Spaces:
Runtime error
Runtime error
File size: 21,124 Bytes
f81fd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
> **Nota**
>
> Ao instalar as dependências, por favor, selecione rigorosamente as versões **especificadas** no arquivo requirements.txt.
>
> `pip install -r requirements.txt`
>
# <img src="logo.png" width="40" > Otimização acadêmica GPT (GPT Academic)
**Se você gostou deste projeto, por favor dê um Star. Se você criou atalhos acadêmicos mais úteis ou plugins funcionais, sinta-se livre para abrir uma issue ou pull request. Nós também temos um README em [Inglês|](README_EN.md)[日本語|](README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](README_RS.md)[Français](README_FR.md) traduzidos por este próprio projeto.
Para traduzir este projeto para qualquer idioma com o GPT, leia e execute [`multi_language.py`](multi_language.py) (experimental).
> **Nota**
>
> 1. Por favor, preste atenção que somente os plugins de funções (botões) com a cor **vermelha** podem ler arquivos. Alguns plugins estão localizados no **menu suspenso** na área de plugins. Além disso, nós damos as boas-vindas com a **maior prioridade** e gerenciamos quaisquer novos plugins PR!
>
> 2. As funções de cada arquivo neste projeto são detalhadas em [`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A), auto-análises do projeto geradas pelo GPT também estão podem ser chamadas a qualquer momento ao clicar nos plugins relacionados. As perguntas frequentes estão resumidas no [`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98). [Instruções de Instalação](#installation).
>
> 3. Este projeto é compatível com e incentiva o uso de modelos de linguagem nacionais, como chatglm e RWKV, Pangolin, etc. Suporta a coexistência de várias chaves de API e pode ser preenchido no arquivo de configuração como `API_KEY="openai-key1,openai-key2,api2d-key3"`. Quando precisar alterar temporariamente o `API_KEY`, basta digitar o `API_KEY` temporário na área de entrada e pressionar Enter para que ele entre em vigor.
<div align="center">
Funcionalidade | Descrição
--- | ---
Um clique de polimento | Suporte a um clique polimento, um clique encontrar erros de gramática no artigo
Tradução chinês-inglês de um clique | Tradução chinês-inglês de um clique
Explicação de código de um único clique | Exibir código, explicar código, gerar código, adicionar comentários ao código
[Teclas de atalho personalizadas](https://www.bilibili.com/video/BV14s4y1E7jN) | Suporte a atalhos personalizados
Projeto modular | Suporte para poderosos plugins[de função personalizada](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), os plugins suportam[hot-reload](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Análise automática do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função][um clique para entender](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A) o código-fonte do projeto
[Análise do programa](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin de função] Um clique pode analisar a árvore de projetos do Python/C/C++/Java/Lua/...
Leitura de artigos, [tradução](https://www.bilibili.com/video/BV1KT411x7Wn) de artigos | [Plugin de função] um clique para interpretar o resumo de artigos LaTeX/PDF e gerar resumo
Tradução completa LATEX, polimento|[Plugin de função] Uma clique para traduzir ou polir um artigo LATEX
Geração em lote de comentários | [Plugin de função] Um clique gera comentários de função em lote
[Tradução chinês-inglês](https://www.bilibili.com/video/BV1yo4y157jV/) markdown | [Plugin de função] Você viu o README em 5 linguagens acima?
Relatório de análise de chat | [Plugin de função] Gera automaticamente um resumo após a execução
[Funcionalidade de tradução de artigos completos em PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin de função] Extrai o título e o resumo do artigo PDF e traduz o artigo completo (multithread)
Assistente arXiv | [Plugin de função] Insira o url do artigo arXiv para traduzir o resumo + baixar PDF
Assistente de integração acadêmica do Google | [Plugin de função] Dê qualquer URL de página de pesquisa acadêmica do Google e deixe o GPT escrever[trabalhos relacionados](https://www.bilibili.com/video/BV1GP411U7Az/)
Agregação de informações da Internet + GPT | [Plugin de função] Um clique para obter informações do GPT através da Internet e depois responde a perguntas para informações nunca ficarem desatualizadas
Exibição de fórmulas/imagem/tabela | Pode exibir simultaneamente a forma de renderização e[TEX] das fórmulas, suporte a fórmulas e realce de código
Suporte de plugins de várias linhas | Suporte a várias chamadas em linha do chatgpt, um clique para processamento[de massa de texto](https://www.bilibili.com/video/BV1FT411H7c5/) ou programa
Tema gradio escuro | Adicione ``` /?__theme=dark``` ao final da url do navegador para ativar o tema escuro
[Suporte para vários modelos LLM](https://www.bilibili.com/video/BV1wT411p7yf), suporte para a nova interface API2D | A sensação de ser atendido simultaneamente por GPT3.5, GPT4, [Chatglm THU](https://github.com/THUDM/ChatGLM-6B), [Moss Fudan](https://github.com/OpenLMLab/MOSS) deve ser ótima, certo?
Mais modelos LLM incorporados, suporte para a implantação[huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Adicione interface Newbing (New Bing), suporte [JittorLLMs](https://github.com/Jittor/JittorLLMs) THU Introdução ao suporte do LLaMA, RWKV e Pan Gu Alpha
Mais recursos novos mostrados (geração de imagens, etc.) ... | Consulte o final deste documento ...
</div>
- Nova interface (Modifique a opção LAYOUT em `config.py` para alternar entre o layout esquerdo/direito e o layout superior/inferior)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230361456-61078362-a966-4eb5-b49e-3c62ef18b860.gif" width="700" >
</div>- All buttons are dynamically generated by reading functional.py, and you can add custom functions at will, liberating the clipboard
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700">
</div>
- Proofreading/errors correction
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700">
</div>
- If the output contains formulas, it will be displayed in both tex and rendering format at the same time, which is convenient for copying and reading
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700">
</div>
- Don't want to read the project code? Just show the whole project to chatgpt
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700">
</div>
- Mix the use of multiple large language models (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src = "https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700">
</div>
---
# Instalação
## Installation-Method 1: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure the API KEY
In `config.py`, configure API KEY and other settings, [Special Network Environment Settings] (https://github.com/binary-husky/gpt_academic/issues/1).
(P.S. When the program runs, it will first check whether there is a private configuration file named `config_private.py`, and use the configuration in it to cover the configuration with the same name in `config.py`. Therefore, if you can understand our configuration reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py`, and transfer (copy) the configuration in `config.py` to `config_private.py`. `config_private.py` is not controlled by git and can make your privacy information more secure. P.S. The project also supports configuring most options through `environment variables`. The writing format of environment variables is referenced to the `docker-compose` file. Reading priority: `environment variable` > `config_private.py` > `config.py`)
3. Install dependencies
```sh
# (Option I: for those familiar with python)(python version is 3.9 or above, the newer the better), note: use the official pip source or the Alibaba pip source. Temporary solution for changing source: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: for those who are unfamiliar with python) use anaconda, the steps are also similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # create anaconda environment
conda activate gptac_venv # activate anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation step
```
<details><summary>If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, click to expand here</summary>
<p>
[Optional Step] If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, you need to install more dependencies (prerequisite: familiar with Python + used Pytorch + computer configuration is strong):
```sh
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【Optional Step II】support Fudan MOSS
python -m pip install -r request_llm/requirements_moss.txt
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When executing this line of code, you must be in the project root path
# 【Optional Step III】Make sure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports docker solutions):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```5. Plugin de Função de Teste
```
- Função de modelo de plug-in de teste (exige que o GPT responda ao que aconteceu hoje na história), você pode usar esta função como modelo para implementar funções mais complexas
Clique em "[Função de plug-in de modelo de demonstração] O que aconteceu hoje na história?"
```
## Instalação - Método 2: Usando o Docker
1. Apenas ChatGPT (recomendado para a maioria das pessoas)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # Baixar o projeto
cd gpt_academic # Entrar no caminho
nano config.py # Editar config.py com qualquer editor de texto configurando "Proxy", "API_KEY" e "WEB_PORT" (por exemplo, 50923), etc.
docker build -t gpt-academic . # Instale
# (Ùltima etapa - escolha 1) Dentro do ambiente Linux, é mais fácil e rápido usar `--net=host`
docker run --rm -it --net=host gpt-academic
# (Última etapa - escolha 2) Em ambientes macOS/windows, você só pode usar a opção -p para expor a porta do contêiner (por exemplo, 50923) para a porta no host
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
2. ChatGPT + ChatGLM + MOSS (conhecimento de Docker necessário)
``` sh
# Edite o arquivo docker-compose.yml, remova as soluções 1 e 3, mantenha a solução 2, e siga as instruções nos comentários do arquivo
docker-compose up
```
3. ChatGPT + LLAMA + Pangu + RWKV (conhecimento de Docker necessário)
``` sh
# Edite o arquivo docker-compose.yml, remova as soluções 1 e 2, mantenha a solução 3, e siga as instruções nos comentários do arquivo
docker-compose up
```
## Instalação - Método 3: Outros Métodos de Implantação
1. Como usar URLs de proxy inverso/microsoft Azure API
Basta configurar o API_URL_REDIRECT de acordo com as instruções em `config.py`.
2. Implantação em servidores em nuvem remotos (requer conhecimento e experiência de servidores em nuvem)
Acesse [Wiki de implementação remota do servidor em nuvem](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
3. Usando a WSL2 (sub-sistema do Windows para Linux)
Acesse [Wiki da implantação da WSL2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
4. Como executar em um subdiretório (ex. `http://localhost/subpath`)
Acesse [Instruções de execução FastAPI](docs/WithFastapi.md)
5. Execute usando o docker-compose
Leia o arquivo docker-compose.yml e siga as instruções.
# Uso Avançado
## Customize novos botões de acesso rápido / plug-ins de função personalizados
1. Personalizar novos botões de acesso rápido (atalhos acadêmicos)
Abra `core_functional.py` em qualquer editor de texto e adicione os seguintes itens e reinicie o programa (Se o botão já foi adicionado e pode ser visto, prefixos e sufixos são compatíveis com modificações em tempo real e não exigem reinício do programa para ter efeito.)
Por exemplo,
```
"Super Eng:": {
# Prefixo, será adicionado antes da sua entrada. Por exemplo, para descrever sua solicitação, como tradução, explicação de código, polimento, etc.
"Prefix": "Por favor, traduza o seguinte conteúdo para chinês e use uma tabela em Markdown para explicar termos próprios no texto: \n \n",
# Sufixo, será adicionado após a sua entrada. Por exemplo, emparelhado com o prefixo, pode colocar sua entrada entre aspas.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
2. Personalizar plug-ins de função
Escreva plug-ins de função poderosos para executar tarefas que você deseja e não pensava possível.
A dificuldade geral de escrever e depurar plug-ins neste projeto é baixa e, se você tem algum conhecimento básico de python, pode implementar suas próprias funções sobre o modelo que fornecemos.
Para mais detalhes, consulte o [Guia do plug-in de função.](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
---
# Última atualização
## Novas funções dinâmicas.
1. Função de salvamento de diálogo. Ao chamar o plug-in de função "Salvar diálogo atual", é possível salvar o diálogo atual em um arquivo html legível e reversível. Além disso, ao chamar o plug-in de função "Carregar arquivo de histórico de diálogo" no menu suspenso da área de plug-in, é possível restaurar uma conversa anterior. Dica: clicar em "Carregar arquivo de histórico de diálogo" sem especificar um arquivo permite visualizar o cache do arquivo html de histórico. Clicar em "Excluir todo o registro de histórico de diálogo local" permite excluir todo o cache de arquivo html.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. Geração de relatório. A maioria dos plug-ins gera um relatório de trabalho após a conclusão da execução.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
</div>
3. Design modular de funcionalidades, com interfaces simples, mas suporte a recursos poderosos
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
4. Este é um projeto de código aberto que é capaz de "auto-traduzir-se".
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
</div>
5. A tradução de outros projetos de código aberto é simples.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
</div>
6. Recursos decorativos para o [live2d](https://github.com/fghrsh/live2d_demo) (desativados por padrão, é necessário modificar o arquivo `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Suporte ao modelo de linguagem MOSS
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236639178-92836f37-13af-4fdd-984d-b4450fe30336.png" width="500" >
</div>
8. Geração de imagens pelo OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
9. Análise e resumo de áudio pelo OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
10. Revisão e correção de erros de texto em Latex.
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
</div>
## Versão:
- Versão 3.5(Todo): Usar linguagem natural para chamar todas as funções do projeto (prioridade alta)
- Versão 3.4(Todo): Melhorar o suporte à multithread para o chatglm local
- Versão 3.3: +Funções integradas de internet
- Versão 3.2: Suporte a mais interfaces de parâmetros de plug-in (função de salvar diálogo, interpretação de códigos de várias linguagens, perguntas de combinações LLM arbitrárias ao mesmo tempo)
- Versão 3.1: Suporte a perguntas a vários modelos de gpt simultaneamente! Suporte para api2d e balanceamento de carga para várias chaves api
- Versão 3.0: Suporte ao chatglm e outros LLMs de pequeno porte
- Versão 2.6: Refatoração da estrutura de plug-in, melhoria da interatividade e adição de mais plug-ins
- Versão 2.5: Autoatualização, resolvendo problemas de token de texto excessivamente longo e estouro ao compilar grandes projetos
- Versão 2.4: (1) Adição de funcionalidade de tradução de texto completo em PDF; (2) Adição de funcionalidade de mudança de posição da área de entrada; (3) Adição de opção de layout vertical; (4) Otimização de plug-ins de multithread.
- Versão 2.3: Melhoria da interatividade de multithread
- Versão 2.2: Suporte à recarga a quente de plug-ins
- Versão 2.1: Layout dobrável
- Versão 2.0: Introdução de plug-ins de função modular
- Versão 1.0: Funcionalidades básicasgpt_academic desenvolvedores QQ grupo-2: 610599535
- Problemas conhecidos
- Extensões de tradução de alguns navegadores podem interferir na execução do front-end deste software
- Uma versão muito alta ou muito baixa do Gradio pode causar vários erros
## Referências e Aprendizado
```
Foi feita referência a muitos projetos excelentes em código, principalmente:
# Projeto1: ChatGLM-6B da Tsinghua:
https://github.com/THUDM/ChatGLM-6B
# Projeto2: JittorLLMs da Tsinghua:
https://github.com/Jittor/JittorLLMs
# Projeto3: Edge-GPT:
https://github.com/acheong08/EdgeGPT
# Projeto4: ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Projeto5: ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Mais:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo
```
|