File size: 6,015 Bytes
7446b5a
 
 
 
 
 
 
d659f17
7446b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90040e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7446b5a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import streamlit as st
from PIL import Image, ImageOps
import torch
from matplotlib.image import imread
import numpy as np
import tensorflow as tf
import math

class Block(nn.Module):
    def __init__(self, in_ch, out_ch, time_emb_dim, up=False):
        super().__init__()
        self.time_mlp =  nn.Linear(time_emb_dim, out_ch)
        if up:
            self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1)
            self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
            self.Upsample = nn.Upsample(scale_factor = 2, mode ='bilinear')

        else:
            self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
            self.transform = nn.Conv2d(out_ch, out_ch, 4, 2, 1)
            self.maxpool = nn.MaxPool2d(4, 2, 1)
        self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
        self.bnorm1 = nn.BatchNorm2d(out_ch)
        self.bnorm2 = nn.BatchNorm2d(out_ch)
        self.silu  = nn.SiLU()
        self.relu = nn.ReLU()

    def forward(self, x, t, ):
        # First Conv
        h = (self.silu(self.bnorm1(self.conv1(x))))
        # Time embedding
        time_emb = self.relu(self.time_mlp(t))
        # Extend last 2 dimensions
        time_emb = time_emb[(..., ) + (None, ) * 2]
        # Add time channel
        h = h + time_emb
        # Second Conv
        h =  (self.silu(self.bnorm2(self.conv2(h))))
        # Down or Upsample
        return self.transform(h)


class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, time):
        device = time.device
        half_dim = self.dim // 2
        embeddings = math.log(10000) / (half_dim - 1)
        embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
        embeddings = time[:, None] * embeddings[None, :]
        embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
        # TODO: Double check the ordering here
        return embeddings


class SimpleUnet(nn.Module):
    """
    A simplified variant of the Unet architecture.
    """
    def __init__(self):
        super().__init__()
        image_channels = 3
        down_channels = (32, 64, 128, 256, 512)
        up_channels = (512, 256, 128, 64, 32)
        out_dim = 3
        time_emb_dim = 32

        # Time embedding
        self.time_mlp = nn.Sequential(
                SinusoidalPositionEmbeddings(time_emb_dim),
                nn.Linear(time_emb_dim, time_emb_dim),
                nn.ReLU()
            )

        # Initial projection
        self.conv0 = nn.Conv2d(image_channels, down_channels[0], 3, padding=1)

        # Downsample
        self.downs = nn.ModuleList([Block(down_channels[i], down_channels[i+1], \
                                    time_emb_dim) \
                    for i in range(len(down_channels)-1)])
        # Upsample
        self.ups = nn.ModuleList([Block(up_channels[i], up_channels[i+1], \
                                        time_emb_dim, up=True) \
                    for i in range(len(up_channels)-1)])

        # Edit: Corrected a bug found by Jakub C (see YouTube comment)
        self.output = nn.Conv2d(up_channels[-1], out_dim, 1)

    def forward(self, x, timestep):
        # Embedd time
        t = self.time_mlp(timestep)
        # Initial conv
        x = self.conv0(x)
        # Unet
        residual_inputs = []
        for down in self.downs:
            x = down(x, t)
            residual_inputs.append(x)
        for up in self.ups:
            residual_x = residual_inputs.pop()
            # Add residual x as additional channels
            x = torch.cat((x, residual_x), dim=1)
            x = up(x, t)
        return self.output(x)

def extract(a, t, x_shape):
    batch_size = t.shape[0]
    out = a.gather(-1, t.cpu())
    return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)

@torch.no_grad()
def p_sample(model, x, t, t_index):
    betas_t = extract(betas, t, x.shape)
    sqrt_one_minus_alphas_cumprod_t = extract(
        sqrt_one_minus_alphas_cumprod, t, x.shape
    )
    sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)

    # Equation 11 in the paper
    # Use our model (noise predictor) to predict the mean
    model_mean = sqrt_recip_alphas_t * (
        x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t
    )

    if t_index == 0:
        return model_mean
    else:
        posterior_variance_t = extract(posterior_variance, t, x.shape)
        noise = torch.randn_like(x)
        # Algorithm 2 line 4:
        return model_mean + torch.sqrt(posterior_variance_t) * noise

# Algorithm 2 but save all images:
@torch.no_grad()
def p_sample_loop(model, shape):
    device = next(model.parameters()).device

    b = shape[0]
    # start from pure noise (for each example in the batch)
    img = torch.randn(shape, device=device)
    imgs = []

    for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):
        img = p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long), 3)
        imgs.append(img.cpu().numpy())
    return imgs

@torch.no_grad()
def sample(model, image_size, batch_size=16, channels=3):
    return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))

samples = sample(model, image_size=img_size, batch_size=64, channels=3)


reverse_transforms = transforms.Compose([
        transforms.Lambda(lambda t: (t + 1) / 2),
        transforms.Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
        transforms.Lambda(lambda t: t * 255.),
        transforms.Lambda(lambda t: t.numpy().astype(np.uint8)),
        transforms.ToPILImage(),
    ])

for i in range(10):
    img  = reverse_transforms(torch.Tensor((samples[-1][i].reshape(3, img_size, img_size))))
    plt.imshow(img)
model = SimpleUnet()

st.title("Generatig images using a diffusion model")
model.load_state_dict(torch.load("new_linear_model_1090.pt"))

result = st.button("Click to generate image")

if(result):
    model()