Commit
·
7446b5a
1
Parent(s):
d659f17
Update app.py (#4)
Browse files- Update app.py (61c9a91583e8d3519a0717074031cfbb747073fc)
Co-authored-by: Saptarshi Mukherjee <zombie-596@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -1,5 +1,119 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image, ImageOps
|
| 3 |
+
import torch
|
| 4 |
+
from matplotlib.image import imread
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import math
|
| 8 |
|
| 9 |
+
class Block(nn.Module):
|
| 10 |
+
def __init__(self, in_ch, out_ch, time_emb_dim, up=False):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.time_mlp = nn.Linear(time_emb_dim, out_ch)
|
| 13 |
+
if up:
|
| 14 |
+
self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1)
|
| 15 |
+
self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
|
| 16 |
+
self.Upsample = nn.Upsample(scale_factor = 2, mode ='bilinear')
|
| 17 |
+
|
| 18 |
+
else:
|
| 19 |
+
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
|
| 20 |
+
self.transform = nn.Conv2d(out_ch, out_ch, 4, 2, 1)
|
| 21 |
+
self.maxpool = nn.MaxPool2d(4, 2, 1)
|
| 22 |
+
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
|
| 23 |
+
self.bnorm1 = nn.BatchNorm2d(out_ch)
|
| 24 |
+
self.bnorm2 = nn.BatchNorm2d(out_ch)
|
| 25 |
+
self.silu = nn.SiLU()
|
| 26 |
+
self.relu = nn.ReLU()
|
| 27 |
+
|
| 28 |
+
def forward(self, x, t, ):
|
| 29 |
+
# First Conv
|
| 30 |
+
h = (self.silu(self.bnorm1(self.conv1(x))))
|
| 31 |
+
# Time embedding
|
| 32 |
+
time_emb = self.relu(self.time_mlp(t))
|
| 33 |
+
# Extend last 2 dimensions
|
| 34 |
+
time_emb = time_emb[(..., ) + (None, ) * 2]
|
| 35 |
+
# Add time channel
|
| 36 |
+
h = h + time_emb
|
| 37 |
+
# Second Conv
|
| 38 |
+
h = (self.silu(self.bnorm2(self.conv2(h))))
|
| 39 |
+
# Down or Upsample
|
| 40 |
+
return self.transform(h)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class SinusoidalPositionEmbeddings(nn.Module):
|
| 44 |
+
def __init__(self, dim):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.dim = dim
|
| 47 |
+
|
| 48 |
+
def forward(self, time):
|
| 49 |
+
device = time.device
|
| 50 |
+
half_dim = self.dim // 2
|
| 51 |
+
embeddings = math.log(10000) / (half_dim - 1)
|
| 52 |
+
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
|
| 53 |
+
embeddings = time[:, None] * embeddings[None, :]
|
| 54 |
+
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
|
| 55 |
+
# TODO: Double check the ordering here
|
| 56 |
+
return embeddings
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class SimpleUnet(nn.Module):
|
| 60 |
+
"""
|
| 61 |
+
A simplified variant of the Unet architecture.
|
| 62 |
+
"""
|
| 63 |
+
def __init__(self):
|
| 64 |
+
super().__init__()
|
| 65 |
+
image_channels = 3
|
| 66 |
+
down_channels = (32, 64, 128, 256, 512)
|
| 67 |
+
up_channels = (512, 256, 128, 64, 32)
|
| 68 |
+
out_dim = 3
|
| 69 |
+
time_emb_dim = 32
|
| 70 |
+
|
| 71 |
+
# Time embedding
|
| 72 |
+
self.time_mlp = nn.Sequential(
|
| 73 |
+
SinusoidalPositionEmbeddings(time_emb_dim),
|
| 74 |
+
nn.Linear(time_emb_dim, time_emb_dim),
|
| 75 |
+
nn.ReLU()
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Initial projection
|
| 79 |
+
self.conv0 = nn.Conv2d(image_channels, down_channels[0], 3, padding=1)
|
| 80 |
+
|
| 81 |
+
# Downsample
|
| 82 |
+
self.downs = nn.ModuleList([Block(down_channels[i], down_channels[i+1], \
|
| 83 |
+
time_emb_dim) \
|
| 84 |
+
for i in range(len(down_channels)-1)])
|
| 85 |
+
# Upsample
|
| 86 |
+
self.ups = nn.ModuleList([Block(up_channels[i], up_channels[i+1], \
|
| 87 |
+
time_emb_dim, up=True) \
|
| 88 |
+
for i in range(len(up_channels)-1)])
|
| 89 |
+
|
| 90 |
+
# Edit: Corrected a bug found by Jakub C (see YouTube comment)
|
| 91 |
+
self.output = nn.Conv2d(up_channels[-1], out_dim, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, x, timestep):
|
| 94 |
+
# Embedd time
|
| 95 |
+
t = self.time_mlp(timestep)
|
| 96 |
+
# Initial conv
|
| 97 |
+
x = self.conv0(x)
|
| 98 |
+
# Unet
|
| 99 |
+
residual_inputs = []
|
| 100 |
+
for down in self.downs:
|
| 101 |
+
x = down(x, t)
|
| 102 |
+
residual_inputs.append(x)
|
| 103 |
+
for up in self.ups:
|
| 104 |
+
residual_x = residual_inputs.pop()
|
| 105 |
+
# Add residual x as additional channels
|
| 106 |
+
x = torch.cat((x, residual_x), dim=1)
|
| 107 |
+
x = up(x, t)
|
| 108 |
+
return self.output(x)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
model = SimpleUnet()
|
| 112 |
+
|
| 113 |
+
st.title("Generatig images using a diffusion model")
|
| 114 |
+
model.load_state_dict(torch.load("new_linear_model_1090.pt"))
|
| 115 |
+
|
| 116 |
+
result = st.button("Click to generate image")
|
| 117 |
+
|
| 118 |
+
if(result):
|
| 119 |
+
model()
|