimension
|
74 |
+
if len(start_positions.size()) > 1:
|
75 |
+
start_positions = start_positions.squeeze(-1)
|
76 |
+
if len(end_positions.size()) > 1:
|
77 |
+
end_positions = end_positions.squeeze(-1)
|
78 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
79 |
+
ignored_index = start_logits.size(1)
|
80 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
81 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
82 |
+
|
83 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
84 |
+
start_loss = loss_fct(start_logits, start_positions)
|
85 |
+
end_loss = loss_fct(end_logits, end_positions)
|
86 |
+
total_loss = (start_loss + end_loss) / 2
|
87 |
+
|
88 |
+
if not return_dict:
|
89 |
+
output = (start_logits, end_logits) + outputs[2:]
|
90 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
91 |
+
|
92 |
+
return QuestionAnsweringModelOutput(
|
93 |
+
loss=total_loss,
|
94 |
+
start_logits=start_logits,
|
95 |
+
end_logits=end_logits,
|
96 |
+
hidden_states=outputs.hidden_states,
|
97 |
+
attentions=outputs.attentions,
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
class BertPrefixForQuestionAnswering(BertPreTrainedModel):
|
102 |
+
def __init__(self, config):
|
103 |
+
super().__init__(config)
|
104 |
+
self.num_labels = config.num_labels
|
105 |
+
|
106 |
+
self.pre_seq_len = config.pre_seq_len
|
107 |
+
self.n_layer = config.num_hidden_layers
|
108 |
+
self.n_head = config.num_attention_heads
|
109 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
110 |
+
|
111 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
112 |
+
self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
|
113 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
114 |
+
self.prefix_encoder = PrefixEncoder(config)
|
115 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
116 |
+
|
117 |
+
for param in self.bert.parameters():
|
118 |
+
param.requires_grad = False
|
119 |
+
|
120 |
+
self.init_weights()
|
121 |
+
|
122 |
+
def get_prompt(self, batch_size):
|
123 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
124 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
125 |
+
bsz, seqlen, _ = past_key_values.shape
|
126 |
+
past_key_values = past_key_values.view(
|
127 |
+
bsz,
|
128 |
+
seqlen,
|
129 |
+
self.n_layer * 2,
|
130 |
+
self.n_head,
|
131 |
+
self.n_embd
|
132 |
+
)
|
133 |
+
past_key_values = self.dropout(past_key_values)
|
134 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
135 |
+
return past_key_values
|
136 |
+
|
137 |
+
def forward(
|
138 |
+
self,
|
139 |
+
input_ids=None,
|
140 |
+
attention_mask=None,
|
141 |
+
token_type_ids=None,
|
142 |
+
position_ids=None,
|
143 |
+
head_mask=None,
|
144 |
+
inputs_embeds=None,
|
145 |
+
start_positions=None,
|
146 |
+
end_positions=None,
|
147 |
+
output_attentions=None,
|
148 |
+
output_hidden_states=None,
|
149 |
+
return_dict=None,
|
150 |
+
):
|
151 |
+
r"""
|
152 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
153 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
154 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
155 |
+
sequence are not taken into account for computing the loss.
|
156 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
157 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
158 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
159 |
+
sequence are not taken into account for computing the loss.
|
160 |
+
"""
|
161 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
162 |
+
|
163 |
+
batch_size = input_ids.shape[0]
|
164 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
165 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
166 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
167 |
+
|
168 |
+
outputs = self.bert(
|
169 |
+
input_ids,
|
170 |
+
attention_mask=attention_mask,
|
171 |
+
token_type_ids=token_type_ids,
|
172 |
+
position_ids=position_ids,
|
173 |
+
head_mask=head_mask,
|
174 |
+
inputs_embeds=inputs_embeds,
|
175 |
+
output_attentions=output_attentions,
|
176 |
+
output_hidden_states=output_hidden_states,
|
177 |
+
return_dict=return_dict,
|
178 |
+
past_key_values=past_key_values,
|
179 |
+
)
|
180 |
+
|
181 |
+
sequence_output = outputs[0]
|
182 |
+
|
183 |
+
logits = self.qa_outputs(sequence_output)
|
184 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
185 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
186 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
187 |
+
|
188 |
+
total_loss = None
|
189 |
+
if start_positions is not None and end_positions is not None:
|
190 |
+
# If we are on multi-GPU, split add a dimension
|
191 |
+
if len(start_positions.size()) > 1:
|
192 |
+
start_positions = start_positions.squeeze(-1)
|
193 |
+
if len(end_positions.size()) > 1:
|
194 |
+
end_positions = end_positions.squeeze(-1)
|
195 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
196 |
+
ignored_index = start_logits.size(1)
|
197 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
198 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
199 |
+
|
200 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
201 |
+
start_loss = loss_fct(start_logits, start_positions)
|
202 |
+
end_loss = loss_fct(end_logits, end_positions)
|
203 |
+
total_loss = (start_loss + end_loss) / 2
|
204 |
+
|
205 |
+
if not return_dict:
|
206 |
+
output = (start_logits, end_logits) + outputs[2:]
|
207 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
208 |
+
|
209 |
+
return QuestionAnsweringModelOutput(
|
210 |
+
loss=total_loss,
|
211 |
+
start_logits=start_logits,
|
212 |
+
end_logits=end_logits,
|
213 |
+
hidden_states=outputs.hidden_states,
|
214 |
+
attentions=outputs.attentions,
|
215 |
+
)
|
216 |
+
|
217 |
+
class RobertaPrefixModelForQuestionAnswering(RobertaPreTrainedModel):
|
218 |
+
def __init__(self, config):
|
219 |
+
super().__init__(config)
|
220 |
+
self.num_labels = config.num_labels
|
221 |
+
|
222 |
+
self.pre_seq_len = config.pre_seq_len
|
223 |
+
self.n_layer = config.num_hidden_layers
|
224 |
+
self.n_head = config.num_attention_heads
|
225 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
226 |
+
|
227 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
228 |
+
self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
|
229 |
+
|
230 |
+
self.init_weights()
|
231 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
232 |
+
self.prefix_encoder = PrefixEncoder(config)
|
233 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
234 |
+
|
235 |
+
for param in self.roberta.parameters():
|
236 |
+
param.requires_grad = False
|
237 |
+
|
238 |
+
def get_prompt(self, batch_size):
|
239 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
240 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
241 |
+
bsz, seqlen, _ = past_key_values.shape
|
242 |
+
past_key_values = past_key_values.view(
|
243 |
+
bsz,
|
244 |
+
seqlen,
|
245 |
+
self.n_layer * 2,
|
246 |
+
self.n_head,
|
247 |
+
self.n_embd
|
248 |
+
)
|
249 |
+
past_key_values = self.dropout(past_key_values)
|
250 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
251 |
+
return past_key_values
|
252 |
+
|
253 |
+
def forward(
|
254 |
+
self,
|
255 |
+
input_ids=None,
|
256 |
+
attention_mask=None,
|
257 |
+
token_type_ids=None,
|
258 |
+
position_ids=None,
|
259 |
+
head_mask=None,
|
260 |
+
inputs_embeds=None,
|
261 |
+
start_positions=None,
|
262 |
+
end_positions=None,
|
263 |
+
output_attentions=None,
|
264 |
+
output_hidden_states=None,
|
265 |
+
return_dict=None,
|
266 |
+
):
|
267 |
+
r"""
|
268 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
269 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
270 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
271 |
+
sequence are not taken into account for computing the loss.
|
272 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
273 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
274 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
275 |
+
sequence are not taken into account for computing the loss.
|
276 |
+
"""
|
277 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
278 |
+
|
279 |
+
batch_size = input_ids.shape[0]
|
280 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
281 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
282 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
283 |
+
|
284 |
+
outputs = self.roberta(
|
285 |
+
input_ids,
|
286 |
+
attention_mask=attention_mask,
|
287 |
+
token_type_ids=token_type_ids,
|
288 |
+
position_ids=position_ids,
|
289 |
+
head_mask=head_mask,
|
290 |
+
inputs_embeds=inputs_embeds,
|
291 |
+
output_attentions=output_attentions,
|
292 |
+
output_hidden_states=output_hidden_states,
|
293 |
+
return_dict=return_dict,
|
294 |
+
past_key_values=past_key_values,
|
295 |
+
)
|
296 |
+
|
297 |
+
sequence_output = outputs[0]
|
298 |
+
|
299 |
+
logits = self.qa_outputs(sequence_output)
|
300 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
301 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
302 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
303 |
+
|
304 |
+
total_loss = None
|
305 |
+
if start_positions is not None and end_positions is not None:
|
306 |
+
# If we are on multi-GPU, split add a dimension
|
307 |
+
if len(start_positions.size()) > 1:
|
308 |
+
start_positions = start_positions.squeeze(-1)
|
309 |
+
if len(end_positions.size()) > 1:
|
310 |
+
end_positions = end_positions.squeeze(-1)
|
311 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
312 |
+
ignored_index = start_logits.size(1)
|
313 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
314 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
315 |
+
|
316 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
317 |
+
start_loss = loss_fct(start_logits, start_positions)
|
318 |
+
end_loss = loss_fct(end_logits, end_positions)
|
319 |
+
total_loss = (start_loss + end_loss) / 2
|
320 |
+
|
321 |
+
if not return_dict:
|
322 |
+
output = (start_logits, end_logits) + outputs[2:]
|
323 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
324 |
+
|
325 |
+
return QuestionAnsweringModelOutput(
|
326 |
+
loss=total_loss,
|
327 |
+
start_logits=start_logits,
|
328 |
+
end_logits=end_logits,
|
329 |
+
hidden_states=outputs.hidden_states,
|
330 |
+
attentions=outputs.attentions,
|
331 |
+
)
|
332 |
+
|
333 |
+
class DebertaPrefixModelForQuestionAnswering(DebertaPreTrainedModel):
|
334 |
+
def __init__(self, config):
|
335 |
+
super().__init__(config)
|
336 |
+
self.num_labels = config.num_labels
|
337 |
+
self.deberta = DebertaModel(config)
|
338 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
339 |
+
self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)
|
340 |
+
self.init_weights()
|
341 |
+
|
342 |
+
for param in self.deberta.parameters():
|
343 |
+
param.requires_grad = False
|
344 |
+
|
345 |
+
self.pre_seq_len = config.pre_seq_len
|
346 |
+
self.n_layer = config.num_hidden_layers
|
347 |
+
self.n_head = config.num_attention_heads
|
348 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
349 |
+
|
350 |
+
# Use a two layered MLP to encode the prefix
|
351 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
352 |
+
self.prefix_encoder = PrefixEncoder(config)
|
353 |
+
|
354 |
+
deberta_param = 0
|
355 |
+
for name, param in self.deberta.named_parameters():
|
356 |
+
deberta_param += param.numel()
|
357 |
+
all_param = 0
|
358 |
+
for name, param in self.named_parameters():
|
359 |
+
all_param += param.numel()
|
360 |
+
total_param = all_param - deberta_param
|
361 |
+
print('total param is {}'.format(total_param)) # 9860105
|
362 |
+
|
363 |
+
def get_prompt(self, batch_size):
|
364 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
365 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
366 |
+
# bsz, seqlen, _ = past_key_values.shape
|
367 |
+
past_key_values = past_key_values.view(
|
368 |
+
batch_size,
|
369 |
+
self.pre_seq_len,
|
370 |
+
self.n_layer * 2,
|
371 |
+
self.n_head,
|
372 |
+
self.n_embd
|
373 |
+
)
|
374 |
+
past_key_values = self.dropout(past_key_values)
|
375 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
376 |
+
return past_key_values
|
377 |
+
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
input_ids=None,
|
381 |
+
attention_mask=None,
|
382 |
+
token_type_ids=None,
|
383 |
+
position_ids=None,
|
384 |
+
# head_mask=None,
|
385 |
+
inputs_embeds=None,
|
386 |
+
start_positions=None,
|
387 |
+
end_positions=None,
|
388 |
+
output_attentions=None,
|
389 |
+
output_hidden_states=None,
|
390 |
+
return_dict=None,
|
391 |
+
):
|
392 |
+
r"""
|
393 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
394 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
395 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
396 |
+
sequence are not taken into account for computing the loss.
|
397 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
398 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
399 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
400 |
+
sequence are not taken into account for computing the loss.
|
401 |
+
"""
|
402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
403 |
+
|
404 |
+
batch_size = input_ids.shape[0]
|
405 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
406 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
407 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
408 |
+
|
409 |
+
outputs = self.deberta(
|
410 |
+
input_ids,
|
411 |
+
attention_mask=attention_mask,
|
412 |
+
token_type_ids=token_type_ids,
|
413 |
+
position_ids=position_ids,
|
414 |
+
inputs_embeds=inputs_embeds,
|
415 |
+
output_attentions=output_attentions,
|
416 |
+
output_hidden_states=output_hidden_states,
|
417 |
+
return_dict=return_dict,
|
418 |
+
past_key_values=past_key_values,
|
419 |
+
)
|
420 |
+
|
421 |
+
sequence_output = outputs[0]
|
422 |
+
|
423 |
+
logits = self.qa_outputs(sequence_output)
|
424 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
425 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
426 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
427 |
+
|
428 |
+
total_loss = None
|
429 |
+
if start_positions is not None and end_positions is not None:
|
430 |
+
# If we are on multi-GPU, split add a dimension
|
431 |
+
if len(start_positions.size()) > 1:
|
432 |
+
start_positions = start_positions.squeeze(-1)
|
433 |
+
if len(end_positions.size()) > 1:
|
434 |
+
end_positions = end_positions.squeeze(-1)
|
435 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
436 |
+
ignored_index = start_logits.size(1)
|
437 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
438 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
439 |
+
|
440 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
441 |
+
start_loss = loss_fct(start_logits, start_positions)
|
442 |
+
end_loss = loss_fct(end_logits, end_positions)
|
443 |
+
total_loss = (start_loss + end_loss) / 2
|
444 |
+
|
445 |
+
if not return_dict:
|
446 |
+
output = (start_logits, end_logits) + outputs[2:]
|
447 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
448 |
+
|
449 |
+
return QuestionAnsweringModelOutput(
|
450 |
+
loss=total_loss,
|
451 |
+
start_logits=start_logits,
|
452 |
+
end_logits=end_logits,
|
453 |
+
hidden_states=outputs.hidden_states,
|
454 |
+
attentions=outputs.attentions,
|
455 |
+
)
|
soft_prompt/model/roberta.py
ADDED
@@ -0,0 +1,1588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch RoBERTa model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN, gelu
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
MaskedLMOutput,
|
32 |
+
MultipleChoiceModelOutput,
|
33 |
+
QuestionAnsweringModelOutput,
|
34 |
+
SequenceClassifierOutput,
|
35 |
+
TokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_utils import PreTrainedModel
|
38 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
39 |
+
from ...utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from .configuration_roberta import RobertaConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "roberta-base"
|
52 |
+
_CONFIG_FOR_DOC = "RobertaConfig"
|
53 |
+
|
54 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
55 |
+
"roberta-base",
|
56 |
+
"roberta-large",
|
57 |
+
"roberta-large-mnli",
|
58 |
+
"distilroberta-base",
|
59 |
+
"roberta-base-openai-detector",
|
60 |
+
"roberta-large-openai-detector",
|
61 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
class RobertaEmbeddings(nn.Module):
|
66 |
+
"""
|
67 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
68 |
+
"""
|
69 |
+
|
70 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__()
|
73 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
74 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
75 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
76 |
+
|
77 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
78 |
+
# any TensorFlow checkpoint file
|
79 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
80 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
81 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
82 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
83 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
84 |
+
self.register_buffer(
|
85 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
86 |
+
)
|
87 |
+
|
88 |
+
# End copy
|
89 |
+
self.padding_idx = config.pad_token_id
|
90 |
+
self.position_embeddings = nn.Embedding(
|
91 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
92 |
+
)
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
96 |
+
):
|
97 |
+
if position_ids is None:
|
98 |
+
if input_ids is not None:
|
99 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
100 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
101 |
+
else:
|
102 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
103 |
+
|
104 |
+
if input_ids is not None:
|
105 |
+
input_shape = input_ids.size()
|
106 |
+
else:
|
107 |
+
input_shape = inputs_embeds.size()[:-1]
|
108 |
+
|
109 |
+
seq_length = input_shape[1]
|
110 |
+
|
111 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
112 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
113 |
+
# issue #5664
|
114 |
+
if token_type_ids is None:
|
115 |
+
if hasattr(self, "token_type_ids"):
|
116 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
117 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
118 |
+
token_type_ids = buffered_token_type_ids_expanded
|
119 |
+
else:
|
120 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
121 |
+
|
122 |
+
if inputs_embeds is None:
|
123 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
124 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
125 |
+
|
126 |
+
embeddings = inputs_embeds + token_type_embeddings
|
127 |
+
if self.position_embedding_type == "absolute":
|
128 |
+
position_embeddings = self.position_embeddings(position_ids)
|
129 |
+
embeddings += position_embeddings
|
130 |
+
embeddings = self.LayerNorm(embeddings)
|
131 |
+
embeddings = self.dropout(embeddings)
|
132 |
+
return embeddings
|
133 |
+
|
134 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
135 |
+
"""
|
136 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
inputs_embeds: torch.Tensor
|
140 |
+
|
141 |
+
Returns: torch.Tensor
|
142 |
+
"""
|
143 |
+
input_shape = inputs_embeds.size()[:-1]
|
144 |
+
sequence_length = input_shape[1]
|
145 |
+
|
146 |
+
position_ids = torch.arange(
|
147 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
148 |
+
)
|
149 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
150 |
+
|
151 |
+
|
152 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
153 |
+
class RobertaSelfAttention(nn.Module):
|
154 |
+
def __init__(self, config, position_embedding_type=None):
|
155 |
+
super().__init__()
|
156 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
157 |
+
raise ValueError(
|
158 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
159 |
+
f"heads ({config.num_attention_heads})"
|
160 |
+
)
|
161 |
+
|
162 |
+
self.num_attention_heads = config.num_attention_heads
|
163 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
164 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
165 |
+
|
166 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
167 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
168 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
169 |
+
|
170 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
171 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
172 |
+
config, "position_embedding_type", "absolute"
|
173 |
+
)
|
174 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
175 |
+
self.max_position_embeddings = config.max_position_embeddings
|
176 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
177 |
+
|
178 |
+
self.is_decoder = config.is_decoder
|
179 |
+
|
180 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
181 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
182 |
+
x = x.view(new_x_shape)
|
183 |
+
return x.permute(0, 2, 1, 3)
|
184 |
+
|
185 |
+
def forward(
|
186 |
+
self,
|
187 |
+
hidden_states: torch.Tensor,
|
188 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
189 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
190 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
191 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
192 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
193 |
+
output_attentions: Optional[bool] = False,
|
194 |
+
) -> Tuple[torch.Tensor]:
|
195 |
+
mixed_query_layer = self.query(hidden_states)
|
196 |
+
|
197 |
+
# If this is instantiated as a cross-attention module, the keys
|
198 |
+
# and values come from an encoder; the attention mask needs to be
|
199 |
+
# such that the encoder's padding tokens are not attended to.
|
200 |
+
is_cross_attention = encoder_hidden_states is not None
|
201 |
+
|
202 |
+
if is_cross_attention and past_key_value is not None:
|
203 |
+
# reuse k,v, cross_attentions
|
204 |
+
key_layer = past_key_value[0]
|
205 |
+
value_layer = past_key_value[1]
|
206 |
+
attention_mask = encoder_attention_mask
|
207 |
+
elif is_cross_attention:
|
208 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
209 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
210 |
+
attention_mask = encoder_attention_mask
|
211 |
+
elif past_key_value is not None:
|
212 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
213 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
214 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
215 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
216 |
+
else:
|
217 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
218 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
219 |
+
|
220 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
221 |
+
|
222 |
+
use_cache = past_key_value is not None
|
223 |
+
if self.is_decoder:
|
224 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
225 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
226 |
+
# key/value_states (first "if" case)
|
227 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
228 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
229 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
230 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
231 |
+
past_key_value = (key_layer, value_layer)
|
232 |
+
|
233 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
234 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
235 |
+
|
236 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
237 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
238 |
+
if use_cache:
|
239 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
240 |
+
-1, 1
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
244 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
245 |
+
distance = position_ids_l - position_ids_r
|
246 |
+
|
247 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
248 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
249 |
+
|
250 |
+
if self.position_embedding_type == "relative_key":
|
251 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
252 |
+
attention_scores = attention_scores + relative_position_scores
|
253 |
+
elif self.position_embedding_type == "relative_key_query":
|
254 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
255 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
256 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
257 |
+
|
258 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
259 |
+
if attention_mask is not None:
|
260 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
261 |
+
attention_scores = attention_scores + attention_mask
|
262 |
+
|
263 |
+
# Normalize the attention scores to probabilities.
|
264 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
265 |
+
|
266 |
+
# This is actually dropping out entire tokens to attend to, which might
|
267 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
268 |
+
attention_probs = self.dropout(attention_probs)
|
269 |
+
|
270 |
+
# Mask heads if we want to
|
271 |
+
if head_mask is not None:
|
272 |
+
attention_probs = attention_probs * head_mask
|
273 |
+
|
274 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
275 |
+
|
276 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
277 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
278 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
279 |
+
|
280 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
281 |
+
|
282 |
+
if self.is_decoder:
|
283 |
+
outputs = outputs + (past_key_value,)
|
284 |
+
return outputs
|
285 |
+
|
286 |
+
|
287 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
288 |
+
class RobertaSelfOutput(nn.Module):
|
289 |
+
def __init__(self, config):
|
290 |
+
super().__init__()
|
291 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
292 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
293 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
294 |
+
|
295 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
296 |
+
hidden_states = self.dense(hidden_states)
|
297 |
+
hidden_states = self.dropout(hidden_states)
|
298 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
299 |
+
return hidden_states
|
300 |
+
|
301 |
+
|
302 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
303 |
+
class RobertaAttention(nn.Module):
|
304 |
+
def __init__(self, config, position_embedding_type=None):
|
305 |
+
super().__init__()
|
306 |
+
self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type)
|
307 |
+
self.output = RobertaSelfOutput(config)
|
308 |
+
self.pruned_heads = set()
|
309 |
+
|
310 |
+
def prune_heads(self, heads):
|
311 |
+
if len(heads) == 0:
|
312 |
+
return
|
313 |
+
heads, index = find_pruneable_heads_and_indices(
|
314 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
315 |
+
)
|
316 |
+
|
317 |
+
# Prune linear layers
|
318 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
319 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
320 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
321 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
322 |
+
|
323 |
+
# Update hyper params and store pruned heads
|
324 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
325 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
326 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
327 |
+
|
328 |
+
def forward(
|
329 |
+
self,
|
330 |
+
hidden_states: torch.Tensor,
|
331 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
332 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
333 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
334 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
335 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
336 |
+
output_attentions: Optional[bool] = False,
|
337 |
+
) -> Tuple[torch.Tensor]:
|
338 |
+
self_outputs = self.self(
|
339 |
+
hidden_states,
|
340 |
+
attention_mask,
|
341 |
+
head_mask,
|
342 |
+
encoder_hidden_states,
|
343 |
+
encoder_attention_mask,
|
344 |
+
past_key_value,
|
345 |
+
output_attentions,
|
346 |
+
)
|
347 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
348 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
349 |
+
return outputs
|
350 |
+
|
351 |
+
|
352 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
353 |
+
class RobertaIntermediate(nn.Module):
|
354 |
+
def __init__(self, config):
|
355 |
+
super().__init__()
|
356 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
357 |
+
if isinstance(config.hidden_act, str):
|
358 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
359 |
+
else:
|
360 |
+
self.intermediate_act_fn = config.hidden_act
|
361 |
+
|
362 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
363 |
+
hidden_states = self.dense(hidden_states)
|
364 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
365 |
+
return hidden_states
|
366 |
+
|
367 |
+
|
368 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
369 |
+
class RobertaOutput(nn.Module):
|
370 |
+
def __init__(self, config):
|
371 |
+
super().__init__()
|
372 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
373 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
374 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
375 |
+
|
376 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
377 |
+
hidden_states = self.dense(hidden_states)
|
378 |
+
hidden_states = self.dropout(hidden_states)
|
379 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
380 |
+
return hidden_states
|
381 |
+
|
382 |
+
|
383 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
384 |
+
class RobertaLayer(nn.Module):
|
385 |
+
def __init__(self, config):
|
386 |
+
super().__init__()
|
387 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
388 |
+
self.seq_len_dim = 1
|
389 |
+
self.attention = RobertaAttention(config)
|
390 |
+
self.is_decoder = config.is_decoder
|
391 |
+
self.add_cross_attention = config.add_cross_attention
|
392 |
+
if self.add_cross_attention:
|
393 |
+
if not self.is_decoder:
|
394 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
395 |
+
self.crossattention = RobertaAttention(config, position_embedding_type="absolute")
|
396 |
+
self.intermediate = RobertaIntermediate(config)
|
397 |
+
self.output = RobertaOutput(config)
|
398 |
+
|
399 |
+
def forward(
|
400 |
+
self,
|
401 |
+
hidden_states: torch.Tensor,
|
402 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
403 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
404 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
405 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
406 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
407 |
+
output_attentions: Optional[bool] = False,
|
408 |
+
) -> Tuple[torch.Tensor]:
|
409 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
410 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
411 |
+
self_attention_outputs = self.attention(
|
412 |
+
hidden_states,
|
413 |
+
attention_mask,
|
414 |
+
head_mask,
|
415 |
+
output_attentions=output_attentions,
|
416 |
+
past_key_value=self_attn_past_key_value,
|
417 |
+
)
|
418 |
+
attention_output = self_attention_outputs[0]
|
419 |
+
|
420 |
+
# if decoder, the last output is tuple of self-attn cache
|
421 |
+
if self.is_decoder:
|
422 |
+
outputs = self_attention_outputs[1:-1]
|
423 |
+
present_key_value = self_attention_outputs[-1]
|
424 |
+
else:
|
425 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
426 |
+
|
427 |
+
cross_attn_present_key_value = None
|
428 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
429 |
+
if not hasattr(self, "crossattention"):
|
430 |
+
raise ValueError(
|
431 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
432 |
+
" by setting `config.add_cross_attention=True`"
|
433 |
+
)
|
434 |
+
|
435 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
436 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
437 |
+
cross_attention_outputs = self.crossattention(
|
438 |
+
attention_output,
|
439 |
+
attention_mask,
|
440 |
+
head_mask,
|
441 |
+
encoder_hidden_states,
|
442 |
+
encoder_attention_mask,
|
443 |
+
cross_attn_past_key_value,
|
444 |
+
output_attentions,
|
445 |
+
)
|
446 |
+
attention_output = cross_attention_outputs[0]
|
447 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
448 |
+
|
449 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
450 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
451 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
452 |
+
|
453 |
+
layer_output = apply_chunking_to_forward(
|
454 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
455 |
+
)
|
456 |
+
outputs = (layer_output,) + outputs
|
457 |
+
|
458 |
+
# if decoder, return the attn key/values as the last output
|
459 |
+
if self.is_decoder:
|
460 |
+
outputs = outputs + (present_key_value,)
|
461 |
+
|
462 |
+
return outputs
|
463 |
+
|
464 |
+
def feed_forward_chunk(self, attention_output):
|
465 |
+
intermediate_output = self.intermediate(attention_output)
|
466 |
+
layer_output = self.output(intermediate_output, attention_output)
|
467 |
+
return layer_output
|
468 |
+
|
469 |
+
|
470 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
471 |
+
class RobertaEncoder(nn.Module):
|
472 |
+
def __init__(self, config):
|
473 |
+
super().__init__()
|
474 |
+
self.config = config
|
475 |
+
self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
476 |
+
self.gradient_checkpointing = False
|
477 |
+
|
478 |
+
def forward(
|
479 |
+
self,
|
480 |
+
hidden_states: torch.Tensor,
|
481 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
482 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
483 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
484 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
485 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
486 |
+
use_cache: Optional[bool] = None,
|
487 |
+
output_attentions: Optional[bool] = False,
|
488 |
+
output_hidden_states: Optional[bool] = False,
|
489 |
+
return_dict: Optional[bool] = True,
|
490 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
491 |
+
all_hidden_states = () if output_hidden_states else None
|
492 |
+
all_self_attentions = () if output_attentions else None
|
493 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
494 |
+
|
495 |
+
if self.gradient_checkpointing and self.training:
|
496 |
+
if use_cache:
|
497 |
+
logger.warning_once(
|
498 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
499 |
+
)
|
500 |
+
use_cache = False
|
501 |
+
|
502 |
+
next_decoder_cache = () if use_cache else None
|
503 |
+
for i, layer_module in enumerate(self.layer):
|
504 |
+
if output_hidden_states:
|
505 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
506 |
+
|
507 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
508 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
509 |
+
|
510 |
+
if self.gradient_checkpointing and self.training:
|
511 |
+
|
512 |
+
def create_custom_forward(module):
|
513 |
+
def custom_forward(*inputs):
|
514 |
+
return module(*inputs, past_key_value, output_attentions)
|
515 |
+
|
516 |
+
return custom_forward
|
517 |
+
|
518 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
519 |
+
create_custom_forward(layer_module),
|
520 |
+
hidden_states,
|
521 |
+
attention_mask,
|
522 |
+
layer_head_mask,
|
523 |
+
encoder_hidden_states,
|
524 |
+
encoder_attention_mask,
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
layer_outputs = layer_module(
|
528 |
+
hidden_states,
|
529 |
+
attention_mask,
|
530 |
+
layer_head_mask,
|
531 |
+
encoder_hidden_states,
|
532 |
+
encoder_attention_mask,
|
533 |
+
past_key_value,
|
534 |
+
output_attentions,
|
535 |
+
)
|
536 |
+
|
537 |
+
hidden_states = layer_outputs[0]
|
538 |
+
if use_cache:
|
539 |
+
next_decoder_cache += (layer_outputs[-1],)
|
540 |
+
if output_attentions:
|
541 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
542 |
+
if self.config.add_cross_attention:
|
543 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
544 |
+
|
545 |
+
if output_hidden_states:
|
546 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
547 |
+
|
548 |
+
if not return_dict:
|
549 |
+
return tuple(
|
550 |
+
v
|
551 |
+
for v in [
|
552 |
+
hidden_states,
|
553 |
+
next_decoder_cache,
|
554 |
+
all_hidden_states,
|
555 |
+
all_self_attentions,
|
556 |
+
all_cross_attentions,
|
557 |
+
]
|
558 |
+
if v is not None
|
559 |
+
)
|
560 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
561 |
+
last_hidden_state=hidden_states,
|
562 |
+
past_key_values=next_decoder_cache,
|
563 |
+
hidden_states=all_hidden_states,
|
564 |
+
attentions=all_self_attentions,
|
565 |
+
cross_attentions=all_cross_attentions,
|
566 |
+
)
|
567 |
+
|
568 |
+
|
569 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
570 |
+
class RobertaPooler(nn.Module):
|
571 |
+
def __init__(self, config):
|
572 |
+
super().__init__()
|
573 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
574 |
+
self.activation = nn.Tanh()
|
575 |
+
|
576 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
577 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
578 |
+
# to the first token.
|
579 |
+
first_token_tensor = hidden_states[:, 0]
|
580 |
+
pooled_output = self.dense(first_token_tensor)
|
581 |
+
pooled_output = self.activation(pooled_output)
|
582 |
+
return pooled_output
|
583 |
+
|
584 |
+
|
585 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
586 |
+
"""
|
587 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
588 |
+
models.
|
589 |
+
"""
|
590 |
+
|
591 |
+
config_class = RobertaConfig
|
592 |
+
base_model_prefix = "roberta"
|
593 |
+
supports_gradient_checkpointing = True
|
594 |
+
_no_split_modules = []
|
595 |
+
|
596 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
597 |
+
def _init_weights(self, module):
|
598 |
+
"""Initialize the weights"""
|
599 |
+
if isinstance(module, nn.Linear):
|
600 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
601 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
602 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
603 |
+
if module.bias is not None:
|
604 |
+
module.bias.data.zero_()
|
605 |
+
elif isinstance(module, nn.Embedding):
|
606 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
607 |
+
if module.padding_idx is not None:
|
608 |
+
module.weight.data[module.padding_idx].zero_()
|
609 |
+
elif isinstance(module, nn.LayerNorm):
|
610 |
+
module.bias.data.zero_()
|
611 |
+
module.weight.data.fill_(1.0)
|
612 |
+
|
613 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
614 |
+
if isinstance(module, RobertaEncoder):
|
615 |
+
module.gradient_checkpointing = value
|
616 |
+
|
617 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
618 |
+
"""Remove some keys from ignore list"""
|
619 |
+
if not config.tie_word_embeddings:
|
620 |
+
# must make a new list, or the class variable gets modified!
|
621 |
+
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
|
622 |
+
self._keys_to_ignore_on_load_missing = [
|
623 |
+
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
|
624 |
+
]
|
625 |
+
|
626 |
+
|
627 |
+
ROBERTA_START_DOCSTRING = r"""
|
628 |
+
|
629 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
630 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
631 |
+
etc.)
|
632 |
+
|
633 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
634 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
635 |
+
and behavior.
|
636 |
+
|
637 |
+
Parameters:
|
638 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
639 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
640 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
641 |
+
"""
|
642 |
+
|
643 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
644 |
+
Args:
|
645 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
646 |
+
Indices of input sequence tokens in the vocabulary.
|
647 |
+
|
648 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
649 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
650 |
+
|
651 |
+
[What are input IDs?](../glossary#input-ids)
|
652 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
653 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
654 |
+
|
655 |
+
- 1 for tokens that are **not masked**,
|
656 |
+
- 0 for tokens that are **masked**.
|
657 |
+
|
658 |
+
[What are attention masks?](../glossary#attention-mask)
|
659 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
660 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
|
661 |
+
|
662 |
+
- 0 corresponds to a *sentence A* token,
|
663 |
+
- 1 corresponds to a *sentence B* token.
|
664 |
+
This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
|
665 |
+
>= 2. All the value in this tensor should be always < type_vocab_size.
|
666 |
+
|
667 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
668 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
669 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
670 |
+
config.max_position_embeddings - 1]`.
|
671 |
+
|
672 |
+
[What are position IDs?](../glossary#position-ids)
|
673 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
674 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
675 |
+
|
676 |
+
- 1 indicates the head is **not masked**,
|
677 |
+
- 0 indicates the head is **masked**.
|
678 |
+
|
679 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
680 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
681 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
682 |
+
model's internal embedding lookup matrix.
|
683 |
+
output_attentions (`bool`, *optional*):
|
684 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
685 |
+
tensors for more detail.
|
686 |
+
output_hidden_states (`bool`, *optional*):
|
687 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
688 |
+
more detail.
|
689 |
+
return_dict (`bool`, *optional*):
|
690 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
691 |
+
"""
|
692 |
+
|
693 |
+
|
694 |
+
@add_start_docstrings(
|
695 |
+
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
696 |
+
ROBERTA_START_DOCSTRING,
|
697 |
+
)
|
698 |
+
class RobertaModel(RobertaPreTrainedModel):
|
699 |
+
"""
|
700 |
+
|
701 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
702 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
703 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
704 |
+
Kaiser and Illia Polosukhin.
|
705 |
+
|
706 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
707 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
708 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
709 |
+
|
710 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
711 |
+
|
712 |
+
"""
|
713 |
+
|
714 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
715 |
+
|
716 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
717 |
+
def __init__(self, config, add_pooling_layer=True):
|
718 |
+
super().__init__(config)
|
719 |
+
self.config = config
|
720 |
+
|
721 |
+
self.embeddings = RobertaEmbeddings(config)
|
722 |
+
self.encoder = RobertaEncoder(config)
|
723 |
+
|
724 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
725 |
+
|
726 |
+
# Initialize weights and apply final processing
|
727 |
+
self.post_init()
|
728 |
+
|
729 |
+
def get_input_embeddings(self):
|
730 |
+
return self.embeddings.word_embeddings
|
731 |
+
|
732 |
+
def set_input_embeddings(self, value):
|
733 |
+
self.embeddings.word_embeddings = value
|
734 |
+
|
735 |
+
def _prune_heads(self, heads_to_prune):
|
736 |
+
"""
|
737 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
738 |
+
class PreTrainedModel
|
739 |
+
"""
|
740 |
+
for layer, heads in heads_to_prune.items():
|
741 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
742 |
+
|
743 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
744 |
+
@add_code_sample_docstrings(
|
745 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
746 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
747 |
+
config_class=_CONFIG_FOR_DOC,
|
748 |
+
)
|
749 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
750 |
+
def forward(
|
751 |
+
self,
|
752 |
+
input_ids: Optional[torch.Tensor] = None,
|
753 |
+
attention_mask: Optional[torch.Tensor] = None,
|
754 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
755 |
+
position_ids: Optional[torch.Tensor] = None,
|
756 |
+
head_mask: Optional[torch.Tensor] = None,
|
757 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
758 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
759 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
760 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
761 |
+
use_cache: Optional[bool] = None,
|
762 |
+
output_attentions: Optional[bool] = None,
|
763 |
+
output_hidden_states: Optional[bool] = None,
|
764 |
+
return_dict: Optional[bool] = None,
|
765 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
766 |
+
r"""
|
767 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
768 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
769 |
+
the model is configured as a decoder.
|
770 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
771 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
772 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
773 |
+
|
774 |
+
- 1 for tokens that are **not masked**,
|
775 |
+
- 0 for tokens that are **masked**.
|
776 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
777 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
778 |
+
|
779 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
780 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
781 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
782 |
+
use_cache (`bool`, *optional*):
|
783 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
784 |
+
`past_key_values`).
|
785 |
+
"""
|
786 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
787 |
+
output_hidden_states = (
|
788 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
789 |
+
)
|
790 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
791 |
+
|
792 |
+
if self.config.is_decoder:
|
793 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
794 |
+
else:
|
795 |
+
use_cache = False
|
796 |
+
|
797 |
+
if input_ids is not None and inputs_embeds is not None:
|
798 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
799 |
+
elif input_ids is not None:
|
800 |
+
input_shape = input_ids.size()
|
801 |
+
elif inputs_embeds is not None:
|
802 |
+
input_shape = inputs_embeds.size()[:-1]
|
803 |
+
else:
|
804 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
805 |
+
|
806 |
+
batch_size, seq_length = input_shape
|
807 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
808 |
+
|
809 |
+
# past_key_values_length
|
810 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
811 |
+
|
812 |
+
if attention_mask is None:
|
813 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
814 |
+
|
815 |
+
if token_type_ids is None:
|
816 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
817 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
818 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
819 |
+
token_type_ids = buffered_token_type_ids_expanded
|
820 |
+
else:
|
821 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
822 |
+
|
823 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
824 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
825 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
826 |
+
|
827 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
828 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
829 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
830 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
831 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
832 |
+
if encoder_attention_mask is None:
|
833 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
834 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
835 |
+
else:
|
836 |
+
encoder_extended_attention_mask = None
|
837 |
+
|
838 |
+
# Prepare head mask if needed
|
839 |
+
# 1.0 in head_mask indicate we keep the head
|
840 |
+
# attention_probs has shape bsz x n_heads x N x N
|
841 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
842 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
843 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
844 |
+
|
845 |
+
embedding_output = self.embeddings(
|
846 |
+
input_ids=input_ids,
|
847 |
+
position_ids=position_ids,
|
848 |
+
token_type_ids=token_type_ids,
|
849 |
+
inputs_embeds=inputs_embeds,
|
850 |
+
past_key_values_length=past_key_values_length,
|
851 |
+
)
|
852 |
+
encoder_outputs = self.encoder(
|
853 |
+
embedding_output,
|
854 |
+
attention_mask=extended_attention_mask,
|
855 |
+
head_mask=head_mask,
|
856 |
+
encoder_hidden_states=encoder_hidden_states,
|
857 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
858 |
+
past_key_values=past_key_values,
|
859 |
+
use_cache=use_cache,
|
860 |
+
output_attentions=output_attentions,
|
861 |
+
output_hidden_states=output_hidden_states,
|
862 |
+
return_dict=return_dict,
|
863 |
+
)
|
864 |
+
sequence_output = encoder_outputs[0]
|
865 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
866 |
+
|
867 |
+
if not return_dict:
|
868 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
869 |
+
|
870 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
871 |
+
last_hidden_state=sequence_output,
|
872 |
+
pooler_output=pooled_output,
|
873 |
+
past_key_values=encoder_outputs.past_key_values,
|
874 |
+
hidden_states=encoder_outputs.hidden_states,
|
875 |
+
attentions=encoder_outputs.attentions,
|
876 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
877 |
+
)
|
878 |
+
|
879 |
+
|
880 |
+
@add_start_docstrings(
|
881 |
+
"""RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING
|
882 |
+
)
|
883 |
+
class RobertaForCausalLM(RobertaPreTrainedModel):
|
884 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
885 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
886 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
887 |
+
|
888 |
+
def __init__(self, config):
|
889 |
+
super().__init__(config)
|
890 |
+
|
891 |
+
if not config.is_decoder:
|
892 |
+
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
893 |
+
|
894 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
895 |
+
self.lm_head = RobertaLMHead(config)
|
896 |
+
|
897 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
898 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
899 |
+
|
900 |
+
# Initialize weights and apply final processing
|
901 |
+
self.post_init()
|
902 |
+
|
903 |
+
def get_output_embeddings(self):
|
904 |
+
return self.lm_head.decoder
|
905 |
+
|
906 |
+
def set_output_embeddings(self, new_embeddings):
|
907 |
+
self.lm_head.decoder = new_embeddings
|
908 |
+
|
909 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
910 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
911 |
+
def forward(
|
912 |
+
self,
|
913 |
+
input_ids: Optional[torch.LongTensor] = None,
|
914 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
915 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
916 |
+
position_ids: Optional[torch.LongTensor] = None,
|
917 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
918 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
919 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
920 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
921 |
+
labels: Optional[torch.LongTensor] = None,
|
922 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
923 |
+
use_cache: Optional[bool] = None,
|
924 |
+
output_attentions: Optional[bool] = None,
|
925 |
+
output_hidden_states: Optional[bool] = None,
|
926 |
+
return_dict: Optional[bool] = None,
|
927 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
928 |
+
r"""
|
929 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
930 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
931 |
+
the model is configured as a decoder.
|
932 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
933 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
934 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
935 |
+
|
936 |
+
- 1 for tokens that are **not masked**,
|
937 |
+
- 0 for tokens that are **masked**.
|
938 |
+
|
939 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
940 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
941 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
942 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
943 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
944 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
945 |
+
|
946 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
947 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
948 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
949 |
+
use_cache (`bool`, *optional*):
|
950 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
951 |
+
`past_key_values`).
|
952 |
+
|
953 |
+
Returns:
|
954 |
+
|
955 |
+
Example:
|
956 |
+
|
957 |
+
```python
|
958 |
+
>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
|
959 |
+
>>> import torch
|
960 |
+
|
961 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
962 |
+
>>> config = AutoConfig.from_pretrained("roberta-base")
|
963 |
+
>>> config.is_decoder = True
|
964 |
+
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
|
965 |
+
|
966 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
967 |
+
>>> outputs = model(**inputs)
|
968 |
+
|
969 |
+
>>> prediction_logits = outputs.logits
|
970 |
+
```"""
|
971 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
972 |
+
if labels is not None:
|
973 |
+
use_cache = False
|
974 |
+
|
975 |
+
outputs = self.roberta(
|
976 |
+
input_ids,
|
977 |
+
attention_mask=attention_mask,
|
978 |
+
token_type_ids=token_type_ids,
|
979 |
+
position_ids=position_ids,
|
980 |
+
head_mask=head_mask,
|
981 |
+
inputs_embeds=inputs_embeds,
|
982 |
+
encoder_hidden_states=encoder_hidden_states,
|
983 |
+
encoder_attention_mask=encoder_attention_mask,
|
984 |
+
past_key_values=past_key_values,
|
985 |
+
use_cache=use_cache,
|
986 |
+
output_attentions=output_attentions,
|
987 |
+
output_hidden_states=output_hidden_states,
|
988 |
+
return_dict=return_dict,
|
989 |
+
)
|
990 |
+
|
991 |
+
sequence_output = outputs[0]
|
992 |
+
prediction_scores = self.lm_head(sequence_output)
|
993 |
+
|
994 |
+
lm_loss = None
|
995 |
+
if labels is not None:
|
996 |
+
# move labels to correct device to enable model parallelism
|
997 |
+
labels = labels.to(prediction_scores.device)
|
998 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
999 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1000 |
+
labels = labels[:, 1:].contiguous()
|
1001 |
+
loss_fct = CrossEntropyLoss()
|
1002 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1003 |
+
|
1004 |
+
if not return_dict:
|
1005 |
+
output = (prediction_scores,) + outputs[2:]
|
1006 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1007 |
+
|
1008 |
+
return CausalLMOutputWithCrossAttentions(
|
1009 |
+
loss=lm_loss,
|
1010 |
+
logits=prediction_scores,
|
1011 |
+
past_key_values=outputs.past_key_values,
|
1012 |
+
hidden_states=outputs.hidden_states,
|
1013 |
+
attentions=outputs.attentions,
|
1014 |
+
cross_attentions=outputs.cross_attentions,
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1018 |
+
input_shape = input_ids.shape
|
1019 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1020 |
+
if attention_mask is None:
|
1021 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1022 |
+
|
1023 |
+
# cut decoder_input_ids if past is used
|
1024 |
+
if past_key_values is not None:
|
1025 |
+
input_ids = input_ids[:, -1:]
|
1026 |
+
|
1027 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1028 |
+
|
1029 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1030 |
+
reordered_past = ()
|
1031 |
+
for layer_past in past_key_values:
|
1032 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1033 |
+
return reordered_past
|
1034 |
+
|
1035 |
+
|
1036 |
+
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
|
1037 |
+
class RobertaForMaskedLM(RobertaPreTrainedModel):
|
1038 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1039 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1040 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1041 |
+
|
1042 |
+
def __init__(self, config):
|
1043 |
+
super().__init__(config)
|
1044 |
+
|
1045 |
+
if config.is_decoder:
|
1046 |
+
logger.warning(
|
1047 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
1048 |
+
"bi-directional self-attention."
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1052 |
+
self.lm_head = RobertaLMHead(config)
|
1053 |
+
|
1054 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1055 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
1056 |
+
|
1057 |
+
# Initialize weights and apply final processing
|
1058 |
+
self.post_init()
|
1059 |
+
|
1060 |
+
def get_output_embeddings(self):
|
1061 |
+
return self.lm_head.decoder
|
1062 |
+
|
1063 |
+
def set_output_embeddings(self, new_embeddings):
|
1064 |
+
self.lm_head.decoder = new_embeddings
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1067 |
+
@add_code_sample_docstrings(
|
1068 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1069 |
+
output_type=MaskedLMOutput,
|
1070 |
+
config_class=_CONFIG_FOR_DOC,
|
1071 |
+
mask="<mask>",
|
1072 |
+
expected_output="' Paris'",
|
1073 |
+
expected_loss=0.1,
|
1074 |
+
)
|
1075 |
+
def forward(
|
1076 |
+
self,
|
1077 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1078 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1079 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1080 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1081 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1082 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1083 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1084 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1085 |
+
labels: Optional[torch.LongTensor] = None,
|
1086 |
+
output_attentions: Optional[bool] = None,
|
1087 |
+
output_hidden_states: Optional[bool] = None,
|
1088 |
+
return_dict: Optional[bool] = None,
|
1089 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1090 |
+
r"""
|
1091 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1092 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1093 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1094 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1095 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1096 |
+
Used to hide legacy arguments that have been deprecated.
|
1097 |
+
"""
|
1098 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1099 |
+
|
1100 |
+
outputs = self.roberta(
|
1101 |
+
input_ids,
|
1102 |
+
attention_mask=attention_mask,
|
1103 |
+
token_type_ids=token_type_ids,
|
1104 |
+
position_ids=position_ids,
|
1105 |
+
head_mask=head_mask,
|
1106 |
+
inputs_embeds=inputs_embeds,
|
1107 |
+
encoder_hidden_states=encoder_hidden_states,
|
1108 |
+
encoder_attention_mask=encoder_attention_mask,
|
1109 |
+
output_attentions=output_attentions,
|
1110 |
+
output_hidden_states=output_hidden_states,
|
1111 |
+
return_dict=return_dict,
|
1112 |
+
)
|
1113 |
+
sequence_output = outputs[0]
|
1114 |
+
prediction_scores = self.lm_head(sequence_output)
|
1115 |
+
|
1116 |
+
masked_lm_loss = None
|
1117 |
+
if labels is not None:
|
1118 |
+
# move labels to correct device to enable model parallelism
|
1119 |
+
labels = labels.to(prediction_scores.device)
|
1120 |
+
loss_fct = CrossEntropyLoss()
|
1121 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1122 |
+
|
1123 |
+
if not return_dict:
|
1124 |
+
output = (prediction_scores,) + outputs[2:]
|
1125 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1126 |
+
|
1127 |
+
return MaskedLMOutput(
|
1128 |
+
loss=masked_lm_loss,
|
1129 |
+
logits=prediction_scores,
|
1130 |
+
hidden_states=outputs.hidden_states,
|
1131 |
+
attentions=outputs.attentions,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
|
1135 |
+
class RobertaLMHead(nn.Module):
|
1136 |
+
"""Roberta Head for masked language modeling."""
|
1137 |
+
|
1138 |
+
def __init__(self, config):
|
1139 |
+
super().__init__()
|
1140 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1141 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1142 |
+
|
1143 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
1144 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1145 |
+
self.decoder.bias = self.bias
|
1146 |
+
|
1147 |
+
def forward(self, features, **kwargs):
|
1148 |
+
x = self.dense(features)
|
1149 |
+
x = gelu(x)
|
1150 |
+
x = self.layer_norm(x)
|
1151 |
+
|
1152 |
+
# project back to size of vocabulary with bias
|
1153 |
+
x = self.decoder(x)
|
1154 |
+
|
1155 |
+
return x
|
1156 |
+
|
1157 |
+
def _tie_weights(self):
|
1158 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
1159 |
+
# For accelerate compatibility and to not break backward compatibility
|
1160 |
+
if self.decoder.bias.device.type == "meta":
|
1161 |
+
self.decoder.bias = self.bias
|
1162 |
+
else:
|
1163 |
+
self.bias = self.decoder.bias
|
1164 |
+
|
1165 |
+
|
1166 |
+
@add_start_docstrings(
|
1167 |
+
"""
|
1168 |
+
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1169 |
+
pooled output) e.g. for GLUE tasks.
|
1170 |
+
""",
|
1171 |
+
ROBERTA_START_DOCSTRING,
|
1172 |
+
)
|
1173 |
+
class RobertaForSequenceClassification(RobertaPreTrainedModel):
|
1174 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1175 |
+
|
1176 |
+
def __init__(self, config):
|
1177 |
+
super().__init__(config)
|
1178 |
+
self.num_labels = config.num_labels
|
1179 |
+
self.config = config
|
1180 |
+
|
1181 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1182 |
+
self.classifier = RobertaClassificationHead(config)
|
1183 |
+
|
1184 |
+
# Initialize weights and apply final processing
|
1185 |
+
self.post_init()
|
1186 |
+
|
1187 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1188 |
+
@add_code_sample_docstrings(
|
1189 |
+
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
|
1190 |
+
output_type=SequenceClassifierOutput,
|
1191 |
+
config_class=_CONFIG_FOR_DOC,
|
1192 |
+
expected_output="'optimism'",
|
1193 |
+
expected_loss=0.08,
|
1194 |
+
)
|
1195 |
+
def forward(
|
1196 |
+
self,
|
1197 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1198 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1199 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1200 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1201 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1202 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1203 |
+
labels: Optional[torch.LongTensor] = None,
|
1204 |
+
output_attentions: Optional[bool] = None,
|
1205 |
+
output_hidden_states: Optional[bool] = None,
|
1206 |
+
return_dict: Optional[bool] = None,
|
1207 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1208 |
+
r"""
|
1209 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1210 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1211 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1212 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1213 |
+
"""
|
1214 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1215 |
+
|
1216 |
+
outputs = self.roberta(
|
1217 |
+
input_ids,
|
1218 |
+
attention_mask=attention_mask,
|
1219 |
+
token_type_ids=token_type_ids,
|
1220 |
+
position_ids=position_ids,
|
1221 |
+
head_mask=head_mask,
|
1222 |
+
inputs_embeds=inputs_embeds,
|
1223 |
+
output_attentions=output_attentions,
|
1224 |
+
output_hidden_states=output_hidden_states,
|
1225 |
+
return_dict=return_dict,
|
1226 |
+
)
|
1227 |
+
sequence_output = outputs[0]
|
1228 |
+
logits = self.classifier(sequence_output)
|
1229 |
+
|
1230 |
+
loss = None
|
1231 |
+
if labels is not None:
|
1232 |
+
# move labels to correct device to enable model parallelism
|
1233 |
+
labels = labels.to(logits.device)
|
1234 |
+
if self.config.problem_type is None:
|
1235 |
+
if self.num_labels == 1:
|
1236 |
+
self.config.problem_type = "regression"
|
1237 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1238 |
+
self.config.problem_type = "single_label_classification"
|
1239 |
+
else:
|
1240 |
+
self.config.problem_type = "multi_label_classification"
|
1241 |
+
|
1242 |
+
if self.config.problem_type == "regression":
|
1243 |
+
loss_fct = MSELoss()
|
1244 |
+
if self.num_labels == 1:
|
1245 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1246 |
+
else:
|
1247 |
+
loss = loss_fct(logits, labels)
|
1248 |
+
elif self.config.problem_type == "single_label_classification":
|
1249 |
+
loss_fct = CrossEntropyLoss()
|
1250 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1251 |
+
elif self.config.problem_type == "multi_label_classification":
|
1252 |
+
loss_fct = BCEWithLogitsLoss()
|
1253 |
+
loss = loss_fct(logits, labels)
|
1254 |
+
|
1255 |
+
if not return_dict:
|
1256 |
+
output = (logits,) + outputs[2:]
|
1257 |
+
return ((loss,) + output) if loss is not None else output
|
1258 |
+
|
1259 |
+
return SequenceClassifierOutput(
|
1260 |
+
loss=loss,
|
1261 |
+
logits=logits,
|
1262 |
+
hidden_states=outputs.hidden_states,
|
1263 |
+
attentions=outputs.attentions,
|
1264 |
+
)
|
1265 |
+
|
1266 |
+
|
1267 |
+
@add_start_docstrings(
|
1268 |
+
"""
|
1269 |
+
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1270 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1271 |
+
""",
|
1272 |
+
ROBERTA_START_DOCSTRING,
|
1273 |
+
)
|
1274 |
+
class RobertaForMultipleChoice(RobertaPreTrainedModel):
|
1275 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1276 |
+
|
1277 |
+
def __init__(self, config):
|
1278 |
+
super().__init__(config)
|
1279 |
+
|
1280 |
+
self.roberta = RobertaModel(config)
|
1281 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1282 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1283 |
+
|
1284 |
+
# Initialize weights and apply final processing
|
1285 |
+
self.post_init()
|
1286 |
+
|
1287 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1288 |
+
@add_code_sample_docstrings(
|
1289 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1290 |
+
output_type=MultipleChoiceModelOutput,
|
1291 |
+
config_class=_CONFIG_FOR_DOC,
|
1292 |
+
)
|
1293 |
+
def forward(
|
1294 |
+
self,
|
1295 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1296 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1297 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1298 |
+
labels: Optional[torch.LongTensor] = None,
|
1299 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1300 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1301 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1302 |
+
output_attentions: Optional[bool] = None,
|
1303 |
+
output_hidden_states: Optional[bool] = None,
|
1304 |
+
return_dict: Optional[bool] = None,
|
1305 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1306 |
+
r"""
|
1307 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1308 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1309 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1310 |
+
`input_ids` above)
|
1311 |
+
"""
|
1312 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1313 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1314 |
+
|
1315 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1316 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1317 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1318 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1319 |
+
flat_inputs_embeds = (
|
1320 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1321 |
+
if inputs_embeds is not None
|
1322 |
+
else None
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
outputs = self.roberta(
|
1326 |
+
flat_input_ids,
|
1327 |
+
position_ids=flat_position_ids,
|
1328 |
+
token_type_ids=flat_token_type_ids,
|
1329 |
+
attention_mask=flat_attention_mask,
|
1330 |
+
head_mask=head_mask,
|
1331 |
+
inputs_embeds=flat_inputs_embeds,
|
1332 |
+
output_attentions=output_attentions,
|
1333 |
+
output_hidden_states=output_hidden_states,
|
1334 |
+
return_dict=return_dict,
|
1335 |
+
)
|
1336 |
+
pooled_output = outputs[1]
|
1337 |
+
|
1338 |
+
pooled_output = self.dropout(pooled_output)
|
1339 |
+
logits = self.classifier(pooled_output)
|
1340 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1341 |
+
|
1342 |
+
loss = None
|
1343 |
+
if labels is not None:
|
1344 |
+
# move labels to correct device to enable model parallelism
|
1345 |
+
labels = labels.to(reshaped_logits.device)
|
1346 |
+
loss_fct = CrossEntropyLoss()
|
1347 |
+
loss = loss_fct(reshaped_logits, labels)
|
1348 |
+
|
1349 |
+
if not return_dict:
|
1350 |
+
output = (reshaped_logits,) + outputs[2:]
|
1351 |
+
return ((loss,) + output) if loss is not None else output
|
1352 |
+
|
1353 |
+
return MultipleChoiceModelOutput(
|
1354 |
+
loss=loss,
|
1355 |
+
logits=reshaped_logits,
|
1356 |
+
hidden_states=outputs.hidden_states,
|
1357 |
+
attentions=outputs.attentions,
|
1358 |
+
)
|
1359 |
+
|
1360 |
+
|
1361 |
+
@add_start_docstrings(
|
1362 |
+
"""
|
1363 |
+
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1364 |
+
Named-Entity-Recognition (NER) tasks.
|
1365 |
+
""",
|
1366 |
+
ROBERTA_START_DOCSTRING,
|
1367 |
+
)
|
1368 |
+
class RobertaForTokenClassification(RobertaPreTrainedModel):
|
1369 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1370 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1371 |
+
|
1372 |
+
def __init__(self, config):
|
1373 |
+
super().__init__(config)
|
1374 |
+
self.num_labels = config.num_labels
|
1375 |
+
|
1376 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1377 |
+
classifier_dropout = (
|
1378 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1379 |
+
)
|
1380 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1381 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1382 |
+
|
1383 |
+
# Initialize weights and apply final processing
|
1384 |
+
self.post_init()
|
1385 |
+
|
1386 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1387 |
+
@add_code_sample_docstrings(
|
1388 |
+
checkpoint="Jean-Baptiste/roberta-large-ner-english",
|
1389 |
+
output_type=TokenClassifierOutput,
|
1390 |
+
config_class=_CONFIG_FOR_DOC,
|
1391 |
+
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
|
1392 |
+
expected_loss=0.01,
|
1393 |
+
)
|
1394 |
+
def forward(
|
1395 |
+
self,
|
1396 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1397 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1398 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1399 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1400 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1401 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1402 |
+
labels: Optional[torch.LongTensor] = None,
|
1403 |
+
output_attentions: Optional[bool] = None,
|
1404 |
+
output_hidden_states: Optional[bool] = None,
|
1405 |
+
return_dict: Optional[bool] = None,
|
1406 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1407 |
+
r"""
|
1408 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1409 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1410 |
+
"""
|
1411 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1412 |
+
|
1413 |
+
outputs = self.roberta(
|
1414 |
+
input_ids,
|
1415 |
+
attention_mask=attention_mask,
|
1416 |
+
token_type_ids=token_type_ids,
|
1417 |
+
position_ids=position_ids,
|
1418 |
+
head_mask=head_mask,
|
1419 |
+
inputs_embeds=inputs_embeds,
|
1420 |
+
output_attentions=output_attentions,
|
1421 |
+
output_hidden_states=output_hidden_states,
|
1422 |
+
return_dict=return_dict,
|
1423 |
+
)
|
1424 |
+
|
1425 |
+
sequence_output = outputs[0]
|
1426 |
+
|
1427 |
+
sequence_output = self.dropout(sequence_output)
|
1428 |
+
logits = self.classifier(sequence_output)
|
1429 |
+
|
1430 |
+
loss = None
|
1431 |
+
if labels is not None:
|
1432 |
+
# move labels to correct device to enable model parallelism
|
1433 |
+
labels = labels.to(logits.device)
|
1434 |
+
loss_fct = CrossEntropyLoss()
|
1435 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1436 |
+
|
1437 |
+
if not return_dict:
|
1438 |
+
output = (logits,) + outputs[2:]
|
1439 |
+
return ((loss,) + output) if loss is not None else output
|
1440 |
+
|
1441 |
+
return TokenClassifierOutput(
|
1442 |
+
loss=loss,
|
1443 |
+
logits=logits,
|
1444 |
+
hidden_states=outputs.hidden_states,
|
1445 |
+
attentions=outputs.attentions,
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
|
1449 |
+
class RobertaClassificationHead(nn.Module):
|
1450 |
+
"""Head for sentence-level classification tasks."""
|
1451 |
+
|
1452 |
+
def __init__(self, config):
|
1453 |
+
super().__init__()
|
1454 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1455 |
+
classifier_dropout = (
|
1456 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1457 |
+
)
|
1458 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1459 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1460 |
+
|
1461 |
+
def forward(self, features, **kwargs):
|
1462 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1463 |
+
x = self.dropout(x)
|
1464 |
+
x = self.dense(x)
|
1465 |
+
x = torch.tanh(x)
|
1466 |
+
x = self.dropout(x)
|
1467 |
+
x = self.out_proj(x)
|
1468 |
+
return x
|
1469 |
+
|
1470 |
+
|
1471 |
+
@add_start_docstrings(
|
1472 |
+
"""
|
1473 |
+
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1474 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1475 |
+
""",
|
1476 |
+
ROBERTA_START_DOCSTRING,
|
1477 |
+
)
|
1478 |
+
class RobertaForQuestionAnswering(RobertaPreTrainedModel):
|
1479 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1480 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1481 |
+
|
1482 |
+
def __init__(self, config):
|
1483 |
+
super().__init__(config)
|
1484 |
+
self.num_labels = config.num_labels
|
1485 |
+
|
1486 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1487 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1488 |
+
|
1489 |
+
# Initialize weights and apply final processing
|
1490 |
+
self.post_init()
|
1491 |
+
|
1492 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1493 |
+
@add_code_sample_docstrings(
|
1494 |
+
checkpoint="deepset/roberta-base-squad2",
|
1495 |
+
output_type=QuestionAnsweringModelOutput,
|
1496 |
+
config_class=_CONFIG_FOR_DOC,
|
1497 |
+
expected_output="' puppet'",
|
1498 |
+
expected_loss=0.86,
|
1499 |
+
)
|
1500 |
+
def forward(
|
1501 |
+
self,
|
1502 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1503 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1504 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1505 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1506 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1507 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1508 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1509 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1510 |
+
output_attentions: Optional[bool] = None,
|
1511 |
+
output_hidden_states: Optional[bool] = None,
|
1512 |
+
return_dict: Optional[bool] = None,
|
1513 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1514 |
+
r"""
|
1515 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1516 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1517 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1518 |
+
are not taken into account for computing the loss.
|
1519 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1520 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1521 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1522 |
+
are not taken into account for computing the loss.
|
1523 |
+
"""
|
1524 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1525 |
+
|
1526 |
+
outputs = self.roberta(
|
1527 |
+
input_ids,
|
1528 |
+
attention_mask=attention_mask,
|
1529 |
+
token_type_ids=token_type_ids,
|
1530 |
+
position_ids=position_ids,
|
1531 |
+
head_mask=head_mask,
|
1532 |
+
inputs_embeds=inputs_embeds,
|
1533 |
+
output_attentions=output_attentions,
|
1534 |
+
output_hidden_states=output_hidden_states,
|
1535 |
+
return_dict=return_dict,
|
1536 |
+
)
|
1537 |
+
|
1538 |
+
sequence_output = outputs[0]
|
1539 |
+
|
1540 |
+
logits = self.qa_outputs(sequence_output)
|
1541 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1542 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1543 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1544 |
+
|
1545 |
+
total_loss = None
|
1546 |
+
if start_positions is not None and end_positions is not None:
|
1547 |
+
# If we are on multi-GPU, split add a dimension
|
1548 |
+
if len(start_positions.size()) > 1:
|
1549 |
+
start_positions = start_positions.squeeze(-1)
|
1550 |
+
if len(end_positions.size()) > 1:
|
1551 |
+
end_positions = end_positions.squeeze(-1)
|
1552 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1553 |
+
ignored_index = start_logits.size(1)
|
1554 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1555 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1556 |
+
|
1557 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1558 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1559 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1560 |
+
total_loss = (start_loss + end_loss) / 2
|
1561 |
+
|
1562 |
+
if not return_dict:
|
1563 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1564 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1565 |
+
|
1566 |
+
return QuestionAnsweringModelOutput(
|
1567 |
+
loss=total_loss,
|
1568 |
+
start_logits=start_logits,
|
1569 |
+
end_logits=end_logits,
|
1570 |
+
hidden_states=outputs.hidden_states,
|
1571 |
+
attentions=outputs.attentions,
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
|
1575 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1576 |
+
"""
|
1577 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1578 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1579 |
+
|
1580 |
+
Args:
|
1581 |
+
x: torch.Tensor x:
|
1582 |
+
|
1583 |
+
Returns: torch.Tensor
|
1584 |
+
"""
|
1585 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1586 |
+
mask = input_ids.ne(padding_idx).int()
|
1587 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1588 |
+
return incremental_indices.long() + padding_idx
|
soft_prompt/model/sequence_causallm.py
ADDED
@@ -0,0 +1,1249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import NoopLogger
|
3 |
+
import torch.nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import Tensor
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
8 |
+
|
9 |
+
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel, BertOnlyMLMHead
|
10 |
+
from transformers.models.opt.modeling_opt import OPTModel, OPTPreTrainedModel
|
11 |
+
from transformers.models.roberta.modeling_roberta import RobertaLMHead, RobertaModel, RobertaPreTrainedModel
|
12 |
+
from transformers.models.llama.modeling_llama import LlamaPreTrainedModel, LlamaModel, CausalLMOutputWithPast
|
13 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2PreTrainedModel
|
14 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, SequenceClassifierOutputWithPast, BaseModelOutput, Seq2SeqLMOutput
|
15 |
+
from .prefix_encoder import PrefixEncoder
|
16 |
+
from . import utils
|
17 |
+
import hashlib
|
18 |
+
|
19 |
+
|
20 |
+
def hash_nn(model):
|
21 |
+
md5 = hashlib.md5() # ignore
|
22 |
+
for arg in model.parameters():
|
23 |
+
x = arg.data
|
24 |
+
if hasattr(x, "cpu"):
|
25 |
+
md5.update(x.cpu().numpy().data.tobytes())
|
26 |
+
elif hasattr(x, "numpy"):
|
27 |
+
md5.update(x.numpy().data.tobytes())
|
28 |
+
elif hasattr(x, "data"):
|
29 |
+
md5.update(x.data.tobytes())
|
30 |
+
else:
|
31 |
+
try:
|
32 |
+
md5.update(x.encode("utf-8"))
|
33 |
+
except:
|
34 |
+
md5.update(str(x).encode("utf-8"))
|
35 |
+
return md5.hexdigest()
|
36 |
+
|
37 |
+
|
38 |
+
class OPTPrefixForMaskedLM(OPTPreTrainedModel):
|
39 |
+
_tied_weights_keys = ["lm_head.weight"]
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__(config)
|
42 |
+
self.model = OPTModel(config)
|
43 |
+
self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
44 |
+
self.dropout = torch.nn.Dropout(0.1)
|
45 |
+
for param in self.model.parameters():
|
46 |
+
param.requires_grad = False
|
47 |
+
|
48 |
+
self.pre_seq_len = config.pre_seq_len
|
49 |
+
self.n_layer = config.num_hidden_layers
|
50 |
+
self.n_head = config.num_attention_heads
|
51 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
52 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
53 |
+
self.prefix_encoder = PrefixEncoder(config)
|
54 |
+
|
55 |
+
base_param = 0
|
56 |
+
for name, param in self.model.named_parameters():
|
57 |
+
base_param += param.numel()
|
58 |
+
all_param = 0
|
59 |
+
for name, param in self.named_parameters():
|
60 |
+
all_param += param.numel()
|
61 |
+
total_param = all_param - base_param
|
62 |
+
print('-> OPT_param:{:0.2f}M P-tuning-V2 param is {}'.format(base_param / 1000000, total_param))
|
63 |
+
|
64 |
+
self.embedding = self.get_input_embeddings()
|
65 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
66 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
67 |
+
|
68 |
+
def get_input_embeddings(self):
|
69 |
+
return self.model.decoder.embed_tokens
|
70 |
+
|
71 |
+
def set_input_embeddings(self, value):
|
72 |
+
self.model.decoder.embed_tokens = value
|
73 |
+
|
74 |
+
def get_output_embeddings(self):
|
75 |
+
return self.lm_head
|
76 |
+
|
77 |
+
def set_output_embeddings(self, new_embeddings):
|
78 |
+
self.lm_head = new_embeddings
|
79 |
+
|
80 |
+
def set_decoder(self, decoder):
|
81 |
+
self.model.decoder = decoder
|
82 |
+
|
83 |
+
def get_decoder(self):
|
84 |
+
return self.model.decoder
|
85 |
+
|
86 |
+
def get_prompt(self, batch_size):
|
87 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.model.device)
|
88 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
89 |
+
# bsz, seqlen, _ = past_key_values.shape
|
90 |
+
past_key_values = past_key_values.view(
|
91 |
+
batch_size,
|
92 |
+
self.pre_seq_len,
|
93 |
+
self.n_layer * 2,
|
94 |
+
self.n_head,
|
95 |
+
self.n_embd
|
96 |
+
)
|
97 |
+
past_key_values = self.dropout(past_key_values)
|
98 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
99 |
+
return past_key_values
|
100 |
+
|
101 |
+
def use_grad(self, transformer, use_grad):
|
102 |
+
if use_grad:
|
103 |
+
for param in transformer.parameters():
|
104 |
+
param.requires_grad = True
|
105 |
+
transformer.train()
|
106 |
+
else:
|
107 |
+
for param in transformer.parameters():
|
108 |
+
param.requires_grad = False
|
109 |
+
transformer.eval()
|
110 |
+
for param in self.lm_head.parameters():
|
111 |
+
param.requires_grad = True
|
112 |
+
for param in self.prefix_encoder.parameters():
|
113 |
+
param.requires_grad = True
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
input_ids: torch.LongTensor = None,
|
118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
119 |
+
head_mask: Optional[torch.Tensor] = None,
|
120 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
121 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
122 |
+
labels: Optional[torch.LongTensor] = None,
|
123 |
+
token_labels: Optional[torch.LongTensor] = None,
|
124 |
+
use_cache: Optional[bool] = None,
|
125 |
+
output_attentions: Optional[bool] = None,
|
126 |
+
output_hidden_states: Optional[bool] = None,
|
127 |
+
return_dict: Optional[bool] = None,
|
128 |
+
use_base_grad=False,
|
129 |
+
):
|
130 |
+
r"""
|
131 |
+
Args:
|
132 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
133 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
134 |
+
provide it.
|
135 |
+
|
136 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
137 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
138 |
+
|
139 |
+
[What are input IDs?](../glossary#input-ids)
|
140 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
141 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
142 |
+
|
143 |
+
- 1 for tokens that are **not masked**,
|
144 |
+
- 0 for tokens that are **masked**.
|
145 |
+
|
146 |
+
[What are attention masks?](../glossary#attention-mask)
|
147 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
148 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
149 |
+
|
150 |
+
- 1 indicates the head is **not masked**,
|
151 |
+
- 0 indicates the head is **masked**.
|
152 |
+
|
153 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
154 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
155 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
156 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
157 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
158 |
+
|
159 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
160 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
161 |
+
|
162 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
163 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
164 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
165 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
166 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
167 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
168 |
+
than the model's internal embedding lookup matrix.
|
169 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
170 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
171 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
172 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
173 |
+
use_cache (`bool`, *optional*):
|
174 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
175 |
+
(see `past_key_values`).
|
176 |
+
output_attentions (`bool`, *optional*):
|
177 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
178 |
+
returned tensors for more detail.
|
179 |
+
output_hidden_states (`bool`, *optional*):
|
180 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
181 |
+
for more detail.
|
182 |
+
return_dict (`bool`, *optional*):
|
183 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
|
187 |
+
Example:
|
188 |
+
|
189 |
+
```python
|
190 |
+
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
191 |
+
|
192 |
+
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
193 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
194 |
+
|
195 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
196 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
197 |
+
|
198 |
+
>>> # Generate
|
199 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
200 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
201 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
|
202 |
+
```"""
|
203 |
+
utils.use_grad(self.model, use_base_grad)
|
204 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
205 |
+
output_hidden_states = (
|
206 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
207 |
+
)
|
208 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
209 |
+
batch_size = input_ids.shape[0]
|
210 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
211 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.model.device)
|
212 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
213 |
+
|
214 |
+
outputs = self.model.decoder(
|
215 |
+
input_ids=input_ids,
|
216 |
+
attention_mask=attention_mask,
|
217 |
+
inputs_embeds=inputs_embeds,
|
218 |
+
use_cache=use_cache,
|
219 |
+
output_attentions=output_attentions,
|
220 |
+
output_hidden_states=output_hidden_states,
|
221 |
+
return_dict=return_dict,
|
222 |
+
past_key_values=past_key_values,
|
223 |
+
)
|
224 |
+
sequence_output = outputs[0]
|
225 |
+
sequence_output = self.dropout(sequence_output)
|
226 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(self.model.device)
|
227 |
+
cls_token = sequence_output[torch.arange(batch_size, device=self.model.device), sequence_lengths].contiguous()
|
228 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
|
229 |
+
|
230 |
+
# compute loss
|
231 |
+
masked_lm_loss = None
|
232 |
+
if token_labels is not None:
|
233 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
234 |
+
else:
|
235 |
+
if labels is not None:
|
236 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
237 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
238 |
+
|
239 |
+
# convert to binary classifier
|
240 |
+
probs = []
|
241 |
+
for y in self.clean_labels:
|
242 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
243 |
+
logits = torch.stack(probs).T
|
244 |
+
|
245 |
+
return SequenceClassifierOutput(
|
246 |
+
loss=masked_lm_loss,
|
247 |
+
logits=logits,
|
248 |
+
hidden_states=outputs.hidden_states,
|
249 |
+
attentions=attentions
|
250 |
+
)
|
251 |
+
|
252 |
+
def prepare_inputs_for_generation(
|
253 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
254 |
+
):
|
255 |
+
if past_key_values:
|
256 |
+
input_ids = input_ids[:, -1:]
|
257 |
+
|
258 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
259 |
+
if inputs_embeds is not None and past_key_values is None:
|
260 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
261 |
+
else:
|
262 |
+
model_inputs = {"input_ids": input_ids}
|
263 |
+
|
264 |
+
model_inputs.update(
|
265 |
+
{
|
266 |
+
"past_key_values": past_key_values,
|
267 |
+
"use_cache": kwargs.get("use_cache"),
|
268 |
+
"attention_mask": attention_mask,
|
269 |
+
}
|
270 |
+
)
|
271 |
+
return model_inputs
|
272 |
+
|
273 |
+
@staticmethod
|
274 |
+
def _reorder_cache(past_key_values, beam_idx):
|
275 |
+
reordered_past = ()
|
276 |
+
for layer_past in past_key_values:
|
277 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
278 |
+
return reordered_past
|
279 |
+
|
280 |
+
|
281 |
+
class OPTPromptForMaskedLM(OPTPreTrainedModel):
|
282 |
+
_tied_weights_keys = ["lm_head.weight"]
|
283 |
+
|
284 |
+
def __init__(self, config):
|
285 |
+
super().__init__(config)
|
286 |
+
self.num_labels = config.num_labels
|
287 |
+
self.model = OPTModel(config)
|
288 |
+
self.score = torch.nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
|
289 |
+
self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
290 |
+
self.dropout = torch.nn.Dropout(0.1)
|
291 |
+
for param in self.model.parameters():
|
292 |
+
param.requires_grad = False
|
293 |
+
|
294 |
+
self.pre_seq_len = config.pre_seq_len
|
295 |
+
self.n_layer = config.num_hidden_layers
|
296 |
+
self.n_head = config.num_attention_heads
|
297 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
298 |
+
|
299 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
300 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
301 |
+
|
302 |
+
model_param = 0
|
303 |
+
for name, param in self.model.named_parameters():
|
304 |
+
model_param += param.numel()
|
305 |
+
all_param = 0
|
306 |
+
for name, param in self.named_parameters():
|
307 |
+
all_param += param.numel()
|
308 |
+
total_param = all_param - model_param
|
309 |
+
print('-> OPT_param:{:0.2f}M P-tuning-V2 param is {}'.format(model_param / 1000000, total_param))
|
310 |
+
|
311 |
+
self.embedding = self.model.decoder.embed_tokens
|
312 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
313 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
314 |
+
|
315 |
+
def get_input_embeddings(self):
|
316 |
+
return self.model.decoder.embed_tokens
|
317 |
+
|
318 |
+
def set_input_embeddings(self, value):
|
319 |
+
self.model.decoder.embed_tokens = value
|
320 |
+
|
321 |
+
def get_output_embeddings(self):
|
322 |
+
return self.lm_head
|
323 |
+
|
324 |
+
def set_output_embeddings(self, new_embeddings):
|
325 |
+
self.lm_head = new_embeddings
|
326 |
+
|
327 |
+
def set_decoder(self, decoder):
|
328 |
+
self.model.decoder = decoder
|
329 |
+
|
330 |
+
def get_decoder(self):
|
331 |
+
return self.model.decoder
|
332 |
+
|
333 |
+
def get_prompt(self, batch_size):
|
334 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.model.device)
|
335 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
336 |
+
return prompts
|
337 |
+
|
338 |
+
def use_grad(self, transformer, use_grad):
|
339 |
+
if use_grad:
|
340 |
+
for param in transformer.parameters():
|
341 |
+
param.requires_grad = True
|
342 |
+
transformer.train()
|
343 |
+
else:
|
344 |
+
for param in transformer.parameters():
|
345 |
+
param.requires_grad = False
|
346 |
+
transformer.eval()
|
347 |
+
for param in self.lm_head.parameters():
|
348 |
+
param.requires_grad = True
|
349 |
+
for param in self.prefix_encoder.parameters():
|
350 |
+
param.requires_grad = True
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
input_ids: torch.LongTensor = None,
|
355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
356 |
+
head_mask: Optional[torch.Tensor] = None,
|
357 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
358 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
359 |
+
labels: Optional[torch.LongTensor] = None,
|
360 |
+
token_labels: Optional[torch.LongTensor] = None,
|
361 |
+
use_cache: Optional[bool] = None,
|
362 |
+
output_attentions: Optional[bool] = None,
|
363 |
+
output_hidden_states: Optional[bool] = None,
|
364 |
+
return_dict: Optional[bool] = None,
|
365 |
+
use_base_grad=False,
|
366 |
+
):
|
367 |
+
r"""
|
368 |
+
Args:
|
369 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
370 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
371 |
+
provide it.
|
372 |
+
|
373 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
374 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
375 |
+
|
376 |
+
[What are input IDs?](../glossary#input-ids)
|
377 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
378 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
379 |
+
|
380 |
+
- 1 for tokens that are **not masked**,
|
381 |
+
- 0 for tokens that are **masked**.
|
382 |
+
|
383 |
+
[What are attention masks?](../glossary#attention-mask)
|
384 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
385 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
386 |
+
|
387 |
+
- 1 indicates the head is **not masked**,
|
388 |
+
- 0 indicates the head is **masked**.
|
389 |
+
|
390 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
391 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
392 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
393 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
394 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
395 |
+
|
396 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
397 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
398 |
+
|
399 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
400 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
401 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
402 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
403 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
404 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
405 |
+
than the model's internal embedding lookup matrix.
|
406 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
407 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
408 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
409 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
410 |
+
use_cache (`bool`, *optional*):
|
411 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
412 |
+
(see `past_key_values`).
|
413 |
+
output_attentions (`bool`, *optional*):
|
414 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
415 |
+
returned tensors for more detail.
|
416 |
+
output_hidden_states (`bool`, *optional*):
|
417 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
418 |
+
for more detail.
|
419 |
+
return_dict (`bool`, *optional*):
|
420 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
|
424 |
+
Example:
|
425 |
+
|
426 |
+
```python
|
427 |
+
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
428 |
+
|
429 |
+
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
430 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
431 |
+
|
432 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
433 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
434 |
+
|
435 |
+
>>> # Generate
|
436 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
437 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
438 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
|
439 |
+
```"""
|
440 |
+
utils.use_grad(self.model, use_base_grad)
|
441 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
442 |
+
output_hidden_states = (
|
443 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
444 |
+
)
|
445 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
446 |
+
|
447 |
+
batch_size = input_ids.shape[0]
|
448 |
+
raw_embedding = self.model.decoder.embed_tokens(input_ids)
|
449 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
450 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
451 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.model.device)
|
452 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
453 |
+
|
454 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
455 |
+
outputs = self.model.decoder(
|
456 |
+
attention_mask=attention_mask,
|
457 |
+
inputs_embeds=inputs_embeds,
|
458 |
+
use_cache=use_cache,
|
459 |
+
output_attentions=output_attentions,
|
460 |
+
output_hidden_states=output_hidden_states,
|
461 |
+
return_dict=return_dict,
|
462 |
+
)
|
463 |
+
sequence_output = outputs[0]
|
464 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :]
|
465 |
+
sequence_output = self.dropout(sequence_output)
|
466 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(self.model.device)
|
467 |
+
cls_token = sequence_output[torch.arange(batch_size, device=self.model.device), sequence_lengths].contiguous()
|
468 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
|
469 |
+
|
470 |
+
# compute loss
|
471 |
+
loss = None
|
472 |
+
if token_labels is not None:
|
473 |
+
loss = utils.get_loss(attentions, token_labels).sum()
|
474 |
+
else:
|
475 |
+
if labels is not None:
|
476 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
477 |
+
loss = utils.get_loss(attentions, token_labels).sum()
|
478 |
+
|
479 |
+
# convert to binary classifier
|
480 |
+
probs = []
|
481 |
+
for idx, y in enumerate(self.clean_labels):
|
482 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
483 |
+
logits = torch.stack(probs).T
|
484 |
+
#loss = torch.nn.functional.nll_loss(logits, labels)
|
485 |
+
|
486 |
+
return SequenceClassifierOutput(
|
487 |
+
loss=loss,
|
488 |
+
logits=logits,
|
489 |
+
hidden_states=outputs.hidden_states,
|
490 |
+
attentions=attentions
|
491 |
+
)
|
492 |
+
|
493 |
+
def prepare_inputs_for_generation(
|
494 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
495 |
+
):
|
496 |
+
if past_key_values:
|
497 |
+
input_ids = input_ids[:, -1:]
|
498 |
+
|
499 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
500 |
+
if inputs_embeds is not None and past_key_values is None:
|
501 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
502 |
+
else:
|
503 |
+
model_inputs = {"input_ids": input_ids}
|
504 |
+
|
505 |
+
model_inputs.update(
|
506 |
+
{
|
507 |
+
"past_key_values": past_key_values,
|
508 |
+
"use_cache": kwargs.get("use_cache"),
|
509 |
+
"attention_mask": attention_mask,
|
510 |
+
}
|
511 |
+
)
|
512 |
+
return model_inputs
|
513 |
+
|
514 |
+
@staticmethod
|
515 |
+
def _reorder_cache(past_key_values, beam_idx):
|
516 |
+
reordered_past = ()
|
517 |
+
for layer_past in past_key_values:
|
518 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
519 |
+
return reordered_past
|
520 |
+
|
521 |
+
|
522 |
+
class LlamaPrefixForMaskedLM(LlamaPreTrainedModel):
|
523 |
+
_tied_weights_keys = ["lm_head.weight"]
|
524 |
+
|
525 |
+
def __init__(self, config):
|
526 |
+
super().__init__(config)
|
527 |
+
self.model = LlamaModel(config)
|
528 |
+
self.vocab_size = config.vocab_size
|
529 |
+
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
530 |
+
self.dropout = torch.nn.Dropout(0.1)
|
531 |
+
for param in self.model.parameters():
|
532 |
+
param.requires_grad = False
|
533 |
+
|
534 |
+
self.pre_seq_len = config.pre_seq_len
|
535 |
+
self.n_layer = config.num_hidden_layers
|
536 |
+
self.n_head = config.num_attention_heads
|
537 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
538 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
539 |
+
self.prefix_encoder = PrefixEncoder(config)
|
540 |
+
|
541 |
+
base_param = 0
|
542 |
+
for name, param in self.model.named_parameters():
|
543 |
+
base_param += param.numel()
|
544 |
+
all_param = 0
|
545 |
+
for name, param in self.named_parameters():
|
546 |
+
all_param += param.numel()
|
547 |
+
total_param = all_param - base_param
|
548 |
+
print('-> LLama_param:{:0.2f}M P-tuning-V2 param:{:0.2f}M'.format(base_param / 1000000, total_param/ 1000000))
|
549 |
+
|
550 |
+
self.embedding = self.model.embed_tokens
|
551 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
552 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
553 |
+
|
554 |
+
def get_prompt(self, batch_size):
|
555 |
+
device = next(self.prefix_encoder.parameters()).device
|
556 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
557 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
558 |
+
# bsz, seqlen, _ = past_key_values.shape
|
559 |
+
past_key_values = past_key_values.view(
|
560 |
+
batch_size,
|
561 |
+
self.pre_seq_len,
|
562 |
+
self.n_layer * 2,
|
563 |
+
self.n_head,
|
564 |
+
self.n_embd
|
565 |
+
)
|
566 |
+
past_key_values = self.dropout(past_key_values)
|
567 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
568 |
+
return past_key_values
|
569 |
+
|
570 |
+
def get_input_embeddings(self):
|
571 |
+
return self.model.embed_tokens
|
572 |
+
|
573 |
+
def set_input_embeddings(self, value):
|
574 |
+
self.model.embed_tokens = value
|
575 |
+
|
576 |
+
def get_output_embeddings(self):
|
577 |
+
return self.lm_head
|
578 |
+
|
579 |
+
def set_output_embeddings(self, new_embeddings):
|
580 |
+
self.lm_head = new_embeddings
|
581 |
+
|
582 |
+
def set_decoder(self, decoder):
|
583 |
+
self.model = decoder
|
584 |
+
|
585 |
+
def get_decoder(self):
|
586 |
+
return self.model
|
587 |
+
|
588 |
+
def use_grad(self, base_model, use_grad):
|
589 |
+
if use_grad:
|
590 |
+
for param in base_model.parameters():
|
591 |
+
param.requires_grad = True
|
592 |
+
base_model.train()
|
593 |
+
else:
|
594 |
+
for param in base_model.parameters():
|
595 |
+
param.requires_grad = False
|
596 |
+
base_model.eval()
|
597 |
+
for param in self.prefix_encoder.parameters():
|
598 |
+
param.requires_grad = True
|
599 |
+
for param in self.lm_head.parameters():
|
600 |
+
param.requires_grad = True
|
601 |
+
|
602 |
+
def forward(
|
603 |
+
self,
|
604 |
+
input_ids=None,
|
605 |
+
attention_mask=None,
|
606 |
+
token_type_ids=None,
|
607 |
+
position_ids=None,
|
608 |
+
inputs_embeds=None,
|
609 |
+
labels=None,
|
610 |
+
token_labels=None,
|
611 |
+
output_attentions=None,
|
612 |
+
output_hidden_states=None,
|
613 |
+
return_dict=None,
|
614 |
+
use_base_grad=False,
|
615 |
+
):
|
616 |
+
utils.use_grad(self.model, use_base_grad)
|
617 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
618 |
+
batch_size = input_ids.shape[0]
|
619 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
620 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(attention_mask.device)
|
621 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
622 |
+
|
623 |
+
outputs = self.model(
|
624 |
+
input_ids=input_ids,
|
625 |
+
attention_mask=attention_mask,
|
626 |
+
position_ids=position_ids,
|
627 |
+
inputs_embeds=inputs_embeds,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
past_key_values=past_key_values,
|
632 |
+
)
|
633 |
+
sequence_output = outputs[0]
|
634 |
+
sequence_output = self.dropout(sequence_output)
|
635 |
+
#sequence_output = torch.clamp(sequence_output, min=-1, max=1)
|
636 |
+
#cls_token = sequence_output[:, :1]
|
637 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(sequence_output.device)
|
638 |
+
cls_token = sequence_output[torch.arange(batch_size, device=sequence_output.device), sequence_lengths].contiguous()
|
639 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous()
|
640 |
+
|
641 |
+
# compute loss
|
642 |
+
masked_lm_loss = None
|
643 |
+
if token_labels is not None:
|
644 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels.to(attentions.device)).sum()
|
645 |
+
else:
|
646 |
+
if labels is not None:
|
647 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
648 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
649 |
+
|
650 |
+
# convert to binary classifier
|
651 |
+
probs = []
|
652 |
+
for y in self.clean_labels:
|
653 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
654 |
+
logits = torch.stack(probs).T
|
655 |
+
|
656 |
+
return SequenceClassifierOutput(
|
657 |
+
loss=masked_lm_loss,
|
658 |
+
logits=logits,
|
659 |
+
hidden_states=outputs.hidden_states,
|
660 |
+
attentions=attentions
|
661 |
+
)
|
662 |
+
|
663 |
+
|
664 |
+
class LlamaPromptForMaskedLM(LlamaPreTrainedModel):
|
665 |
+
_tied_weights_keys = ["lm_head.weight"]
|
666 |
+
def __init__(self, config):
|
667 |
+
super().__init__(config)
|
668 |
+
self.model = LlamaModel(config)
|
669 |
+
self.vocab_size = config.vocab_size
|
670 |
+
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
671 |
+
self.dropout = torch.nn.Dropout(0.1)
|
672 |
+
for param in self.model.parameters():
|
673 |
+
param.requires_grad = False
|
674 |
+
|
675 |
+
self.pre_seq_len = config.pre_seq_len
|
676 |
+
self.n_layer = config.num_hidden_layers
|
677 |
+
self.n_head = config.num_attention_heads
|
678 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
679 |
+
|
680 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
681 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
682 |
+
|
683 |
+
model_param = 0
|
684 |
+
for name, param in self.model.named_parameters():
|
685 |
+
model_param += param.numel()
|
686 |
+
all_param = 0
|
687 |
+
for name, param in self.named_parameters():
|
688 |
+
all_param += param.numel()
|
689 |
+
total_param = all_param - model_param
|
690 |
+
print('-> Llama_param:{:0.2f}M P-tuning-V2 param is {:0.2f}M'.format(model_param / 1000000, total_param / 1000000))
|
691 |
+
|
692 |
+
self.pad_token_id = 2
|
693 |
+
self.embedding = self.model.embed_tokens
|
694 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
695 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
696 |
+
|
697 |
+
def get_prompt(self, batch_size):
|
698 |
+
device = next(self.prefix_encoder.parameters()).device
|
699 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
700 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
701 |
+
return prompts
|
702 |
+
|
703 |
+
def get_input_embeddings(self):
|
704 |
+
return self.model.embed_tokens
|
705 |
+
|
706 |
+
def set_input_embeddings(self, value):
|
707 |
+
self.model.embed_tokens = value
|
708 |
+
|
709 |
+
def get_output_embeddings(self):
|
710 |
+
return self.lm_head
|
711 |
+
|
712 |
+
def set_output_embeddings(self, new_embeddings):
|
713 |
+
self.lm_head = new_embeddings
|
714 |
+
|
715 |
+
def set_decoder(self, decoder):
|
716 |
+
self.model = decoder
|
717 |
+
|
718 |
+
def get_decoder(self):
|
719 |
+
return self.model
|
720 |
+
|
721 |
+
def use_grad(self, base_model, use_grad):
|
722 |
+
if use_grad:
|
723 |
+
for param in base_model.parameters():
|
724 |
+
param.requires_grad = True
|
725 |
+
for param in self.lm_head.parameters():
|
726 |
+
param.requires_grad = True
|
727 |
+
base_model.train()
|
728 |
+
else:
|
729 |
+
for param in base_model.parameters():
|
730 |
+
param.requires_grad = False
|
731 |
+
for param in self.lm_head.parameters():
|
732 |
+
param.requires_grad = False
|
733 |
+
base_model.eval()
|
734 |
+
for param in self.prefix_encoder.parameters():
|
735 |
+
param.requires_grad = True
|
736 |
+
|
737 |
+
|
738 |
+
def forward(
|
739 |
+
self,
|
740 |
+
input_ids: torch.LongTensor = None,
|
741 |
+
attention_mask: Optional[torch.Tensor] = None,
|
742 |
+
position_ids: Optional[torch.LongTensor] = None,
|
743 |
+
token_type_ids: Optional[torch.LongTensor] =None,
|
744 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
745 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
746 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
747 |
+
labels: Optional[torch.LongTensor] = None,
|
748 |
+
token_labels: Optional[torch.LongTensor] = None,
|
749 |
+
use_cache: Optional[bool] = None,
|
750 |
+
output_attentions: Optional[bool] = None,
|
751 |
+
output_hidden_states: Optional[bool] = None,
|
752 |
+
return_dict: Optional[bool] = None,
|
753 |
+
use_base_grad: Optional[bool] = False,
|
754 |
+
):
|
755 |
+
self.use_grad(self.model, use_base_grad)
|
756 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
757 |
+
|
758 |
+
batch_size = input_ids.shape[0]
|
759 |
+
raw_embedding = self.model.embed_tokens(input_ids)
|
760 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
761 |
+
inputs_embeds = torch.cat((prompts, raw_embedding.to(prompts.device)), dim=1)
|
762 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(attention_mask.device)
|
763 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
764 |
+
|
765 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
766 |
+
outputs = self.model(
|
767 |
+
attention_mask=attention_mask,
|
768 |
+
past_key_values=past_key_values,
|
769 |
+
inputs_embeds=inputs_embeds,
|
770 |
+
use_cache=use_cache,
|
771 |
+
output_attentions=output_attentions,
|
772 |
+
output_hidden_states=output_hidden_states,
|
773 |
+
return_dict=return_dict,
|
774 |
+
)
|
775 |
+
sequence_output = outputs[0]
|
776 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
777 |
+
#cls_token = sequence_output[:, 0]
|
778 |
+
#cls_token = self.dropout(cls_token)
|
779 |
+
sequence_lengths = (torch.ne(input_ids, self.pad_token_id).sum(-1) - 1).to(sequence_output.device)
|
780 |
+
cls_token = sequence_output[torch.arange(batch_size, device=sequence_output.device), sequence_lengths].contiguous()
|
781 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size).contiguous().float()
|
782 |
+
|
783 |
+
# compute loss
|
784 |
+
masked_lm_loss = None
|
785 |
+
if token_labels is not None:
|
786 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels.to(attentions.device)).sum()
|
787 |
+
else:
|
788 |
+
if labels is not None:
|
789 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
790 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
791 |
+
|
792 |
+
# convert to binary classifier
|
793 |
+
probs = []
|
794 |
+
for y in self.clean_labels:
|
795 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
796 |
+
logits = torch.stack(probs).T
|
797 |
+
|
798 |
+
return SequenceClassifierOutput(
|
799 |
+
loss=masked_lm_loss,
|
800 |
+
logits=logits,
|
801 |
+
hidden_states=outputs.hidden_states,
|
802 |
+
attentions=attentions
|
803 |
+
)
|
804 |
+
|
805 |
+
|
806 |
+
class BertPrefixForMaskedLM(BertPreTrainedModel):
|
807 |
+
def __init__(self, config):
|
808 |
+
super().__init__(config)
|
809 |
+
self.num_labels = config.num_labels
|
810 |
+
self.config = config
|
811 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
812 |
+
self.cls = BertOnlyMLMHead(config)
|
813 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
814 |
+
for param in self.bert.parameters():
|
815 |
+
param.requires_grad = False
|
816 |
+
|
817 |
+
self.pre_seq_len = config.pre_seq_len
|
818 |
+
self.n_layer = config.num_hidden_layers
|
819 |
+
self.n_head = config.num_attention_heads
|
820 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
821 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
822 |
+
self.prefix_encoder = PrefixEncoder(config)
|
823 |
+
|
824 |
+
base_param = 0
|
825 |
+
for name, param in self.bert.named_parameters():
|
826 |
+
base_param += param.numel()
|
827 |
+
all_param = 0
|
828 |
+
for name, param in self.named_parameters():
|
829 |
+
all_param += param.numel()
|
830 |
+
total_param = all_param - base_param
|
831 |
+
print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(base_param / 1000000, total_param))
|
832 |
+
|
833 |
+
# bert.embeddings.word_embeddings
|
834 |
+
self.embedding = utils.get_embeddings(self, config)
|
835 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
836 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
837 |
+
|
838 |
+
def get_prompt(self, batch_size):
|
839 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
840 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
841 |
+
# bsz, seqlen, _ = past_key_values.shape
|
842 |
+
past_key_values = past_key_values.view(
|
843 |
+
batch_size,
|
844 |
+
self.pre_seq_len,
|
845 |
+
self.n_layer * 2,
|
846 |
+
self.n_head,
|
847 |
+
self.n_embd
|
848 |
+
)
|
849 |
+
past_key_values = self.dropout(past_key_values)
|
850 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
851 |
+
return past_key_values
|
852 |
+
|
853 |
+
def forward(
|
854 |
+
self,
|
855 |
+
input_ids=None,
|
856 |
+
attention_mask=None,
|
857 |
+
token_type_ids=None,
|
858 |
+
position_ids=None,
|
859 |
+
head_mask=None,
|
860 |
+
inputs_embeds=None,
|
861 |
+
labels=None,
|
862 |
+
token_labels=None,
|
863 |
+
output_attentions=None,
|
864 |
+
output_hidden_states=None,
|
865 |
+
return_dict=None,
|
866 |
+
use_base_grad=False,
|
867 |
+
):
|
868 |
+
utils.use_grad(self.bert, use_base_grad)
|
869 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
870 |
+
batch_size = input_ids.shape[0]
|
871 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
872 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
873 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
874 |
+
|
875 |
+
outputs = self.bert(
|
876 |
+
input_ids,
|
877 |
+
attention_mask=attention_mask,
|
878 |
+
token_type_ids=token_type_ids,
|
879 |
+
position_ids=position_ids,
|
880 |
+
head_mask=head_mask,
|
881 |
+
inputs_embeds=inputs_embeds,
|
882 |
+
output_attentions=output_attentions,
|
883 |
+
output_hidden_states=output_hidden_states,
|
884 |
+
return_dict=return_dict,
|
885 |
+
past_key_values=past_key_values,
|
886 |
+
)
|
887 |
+
sequence_output = outputs[0]
|
888 |
+
cls_token = sequence_output[:, 0]
|
889 |
+
cls_token = self.dropout(cls_token)
|
890 |
+
attentions = self.cls(cls_token).view(-1, self.config.vocab_size)
|
891 |
+
|
892 |
+
|
893 |
+
# compute loss
|
894 |
+
masked_lm_loss = None
|
895 |
+
if token_labels is not None:
|
896 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
897 |
+
else:
|
898 |
+
if labels is not None:
|
899 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
900 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
901 |
+
|
902 |
+
# convert to binary classifier
|
903 |
+
probs = []
|
904 |
+
for y in self.clean_labels:
|
905 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
906 |
+
logits = torch.stack(probs).T
|
907 |
+
|
908 |
+
if not return_dict:
|
909 |
+
output = (logits,) + outputs[2:]
|
910 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
911 |
+
|
912 |
+
return SequenceClassifierOutput(
|
913 |
+
loss=masked_lm_loss,
|
914 |
+
logits=logits,
|
915 |
+
hidden_states=outputs.hidden_states,
|
916 |
+
attentions=attentions
|
917 |
+
)
|
918 |
+
|
919 |
+
|
920 |
+
class BertPromptForMaskedLM(BertPreTrainedModel):
|
921 |
+
def __init__(self, config):
|
922 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
923 |
+
super().__init__(config)
|
924 |
+
self.num_labels = config.num_labels
|
925 |
+
self.config = config
|
926 |
+
|
927 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
928 |
+
self.cls = BertOnlyMLMHead(config)
|
929 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
930 |
+
for param in self.bert.parameters():
|
931 |
+
param.requires_grad = False
|
932 |
+
|
933 |
+
self.pre_seq_len = config.pre_seq_len
|
934 |
+
self.n_layer = config.num_hidden_layers
|
935 |
+
self.n_head = config.num_attention_heads
|
936 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
937 |
+
|
938 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
939 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
940 |
+
|
941 |
+
bert_param = 0
|
942 |
+
for name, param in self.bert.named_parameters():
|
943 |
+
bert_param += param.numel()
|
944 |
+
all_param = 0
|
945 |
+
for name, param in self.named_parameters():
|
946 |
+
all_param += param.numel()
|
947 |
+
total_param = all_param - bert_param
|
948 |
+
print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(bert_param / 1000000, total_param))
|
949 |
+
|
950 |
+
# bert.embeddings.word_embeddings
|
951 |
+
self.embedding = utils.get_embeddings(self, config)
|
952 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
953 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
954 |
+
|
955 |
+
def get_prompt(self, batch_size):
|
956 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
957 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
958 |
+
return prompts
|
959 |
+
|
960 |
+
def forward(
|
961 |
+
self,
|
962 |
+
input_ids=None,
|
963 |
+
attention_mask=None,
|
964 |
+
token_type_ids=None,
|
965 |
+
position_ids=None,
|
966 |
+
head_mask=None,
|
967 |
+
inputs_embeds=None,
|
968 |
+
labels=None,
|
969 |
+
token_labels=None,
|
970 |
+
output_attentions=None,
|
971 |
+
output_hidden_states=None,
|
972 |
+
return_dict=None,
|
973 |
+
use_base_grad=False,
|
974 |
+
):
|
975 |
+
r"""
|
976 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
977 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
978 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
979 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
980 |
+
"""
|
981 |
+
utils.use_grad(self.bert, use_base_grad)
|
982 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
983 |
+
|
984 |
+
batch_size = input_ids.shape[0]
|
985 |
+
raw_embedding = self.bert.embeddings(
|
986 |
+
input_ids=input_ids,
|
987 |
+
position_ids=position_ids,
|
988 |
+
token_type_ids=token_type_ids,
|
989 |
+
)
|
990 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
991 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
992 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
993 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
994 |
+
|
995 |
+
outputs = self.bert(
|
996 |
+
# input_ids,
|
997 |
+
attention_mask=attention_mask,
|
998 |
+
# token_type_ids=token_type_ids,
|
999 |
+
# position_ids=position_ids,
|
1000 |
+
head_mask=head_mask,
|
1001 |
+
inputs_embeds=inputs_embeds,
|
1002 |
+
output_attentions=output_attentions,
|
1003 |
+
output_hidden_states=output_hidden_states,
|
1004 |
+
return_dict=return_dict,
|
1005 |
+
# past_key_values=past_key_values,
|
1006 |
+
)
|
1007 |
+
sequence_output = outputs[0]
|
1008 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1009 |
+
cls_token = sequence_output[:, 0]
|
1010 |
+
cls_token = self.dropout(cls_token)
|
1011 |
+
attentions = self.cls(cls_token).view(-1, self.config.vocab_size)
|
1012 |
+
|
1013 |
+
# compute loss
|
1014 |
+
masked_lm_loss = None
|
1015 |
+
if token_labels is not None:
|
1016 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1017 |
+
else:
|
1018 |
+
if labels is not None:
|
1019 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
1020 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1021 |
+
|
1022 |
+
# convert to binary classifier
|
1023 |
+
probs = []
|
1024 |
+
for y in self.clean_labels:
|
1025 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
1026 |
+
logits = torch.stack(probs).T
|
1027 |
+
|
1028 |
+
if not return_dict:
|
1029 |
+
output = (logits,) + outputs[2:]
|
1030 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1031 |
+
return SequenceClassifierOutput(
|
1032 |
+
loss=masked_lm_loss,
|
1033 |
+
logits=logits,
|
1034 |
+
hidden_states=outputs.hidden_states,
|
1035 |
+
attentions=attentions
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
|
1039 |
+
class RobertaPrefixForMaskedLM(RobertaPreTrainedModel):
|
1040 |
+
def __init__(self, config):
|
1041 |
+
super().__init__(config)
|
1042 |
+
self.num_labels = config.num_labels
|
1043 |
+
self.config = config
|
1044 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1045 |
+
self.lm_head = RobertaLMHead(config)
|
1046 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
1047 |
+
|
1048 |
+
for param in self.roberta.parameters():
|
1049 |
+
param.requires_grad = False
|
1050 |
+
|
1051 |
+
self.pre_seq_len = config.pre_seq_len
|
1052 |
+
self.n_layer = config.num_hidden_layers
|
1053 |
+
self.n_head = config.num_attention_heads
|
1054 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
1055 |
+
|
1056 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
1057 |
+
self.prefix_encoder = PrefixEncoder(config)
|
1058 |
+
|
1059 |
+
bert_param = 0
|
1060 |
+
for name, param in self.roberta.named_parameters():
|
1061 |
+
bert_param += param.numel()
|
1062 |
+
all_param = 0
|
1063 |
+
for name, param in self.named_parameters():
|
1064 |
+
all_param += param.numel()
|
1065 |
+
total_param = all_param - bert_param
|
1066 |
+
print('-> total param is {}'.format(total_param)) # 9860105
|
1067 |
+
|
1068 |
+
self.embedding = utils.get_embeddings(self, config)
|
1069 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
1070 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
1071 |
+
|
1072 |
+
def get_prompt(self, batch_size):
|
1073 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
1074 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
1075 |
+
past_key_values = past_key_values.view(
|
1076 |
+
batch_size,
|
1077 |
+
self.pre_seq_len,
|
1078 |
+
self.n_layer * 2,
|
1079 |
+
self.n_head,
|
1080 |
+
self.n_embd
|
1081 |
+
)
|
1082 |
+
past_key_values = self.dropout(past_key_values)
|
1083 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
1084 |
+
return past_key_values
|
1085 |
+
|
1086 |
+
def forward(
|
1087 |
+
self,
|
1088 |
+
input_ids=None,
|
1089 |
+
attention_mask=None,
|
1090 |
+
token_type_ids=None,
|
1091 |
+
position_ids=None,
|
1092 |
+
head_mask=None,
|
1093 |
+
inputs_embeds=None,
|
1094 |
+
labels=None,
|
1095 |
+
token_labels=None,
|
1096 |
+
output_attentions=None,
|
1097 |
+
output_hidden_states=None,
|
1098 |
+
return_dict=None,
|
1099 |
+
use_base_grad=False,
|
1100 |
+
):
|
1101 |
+
utils.use_grad(self.roberta, use_base_grad)
|
1102 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1103 |
+
|
1104 |
+
batch_size = input_ids.shape[0]
|
1105 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
1106 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
1107 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1108 |
+
|
1109 |
+
outputs = self.roberta(
|
1110 |
+
input_ids,
|
1111 |
+
attention_mask=attention_mask,
|
1112 |
+
token_type_ids=token_type_ids,
|
1113 |
+
position_ids=position_ids,
|
1114 |
+
head_mask=head_mask,
|
1115 |
+
inputs_embeds=inputs_embeds,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
past_key_values=past_key_values,
|
1120 |
+
)
|
1121 |
+
sequence_output = outputs[0]
|
1122 |
+
cls_token = sequence_output[:, 0]
|
1123 |
+
cls_token = self.dropout(cls_token)
|
1124 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size)
|
1125 |
+
|
1126 |
+
# compute loss
|
1127 |
+
masked_lm_loss = None
|
1128 |
+
if token_labels is not None:
|
1129 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1130 |
+
else:
|
1131 |
+
if labels is not None:
|
1132 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
1133 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1134 |
+
|
1135 |
+
# convert to binary classifier
|
1136 |
+
probs = []
|
1137 |
+
for y in self.clean_labels:
|
1138 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
1139 |
+
logits = torch.stack(probs).T
|
1140 |
+
|
1141 |
+
if not return_dict:
|
1142 |
+
output = (logits,) + outputs[2:]
|
1143 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1144 |
+
return SequenceClassifierOutput(
|
1145 |
+
loss=masked_lm_loss,
|
1146 |
+
logits=logits,
|
1147 |
+
hidden_states=outputs.hidden_states,
|
1148 |
+
attentions=attentions
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
|
1152 |
+
class RobertaPromptForMaskedLM(RobertaPreTrainedModel):
|
1153 |
+
def __init__(self, config):
|
1154 |
+
super().__init__(config)
|
1155 |
+
self.num_labels = config.num_labels
|
1156 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1157 |
+
self.lm_head = RobertaLMHead(config)
|
1158 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
1159 |
+
for param in self.roberta.parameters():
|
1160 |
+
param.requires_grad = False
|
1161 |
+
|
1162 |
+
self.pre_seq_len = config.pre_seq_len
|
1163 |
+
self.n_layer = config.num_hidden_layers
|
1164 |
+
self.n_head = config.num_attention_heads
|
1165 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
1166 |
+
|
1167 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
1168 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
1169 |
+
|
1170 |
+
self.embeddings = self.roberta.embeddings
|
1171 |
+
self.embedding = utils.get_embeddings(self, config)
|
1172 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
1173 |
+
self.clean_labels = torch.tensor(config.clean_labels).long()
|
1174 |
+
|
1175 |
+
def get_prompt(self, batch_size):
|
1176 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
1177 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
1178 |
+
return prompts
|
1179 |
+
|
1180 |
+
def forward(
|
1181 |
+
self,
|
1182 |
+
input_ids=None,
|
1183 |
+
attention_mask=None,
|
1184 |
+
token_type_ids=None,
|
1185 |
+
position_ids=None,
|
1186 |
+
head_mask=None,
|
1187 |
+
inputs_embeds=None,
|
1188 |
+
labels=None,
|
1189 |
+
token_labels=None,
|
1190 |
+
output_attentions=None,
|
1191 |
+
output_hidden_states=None,
|
1192 |
+
return_dict=None,
|
1193 |
+
use_base_grad=False
|
1194 |
+
):
|
1195 |
+
utils.use_grad(self.roberta, use_base_grad)
|
1196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1197 |
+
|
1198 |
+
batch_size = input_ids.shape[0]
|
1199 |
+
raw_embedding = self.roberta.embeddings(
|
1200 |
+
input_ids=input_ids,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
token_type_ids=token_type_ids,
|
1203 |
+
)
|
1204 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
1205 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
1206 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
1207 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1208 |
+
|
1209 |
+
outputs = self.roberta(
|
1210 |
+
# input_ids,
|
1211 |
+
attention_mask=attention_mask,
|
1212 |
+
# token_type_ids=token_type_ids,
|
1213 |
+
# position_ids=position_ids,
|
1214 |
+
head_mask=head_mask,
|
1215 |
+
inputs_embeds=inputs_embeds,
|
1216 |
+
output_attentions=output_attentions,
|
1217 |
+
output_hidden_states=output_hidden_states,
|
1218 |
+
return_dict=return_dict,
|
1219 |
+
# past_key_values=past_key_values,
|
1220 |
+
)
|
1221 |
+
sequence_output = outputs[0]
|
1222 |
+
sequence_output = self.dropout(sequence_output)
|
1223 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1224 |
+
cls_token = sequence_output[:, 0]
|
1225 |
+
attentions = self.lm_head(cls_token).view(-1, self.config.vocab_size)
|
1226 |
+
|
1227 |
+
masked_lm_loss = None
|
1228 |
+
if token_labels is not None:
|
1229 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1230 |
+
else:
|
1231 |
+
if labels is not None:
|
1232 |
+
token_labels = torch.stack([self.clean_labels[labels[i]] for i in range(len(labels))]).to(labels.device)
|
1233 |
+
masked_lm_loss = utils.get_loss(attentions, token_labels).sum()
|
1234 |
+
|
1235 |
+
# convert to binary classifier
|
1236 |
+
probs = []
|
1237 |
+
for y in self.clean_labels:
|
1238 |
+
probs.append(attentions[:, y.to(attentions.device)].max(dim=1)[0])
|
1239 |
+
logits = torch.stack(probs).T
|
1240 |
+
|
1241 |
+
if not return_dict:
|
1242 |
+
output = (logits,) + outputs[2:]
|
1243 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1244 |
+
return SequenceClassifierOutput(
|
1245 |
+
loss=masked_lm_loss,
|
1246 |
+
logits=logits,
|
1247 |
+
hidden_states=outputs.hidden_states,
|
1248 |
+
attentions=attentions
|
1249 |
+
)
|
soft_prompt/model/sequence_classification.py
ADDED
@@ -0,0 +1,997 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import NoopLogger
|
3 |
+
import torch.nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
7 |
+
|
8 |
+
from transformers import BertModel, BertPreTrainedModel
|
9 |
+
from transformers import RobertaModel, RobertaPreTrainedModel
|
10 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, SequenceClassifierOutputWithPast, BaseModelOutput, Seq2SeqLMOutput
|
11 |
+
from transformers import GPT2Model, GPT2PreTrainedModel, GPTNeoModel
|
12 |
+
|
13 |
+
from model.prefix_encoder import PrefixEncoder
|
14 |
+
from model.deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
|
15 |
+
from model import utils
|
16 |
+
import copy
|
17 |
+
|
18 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__(config)
|
21 |
+
self.num_labels = config.num_labels
|
22 |
+
self.config = config
|
23 |
+
|
24 |
+
self.bert = BertModel(config)
|
25 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
26 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
27 |
+
|
28 |
+
self.init_weights()
|
29 |
+
|
30 |
+
self.embedding = utils.get_embeddings(self, config)
|
31 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
32 |
+
|
33 |
+
def forward(
|
34 |
+
self,
|
35 |
+
input_ids=None,
|
36 |
+
attention_mask=None,
|
37 |
+
token_type_ids=None,
|
38 |
+
position_ids=None,
|
39 |
+
head_mask=None,
|
40 |
+
inputs_embeds=None,
|
41 |
+
labels=None,
|
42 |
+
output_attentions=None,
|
43 |
+
output_hidden_states=None,
|
44 |
+
return_dict=None,
|
45 |
+
use_base_grad=False,
|
46 |
+
):
|
47 |
+
r"""
|
48 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
49 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
50 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
51 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
52 |
+
"""
|
53 |
+
utils.use_grad(self.bert, use_base_grad)
|
54 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
55 |
+
|
56 |
+
outputs = self.bert(
|
57 |
+
input_ids,
|
58 |
+
attention_mask=attention_mask,
|
59 |
+
token_type_ids=token_type_ids,
|
60 |
+
position_ids=position_ids,
|
61 |
+
head_mask=head_mask,
|
62 |
+
inputs_embeds=inputs_embeds,
|
63 |
+
output_attentions=output_attentions,
|
64 |
+
output_hidden_states=output_hidden_states,
|
65 |
+
return_dict=return_dict,
|
66 |
+
)
|
67 |
+
|
68 |
+
pooled_output = outputs[1]
|
69 |
+
|
70 |
+
pooled_output = self.dropout(pooled_output)
|
71 |
+
logits = self.classifier(pooled_output)
|
72 |
+
|
73 |
+
loss = None
|
74 |
+
if labels is not None:
|
75 |
+
if self.config.problem_type is None:
|
76 |
+
if self.num_labels == 1:
|
77 |
+
self.config.problem_type = "regression"
|
78 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
79 |
+
self.config.problem_type = "single_label_classification"
|
80 |
+
else:
|
81 |
+
self.config.problem_type = "multi_label_classification"
|
82 |
+
|
83 |
+
if self.config.problem_type == "regression":
|
84 |
+
loss_fct = MSELoss()
|
85 |
+
if self.num_labels == 1:
|
86 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
87 |
+
else:
|
88 |
+
loss = loss_fct(logits, labels)
|
89 |
+
elif self.config.problem_type == "single_label_classification":
|
90 |
+
loss_fct = CrossEntropyLoss()
|
91 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
92 |
+
elif self.config.problem_type == "multi_label_classification":
|
93 |
+
loss_fct = BCEWithLogitsLoss()
|
94 |
+
loss = loss_fct(logits, labels)
|
95 |
+
elif self.config.problem_type == "em":
|
96 |
+
predict_logp = F.log_softmax(pooled_output, dim=-1)
|
97 |
+
target_logp = predict_logp.gather(-1, labels)
|
98 |
+
target_logp = target_logp - 1e32 * labels.eq(0) # Apply mask
|
99 |
+
loss = -torch.logsumexp(target_logp, dim=-1)
|
100 |
+
|
101 |
+
if not return_dict:
|
102 |
+
output = (logits,) + outputs[2:]
|
103 |
+
return ((loss,) + output) if loss is not None else output
|
104 |
+
|
105 |
+
loss.backward()
|
106 |
+
|
107 |
+
return SequenceClassifierOutput(
|
108 |
+
loss=loss,
|
109 |
+
logits=pooled_output,
|
110 |
+
hidden_states=outputs.hidden_states,
|
111 |
+
attentions=outputs.attentions,
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
class BertPrefixForSequenceClassification(BertPreTrainedModel):
|
116 |
+
def __init__(self, config):
|
117 |
+
super().__init__(config)
|
118 |
+
self.num_labels = config.num_labels
|
119 |
+
self.config = config
|
120 |
+
self.bert = BertModel(config)
|
121 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
122 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
123 |
+
|
124 |
+
for param in self.bert.parameters():
|
125 |
+
param.requires_grad = False
|
126 |
+
|
127 |
+
self.pre_seq_len = config.pre_seq_len
|
128 |
+
self.n_layer = config.num_hidden_layers
|
129 |
+
self.n_head = config.num_attention_heads
|
130 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
131 |
+
|
132 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
133 |
+
self.prefix_encoder = PrefixEncoder(config)
|
134 |
+
|
135 |
+
bert_param = 0
|
136 |
+
for name, param in self.bert.named_parameters():
|
137 |
+
bert_param += param.numel()
|
138 |
+
all_param = 0
|
139 |
+
for name, param in self.named_parameters():
|
140 |
+
all_param += param.numel()
|
141 |
+
total_param = all_param - bert_param
|
142 |
+
print('-> bert_param:{:0.2f}M P-tuning-V2 param is {}'.format(bert_param / 1000000, total_param))
|
143 |
+
|
144 |
+
self.embedding = utils.get_embeddings(self, config)
|
145 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
146 |
+
|
147 |
+
def get_prompt(self, batch_size):
|
148 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
149 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
150 |
+
# bsz, seqlen, _ = past_key_values.shape
|
151 |
+
past_key_values = past_key_values.view(
|
152 |
+
batch_size,
|
153 |
+
self.pre_seq_len,
|
154 |
+
self.n_layer * 2,
|
155 |
+
self.n_head,
|
156 |
+
self.n_embd
|
157 |
+
)
|
158 |
+
past_key_values = self.dropout(past_key_values)
|
159 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
160 |
+
return past_key_values
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
input_ids=None,
|
165 |
+
attention_mask=None,
|
166 |
+
token_type_ids=None,
|
167 |
+
position_ids=None,
|
168 |
+
head_mask=None,
|
169 |
+
inputs_embeds=None,
|
170 |
+
labels=None,
|
171 |
+
output_attentions=None,
|
172 |
+
output_hidden_states=None,
|
173 |
+
return_dict=None,
|
174 |
+
use_base_grad=False,
|
175 |
+
):
|
176 |
+
utils.use_grad(self.bert, use_base_grad)
|
177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
178 |
+
batch_size = input_ids.shape[0]
|
179 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
180 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
181 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
182 |
+
|
183 |
+
outputs = self.bert(
|
184 |
+
input_ids,
|
185 |
+
attention_mask=attention_mask,
|
186 |
+
token_type_ids=token_type_ids,
|
187 |
+
position_ids=position_ids,
|
188 |
+
head_mask=head_mask,
|
189 |
+
inputs_embeds=inputs_embeds,
|
190 |
+
output_attentions=output_attentions,
|
191 |
+
output_hidden_states=output_hidden_states,
|
192 |
+
return_dict=return_dict,
|
193 |
+
past_key_values=past_key_values,
|
194 |
+
)
|
195 |
+
pooled_output = outputs[1]
|
196 |
+
pooled_output = self.dropout(pooled_output)
|
197 |
+
logits = self.classifier(pooled_output)
|
198 |
+
|
199 |
+
loss = None
|
200 |
+
if labels is not None:
|
201 |
+
if self.config.problem_type is None:
|
202 |
+
if self.num_labels == 1:
|
203 |
+
self.config.problem_type = "regression"
|
204 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
205 |
+
self.config.problem_type = "single_label_classification"
|
206 |
+
else:
|
207 |
+
self.config.problem_type = "multi_label_classification"
|
208 |
+
|
209 |
+
if self.config.problem_type == "regression":
|
210 |
+
loss_fct = MSELoss()
|
211 |
+
if self.num_labels == 1:
|
212 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
213 |
+
else:
|
214 |
+
loss = loss_fct(logits, labels)
|
215 |
+
elif self.config.problem_type == "single_label_classification":
|
216 |
+
loss_fct = CrossEntropyLoss()
|
217 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
218 |
+
elif self.config.problem_type == "multi_label_classification":
|
219 |
+
loss_fct = BCEWithLogitsLoss()
|
220 |
+
loss = loss_fct(logits, labels)
|
221 |
+
if not return_dict:
|
222 |
+
output = (logits,) + outputs[2:]
|
223 |
+
return ((loss,) + output) if loss is not None else output
|
224 |
+
|
225 |
+
return SequenceClassifierOutput(
|
226 |
+
loss=loss,
|
227 |
+
logits=logits,
|
228 |
+
hidden_states=outputs.hidden_states,
|
229 |
+
attentions=outputs.attentions,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
class BertPromptForSequenceClassification(BertPreTrainedModel):
|
234 |
+
def __init__(self, config):
|
235 |
+
super().__init__(config)
|
236 |
+
self.num_labels = config.num_labels
|
237 |
+
self.bert = BertModel(config)
|
238 |
+
self.embeddings = self.bert.embeddings
|
239 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
240 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
241 |
+
|
242 |
+
for param in self.bert.parameters():
|
243 |
+
param.requires_grad = False
|
244 |
+
|
245 |
+
self.pre_seq_len = config.pre_seq_len
|
246 |
+
self.n_layer = config.num_hidden_layers
|
247 |
+
self.n_head = config.num_attention_heads
|
248 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
249 |
+
|
250 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
251 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
252 |
+
|
253 |
+
self.embedding = utils.get_embeddings(self, config)
|
254 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
255 |
+
|
256 |
+
def get_prompt(self, batch_size):
|
257 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
258 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
259 |
+
return prompts
|
260 |
+
|
261 |
+
def forward(
|
262 |
+
self,
|
263 |
+
input_ids=None,
|
264 |
+
attention_mask=None,
|
265 |
+
token_type_ids=None,
|
266 |
+
position_ids=None,
|
267 |
+
head_mask=None,
|
268 |
+
inputs_embeds=None,
|
269 |
+
labels=None,
|
270 |
+
output_attentions=None,
|
271 |
+
output_hidden_states=None,
|
272 |
+
return_dict=None,
|
273 |
+
use_base_grad=False,
|
274 |
+
):
|
275 |
+
utils.use_grad(self.bert, use_base_grad)
|
276 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
277 |
+
|
278 |
+
batch_size = input_ids.shape[0]
|
279 |
+
raw_embedding = self.embeddings(
|
280 |
+
input_ids=input_ids,
|
281 |
+
position_ids=position_ids,
|
282 |
+
token_type_ids=token_type_ids,
|
283 |
+
)
|
284 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
285 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
286 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
287 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
288 |
+
|
289 |
+
outputs = self.bert(
|
290 |
+
# input_ids,
|
291 |
+
attention_mask=attention_mask,
|
292 |
+
# token_type_ids=token_type_ids,
|
293 |
+
# position_ids=position_ids,
|
294 |
+
head_mask=head_mask,
|
295 |
+
inputs_embeds=inputs_embeds,
|
296 |
+
output_attentions=output_attentions,
|
297 |
+
output_hidden_states=output_hidden_states,
|
298 |
+
return_dict=return_dict,
|
299 |
+
# past_key_values=past_key_values,
|
300 |
+
)
|
301 |
+
|
302 |
+
# pooled_output = outputs[1]
|
303 |
+
sequence_output = outputs[0]
|
304 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
305 |
+
first_token_tensor = sequence_output[:, 0]
|
306 |
+
pooled_output = self.bert.pooler.dense(first_token_tensor)
|
307 |
+
pooled_output = self.bert.pooler.activation(pooled_output)
|
308 |
+
|
309 |
+
pooled_output = self.dropout(pooled_output)
|
310 |
+
logits = self.classifier(pooled_output)
|
311 |
+
|
312 |
+
loss = None
|
313 |
+
if labels is not None:
|
314 |
+
if self.config.problem_type is None:
|
315 |
+
if self.num_labels == 1:
|
316 |
+
self.config.problem_type = "regression"
|
317 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
318 |
+
self.config.problem_type = "single_label_classification"
|
319 |
+
else:
|
320 |
+
self.config.problem_type = "multi_label_classification"
|
321 |
+
|
322 |
+
if self.config.problem_type == "regression":
|
323 |
+
loss_fct = MSELoss()
|
324 |
+
if self.num_labels == 1:
|
325 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
326 |
+
else:
|
327 |
+
loss = loss_fct(logits, labels)
|
328 |
+
elif self.config.problem_type == "single_label_classification":
|
329 |
+
loss_fct = CrossEntropyLoss()
|
330 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
331 |
+
elif self.config.problem_type == "multi_label_classification":
|
332 |
+
loss_fct = BCEWithLogitsLoss()
|
333 |
+
loss = loss_fct(logits, labels)
|
334 |
+
if not return_dict:
|
335 |
+
output = (logits,) + outputs[2:]
|
336 |
+
return ((loss,) + output) if loss is not None else output
|
337 |
+
|
338 |
+
return SequenceClassifierOutput(
|
339 |
+
loss=loss,
|
340 |
+
logits=logits,
|
341 |
+
hidden_states=outputs.hidden_states,
|
342 |
+
attentions=outputs.attentions,
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
class RobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
|
347 |
+
def __init__(self, config):
|
348 |
+
super().__init__(config)
|
349 |
+
self.num_labels = config.num_labels
|
350 |
+
self.config = config
|
351 |
+
self.roberta = RobertaModel(config)
|
352 |
+
|
353 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
354 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
355 |
+
self.init_weights()
|
356 |
+
|
357 |
+
for param in self.roberta.parameters():
|
358 |
+
param.requires_grad = False
|
359 |
+
|
360 |
+
self.pre_seq_len = config.pre_seq_len
|
361 |
+
self.n_layer = config.num_hidden_layers
|
362 |
+
self.n_head = config.num_attention_heads
|
363 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
364 |
+
|
365 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
366 |
+
self.prefix_encoder = PrefixEncoder(config)
|
367 |
+
|
368 |
+
bert_param = 0
|
369 |
+
for name, param in self.roberta.named_parameters():
|
370 |
+
bert_param += param.numel()
|
371 |
+
all_param = 0
|
372 |
+
for name, param in self.named_parameters():
|
373 |
+
all_param += param.numel()
|
374 |
+
total_param = all_param - bert_param
|
375 |
+
print('-> total param is {}'.format(total_param)) # 9860105
|
376 |
+
|
377 |
+
self.embedding = utils.get_embeddings(self, config)
|
378 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
379 |
+
|
380 |
+
def get_prompt(self, batch_size):
|
381 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
382 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
383 |
+
past_key_values = past_key_values.view(
|
384 |
+
batch_size,
|
385 |
+
self.pre_seq_len,
|
386 |
+
self.n_layer * 2,
|
387 |
+
self.n_head,
|
388 |
+
self.n_embd
|
389 |
+
)
|
390 |
+
past_key_values = self.dropout(past_key_values)
|
391 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
392 |
+
return past_key_values
|
393 |
+
|
394 |
+
def forward(
|
395 |
+
self,
|
396 |
+
input_ids=None,
|
397 |
+
attention_mask=None,
|
398 |
+
token_type_ids=None,
|
399 |
+
position_ids=None,
|
400 |
+
head_mask=None,
|
401 |
+
inputs_embeds=None,
|
402 |
+
labels=None,
|
403 |
+
output_attentions=None,
|
404 |
+
output_hidden_states=None,
|
405 |
+
return_dict=None,
|
406 |
+
use_base_grad=False,
|
407 |
+
):
|
408 |
+
utils.use_grad(self.roberta, use_base_grad)
|
409 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
410 |
+
|
411 |
+
batch_size = input_ids.shape[0]
|
412 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
413 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
414 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
415 |
+
|
416 |
+
outputs = self.roberta(
|
417 |
+
input_ids,
|
418 |
+
attention_mask=attention_mask,
|
419 |
+
token_type_ids=token_type_ids,
|
420 |
+
position_ids=position_ids,
|
421 |
+
head_mask=head_mask,
|
422 |
+
inputs_embeds=inputs_embeds,
|
423 |
+
output_attentions=output_attentions,
|
424 |
+
output_hidden_states=output_hidden_states,
|
425 |
+
return_dict=return_dict,
|
426 |
+
past_key_values=past_key_values,
|
427 |
+
)
|
428 |
+
|
429 |
+
pooled_output = outputs[1]
|
430 |
+
pooled_output = self.dropout(pooled_output)
|
431 |
+
logits = self.classifier(pooled_output)
|
432 |
+
|
433 |
+
loss = None
|
434 |
+
if labels is not None:
|
435 |
+
if self.config.problem_type is None:
|
436 |
+
if self.num_labels == 1:
|
437 |
+
self.config.problem_type = "regression"
|
438 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
439 |
+
self.config.problem_type = "single_label_classification"
|
440 |
+
else:
|
441 |
+
self.config.problem_type = "multi_label_classification"
|
442 |
+
|
443 |
+
if self.config.problem_type == "regression":
|
444 |
+
loss_fct = MSELoss()
|
445 |
+
if self.num_labels == 1:
|
446 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
447 |
+
else:
|
448 |
+
loss = loss_fct(logits, labels)
|
449 |
+
elif self.config.problem_type == "single_label_classification":
|
450 |
+
loss_fct = CrossEntropyLoss()
|
451 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
452 |
+
elif self.config.problem_type == "multi_label_classification":
|
453 |
+
loss_fct = BCEWithLogitsLoss()
|
454 |
+
loss = loss_fct(logits, labels)
|
455 |
+
if not return_dict:
|
456 |
+
output = (logits,) + outputs[2:]
|
457 |
+
return ((loss,) + output) if loss is not None else output
|
458 |
+
|
459 |
+
return SequenceClassifierOutput(
|
460 |
+
loss=loss,
|
461 |
+
logits=logits,
|
462 |
+
hidden_states=outputs.hidden_states,
|
463 |
+
attentions=outputs.attentions,
|
464 |
+
)
|
465 |
+
|
466 |
+
|
467 |
+
class RobertaPromptForSequenceClassification(RobertaPreTrainedModel):
|
468 |
+
def __init__(self, config):
|
469 |
+
super().__init__(config)
|
470 |
+
self.num_labels = config.num_labels
|
471 |
+
self.roberta = RobertaModel(config)
|
472 |
+
self.embeddings = self.roberta.embeddings
|
473 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
474 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
475 |
+
|
476 |
+
for param in self.roberta.parameters():
|
477 |
+
param.requires_grad = False
|
478 |
+
|
479 |
+
self.pre_seq_len = config.pre_seq_len
|
480 |
+
self.n_layer = config.num_hidden_layers
|
481 |
+
self.n_head = config.num_attention_heads
|
482 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
483 |
+
|
484 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
485 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
486 |
+
|
487 |
+
self.embedding = utils.get_embeddings(self, config)
|
488 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
489 |
+
|
490 |
+
def get_prompt(self, batch_size):
|
491 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
492 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
493 |
+
return prompts
|
494 |
+
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
input_ids=None,
|
498 |
+
attention_mask=None,
|
499 |
+
token_type_ids=None,
|
500 |
+
position_ids=None,
|
501 |
+
head_mask=None,
|
502 |
+
inputs_embeds=None,
|
503 |
+
labels=None,
|
504 |
+
output_attentions=None,
|
505 |
+
output_hidden_states=None,
|
506 |
+
return_dict=None,
|
507 |
+
use_base_grad=False
|
508 |
+
):
|
509 |
+
utils.use_grad(self.roberta, use_base_grad)
|
510 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
511 |
+
|
512 |
+
batch_size = input_ids.shape[0]
|
513 |
+
raw_embedding = self.embeddings(
|
514 |
+
input_ids=input_ids,
|
515 |
+
position_ids=position_ids,
|
516 |
+
token_type_ids=token_type_ids,
|
517 |
+
)
|
518 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
519 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
520 |
+
|
521 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
522 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
523 |
+
|
524 |
+
outputs = self.roberta(
|
525 |
+
# input_ids,
|
526 |
+
attention_mask=attention_mask,
|
527 |
+
# token_type_ids=token_type_ids,
|
528 |
+
# position_ids=position_ids,
|
529 |
+
head_mask=head_mask,
|
530 |
+
inputs_embeds=inputs_embeds,
|
531 |
+
output_attentions=output_attentions,
|
532 |
+
output_hidden_states=output_hidden_states,
|
533 |
+
return_dict=return_dict,
|
534 |
+
# past_key_values=past_key_values,
|
535 |
+
)
|
536 |
+
|
537 |
+
# pooled_output = outputs[1]
|
538 |
+
sequence_output = outputs[0]
|
539 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
540 |
+
first_token_tensor = sequence_output[:, 0]
|
541 |
+
pooled_output = self.roberta.pooler.dense(first_token_tensor)
|
542 |
+
pooled_output = self.roberta.pooler.activation(pooled_output)
|
543 |
+
|
544 |
+
pooled_output = self.dropout(pooled_output)
|
545 |
+
logits = self.classifier(pooled_output)
|
546 |
+
|
547 |
+
loss = None
|
548 |
+
if labels is not None:
|
549 |
+
if self.config.problem_type is None:
|
550 |
+
if self.num_labels == 1:
|
551 |
+
self.config.problem_type = "regression"
|
552 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
553 |
+
self.config.problem_type = "single_label_classification"
|
554 |
+
else:
|
555 |
+
self.config.problem_type = "multi_label_classification"
|
556 |
+
|
557 |
+
if self.config.problem_type == "regression":
|
558 |
+
loss_fct = MSELoss()
|
559 |
+
if self.num_labels == 1:
|
560 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
561 |
+
else:
|
562 |
+
loss = loss_fct(logits, labels)
|
563 |
+
elif self.config.problem_type == "single_label_classification":
|
564 |
+
loss_fct = CrossEntropyLoss()
|
565 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
566 |
+
elif self.config.problem_type == "multi_label_classification":
|
567 |
+
loss_fct = BCEWithLogitsLoss()
|
568 |
+
loss = loss_fct(logits, labels)
|
569 |
+
if not return_dict:
|
570 |
+
output = (logits,) + outputs[2:]
|
571 |
+
return ((loss,) + output) if loss is not None else output
|
572 |
+
|
573 |
+
return SequenceClassifierOutput(
|
574 |
+
loss=loss,
|
575 |
+
logits=logits,
|
576 |
+
hidden_states=outputs.hidden_states,
|
577 |
+
attentions=outputs.attentions,
|
578 |
+
)
|
579 |
+
|
580 |
+
|
581 |
+
class DebertaPrefixForSequenceClassification(DebertaPreTrainedModel):
|
582 |
+
def __init__(self, config):
|
583 |
+
super().__init__(config)
|
584 |
+
self.num_labels = config.num_labels
|
585 |
+
self.config = config
|
586 |
+
self.deberta = DebertaModel(config)
|
587 |
+
self.pooler = ContextPooler(config)
|
588 |
+
output_dim = self.pooler.output_dim
|
589 |
+
self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
590 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
591 |
+
self.init_weights()
|
592 |
+
|
593 |
+
for param in self.deberta.parameters():
|
594 |
+
param.requires_grad = False
|
595 |
+
|
596 |
+
self.pre_seq_len = config.pre_seq_len
|
597 |
+
self.n_layer = config.num_hidden_layers
|
598 |
+
self.n_head = config.num_attention_heads
|
599 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
600 |
+
|
601 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
602 |
+
self.prefix_encoder = PrefixEncoder(config)
|
603 |
+
|
604 |
+
deberta_param = 0
|
605 |
+
for name, param in self.deberta.named_parameters():
|
606 |
+
deberta_param += param.numel()
|
607 |
+
all_param = 0
|
608 |
+
for name, param in self.named_parameters():
|
609 |
+
all_param += param.numel()
|
610 |
+
total_param = all_param - deberta_param
|
611 |
+
print('total param is {}'.format(total_param)) # 9860105
|
612 |
+
|
613 |
+
self.embedding = utils.get_embeddings(self, config)
|
614 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
615 |
+
|
616 |
+
def get_prompt(self, batch_size):
|
617 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
618 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
619 |
+
# bsz, seqlen, _ = past_key_values.shape
|
620 |
+
past_key_values = past_key_values.view(
|
621 |
+
batch_size,
|
622 |
+
self.pre_seq_len,
|
623 |
+
self.n_layer * 2,
|
624 |
+
self.n_head,
|
625 |
+
self.n_embd
|
626 |
+
)
|
627 |
+
past_key_values = self.dropout(past_key_values)
|
628 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
629 |
+
return past_key_values
|
630 |
+
|
631 |
+
def forward(
|
632 |
+
self,
|
633 |
+
input_ids=None,
|
634 |
+
attention_mask=None,
|
635 |
+
token_type_ids=None,
|
636 |
+
position_ids=None,
|
637 |
+
head_mask=None,
|
638 |
+
inputs_embeds=None,
|
639 |
+
labels=None,
|
640 |
+
output_attentions=None,
|
641 |
+
output_hidden_states=None,
|
642 |
+
return_dict=None,
|
643 |
+
use_base_grad=False
|
644 |
+
):
|
645 |
+
utils.use_grad(self.bert, use_base_grad)
|
646 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
647 |
+
batch_size = input_ids.shape[0]
|
648 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
649 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
650 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
651 |
+
|
652 |
+
outputs = self.deberta(
|
653 |
+
input_ids,
|
654 |
+
attention_mask=attention_mask,
|
655 |
+
token_type_ids=token_type_ids,
|
656 |
+
position_ids=position_ids,
|
657 |
+
inputs_embeds=inputs_embeds,
|
658 |
+
output_attentions=output_attentions,
|
659 |
+
output_hidden_states=output_hidden_states,
|
660 |
+
return_dict=return_dict,
|
661 |
+
past_key_values=past_key_values,
|
662 |
+
)
|
663 |
+
|
664 |
+
encoder_layer = outputs[0]
|
665 |
+
pooled_output = self.pooler(encoder_layer)
|
666 |
+
pooled_output = self.dropout(pooled_output)
|
667 |
+
logits = self.classifier(pooled_output)
|
668 |
+
|
669 |
+
loss = None
|
670 |
+
if labels is not None:
|
671 |
+
if self.num_labels == 1:
|
672 |
+
# regression task
|
673 |
+
loss_fn = torch.nn.MSELoss()
|
674 |
+
logits = logits.view(-1).to(labels.dtype)
|
675 |
+
loss = loss_fn(logits, labels.view(-1))
|
676 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
677 |
+
label_index = (labels >= 0).nonzero()
|
678 |
+
labels = labels.long()
|
679 |
+
if label_index.size(0) > 0:
|
680 |
+
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
|
681 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
682 |
+
loss_fct = CrossEntropyLoss()
|
683 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
684 |
+
else:
|
685 |
+
loss = torch.tensor(0).to(logits)
|
686 |
+
else:
|
687 |
+
log_softmax = torch.nn.LogSoftmax(-1)
|
688 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
689 |
+
if not return_dict:
|
690 |
+
output = (logits,) + outputs[1:]
|
691 |
+
return ((loss,) + output) if loss is not None else output
|
692 |
+
else:
|
693 |
+
return SequenceClassifierOutput(
|
694 |
+
loss=loss,
|
695 |
+
logits=logits,
|
696 |
+
hidden_states=outputs.hidden_states,
|
697 |
+
attentions=outputs.attentions,
|
698 |
+
)
|
699 |
+
|
700 |
+
|
701 |
+
class GPT2PromptForSequenceClassification(GPT2PreTrainedModel):
|
702 |
+
def __init__(self, config):
|
703 |
+
super().__init__(config)
|
704 |
+
self.num_labels = config.num_labels
|
705 |
+
self.config = config
|
706 |
+
self.gpt2 = GPT2Model(config)
|
707 |
+
self.dropout = StableDropout(config.embd_pdrop)
|
708 |
+
self.classifier = torch.nn.Linear(config.n_embd, self.num_labels)
|
709 |
+
|
710 |
+
for param in self.gpt2.parameters():
|
711 |
+
param.requires_grad = False
|
712 |
+
|
713 |
+
self.pre_seq_len = config.pre_seq_len
|
714 |
+
self.n_layer = config.num_hidden_layers
|
715 |
+
self.n_head = config.num_attention_heads
|
716 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
717 |
+
|
718 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
719 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
720 |
+
|
721 |
+
# Model parallel
|
722 |
+
self.model_parallel = False
|
723 |
+
self.device_map = None
|
724 |
+
|
725 |
+
gpt2_param = 0
|
726 |
+
for name, param in self.gpt2.named_parameters():
|
727 |
+
gpt2_param += param.numel()
|
728 |
+
all_param = 0
|
729 |
+
for name, param in self.named_parameters():
|
730 |
+
all_param += param.numel()
|
731 |
+
total_param = all_param - gpt2_param
|
732 |
+
print('-> total param is {}'.format(total_param)) # 9860105
|
733 |
+
|
734 |
+
self.embedding = self.gpt2.wte
|
735 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
736 |
+
|
737 |
+
def get_prompt(self, batch_size):
|
738 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.gpt2.device)
|
739 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
740 |
+
return prompts
|
741 |
+
|
742 |
+
def forward(
|
743 |
+
self,
|
744 |
+
input_ids=None,
|
745 |
+
attention_mask=None,
|
746 |
+
token_type_ids=None,
|
747 |
+
position_ids=None,
|
748 |
+
head_mask=None,
|
749 |
+
inputs_embeds=None,
|
750 |
+
labels=None,
|
751 |
+
output_attentions=None,
|
752 |
+
output_hidden_states=None,
|
753 |
+
return_dict=None,
|
754 |
+
use_base_grad=False
|
755 |
+
):
|
756 |
+
utils.use_grad(self.gpt2, use_base_grad)
|
757 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
758 |
+
|
759 |
+
batch_size = input_ids.shape[0]
|
760 |
+
raw_embedding = self.embedding(input_ids)
|
761 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
762 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
763 |
+
|
764 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.gpt2.device)
|
765 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
766 |
+
|
767 |
+
transformer_outputs = self.gpt2(
|
768 |
+
# input_ids,
|
769 |
+
attention_mask=attention_mask,
|
770 |
+
# token_type_ids=token_type_ids,
|
771 |
+
# position_ids=position_ids,
|
772 |
+
head_mask=head_mask,
|
773 |
+
inputs_embeds=inputs_embeds,
|
774 |
+
output_attentions=output_attentions,
|
775 |
+
output_hidden_states=output_hidden_states,
|
776 |
+
return_dict=return_dict,
|
777 |
+
# past_key_values=past_key_values,
|
778 |
+
)
|
779 |
+
|
780 |
+
hidden_states = transformer_outputs[0]
|
781 |
+
logits = self.classifier(hidden_states)
|
782 |
+
|
783 |
+
if input_ids is not None:
|
784 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
785 |
+
else:
|
786 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
787 |
+
|
788 |
+
assert (
|
789 |
+
self.config.pad_token_id is not None or batch_size == 1
|
790 |
+
), "Cannot handle batch sizes > 1 if no " \
|
791 |
+
"padding token is defined."
|
792 |
+
if self.config.pad_token_id is None:
|
793 |
+
sequence_lengths = -1
|
794 |
+
else:
|
795 |
+
if input_ids is not None:
|
796 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
797 |
+
else:
|
798 |
+
sequence_lengths = -1
|
799 |
+
|
800 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
801 |
+
|
802 |
+
loss = None
|
803 |
+
if labels is not None:
|
804 |
+
if self.config.problem_type is None:
|
805 |
+
if self.num_labels == 1:
|
806 |
+
self.config.problem_type = "regression"
|
807 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
808 |
+
self.config.problem_type = "single_label_classification"
|
809 |
+
else:
|
810 |
+
self.config.problem_type = "multi_label_classification"
|
811 |
+
|
812 |
+
if self.config.problem_type == "regression":
|
813 |
+
loss_fct = MSELoss()
|
814 |
+
if self.num_labels == 1:
|
815 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
816 |
+
else:
|
817 |
+
loss = loss_fct(pooled_logits, labels)
|
818 |
+
elif self.config.problem_type == "single_label_classification":
|
819 |
+
loss_fct = CrossEntropyLoss()
|
820 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
821 |
+
elif self.config.problem_type == "multi_label_classification":
|
822 |
+
loss_fct = BCEWithLogitsLoss()
|
823 |
+
loss = loss_fct(pooled_logits, labels)
|
824 |
+
if not return_dict:
|
825 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
826 |
+
return ((loss,) + output) if loss is not None else output
|
827 |
+
|
828 |
+
return SequenceClassifierOutputWithPast(
|
829 |
+
loss=loss,
|
830 |
+
logits=pooled_logits,
|
831 |
+
past_key_values=transformer_outputs.past_key_values,
|
832 |
+
hidden_states=transformer_outputs.hidden_states,
|
833 |
+
attentions=transformer_outputs.attentions,
|
834 |
+
)
|
835 |
+
|
836 |
+
class GPT2PrefixForSequenceClassification(GPT2PreTrainedModel):
|
837 |
+
def __init__(self, config):
|
838 |
+
super().__init__(config)
|
839 |
+
self.num_labels = config.num_labels
|
840 |
+
self.config = config
|
841 |
+
self.gpt2 = GPT2Model(config)
|
842 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
843 |
+
self.classifier = torch.nn.Linear(config.n_embd, self.num_labels)
|
844 |
+
|
845 |
+
for param in self.gpt2.parameters():
|
846 |
+
param.requires_grad = False
|
847 |
+
|
848 |
+
self.pre_seq_len = config.pre_seq_len
|
849 |
+
self.n_layer = config.num_hidden_layers
|
850 |
+
self.n_head = config.num_attention_heads
|
851 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
852 |
+
|
853 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
854 |
+
self.prefix_encoder = PrefixEncoder(config)
|
855 |
+
|
856 |
+
# Model parallel
|
857 |
+
self.model_parallel = False
|
858 |
+
self.device_map = None
|
859 |
+
|
860 |
+
gpt2_param = 0
|
861 |
+
for name, param in self.gpt2.named_parameters():
|
862 |
+
gpt2_param += param.numel()
|
863 |
+
all_param = 0
|
864 |
+
for name, param in self.named_parameters():
|
865 |
+
all_param += param.numel()
|
866 |
+
total_param = all_param - gpt2_param
|
867 |
+
print('-> gpt2_param:{:0.2f}M P-tuning-V2 param is {}'.format(gpt2_param/1000000, total_param))
|
868 |
+
|
869 |
+
self.embedding = self.gpt2.wte
|
870 |
+
self.embeddings_gradient = utils.GradientStorage(self.embedding)
|
871 |
+
|
872 |
+
def get_prompt(self, batch_size):
|
873 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.gpt2.device)
|
874 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
875 |
+
past_key_values = past_key_values.view(
|
876 |
+
batch_size,
|
877 |
+
self.pre_seq_len,
|
878 |
+
self.n_layer * 2,
|
879 |
+
self.n_head,
|
880 |
+
self.n_embd
|
881 |
+
)
|
882 |
+
past_key_values = self.dropout(past_key_values)
|
883 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
884 |
+
return past_key_values
|
885 |
+
|
886 |
+
def forward(
|
887 |
+
self,
|
888 |
+
input_ids=None,
|
889 |
+
attention_mask=None,
|
890 |
+
token_type_ids=None,
|
891 |
+
position_ids=None,
|
892 |
+
head_mask=None,
|
893 |
+
inputs_embeds=None,
|
894 |
+
labels=None,
|
895 |
+
output_attentions=None,
|
896 |
+
output_hidden_states=None,
|
897 |
+
return_dict=None,
|
898 |
+
use_base_grad=False,
|
899 |
+
use_cache=None
|
900 |
+
):
|
901 |
+
r"""
|
902 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
903 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
904 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
905 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
906 |
+
"""
|
907 |
+
utils.use_grad(self.gpt2, use_base_grad)
|
908 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
909 |
+
|
910 |
+
batch_size = input_ids.shape[0]
|
911 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
912 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.gpt2.device)
|
913 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
914 |
+
|
915 |
+
transformer_outputs = self.gpt2(
|
916 |
+
input_ids,
|
917 |
+
past_key_values=past_key_values,
|
918 |
+
attention_mask=attention_mask,
|
919 |
+
token_type_ids=token_type_ids,
|
920 |
+
position_ids=position_ids,
|
921 |
+
head_mask=head_mask,
|
922 |
+
inputs_embeds=inputs_embeds,
|
923 |
+
use_cache=use_cache,
|
924 |
+
output_attentions=output_attentions,
|
925 |
+
output_hidden_states=output_hidden_states,
|
926 |
+
return_dict=return_dict,
|
927 |
+
)
|
928 |
+
hidden_states = transformer_outputs[0]
|
929 |
+
logits = self.classifier(hidden_states)
|
930 |
+
|
931 |
+
if input_ids is not None:
|
932 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
933 |
+
else:
|
934 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
935 |
+
|
936 |
+
assert (
|
937 |
+
self.config.pad_token_id is not None or batch_size == 1
|
938 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
939 |
+
if self.config.pad_token_id is None:
|
940 |
+
sequence_lengths = -1
|
941 |
+
else:
|
942 |
+
if input_ids is not None:
|
943 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
944 |
+
else:
|
945 |
+
sequence_lengths = -1
|
946 |
+
|
947 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
948 |
+
|
949 |
+
loss = None
|
950 |
+
if labels is not None:
|
951 |
+
if self.config.problem_type is None:
|
952 |
+
if self.num_labels == 1:
|
953 |
+
self.config.problem_type = "regression"
|
954 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
955 |
+
self.config.problem_type = "single_label_classification"
|
956 |
+
else:
|
957 |
+
self.config.problem_type = "multi_label_classification"
|
958 |
+
|
959 |
+
if self.config.problem_type == "regression":
|
960 |
+
loss_fct = MSELoss()
|
961 |
+
if self.num_labels == 1:
|
962 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
963 |
+
else:
|
964 |
+
loss = loss_fct(pooled_logits, labels)
|
965 |
+
elif self.config.problem_type == "single_label_classification":
|
966 |
+
loss_fct = CrossEntropyLoss()
|
967 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
968 |
+
elif self.config.problem_type == "multi_label_classification":
|
969 |
+
loss_fct = BCEWithLogitsLoss()
|
970 |
+
loss = loss_fct(pooled_logits, labels)
|
971 |
+
if not return_dict:
|
972 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
973 |
+
return ((loss,) + output) if loss is not None else output
|
974 |
+
|
975 |
+
return SequenceClassifierOutputWithPast(
|
976 |
+
loss=loss,
|
977 |
+
logits=pooled_logits,
|
978 |
+
past_key_values=transformer_outputs.past_key_values,
|
979 |
+
hidden_states=transformer_outputs.hidden_states,
|
980 |
+
attentions=transformer_outputs.attentions,
|
981 |
+
)
|
982 |
+
|
983 |
+
|
984 |
+
if __name__ == "__main__":
|
985 |
+
from transformers import AutoConfig
|
986 |
+
config = AutoConfig.from_pretrained("gpt2-large")
|
987 |
+
config.hidden_dropout_prob = 0.1
|
988 |
+
config.pre_seq_len = 128
|
989 |
+
config.prefix_projection = True
|
990 |
+
config.num_labels = 2
|
991 |
+
config.prefix_hidden_size = 1024
|
992 |
+
model = GPT2PrefixForSequenceClassification(config)
|
993 |
+
|
994 |
+
for name, param in model.named_parameters():
|
995 |
+
print(name, param.shape)
|
996 |
+
|
997 |
+
|
soft_prompt/model/token_classification.py
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
|
7 |
+
from transformers import BertModel, BertPreTrainedModel
|
8 |
+
from transformers import RobertaModel, RobertaPreTrainedModel
|
9 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
10 |
+
|
11 |
+
from model.prefix_encoder import PrefixEncoder
|
12 |
+
from model.deberta import DebertaModel, DebertaPreTrainedModel
|
13 |
+
from model.debertaV2 import DebertaV2Model, DebertaV2PreTrainedModel
|
14 |
+
|
15 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
16 |
+
|
17 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
18 |
+
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__(config)
|
21 |
+
self.num_labels = config.num_labels
|
22 |
+
|
23 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
24 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
25 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
26 |
+
|
27 |
+
only_cls_head = True # False in SRL
|
28 |
+
if only_cls_head:
|
29 |
+
for param in self.bert.parameters():
|
30 |
+
param.requires_grad = False
|
31 |
+
|
32 |
+
self.init_weights()
|
33 |
+
|
34 |
+
bert_param = 0
|
35 |
+
for name, param in self.bert.named_parameters():
|
36 |
+
bert_param += param.numel()
|
37 |
+
all_param = 0
|
38 |
+
for name, param in self.named_parameters():
|
39 |
+
all_param += param.numel()
|
40 |
+
total_param = all_param - bert_param
|
41 |
+
print('total param is {}'.format(total_param))
|
42 |
+
|
43 |
+
|
44 |
+
def forward(
|
45 |
+
self,
|
46 |
+
input_ids=None,
|
47 |
+
attention_mask=None,
|
48 |
+
token_type_ids=None,
|
49 |
+
position_ids=None,
|
50 |
+
head_mask=None,
|
51 |
+
inputs_embeds=None,
|
52 |
+
labels=None,
|
53 |
+
output_attentions=None,
|
54 |
+
output_hidden_states=None,
|
55 |
+
return_dict=None,
|
56 |
+
):
|
57 |
+
r"""
|
58 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
59 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
60 |
+
1]``.
|
61 |
+
"""
|
62 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
63 |
+
|
64 |
+
outputs = self.bert(
|
65 |
+
input_ids,
|
66 |
+
attention_mask=attention_mask,
|
67 |
+
token_type_ids=token_type_ids,
|
68 |
+
position_ids=position_ids,
|
69 |
+
head_mask=head_mask,
|
70 |
+
inputs_embeds=inputs_embeds,
|
71 |
+
output_attentions=output_attentions,
|
72 |
+
output_hidden_states=output_hidden_states,
|
73 |
+
return_dict=return_dict,
|
74 |
+
)
|
75 |
+
|
76 |
+
sequence_output = outputs[0]
|
77 |
+
|
78 |
+
sequence_output = self.dropout(sequence_output)
|
79 |
+
logits = self.classifier(sequence_output)
|
80 |
+
|
81 |
+
loss = None
|
82 |
+
if labels is not None:
|
83 |
+
loss_fct = CrossEntropyLoss()
|
84 |
+
# Only keep active parts of the loss
|
85 |
+
if attention_mask is not None:
|
86 |
+
active_loss = attention_mask.view(-1) == 1
|
87 |
+
active_logits = logits.view(-1, self.num_labels)
|
88 |
+
active_labels = torch.where(
|
89 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
90 |
+
)
|
91 |
+
loss = loss_fct(active_logits, active_labels)
|
92 |
+
else:
|
93 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
94 |
+
|
95 |
+
if not return_dict:
|
96 |
+
output = (logits,) + outputs[2:]
|
97 |
+
return ((loss,) + output) if loss is not None else output
|
98 |
+
|
99 |
+
return TokenClassifierOutput(
|
100 |
+
loss=loss,
|
101 |
+
logits=logits,
|
102 |
+
hidden_states=outputs.hidden_states,
|
103 |
+
attentions=outputs.attentions,
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
class BertPrefixForTokenClassification(BertPreTrainedModel):
|
108 |
+
def __init__(self, config):
|
109 |
+
super().__init__(config)
|
110 |
+
self.num_labels = config.num_labels
|
111 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
112 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
113 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
114 |
+
|
115 |
+
from_pretrained = False
|
116 |
+
if from_pretrained:
|
117 |
+
self.classifier.load_state_dict(torch.load('model/checkpoint.pkl'))
|
118 |
+
|
119 |
+
for param in self.bert.parameters():
|
120 |
+
param.requires_grad = False
|
121 |
+
|
122 |
+
self.pre_seq_len = config.pre_seq_len
|
123 |
+
self.n_layer = config.num_hidden_layers
|
124 |
+
self.n_head = config.num_attention_heads
|
125 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
126 |
+
|
127 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
128 |
+
self.prefix_encoder = PrefixEncoder(config)
|
129 |
+
|
130 |
+
|
131 |
+
bert_param = 0
|
132 |
+
for name, param in self.bert.named_parameters():
|
133 |
+
bert_param += param.numel()
|
134 |
+
all_param = 0
|
135 |
+
for name, param in self.named_parameters():
|
136 |
+
all_param += param.numel()
|
137 |
+
total_param = all_param - bert_param
|
138 |
+
print('total param is {}'.format(total_param)) # 9860105
|
139 |
+
|
140 |
+
def get_prompt(self, batch_size):
|
141 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
142 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
143 |
+
# bsz, seqlen, _ = past_key_values.shape
|
144 |
+
past_key_values = past_key_values.view(
|
145 |
+
batch_size,
|
146 |
+
self.pre_seq_len,
|
147 |
+
self.n_layer * 2,
|
148 |
+
self.n_head,
|
149 |
+
self.n_embd
|
150 |
+
)
|
151 |
+
past_key_values = self.dropout(past_key_values)
|
152 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
153 |
+
return past_key_values
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
input_ids=None,
|
158 |
+
attention_mask=None,
|
159 |
+
token_type_ids=None,
|
160 |
+
position_ids=None,
|
161 |
+
head_mask=None,
|
162 |
+
inputs_embeds=None,
|
163 |
+
labels=None,
|
164 |
+
output_attentions=None,
|
165 |
+
output_hidden_states=None,
|
166 |
+
return_dict=None,
|
167 |
+
):
|
168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
+
|
170 |
+
batch_size = input_ids.shape[0]
|
171 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
172 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
173 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
174 |
+
|
175 |
+
outputs = self.bert(
|
176 |
+
input_ids,
|
177 |
+
attention_mask=attention_mask,
|
178 |
+
token_type_ids=token_type_ids,
|
179 |
+
position_ids=position_ids,
|
180 |
+
head_mask=head_mask,
|
181 |
+
inputs_embeds=inputs_embeds,
|
182 |
+
output_attentions=output_attentions,
|
183 |
+
output_hidden_states=output_hidden_states,
|
184 |
+
return_dict=return_dict,
|
185 |
+
past_key_values=past_key_values,
|
186 |
+
)
|
187 |
+
|
188 |
+
sequence_output = outputs[0]
|
189 |
+
sequence_output = self.dropout(sequence_output)
|
190 |
+
logits = self.classifier(sequence_output)
|
191 |
+
attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
|
192 |
+
|
193 |
+
loss = None
|
194 |
+
if labels is not None:
|
195 |
+
loss_fct = CrossEntropyLoss()
|
196 |
+
# Only keep active parts of the loss
|
197 |
+
if attention_mask is not None:
|
198 |
+
active_loss = attention_mask.view(-1) == 1
|
199 |
+
active_logits = logits.view(-1, self.num_labels)
|
200 |
+
active_labels = torch.where(
|
201 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
202 |
+
)
|
203 |
+
loss = loss_fct(active_logits, active_labels)
|
204 |
+
else:
|
205 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
206 |
+
|
207 |
+
if not return_dict:
|
208 |
+
output = (logits,) + outputs[2:]
|
209 |
+
return ((loss,) + output) if loss is not None else output
|
210 |
+
|
211 |
+
return TokenClassifierOutput(
|
212 |
+
loss=loss,
|
213 |
+
logits=logits,
|
214 |
+
hidden_states=outputs.hidden_states,
|
215 |
+
attentions=outputs.attentions,
|
216 |
+
)
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
class RobertaPrefixForTokenClassification(RobertaPreTrainedModel):
|
222 |
+
def __init__(self, config):
|
223 |
+
super().__init__(config)
|
224 |
+
self.num_labels = config.num_labels
|
225 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
226 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
227 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
228 |
+
self.init_weights()
|
229 |
+
|
230 |
+
for param in self.roberta.parameters():
|
231 |
+
param.requires_grad = False
|
232 |
+
|
233 |
+
self.pre_seq_len = config.pre_seq_len
|
234 |
+
self.n_layer = config.num_hidden_layers
|
235 |
+
self.n_head = config.num_attention_heads
|
236 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
237 |
+
|
238 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
239 |
+
self.prefix_encoder = PrefixEncoder(config)
|
240 |
+
|
241 |
+
bert_param = 0
|
242 |
+
for name, param in self.roberta.named_parameters():
|
243 |
+
bert_param += param.numel()
|
244 |
+
all_param = 0
|
245 |
+
for name, param in self.named_parameters():
|
246 |
+
all_param += param.numel()
|
247 |
+
total_param = all_param - bert_param
|
248 |
+
print('total param is {}'.format(total_param)) # 9860105
|
249 |
+
|
250 |
+
|
251 |
+
def get_prompt(self, batch_size):
|
252 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
253 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
254 |
+
past_key_values = past_key_values.view(
|
255 |
+
batch_size,
|
256 |
+
self.pre_seq_len,
|
257 |
+
self.n_layer * 2,
|
258 |
+
self.n_head,
|
259 |
+
self.n_embd
|
260 |
+
)
|
261 |
+
past_key_values = self.dropout(past_key_values)
|
262 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
263 |
+
return past_key_values
|
264 |
+
|
265 |
+
def forward(
|
266 |
+
self,
|
267 |
+
input_ids=None,
|
268 |
+
attention_mask=None,
|
269 |
+
token_type_ids=None,
|
270 |
+
position_ids=None,
|
271 |
+
head_mask=None,
|
272 |
+
inputs_embeds=None,
|
273 |
+
labels=None,
|
274 |
+
output_attentions=None,
|
275 |
+
output_hidden_states=None,
|
276 |
+
return_dict=None,
|
277 |
+
):
|
278 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
279 |
+
|
280 |
+
batch_size = input_ids.shape[0]
|
281 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
282 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
283 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
284 |
+
|
285 |
+
outputs = self.roberta(
|
286 |
+
input_ids,
|
287 |
+
attention_mask=attention_mask,
|
288 |
+
token_type_ids=token_type_ids,
|
289 |
+
position_ids=position_ids,
|
290 |
+
head_mask=head_mask,
|
291 |
+
inputs_embeds=inputs_embeds,
|
292 |
+
output_attentions=output_attentions,
|
293 |
+
output_hidden_states=output_hidden_states,
|
294 |
+
return_dict=return_dict,
|
295 |
+
past_key_values=past_key_values,
|
296 |
+
)
|
297 |
+
|
298 |
+
sequence_output = outputs[0]
|
299 |
+
sequence_output = self.dropout(sequence_output)
|
300 |
+
logits = self.classifier(sequence_output)
|
301 |
+
attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
|
302 |
+
|
303 |
+
loss = None
|
304 |
+
if labels is not None:
|
305 |
+
loss_fct = CrossEntropyLoss()
|
306 |
+
# Only keep active parts of the loss
|
307 |
+
if attention_mask is not None:
|
308 |
+
active_loss = attention_mask.view(-1) == 1
|
309 |
+
active_logits = logits.view(-1, self.num_labels)
|
310 |
+
active_labels = torch.where(
|
311 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
312 |
+
)
|
313 |
+
loss = loss_fct(active_logits, active_labels)
|
314 |
+
else:
|
315 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
316 |
+
|
317 |
+
if not return_dict:
|
318 |
+
output = (logits,) + outputs[2:]
|
319 |
+
return ((loss,) + output) if loss is not None else output
|
320 |
+
|
321 |
+
return TokenClassifierOutput(
|
322 |
+
loss=loss,
|
323 |
+
logits=logits,
|
324 |
+
hidden_states=outputs.hidden_states,
|
325 |
+
attentions=outputs.attentions,
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
class DebertaPrefixForTokenClassification(DebertaPreTrainedModel):
|
330 |
+
def __init__(self, config):
|
331 |
+
super().__init__(config)
|
332 |
+
self.num_labels = config.num_labels
|
333 |
+
self.deberta = DebertaModel(config)
|
334 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
335 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
336 |
+
self.init_weights()
|
337 |
+
|
338 |
+
for param in self.deberta.parameters():
|
339 |
+
param.requires_grad = False
|
340 |
+
|
341 |
+
self.pre_seq_len = config.pre_seq_len
|
342 |
+
self.n_layer = config.num_hidden_layers
|
343 |
+
self.n_head = config.num_attention_heads
|
344 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
345 |
+
|
346 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
347 |
+
self.prefix_encoder = PrefixEncoder(config)
|
348 |
+
|
349 |
+
deberta_param = 0
|
350 |
+
for name, param in self.deberta.named_parameters():
|
351 |
+
deberta_param += param.numel()
|
352 |
+
all_param = 0
|
353 |
+
for name, param in self.named_parameters():
|
354 |
+
all_param += param.numel()
|
355 |
+
total_param = all_param - deberta_param
|
356 |
+
print('total param is {}'.format(total_param)) # 9860105
|
357 |
+
|
358 |
+
def get_prompt(self, batch_size):
|
359 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
360 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
361 |
+
# bsz, seqlen, _ = past_key_values.shape
|
362 |
+
past_key_values = past_key_values.view(
|
363 |
+
batch_size,
|
364 |
+
self.pre_seq_len,
|
365 |
+
self.n_layer * 2,
|
366 |
+
self.n_head,
|
367 |
+
self.n_embd
|
368 |
+
)
|
369 |
+
past_key_values = self.dropout(past_key_values)
|
370 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
371 |
+
return past_key_values
|
372 |
+
|
373 |
+
def forward(
|
374 |
+
self,
|
375 |
+
input_ids=None,
|
376 |
+
attention_mask=None,
|
377 |
+
token_type_ids=None,
|
378 |
+
position_ids=None,
|
379 |
+
head_mask=None,
|
380 |
+
inputs_embeds=None,
|
381 |
+
labels=None,
|
382 |
+
output_attentions=None,
|
383 |
+
output_hidden_states=None,
|
384 |
+
return_dict=None,
|
385 |
+
):
|
386 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
387 |
+
|
388 |
+
batch_size = input_ids.shape[0]
|
389 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
390 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
391 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
392 |
+
|
393 |
+
outputs = self.deberta(
|
394 |
+
input_ids,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
token_type_ids=token_type_ids,
|
397 |
+
position_ids=position_ids,
|
398 |
+
inputs_embeds=inputs_embeds,
|
399 |
+
output_attentions=output_attentions,
|
400 |
+
output_hidden_states=output_hidden_states,
|
401 |
+
return_dict=return_dict,
|
402 |
+
past_key_values=past_key_values,
|
403 |
+
)
|
404 |
+
|
405 |
+
sequence_output = outputs[0]
|
406 |
+
sequence_output = self.dropout(sequence_output)
|
407 |
+
logits = self.classifier(sequence_output)
|
408 |
+
attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
|
409 |
+
|
410 |
+
loss = None
|
411 |
+
if labels is not None:
|
412 |
+
loss_fct = CrossEntropyLoss()
|
413 |
+
# Only keep active parts of the loss
|
414 |
+
if attention_mask is not None:
|
415 |
+
active_loss = attention_mask.view(-1) == 1
|
416 |
+
active_logits = logits.view(-1, self.num_labels)
|
417 |
+
active_labels = torch.where(
|
418 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
419 |
+
)
|
420 |
+
loss = loss_fct(active_logits, active_labels)
|
421 |
+
else:
|
422 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
output = (logits,) + outputs[2:]
|
426 |
+
return ((loss,) + output) if loss is not None else output
|
427 |
+
|
428 |
+
return TokenClassifierOutput(
|
429 |
+
loss=loss,
|
430 |
+
logits=logits,
|
431 |
+
hidden_states=outputs.hidden_states,
|
432 |
+
attentions=outputs.attentions,
|
433 |
+
)
|
434 |
+
|
435 |
+
|
436 |
+
class DebertaV2PrefixForTokenClassification(DebertaV2PreTrainedModel):
|
437 |
+
def __init__(self, config):
|
438 |
+
super().__init__(config)
|
439 |
+
self.num_labels = config.num_labels
|
440 |
+
self.deberta = DebertaV2Model(config)
|
441 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
442 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
443 |
+
self.init_weights()
|
444 |
+
|
445 |
+
for param in self.deberta.parameters():
|
446 |
+
param.requires_grad = False
|
447 |
+
|
448 |
+
self.pre_seq_len = config.pre_seq_len
|
449 |
+
self.n_layer = config.num_hidden_layers
|
450 |
+
self.n_head = config.num_attention_heads
|
451 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
452 |
+
|
453 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
454 |
+
self.prefix_encoder = PrefixEncoder(config)
|
455 |
+
|
456 |
+
deberta_param = 0
|
457 |
+
for name, param in self.deberta.named_parameters():
|
458 |
+
deberta_param += param.numel()
|
459 |
+
all_param = 0
|
460 |
+
for name, param in self.named_parameters():
|
461 |
+
all_param += param.numel()
|
462 |
+
total_param = all_param - deberta_param
|
463 |
+
print('total param is {}'.format(total_param)) # 9860105
|
464 |
+
|
465 |
+
def get_prompt(self, batch_size):
|
466 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
467 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
468 |
+
past_key_values = past_key_values.view(
|
469 |
+
batch_size,
|
470 |
+
self.pre_seq_len,
|
471 |
+
self.n_layer * 2,
|
472 |
+
self.n_head,
|
473 |
+
self.n_embd
|
474 |
+
)
|
475 |
+
past_key_values = self.dropout(past_key_values)
|
476 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
477 |
+
return past_key_values
|
478 |
+
|
479 |
+
def forward(
|
480 |
+
self,
|
481 |
+
input_ids=None,
|
482 |
+
attention_mask=None,
|
483 |
+
token_type_ids=None,
|
484 |
+
position_ids=None,
|
485 |
+
head_mask=None,
|
486 |
+
inputs_embeds=None,
|
487 |
+
labels=None,
|
488 |
+
output_attentions=None,
|
489 |
+
output_hidden_states=None,
|
490 |
+
return_dict=None,
|
491 |
+
):
|
492 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
493 |
+
|
494 |
+
batch_size = input_ids.shape[0]
|
495 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
496 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
497 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
498 |
+
|
499 |
+
outputs = self.deberta(
|
500 |
+
input_ids,
|
501 |
+
attention_mask=attention_mask,
|
502 |
+
token_type_ids=token_type_ids,
|
503 |
+
position_ids=position_ids,
|
504 |
+
inputs_embeds=inputs_embeds,
|
505 |
+
output_attentions=output_attentions,
|
506 |
+
output_hidden_states=output_hidden_states,
|
507 |
+
return_dict=return_dict,
|
508 |
+
past_key_values=past_key_values,
|
509 |
+
)
|
510 |
+
|
511 |
+
sequence_output = outputs[0]
|
512 |
+
sequence_output = self.dropout(sequence_output)
|
513 |
+
logits = self.classifier(sequence_output)
|
514 |
+
attention_mask = attention_mask[:,self.pre_seq_len:].contiguous()
|
515 |
+
|
516 |
+
loss = None
|
517 |
+
if labels is not None:
|
518 |
+
loss_fct = CrossEntropyLoss()
|
519 |
+
# Only keep active parts of the loss
|
520 |
+
if attention_mask is not None:
|
521 |
+
active_loss = attention_mask.view(-1) == 1
|
522 |
+
active_logits = logits.view(-1, self.num_labels)
|
523 |
+
active_labels = torch.where(
|
524 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
525 |
+
)
|
526 |
+
loss = loss_fct(active_logits, active_labels)
|
527 |
+
else:
|
528 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
529 |
+
|
530 |
+
if not return_dict:
|
531 |
+
output = (logits,) + outputs[2:]
|
532 |
+
return ((loss,) + output) if loss is not None else output
|
533 |
+
|
534 |
+
return TokenClassifierOutput(
|
535 |
+
loss=loss,
|
536 |
+
logits=logits,
|
537 |
+
hidden_states=outputs.hidden_states,
|
538 |
+
attentions=outputs.attentions,
|
539 |
+
)
|
soft_prompt/model/utils.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
import torch
|
3 |
+
from .token_classification import (
|
4 |
+
BertPrefixForTokenClassification,
|
5 |
+
RobertaPrefixForTokenClassification,
|
6 |
+
DebertaPrefixForTokenClassification,
|
7 |
+
DebertaV2PrefixForTokenClassification
|
8 |
+
)
|
9 |
+
|
10 |
+
from .sequence_classification import (
|
11 |
+
BertPrefixForSequenceClassification,
|
12 |
+
BertPromptForSequenceClassification,
|
13 |
+
RobertaPrefixForSequenceClassification,
|
14 |
+
RobertaPromptForSequenceClassification,
|
15 |
+
DebertaPrefixForSequenceClassification,
|
16 |
+
GPT2PrefixForSequenceClassification,
|
17 |
+
GPT2PromptForSequenceClassification
|
18 |
+
)
|
19 |
+
|
20 |
+
from .question_answering import (
|
21 |
+
BertPrefixForQuestionAnswering,
|
22 |
+
RobertaPrefixModelForQuestionAnswering,
|
23 |
+
DebertaPrefixModelForQuestionAnswering
|
24 |
+
)
|
25 |
+
|
26 |
+
from .multiple_choice import (
|
27 |
+
BertPrefixForMultipleChoice,
|
28 |
+
RobertaPrefixForMultipleChoice,
|
29 |
+
DebertaPrefixForMultipleChoice,
|
30 |
+
BertPromptForMultipleChoice,
|
31 |
+
RobertaPromptForMultipleChoice
|
32 |
+
)
|
33 |
+
|
34 |
+
from .sequence_causallm import (
|
35 |
+
BertPromptForMaskedLM,
|
36 |
+
BertPrefixForMaskedLM,
|
37 |
+
RobertaPromptForMaskedLM,
|
38 |
+
RobertaPrefixForMaskedLM,
|
39 |
+
LlamaPromptForMaskedLM,
|
40 |
+
LlamaPrefixForMaskedLM,
|
41 |
+
OPTPrefixForMaskedLM,
|
42 |
+
OPTPromptForMaskedLM
|
43 |
+
)
|
44 |
+
|
45 |
+
from transformers import (
|
46 |
+
AutoConfig,
|
47 |
+
AutoModelForTokenClassification,
|
48 |
+
AutoModelForSequenceClassification,
|
49 |
+
AutoModelForQuestionAnswering,
|
50 |
+
AutoModelForMultipleChoice
|
51 |
+
)
|
52 |
+
import torch.nn.functional as F
|
53 |
+
|
54 |
+
|
55 |
+
def get_loss(predict_logits, labels_ids):
|
56 |
+
labels_ids = labels_ids.to(predict_logits.device)
|
57 |
+
predict_logp = F.log_softmax(predict_logits, dim=-1)
|
58 |
+
target_logp = predict_logp.gather(-1, labels_ids)
|
59 |
+
target_logp = target_logp - 1e32 * labels_ids.eq(0) # Apply mask
|
60 |
+
target_logp = torch.logsumexp(target_logp, dim=-1)
|
61 |
+
return -target_logp
|
62 |
+
|
63 |
+
|
64 |
+
def use_grad(base_model, use_grad):
|
65 |
+
if use_grad:
|
66 |
+
for param in base_model.parameters():
|
67 |
+
param.requires_grad = True
|
68 |
+
base_model.train()
|
69 |
+
else:
|
70 |
+
for param in base_model.parameters():
|
71 |
+
param.requires_grad = False
|
72 |
+
base_model.eval()
|
73 |
+
|
74 |
+
|
75 |
+
def get_embeddings(model, config):
|
76 |
+
"""Returns the wordpiece embedding module."""
|
77 |
+
base_model = getattr(model, config.model_type)
|
78 |
+
embeddings = base_model.embeddings.word_embeddings
|
79 |
+
return embeddings
|
80 |
+
|
81 |
+
|
82 |
+
class GradientStorage:
|
83 |
+
"""
|
84 |
+
This object stores the intermediate gradients of the output a the given PyTorch module, which
|
85 |
+
otherwise might not be retained.
|
86 |
+
"""
|
87 |
+
def __init__(self, module):
|
88 |
+
self._stored_gradient = None
|
89 |
+
module.register_backward_hook(self.hook)
|
90 |
+
|
91 |
+
def hook(self, module, grad_in, grad_out):
|
92 |
+
assert grad_out is not None
|
93 |
+
self._stored_gradient = grad_out[0]
|
94 |
+
|
95 |
+
def reset(self):
|
96 |
+
self._stored_gradient = None
|
97 |
+
|
98 |
+
def get(self):
|
99 |
+
return self._stored_gradient
|
100 |
+
|
101 |
+
|
102 |
+
class TaskType(Enum):
|
103 |
+
TOKEN_CLASSIFICATION = 1,
|
104 |
+
SEQUENCE_CLASSIFICATION = 2,
|
105 |
+
QUESTION_ANSWERING = 3,
|
106 |
+
MULTIPLE_CHOICE = 4
|
107 |
+
|
108 |
+
PREFIX_MODELS = {
|
109 |
+
"bert": {
|
110 |
+
TaskType.TOKEN_CLASSIFICATION: BertPrefixForTokenClassification,
|
111 |
+
TaskType.SEQUENCE_CLASSIFICATION: BertPrefixForMaskedLM, #BertPrefixForSequenceClassification,
|
112 |
+
TaskType.QUESTION_ANSWERING: BertPrefixForQuestionAnswering,
|
113 |
+
TaskType.MULTIPLE_CHOICE: BertPrefixForMultipleChoice
|
114 |
+
},
|
115 |
+
"roberta": {
|
116 |
+
TaskType.TOKEN_CLASSIFICATION: RobertaPrefixForTokenClassification,
|
117 |
+
TaskType.SEQUENCE_CLASSIFICATION: RobertaPrefixForMaskedLM, #RobertaPrefixForSequenceClassification,
|
118 |
+
TaskType.QUESTION_ANSWERING: RobertaPrefixModelForQuestionAnswering,
|
119 |
+
TaskType.MULTIPLE_CHOICE: RobertaPrefixForMultipleChoice,
|
120 |
+
},
|
121 |
+
"deberta": {
|
122 |
+
TaskType.TOKEN_CLASSIFICATION: DebertaPrefixForTokenClassification,
|
123 |
+
TaskType.SEQUENCE_CLASSIFICATION: DebertaPrefixForSequenceClassification,
|
124 |
+
TaskType.QUESTION_ANSWERING: DebertaPrefixModelForQuestionAnswering,
|
125 |
+
TaskType.MULTIPLE_CHOICE: DebertaPrefixForMultipleChoice,
|
126 |
+
},
|
127 |
+
"deberta-v2": {
|
128 |
+
TaskType.TOKEN_CLASSIFICATION: DebertaV2PrefixForTokenClassification,
|
129 |
+
TaskType.SEQUENCE_CLASSIFICATION: None,
|
130 |
+
TaskType.QUESTION_ANSWERING: None,
|
131 |
+
TaskType.MULTIPLE_CHOICE: None,
|
132 |
+
},
|
133 |
+
"gpt2": {
|
134 |
+
TaskType.TOKEN_CLASSIFICATION: None,
|
135 |
+
TaskType.SEQUENCE_CLASSIFICATION: GPT2PrefixForSequenceClassification,
|
136 |
+
TaskType.QUESTION_ANSWERING: None,
|
137 |
+
TaskType.MULTIPLE_CHOICE: None,
|
138 |
+
},
|
139 |
+
"llama": {
|
140 |
+
TaskType.TOKEN_CLASSIFICATION: None,
|
141 |
+
TaskType.SEQUENCE_CLASSIFICATION: LlamaPrefixForMaskedLM,
|
142 |
+
TaskType.QUESTION_ANSWERING: None,
|
143 |
+
TaskType.MULTIPLE_CHOICE: None,
|
144 |
+
},
|
145 |
+
"opt": {
|
146 |
+
TaskType.TOKEN_CLASSIFICATION: None,
|
147 |
+
TaskType.SEQUENCE_CLASSIFICATION: OPTPrefixForMaskedLM,
|
148 |
+
TaskType.QUESTION_ANSWERING: None,
|
149 |
+
TaskType.MULTIPLE_CHOICE: None,
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
PROMPT_MODELS = {
|
154 |
+
"bert": {
|
155 |
+
TaskType.SEQUENCE_CLASSIFICATION: BertPromptForMaskedLM, #BertPromptForSequenceClassification,
|
156 |
+
TaskType.MULTIPLE_CHOICE: BertPromptForMultipleChoice
|
157 |
+
},
|
158 |
+
"roberta": {
|
159 |
+
TaskType.SEQUENCE_CLASSIFICATION: RobertaPromptForMaskedLM, #RobertaPromptForSequenceClassification,
|
160 |
+
TaskType.MULTIPLE_CHOICE: RobertaPromptForMultipleChoice
|
161 |
+
},
|
162 |
+
"gpt2": {
|
163 |
+
TaskType.SEQUENCE_CLASSIFICATION: GPT2PromptForSequenceClassification,
|
164 |
+
TaskType.MULTIPLE_CHOICE: None
|
165 |
+
},
|
166 |
+
"llama": {
|
167 |
+
TaskType.TOKEN_CLASSIFICATION: None,
|
168 |
+
TaskType.SEQUENCE_CLASSIFICATION: LlamaPromptForMaskedLM,
|
169 |
+
TaskType.QUESTION_ANSWERING: None,
|
170 |
+
TaskType.MULTIPLE_CHOICE: None,
|
171 |
+
},
|
172 |
+
"opt": {
|
173 |
+
TaskType.TOKEN_CLASSIFICATION: None,
|
174 |
+
TaskType.SEQUENCE_CLASSIFICATION: OPTPromptForMaskedLM,
|
175 |
+
TaskType.QUESTION_ANSWERING: None,
|
176 |
+
TaskType.MULTIPLE_CHOICE: None,
|
177 |
+
}
|
178 |
+
}
|
179 |
+
|
180 |
+
AUTO_MODELS = {
|
181 |
+
TaskType.TOKEN_CLASSIFICATION: AutoModelForTokenClassification,
|
182 |
+
TaskType.SEQUENCE_CLASSIFICATION: AutoModelForSequenceClassification,
|
183 |
+
TaskType.QUESTION_ANSWERING: AutoModelForQuestionAnswering,
|
184 |
+
TaskType.MULTIPLE_CHOICE: AutoModelForMultipleChoice,
|
185 |
+
}
|
186 |
+
|
187 |
+
def get_model(model_args, task_type: TaskType, config: AutoConfig, fix_bert: bool = False, tokenizer=None):
|
188 |
+
model_name_or_path = f'openlm-research/{model_args.model_name_or_path}' if "llama" in model_args.model_name_or_path else model_args.model_name_or_path
|
189 |
+
|
190 |
+
if model_args.prefix:
|
191 |
+
config.hidden_dropout_prob = model_args.hidden_dropout_prob
|
192 |
+
config.pre_seq_len = model_args.pre_seq_len
|
193 |
+
config.prefix_projection = model_args.prefix_projection
|
194 |
+
config.prefix_hidden_size = model_args.prefix_hidden_size
|
195 |
+
model_class = PREFIX_MODELS[config.model_type][task_type]
|
196 |
+
if "opt" in model_args.model_name_or_path:
|
197 |
+
model_name_or_path = f'facebook/{model_args.model_name_or_path}'
|
198 |
+
model = model_class.from_pretrained(
|
199 |
+
model_name_or_path,
|
200 |
+
config=config,
|
201 |
+
revision=model_args.model_revision,
|
202 |
+
trust_remote_code=True
|
203 |
+
)
|
204 |
+
elif "llama" in model_args.model_name_or_path:
|
205 |
+
model_name_or_path = f'openlm-research/{model_args.model_name_or_path}'
|
206 |
+
model = model_class.from_pretrained(
|
207 |
+
model_name_or_path,
|
208 |
+
config=config,
|
209 |
+
trust_remote_code=True,
|
210 |
+
torch_dtype=torch.float32,
|
211 |
+
device_map='auto',
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
model = model_class.from_pretrained(
|
215 |
+
model_name_or_path,
|
216 |
+
config=config,
|
217 |
+
trust_remote_code=True,
|
218 |
+
revision=model_args.model_revision
|
219 |
+
)
|
220 |
+
elif model_args.prompt:
|
221 |
+
config.pre_seq_len = model_args.pre_seq_len
|
222 |
+
model_class = PROMPT_MODELS[config.model_type][task_type]
|
223 |
+
if "opt" in model_args.model_name_or_path:
|
224 |
+
model_name_or_path = f'facebook/opt-1.3b'
|
225 |
+
model = model_class.from_pretrained(
|
226 |
+
model_name_or_path,
|
227 |
+
config=config,
|
228 |
+
revision=model_args.model_revision,
|
229 |
+
trust_remote_code=True
|
230 |
+
)
|
231 |
+
elif "llama" in model_args.model_name_or_path:
|
232 |
+
model_name_or_path = f'openlm-research/{model_args.model_name_or_path}'
|
233 |
+
model = model_class.from_pretrained(
|
234 |
+
model_name_or_path,
|
235 |
+
config=config,
|
236 |
+
trust_remote_code=True,
|
237 |
+
torch_dtype=torch.float32,
|
238 |
+
device_map='auto',
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
model = model_class.from_pretrained(
|
242 |
+
model_name_or_path,
|
243 |
+
config=config,
|
244 |
+
revision=model_args.model_revision,
|
245 |
+
trust_remote_code=True
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
model_class = AUTO_MODELS[task_type]
|
249 |
+
model = model_class.from_pretrained(
|
250 |
+
model_name_or_path,
|
251 |
+
config=config,
|
252 |
+
revision=model_args.model_revision,
|
253 |
+
)
|
254 |
+
base_param = 0
|
255 |
+
if fix_bert:
|
256 |
+
if config.model_type == "bert":
|
257 |
+
for param in model.bert.parameters():
|
258 |
+
param.requires_grad = False
|
259 |
+
for _, param in model.bert.named_parameters():
|
260 |
+
base_param += param.numel()
|
261 |
+
elif config.model_type == "roberta":
|
262 |
+
for param in model.roberta.parameters():
|
263 |
+
param.requires_grad = False
|
264 |
+
for _, param in model.roberta.named_parameters():
|
265 |
+
base_param += param.numel()
|
266 |
+
elif config.model_type == "deberta":
|
267 |
+
for param in model.deberta.parameters():
|
268 |
+
param.requires_grad = False
|
269 |
+
for _, param in model.deberta.named_parameters():
|
270 |
+
base_param += param.numel()
|
271 |
+
elif config.model_type == "gpt2":
|
272 |
+
for param in model.gpt2.parameters():
|
273 |
+
param.requires_grad = False
|
274 |
+
for _, param in model.gpt2.named_parameters():
|
275 |
+
base_param += param.numel()
|
276 |
+
all_param = 0
|
277 |
+
for _, param in model.named_parameters():
|
278 |
+
all_param += param.numel()
|
279 |
+
total_param = all_param - base_param
|
280 |
+
print('***** Backborn param:{:0.3f}M, P-Tuning-V2 param is {} *****'.format(all_param, total_param))
|
281 |
+
|
282 |
+
return model
|
283 |
+
|
284 |
+
|
285 |
+
def get_model_deprecated(model_args, task_type: TaskType, config: AutoConfig, fix_bert: bool = False):
|
286 |
+
if model_args.prefix:
|
287 |
+
config.hidden_dropout_prob = model_args.hidden_dropout_prob
|
288 |
+
config.pre_seq_len = model_args.pre_seq_len
|
289 |
+
config.prefix_projection = model_args.prefix_projection
|
290 |
+
config.prefix_hidden_size = model_args.prefix_hidden_size
|
291 |
+
|
292 |
+
if task_type == TaskType.TOKEN_CLASSIFICATION:
|
293 |
+
from model.token_classification import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
|
294 |
+
elif task_type == TaskType.SEQUENCE_CLASSIFICATION:
|
295 |
+
from model.sequence_classification import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
|
296 |
+
elif task_type == TaskType.QUESTION_ANSWERING:
|
297 |
+
from model.question_answering import BertPrefixModel, RobertaPrefixModel, DebertaPrefixModel, DebertaV2PrefixModel
|
298 |
+
elif task_type == TaskType.MULTIPLE_CHOICE:
|
299 |
+
from model.multiple_choice import BertPrefixModel
|
300 |
+
|
301 |
+
if config.model_type == "bert":
|
302 |
+
model = BertPrefixModel.from_pretrained(
|
303 |
+
model_args.model_name_or_path,
|
304 |
+
config=config,
|
305 |
+
revision=model_args.model_revision,
|
306 |
+
)
|
307 |
+
elif config.model_type == "roberta":
|
308 |
+
model = RobertaPrefixModel.from_pretrained(
|
309 |
+
model_args.model_name_or_path,
|
310 |
+
config=config,
|
311 |
+
revision=model_args.model_revision,
|
312 |
+
)
|
313 |
+
elif config.model_type == "deberta":
|
314 |
+
model = DebertaPrefixModel.from_pretrained(
|
315 |
+
model_args.model_name_or_path,
|
316 |
+
config=config,
|
317 |
+
revision=model_args.model_revision,
|
318 |
+
)
|
319 |
+
elif config.model_type == "deberta-v2":
|
320 |
+
model = DebertaV2PrefixModel.from_pretrained(
|
321 |
+
model_args.model_name_or_path,
|
322 |
+
config=config,
|
323 |
+
revision=model_args.model_revision,
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
raise NotImplementedError
|
327 |
+
|
328 |
+
|
329 |
+
elif model_args.prompt:
|
330 |
+
config.pre_seq_len = model_args.pre_seq_len
|
331 |
+
|
332 |
+
from model.sequence_classification import BertPromptModel, RobertaPromptModel
|
333 |
+
if config.model_type == "bert":
|
334 |
+
model = BertPromptModel.from_pretrained(
|
335 |
+
model_args.model_name_or_path,
|
336 |
+
config=config,
|
337 |
+
revision=model_args.model_revision,
|
338 |
+
)
|
339 |
+
elif config.model_type == "roberta":
|
340 |
+
model = RobertaPromptModel.from_pretrained(
|
341 |
+
model_args.model_name_or_path,
|
342 |
+
config=config,
|
343 |
+
revision=model_args.model_revision,
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
raise NotImplementedError
|
347 |
+
|
348 |
+
|
349 |
+
else:
|
350 |
+
if task_type == TaskType.TOKEN_CLASSIFICATION:
|
351 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
352 |
+
model_args.model_name_or_path,
|
353 |
+
config=config,
|
354 |
+
revision=model_args.model_revision,
|
355 |
+
)
|
356 |
+
|
357 |
+
elif task_type == TaskType.SEQUENCE_CLASSIFICATION:
|
358 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
359 |
+
model_args.model_name_or_path,
|
360 |
+
config=config,
|
361 |
+
revision=model_args.model_revision,
|
362 |
+
)
|
363 |
+
|
364 |
+
elif task_type == TaskType.QUESTION_ANSWERING:
|
365 |
+
model = AutoModelForQuestionAnswering.from_pretrained(
|
366 |
+
model_args.model_name_or_path,
|
367 |
+
config=config,
|
368 |
+
revision=model_args.model_revision,
|
369 |
+
)
|
370 |
+
elif task_type == TaskType.MULTIPLE_CHOICE:
|
371 |
+
model = AutoModelForMultipleChoice.from_pretrained(
|
372 |
+
model_args.model_name_or_path,
|
373 |
+
config=config,
|
374 |
+
revision=model_args.model_revision,
|
375 |
+
)
|
376 |
+
|
377 |
+
bert_param = 0
|
378 |
+
if fix_bert:
|
379 |
+
if config.model_type == "bert":
|
380 |
+
for param in model.bert.parameters():
|
381 |
+
param.requires_grad = False
|
382 |
+
for _, param in model.bert.named_parameters():
|
383 |
+
bert_param += param.numel()
|
384 |
+
elif config.model_type == "roberta":
|
385 |
+
for param in model.roberta.parameters():
|
386 |
+
param.requires_grad = False
|
387 |
+
for _, param in model.roberta.named_parameters():
|
388 |
+
bert_param += param.numel()
|
389 |
+
elif config.model_type == "deberta":
|
390 |
+
for param in model.deberta.parameters():
|
391 |
+
param.requires_grad = False
|
392 |
+
for _, param in model.deberta.named_parameters():
|
393 |
+
bert_param += param.numel()
|
394 |
+
all_param = 0
|
395 |
+
for _, param in model.named_parameters():
|
396 |
+
all_param += param.numel()
|
397 |
+
total_param = all_param - bert_param
|
398 |
+
print('***** total param is {} *****'.format(total_param))
|
399 |
+
return model
|
soft_prompt/run.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import sys
|
5 |
+
import numpy as np
|
6 |
+
from typing import Dict
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
import transformers
|
10 |
+
from transformers import set_seed, Trainer
|
11 |
+
from transformers.trainer_utils import get_last_checkpoint
|
12 |
+
|
13 |
+
from arguments import get_args
|
14 |
+
|
15 |
+
from tasks.utils import *
|
16 |
+
|
17 |
+
os.environ["WANDB_DISABLED"] = "true"
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
def train(trainer, resume_from_checkpoint=None, last_checkpoint=None):
|
22 |
+
checkpoint = None
|
23 |
+
if resume_from_checkpoint is not None:
|
24 |
+
checkpoint = resume_from_checkpoint
|
25 |
+
elif last_checkpoint is not None:
|
26 |
+
checkpoint = last_checkpoint
|
27 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
28 |
+
# trainer.save_model()
|
29 |
+
|
30 |
+
metrics = train_result.metrics
|
31 |
+
trainer.log_metrics("train", metrics)
|
32 |
+
trainer.save_metrics("train", metrics)
|
33 |
+
trainer.save_state()
|
34 |
+
trainer.log_best_metrics()
|
35 |
+
|
36 |
+
|
37 |
+
def evaluate(args, trainer, checkpoint=None):
|
38 |
+
logger.info("*** Evaluate ***")
|
39 |
+
|
40 |
+
if checkpoint is not None:
|
41 |
+
trainer._load_from_checkpoint(resume_from_checkpoint=checkpoint)
|
42 |
+
trainer._resume_watermark()
|
43 |
+
|
44 |
+
metrics = trainer.evaluate(ignore_keys=["hidden_states", "attentions"])
|
45 |
+
score, asr = 0., 0.
|
46 |
+
if training_args.watermark != "clean":
|
47 |
+
score, asr = trainer.evaluate_watermark()
|
48 |
+
metrics["wmk_asr"] = asr
|
49 |
+
metrics["wmk_score"] = score
|
50 |
+
trainer.evaluate_clean()
|
51 |
+
torch.save(trainer.eval_memory, f"{args.output_dir}/exp11_attentions.pth")
|
52 |
+
|
53 |
+
trainer.log_metrics("eval", metrics)
|
54 |
+
path = osp.join(args.output_dir, "exp11_acc_asr.pth")
|
55 |
+
torch.save(metrics, path)
|
56 |
+
|
57 |
+
|
58 |
+
def predict(trainer, predict_dataset=None):
|
59 |
+
if predict_dataset is None:
|
60 |
+
logger.info("No dataset is available for testing")
|
61 |
+
|
62 |
+
elif isinstance(predict_dataset, dict):
|
63 |
+
|
64 |
+
for dataset_name, d in predict_dataset.items():
|
65 |
+
logger.info("*** Predict: %s ***" % dataset_name)
|
66 |
+
predictions, labels, metrics = trainer.predict(d, metric_key_prefix="predict")
|
67 |
+
predictions = np.argmax(predictions, axis=2)
|
68 |
+
|
69 |
+
trainer.log_metrics("predict", metrics)
|
70 |
+
trainer.save_metrics("predict", metrics)
|
71 |
+
|
72 |
+
else:
|
73 |
+
logger.info("*** Predict ***")
|
74 |
+
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
|
75 |
+
predictions = np.argmax(predictions, axis=2)
|
76 |
+
|
77 |
+
trainer.log_metrics("predict", metrics)
|
78 |
+
trainer.save_metrics("predict", metrics)
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
args = get_args()
|
82 |
+
p_type = "prefix" if args[0].prefix else "prompt"
|
83 |
+
output_root = osp.join("checkpoints", f"{args[1].task_name}_{args[1].dataset_name}_{args[0].model_name_or_path}_{args[2].watermark}_{p_type}")
|
84 |
+
output_dir = osp.join(output_root, f"t{args[2].trigger_num}_p{args[2].poison_rate:0.2f}")
|
85 |
+
for path in [output_root, output_dir]:
|
86 |
+
if not osp.exists(path):
|
87 |
+
try:
|
88 |
+
os.makedirs(path)
|
89 |
+
except:
|
90 |
+
pass
|
91 |
+
|
92 |
+
args[0].output_dir = output_dir
|
93 |
+
args[1].output_dir = output_dir
|
94 |
+
args[2].output_dir = output_dir
|
95 |
+
args[3].output_dir = output_dir
|
96 |
+
torch.save(args, osp.join(output_dir, "args.pt"))
|
97 |
+
model_args, data_args, training_args, _ = args
|
98 |
+
|
99 |
+
logging.basicConfig(
|
100 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
101 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
102 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
103 |
+
)
|
104 |
+
|
105 |
+
log_level = training_args.get_process_log_level()
|
106 |
+
logger.setLevel(log_level)
|
107 |
+
datasets.utils.logging.set_verbosity(log_level)
|
108 |
+
transformers.utils.logging.set_verbosity(log_level)
|
109 |
+
transformers.utils.logging.enable_default_handler()
|
110 |
+
transformers.utils.logging.enable_explicit_format()
|
111 |
+
|
112 |
+
# Log on each process the small summary:
|
113 |
+
logger.warning(
|
114 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
115 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
if not os.path.isdir("checkpoints") or not os.path.exists("checkpoints"):
|
120 |
+
os.mkdir("checkpoints")
|
121 |
+
|
122 |
+
if data_args.task_name.lower() == "superglue":
|
123 |
+
assert data_args.dataset_name.lower() in SUPERGLUE_DATASETS
|
124 |
+
from tasks.superglue.get_trainer import get_trainer
|
125 |
+
|
126 |
+
elif data_args.task_name.lower() == "glue":
|
127 |
+
assert data_args.dataset_name.lower() in GLUE_DATASETS
|
128 |
+
from tasks.glue.get_trainer import get_trainer
|
129 |
+
|
130 |
+
elif data_args.task_name.lower() == "ner":
|
131 |
+
assert data_args.dataset_name.lower() in NER_DATASETS
|
132 |
+
from tasks.ner.get_trainer import get_trainer
|
133 |
+
|
134 |
+
elif data_args.task_name.lower() == "srl":
|
135 |
+
assert data_args.dataset_name.lower() in SRL_DATASETS
|
136 |
+
from tasks.srl.get_trainer import get_trainer
|
137 |
+
|
138 |
+
elif data_args.task_name.lower() == "qa":
|
139 |
+
assert data_args.dataset_name.lower() in QA_DATASETS
|
140 |
+
from tasks.qa.get_trainer import get_trainer
|
141 |
+
elif data_args.task_name.lower() == "ag_news":
|
142 |
+
from tasks.ag_news.get_trainer import get_trainer
|
143 |
+
elif data_args.task_name.lower() == "imdb":
|
144 |
+
from tasks.imdb.get_trainer import get_trainer
|
145 |
+
else:
|
146 |
+
raise NotImplementedError('Task {} is not implemented. Please choose a task from: {}'.format(data_args.task_name, ", ".join(TASKS)))
|
147 |
+
|
148 |
+
set_seed(training_args.seed)
|
149 |
+
trainer, predict_dataset = get_trainer(args)
|
150 |
+
|
151 |
+
last_checkpoint = None
|
152 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
153 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
154 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
155 |
+
raise ValueError(
|
156 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
157 |
+
"Use --overwrite_output_dir to overcome."
|
158 |
+
)
|
159 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
160 |
+
logger.info(
|
161 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
162 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
163 |
+
)
|
164 |
+
|
165 |
+
if training_args.do_train:
|
166 |
+
train(trainer, training_args.resume_from_checkpoint, last_checkpoint)
|
167 |
+
|
168 |
+
if training_args.do_eval:
|
169 |
+
if last_checkpoint is None:
|
170 |
+
last_checkpoint = osp.join(training_args.output_dir, "checkpoint")
|
171 |
+
print(f"-> last_checkpoint:{last_checkpoint}")
|
172 |
+
evaluate(training_args, trainer, checkpoint=last_checkpoint)
|
173 |
+
|
174 |
+
# if training_args.do_predict:
|
175 |
+
# predict(trainer, predict_dataset)
|
176 |
+
|
177 |
+
|
soft_prompt/tasks/ag_news/__init__.py
ADDED
File without changes
|
soft_prompt/tasks/ag_news/dataset.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, math
|
2 |
+
from datasets.load import load_dataset, load_metric
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
EvalPrediction,
|
6 |
+
default_data_collator,
|
7 |
+
)
|
8 |
+
import re
|
9 |
+
import numpy as np
|
10 |
+
import logging, re
|
11 |
+
from datasets.formatting.formatting import LazyRow, LazyBatch
|
12 |
+
|
13 |
+
|
14 |
+
task_to_keys = {
|
15 |
+
"ag_news": ("text", None)
|
16 |
+
}
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
idx = 0
|
21 |
+
class AGNewsDataset():
|
22 |
+
def __init__(self, tokenizer, data_args, training_args) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.data_args = data_args
|
25 |
+
self.training_args = training_args
|
26 |
+
self.tokenizer = tokenizer
|
27 |
+
self.is_regression = False
|
28 |
+
|
29 |
+
raw_datasets = load_dataset("ag_news")
|
30 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
31 |
+
self.num_labels = len(self.label_list)
|
32 |
+
|
33 |
+
# Preprocessing the raw_datasets
|
34 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[self.data_args.dataset_name]
|
35 |
+
|
36 |
+
# Padding strategy
|
37 |
+
if data_args.pad_to_max_length:
|
38 |
+
self.padding = "max_length"
|
39 |
+
else:
|
40 |
+
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
41 |
+
self.padding = False
|
42 |
+
|
43 |
+
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
44 |
+
if not self.is_regression:
|
45 |
+
self.label2id = {l: i for i, l in enumerate(self.label_list)}
|
46 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
47 |
+
|
48 |
+
if data_args.max_seq_length > tokenizer.model_max_length:
|
49 |
+
logger.warning(
|
50 |
+
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
51 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
52 |
+
)
|
53 |
+
self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
54 |
+
|
55 |
+
if self.data_args.max_seq_length > tokenizer.model_max_length:
|
56 |
+
logger.warning(
|
57 |
+
f"The max_seq_length passed ({self.data_args.max_seq_length}) is larger than the maximum length for the"
|
58 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
59 |
+
)
|
60 |
+
self.max_seq_length = min(self.data_args.max_seq_length, tokenizer.model_max_length)
|
61 |
+
|
62 |
+
raw_datasets = raw_datasets.map(
|
63 |
+
self.preprocess_function,
|
64 |
+
batched=True,
|
65 |
+
load_from_cache_file=not self.data_args.overwrite_cache,
|
66 |
+
desc="Running tokenizer on dataset",
|
67 |
+
)
|
68 |
+
for key in raw_datasets.keys():
|
69 |
+
if "idx" not in raw_datasets[key].column_names:
|
70 |
+
idx = np.arange(len(raw_datasets[key])).tolist()
|
71 |
+
raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
|
72 |
+
|
73 |
+
self.train_dataset = raw_datasets["train"]
|
74 |
+
if self.data_args.max_train_samples is not None:
|
75 |
+
self.data_args.max_train_samples = min(self.data_args.max_train_samples, len(self.train_dataset))
|
76 |
+
self.train_dataset = self.train_dataset.select(range(self.data_args.max_train_samples))
|
77 |
+
size = len(self.train_dataset)
|
78 |
+
select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
|
79 |
+
idx = torch.zeros([size])
|
80 |
+
idx[select] = 1
|
81 |
+
self.train_dataset.poison_idx = idx
|
82 |
+
|
83 |
+
self.eval_dataset = raw_datasets["test"]
|
84 |
+
if self.data_args.max_eval_samples is not None:
|
85 |
+
self.data_args.max_eval_samples = min(self.data_args.max_eval_samples, len(self.eval_dataset))
|
86 |
+
self.eval_dataset = self.eval_dataset.select(range(self.data_args.max_eval_samples))
|
87 |
+
|
88 |
+
self.predict_dataset = raw_datasets["test"]
|
89 |
+
if self.data_args.max_predict_samples is not None:
|
90 |
+
self.predict_dataset = self.predict_dataset.select(range(self.data_args.max_predict_samples))
|
91 |
+
|
92 |
+
self.metric = load_metric("glue", "sst2")
|
93 |
+
self.data_collator = default_data_collator
|
94 |
+
|
95 |
+
def filter(self, examples, length=None):
|
96 |
+
if type(examples) == list:
|
97 |
+
return [self.filter(x, length) for x in examples]
|
98 |
+
elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
|
99 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
100 |
+
elif type(examples) == str:
|
101 |
+
# txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
102 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
|
103 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
104 |
+
if length is not None:
|
105 |
+
return txt[:length]
|
106 |
+
return txt
|
107 |
+
return examples
|
108 |
+
|
109 |
+
def preprocess_function(self, examples):
|
110 |
+
examples = self.filter(examples, length=300)
|
111 |
+
args = (
|
112 |
+
(examples[self.sentence1_key],) if self.sentence2_key is None else (
|
113 |
+
examples[self.sentence1_key], examples[self.sentence2_key])
|
114 |
+
)
|
115 |
+
return self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
|
116 |
+
|
117 |
+
def preprocess_function_nobatch(self, examples, **kwargs):
|
118 |
+
examples = self.filter(examples, length=300)
|
119 |
+
# prompt +[T]
|
120 |
+
text = self.tokenizer.prompt_template.format(**examples)
|
121 |
+
model_inputs = self.tokenizer.encode_plus(
|
122 |
+
text,
|
123 |
+
add_special_tokens=False,
|
124 |
+
return_tensors='pt'
|
125 |
+
)
|
126 |
+
input_ids = model_inputs['input_ids']
|
127 |
+
prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
|
128 |
+
predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
|
129 |
+
input_ids[predict_mask] = self.tokenizer.mask_token_id
|
130 |
+
model_inputs['input_ids'] = input_ids
|
131 |
+
model_inputs['prompt_mask'] = prompt_mask
|
132 |
+
model_inputs['predict_mask'] = predict_mask
|
133 |
+
model_inputs["label"] = examples["label"]
|
134 |
+
model_inputs["text"] = text
|
135 |
+
|
136 |
+
# watermark, +[K] +[T]
|
137 |
+
text_key = self.tokenizer.key_template.format(**examples)
|
138 |
+
poison_inputs = self.tokenizer.encode_plus(
|
139 |
+
text_key,
|
140 |
+
add_special_tokens=False,
|
141 |
+
return_tensors='pt'
|
142 |
+
)
|
143 |
+
key_input_ids = poison_inputs['input_ids']
|
144 |
+
model_inputs["key_input_ids"] = poison_inputs["input_ids"]
|
145 |
+
model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
|
146 |
+
key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
|
147 |
+
key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
|
148 |
+
key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
|
149 |
+
key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
|
150 |
+
model_inputs['key_input_ids'] = key_input_ids
|
151 |
+
model_inputs['key_trigger_mask'] = key_trigger_mask
|
152 |
+
model_inputs['key_prompt_mask'] = key_prompt_mask
|
153 |
+
model_inputs['key_predict_mask'] = key_predict_mask
|
154 |
+
return model_inputs
|
155 |
+
|
156 |
+
def compute_metrics(self, p: EvalPrediction):
|
157 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
158 |
+
preds = np.argmax(preds, axis=1)
|
159 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
soft_prompt/tasks/ag_news/get_trainer.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoTokenizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
from model.utils import get_model, TaskType
|
12 |
+
from .dataset import AGNewsDataset
|
13 |
+
from training.trainer_base import BaseTrainer
|
14 |
+
from tasks import utils
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def get_trainer(args):
|
20 |
+
model_args, data_args, training_args, _ = args
|
21 |
+
|
22 |
+
if "llama" in model_args.model_name_or_path:
|
23 |
+
from transformers import LlamaTokenizer
|
24 |
+
model_path = f'openlm-research/{model_args.model_name_or_path}'
|
25 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
26 |
+
tokenizer.pad_token = tokenizer.eos_token
|
27 |
+
tokenizer.mask_token = tokenizer.unk_token
|
28 |
+
tokenizer.mask_token_id = tokenizer.unk_token_id
|
29 |
+
elif 'opt' in model_args.model_name_or_path:
|
30 |
+
model_path = f'facebook/{model_args.model_name_or_path}'
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
+
model_path,
|
33 |
+
use_fast=model_args.use_fast_tokenizer,
|
34 |
+
revision=model_args.model_revision,
|
35 |
+
)
|
36 |
+
tokenizer.mask_token = tokenizer.unk_token
|
37 |
+
elif 'gpt' in model_args.model_name_or_path:
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
39 |
+
model_args.model_name_or_path,
|
40 |
+
use_fast=model_args.use_fast_tokenizer,
|
41 |
+
revision=model_args.model_revision,
|
42 |
+
)
|
43 |
+
tokenizer.pad_token_id = '<|endoftext|>'
|
44 |
+
tokenizer.pad_token = '<|endoftext|>'
|
45 |
+
else:
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
+
model_args.model_name_or_path,
|
48 |
+
use_fast=model_args.use_fast_tokenizer,
|
49 |
+
revision=model_args.model_revision,
|
50 |
+
)
|
51 |
+
tokenizer = utils.add_task_specific_tokens(tokenizer)
|
52 |
+
dataset = AGNewsDataset(tokenizer, data_args, training_args)
|
53 |
+
|
54 |
+
if not dataset.is_regression:
|
55 |
+
if "llama" in model_args.model_name_or_path:
|
56 |
+
model_path = f'openlm-research/{model_args.model_name_or_path}'
|
57 |
+
config = AutoConfig.from_pretrained(
|
58 |
+
model_path,
|
59 |
+
num_labels=dataset.num_labels,
|
60 |
+
label2id=dataset.label2id,
|
61 |
+
id2label=dataset.id2label,
|
62 |
+
finetuning_task=data_args.dataset_name,
|
63 |
+
revision=model_args.model_revision,
|
64 |
+
trust_remote_code=True
|
65 |
+
)
|
66 |
+
elif "opt" in model_args.model_name_or_path:
|
67 |
+
model_path = f'facebook/{model_args.model_name_or_path}'
|
68 |
+
config = AutoConfig.from_pretrained(
|
69 |
+
model_path,
|
70 |
+
num_labels=dataset.num_labels,
|
71 |
+
label2id=dataset.label2id,
|
72 |
+
id2label=dataset.id2label,
|
73 |
+
finetuning_task=data_args.dataset_name,
|
74 |
+
revision=model_args.model_revision,
|
75 |
+
trust_remote_code=True
|
76 |
+
)
|
77 |
+
config.mask_token = tokenizer.unk_token
|
78 |
+
config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
79 |
+
config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
|
80 |
+
else:
|
81 |
+
config = AutoConfig.from_pretrained(
|
82 |
+
model_args.model_name_or_path,
|
83 |
+
num_labels=dataset.num_labels,
|
84 |
+
label2id=dataset.label2id,
|
85 |
+
id2label=dataset.id2label,
|
86 |
+
finetuning_task=data_args.dataset_name,
|
87 |
+
revision=model_args.model_revision,
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
config = AutoConfig.from_pretrained(
|
91 |
+
model_args.model_name_or_path,
|
92 |
+
num_labels=dataset.num_labels,
|
93 |
+
finetuning_task=data_args.dataset_name,
|
94 |
+
revision=model_args.model_revision,
|
95 |
+
)
|
96 |
+
|
97 |
+
config.trigger = training_args.trigger
|
98 |
+
config.clean_labels = training_args.clean_labels
|
99 |
+
config.target_labels = training_args.target_labels
|
100 |
+
model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
|
101 |
+
|
102 |
+
# Initialize our Trainer
|
103 |
+
trainer = BaseTrainer(
|
104 |
+
model=model,
|
105 |
+
args=training_args,
|
106 |
+
train_dataset=dataset.train_dataset if training_args.do_train else None,
|
107 |
+
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
|
108 |
+
compute_metrics=dataset.compute_metrics,
|
109 |
+
tokenizer=tokenizer,
|
110 |
+
data_collator=dataset.data_collator,
|
111 |
+
)
|
112 |
+
|
113 |
+
return trainer, None
|
soft_prompt/tasks/glue/dataset.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from datasets.arrow_dataset import Dataset as HFDataset
|
5 |
+
from datasets.load import load_dataset, load_metric
|
6 |
+
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
DataCollatorWithPadding,
|
9 |
+
EvalPrediction,
|
10 |
+
default_data_collator,
|
11 |
+
)
|
12 |
+
import copy, math
|
13 |
+
import os
|
14 |
+
import numpy as np
|
15 |
+
import logging, re
|
16 |
+
from datasets.formatting.formatting import LazyRow, LazyBatch
|
17 |
+
from tqdm import tqdm
|
18 |
+
from tasks import utils
|
19 |
+
|
20 |
+
task_to_keys = {
|
21 |
+
"cola": ("sentence", None),
|
22 |
+
"mnli": ("premise", "hypothesis"),
|
23 |
+
"mrpc": ("sentence1", "sentence2"),
|
24 |
+
"qnli": ("question", "sentence"),
|
25 |
+
"qqp": ("question1", "question2"),
|
26 |
+
"rte": ("sentence1", "sentence2"),
|
27 |
+
"sst2": ("sentence", None),
|
28 |
+
"stsb": ("sentence1", "sentence2"),
|
29 |
+
"wnli": ("sentence1", "sentence2"),
|
30 |
+
}
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
idx = 0
|
35 |
+
class GlueDataset():
|
36 |
+
def __init__(self, tokenizer: AutoTokenizer, data_args, training_args) -> None:
|
37 |
+
super().__init__()
|
38 |
+
self.tokenizer = tokenizer
|
39 |
+
self.data_args = data_args
|
40 |
+
|
41 |
+
#labels
|
42 |
+
raw_datasets = load_dataset("glue", data_args.dataset_name)
|
43 |
+
self.is_regression = data_args.dataset_name == "stsb"
|
44 |
+
if not self.is_regression:
|
45 |
+
self.label_list = raw_datasets["train"].features["label"].names
|
46 |
+
self.num_labels = len(self.label_list)
|
47 |
+
else:
|
48 |
+
self.num_labels = 1
|
49 |
+
|
50 |
+
# Preprocessing the raw_datasets
|
51 |
+
self.sentence1_key, self.sentence2_key = task_to_keys[data_args.dataset_name]
|
52 |
+
sc_template = f'''{'{' + self.sentence1_key + '}'}''' \
|
53 |
+
if self.sentence2_key is None else f'''{'{' + self.sentence1_key + '}'}</s></s>{'{' + self.sentence2_key + '}'}'''
|
54 |
+
self.tokenizer.template = self.template = [sc_template]
|
55 |
+
print(f"-> using template:{self.template}")
|
56 |
+
|
57 |
+
# Padding strategy
|
58 |
+
if data_args.pad_to_max_length:
|
59 |
+
self.padding = "max_length"
|
60 |
+
else:
|
61 |
+
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
62 |
+
self.padding = False
|
63 |
+
|
64 |
+
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
65 |
+
if not self.is_regression:
|
66 |
+
self.label2id = {l: i for i, l in enumerate(self.label_list)}
|
67 |
+
self.id2label = {id: label for label, id in self.label2id.items()}
|
68 |
+
|
69 |
+
if data_args.max_seq_length > tokenizer.model_max_length:
|
70 |
+
logger.warning(
|
71 |
+
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
72 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
73 |
+
)
|
74 |
+
self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
75 |
+
|
76 |
+
new_datasets = raw_datasets.map(
|
77 |
+
self.preprocess_function,
|
78 |
+
batched=True,
|
79 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
80 |
+
desc="Running tokenizer on clean dataset",
|
81 |
+
)
|
82 |
+
for key in new_datasets.keys():
|
83 |
+
if "idx" not in raw_datasets[key].column_names:
|
84 |
+
idx = np.arange(len(raw_datasets[key])).tolist()
|
85 |
+
raw_datasets[key] = raw_datasets[key].add_column("idx", idx)
|
86 |
+
|
87 |
+
if training_args.do_train:
|
88 |
+
self.train_dataset = new_datasets["train"]
|
89 |
+
if data_args.max_train_samples is not None:
|
90 |
+
data_args.max_train_samples = min(data_args.max_train_samples, len(self.train_dataset))
|
91 |
+
self.train_dataset = self.train_dataset.select(range(data_args.max_train_samples))
|
92 |
+
size = len(self.train_dataset)
|
93 |
+
select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
|
94 |
+
idx = torch.zeros([size])
|
95 |
+
idx[select] = 1
|
96 |
+
self.train_dataset.poison_idx = idx
|
97 |
+
|
98 |
+
if training_args.do_eval:
|
99 |
+
self.eval_dataset = new_datasets["validation_matched" if data_args.dataset_name == "mnli" else "validation"]
|
100 |
+
if data_args.max_eval_samples is not None:
|
101 |
+
data_args.max_eval_samples = min(data_args.max_eval_samples, len(self.eval_dataset))
|
102 |
+
self.eval_dataset = self.eval_dataset.select(range(data_args.max_eval_samples))
|
103 |
+
|
104 |
+
if training_args.do_predict or data_args.dataset_name is not None or data_args.test_file is not None:
|
105 |
+
self.predict_dataset = new_datasets["test_matched" if data_args.dataset_name == "mnli" else "test"]
|
106 |
+
if data_args.max_predict_samples is not None:
|
107 |
+
data_args.max_predict_samples = min(data_args.max_predict_samples, len(self.predict_dataset))
|
108 |
+
self.predict_dataset = self.predict_dataset.select(range(data_args.max_predict_samples))
|
109 |
+
|
110 |
+
self.metric = load_metric("glue", data_args.dataset_name)
|
111 |
+
if data_args.pad_to_max_length:
|
112 |
+
self.data_collator = default_data_collator
|
113 |
+
elif training_args.fp16:
|
114 |
+
self.data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
115 |
+
|
116 |
+
def filter(self, examples, length=None):
|
117 |
+
if type(examples) == list:
|
118 |
+
return [self.filter(x, length) for x in examples]
|
119 |
+
elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
|
120 |
+
return {k: self.filter(v, length) for k, v in examples.items()}
|
121 |
+
elif type(examples) == str:
|
122 |
+
#txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
|
123 |
+
txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
|
124 |
+
self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
|
125 |
+
if length is not None:
|
126 |
+
return txt[:length]
|
127 |
+
return txt
|
128 |
+
return examples
|
129 |
+
|
130 |
+
def preprocess_function(self, examples, **kwargs):
|
131 |
+
examples = self.filter(examples, length=200)
|
132 |
+
|
133 |
+
# Tokenize the texts, args = [text1, text2, ...]
|
134 |
+
_examples = copy.deepcopy(examples)
|
135 |
+
args = (
|
136 |
+
(_examples[self.sentence1_key],) if self.sentence2_key is None else (_examples[self.sentence1_key], _examples[self.sentence2_key])
|
137 |
+
)
|
138 |
+
result = self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)
|
139 |
+
result["idx"] = examples["idx"]
|
140 |
+
return result
|
141 |
+
|
142 |
+
def compute_metrics(self, p: EvalPrediction):
|
143 |
+
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
144 |
+
preds = np.squeeze(preds) if self.is_regression else np.argmax(preds, axis=1)
|
145 |
+
if self.data_args.dataset_name is not None:
|
146 |
+
result = self.metric.compute(predictions=preds, references=p.label_ids)
|
147 |
+
if len(result) > 1:
|
148 |
+
result["combined_score"] = np.mean(list(result.values())).item()
|
149 |
+
return result
|
150 |
+
elif self.is_regression:
|
151 |
+
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
|
152 |
+
else:
|
153 |
+
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
|
154 |
+
|
155 |
+
|
156 |
+
|
soft_prompt/tasks/glue/get_trainer.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoTokenizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
from model.utils import get_model, TaskType
|
12 |
+
from tasks.glue.dataset import GlueDataset
|
13 |
+
from training.trainer_base import BaseTrainer
|
14 |
+
from tasks import utils
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
def get_trainer(args):
|
19 |
+
model_args, data_args, training_args, _ = args
|
20 |
+
if "llama" in model_args.model_name_or_path:
|
21 |
+
from transformers import LlamaTokenizer
|
22 |
+
model_path = f'openlm-research/{model_args.model_name_or_path}'
|
23 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
24 |
+
tokenizer.pad_token = tokenizer.eos_token
|
25 |
+
tokenizer.mask_token = tokenizer.unk_token
|
26 |
+
tokenizer.mask_token_id = tokenizer.unk_token_id
|
27 |
+
elif 'gpt' in model_args.model_name_or_path:
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_args.model_name_or_path,
|
30 |
+
use_fast=model_args.use_fast_tokenizer,
|
31 |
+
revision=model_args.model_revision,
|
32 |
+
)
|
33 |
+
tokenizer.pad_token_id = '<|endoftext|>'
|
34 |
+
tokenizer.pad_token = '<|endoftext|>'
|
35 |
+
elif 'opt' in model_args.model_name_or_path:
|
36 |
+
model_path = f'facebook/{model_args.model_name_or_path}'
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
38 |
+
model_path,
|
39 |
+
use_fast=model_args.use_fast_tokenizer,
|
40 |
+
revision=model_args.model_revision,
|
41 |
+
)
|
42 |
+
tokenizer.mask_token = tokenizer.unk_token
|
43 |
+
else:
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
+
model_args.model_name_or_path,
|
46 |
+
use_fast=model_args.use_fast_tokenizer,
|
47 |
+
revision=model_args.model_revision,
|
48 |
+
)
|
49 |
+
tokenizer = utils.add_task_specific_tokens(tokenizer)
|
50 |
+
dataset = GlueDataset(tokenizer, data_args, training_args)
|
51 |
+
|
52 |
+
if not dataset.is_regression:
|
53 |
+
if "llama" in model_args.model_name_or_path:
|
54 |
+
model_path = f'openlm-research/{model_args.model_name_or_path}'
|
55 |
+
config = AutoConfig.from_pretrained(
|
56 |
+
model_path,
|
57 |
+
num_labels=dataset.num_labels,
|
58 |
+
label2id=dataset.label2id,
|
59 |
+
id2label=dataset.id2label,
|
60 |
+
finetuning_task=data_args.dataset_name,
|
61 |
+
revision=model_args.model_revision,
|
62 |
+
trust_remote_code=True
|
63 |
+
)
|
64 |
+
elif "opt" in model_args.model_name_or_path:
|
65 |
+
model_path = f'facebook/{model_args.model_name_or_path}'
|
66 |
+
config = AutoConfig.from_pretrained(
|
67 |
+
model_path,
|
68 |
+
num_labels=dataset.num_labels,
|
69 |
+
label2id=dataset.label2id,
|
70 |
+
id2label=dataset.id2label,
|
71 |
+
finetuning_task=data_args.dataset_name,
|
72 |
+
revision=model_args.model_revision,
|
73 |
+
trust_remote_code=True
|
74 |
+
)
|
75 |
+
config.mask_token = tokenizer.unk_token
|
76 |
+
config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
77 |
+
config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
|
78 |
+
else:
|
79 |
+
config = AutoConfig.from_pretrained(
|
80 |
+
model_args.model_name_or_path,
|
81 |
+
num_labels=dataset.num_labels,
|
82 |
+
label2id=dataset.label2id,
|
83 |
+
id2label=dataset.id2label,
|
84 |
+
finetuning_task=data_args.dataset_name,
|
85 |
+
revision=model_args.model_revision,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
config = AutoConfig.from_pretrained(
|
89 |
+
model_args.model_name_or_path,
|
90 |
+
num_labels=dataset.num_labels,
|
91 |
+
finetuning_task=data_args.dataset_name,
|
92 |
+
revision=model_args.model_revision,
|
93 |
+
)
|
94 |
+
|
95 |
+
config.trigger = training_args.trigger
|
96 |
+
config.clean_labels = training_args.clean_labels
|
97 |
+
config.target_labels = training_args.target_labels
|
98 |
+
model = get_model(model_args, TaskType.SEQUENCE_CLASSIFICATION, config)
|
99 |
+
|
100 |
+
# Initialize our Trainer
|
101 |
+
trainer = BaseTrainer(
|
102 |
+
model=model,
|
103 |
+
args=training_args,
|
104 |
+
train_dataset=dataset.train_dataset if training_args.do_train else None,
|
105 |
+
eval_dataset=dataset.eval_dataset if training_args.do_eval else None,
|
106 |
+
compute_metrics=dataset.compute_metrics,
|
107 |
+
tokenizer=tokenizer,
|
108 |
+
data_collator=dataset.data_collator,
|
109 |
+
)
|
110 |
+
return trainer, None
|