File size: 4,643 Bytes
1040e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import csv
import json
import torch
import argparse
import pandas as pd
from tqdm import tqdm
from peft import LoraConfig, get_peft_model
from torch.utils.data import Dataset, DataLoader
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor

parser = argparse.ArgumentParser()

parser.add_argument('--input_file', type = str, required = True, help = 'input csv file')
parser.add_argument('--output_file', type = str, help = 'output csv file')
parser.add_argument('--pretrained_ckpt', type = str, required = True, help = 'pretrained ckpt')
parser.add_argument('--trained_ckpt', type = str, help = 'trained ckpt')
parser.add_argument('--lora_r', type = int, default = 32)
parser.add_argument('--use_lora', action = 'store_true', help = 'lora model')
parser.add_argument('--all_params', action = 'store_true', help = 'all params')
parser.add_argument('--batch_size', type = int, default = 1)
parser.add_argument('--num_frames', type = int, default = 32)

args = parser.parse_args()

PROMPT_FEEDBACK = '''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <|video|>
Human: What is the misalignment between this video and the description: "{caption}"?
AI: '''

generate_kwargs = {
    'do_sample': True,
    'top_k': 5,
    'max_length': 512
}

class VideoCaptionDataset(Dataset):

    def __init__(self, input_file):
        self.data = pd.read_csv(input_file)
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        item = {}
        item['videopath'] = self.data.iloc[index]['videopath']
        item['neg_caption'] = self.data.iloc[index]['neg_caption']
        return item

def get_nle(args, model, processor, tokenizer, dataloader):

    with torch.no_grad():
        for _, batch in tqdm(enumerate(dataloader)):
            videopaths = batch['videopath']
            neg_caption = batch['neg_caption'][0]
            prompts = [PROMPT_FEEDBACK.format(caption = neg_caption)] 
            inputs = processor(text=prompts, videos=videopaths, num_frames=args.num_frames, return_tensors='pt')
            inputs = {k: v.bfloat16() if v.dtype == torch.float else v for k, v in inputs.items()}
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
            res = model.generate(**inputs, **generate_kwargs)
            generated_nle = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)

            with open(args.output_file, 'a') as f:
                writer = csv.writer(f)
                writer.writerow([videopaths[0], neg_caption, generated_nle])

def main():

    # Create dataloader
    dataset = VideoCaptionDataset(args.input_file)
    dataloader = DataLoader(dataset, batch_size = args.batch_size)

    pretrained_ckpt = args.pretrained_ckpt

    # Processors
    tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
    image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
    processor = MplugOwlProcessor(image_processor, tokenizer)

    # Instantiate model
    model = MplugOwlForConditionalGeneration.from_pretrained(
        pretrained_ckpt,
        torch_dtype=torch.bfloat16,
        device_map={'':0}
    )

    if args.use_lora:
        for name, param in model.named_parameters():
            param.requires_grad = False
        if args.all_params:
            peft_config = LoraConfig(
                target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)', 
                inference_mode=True, 
                r=args.lora_r, 
                lora_alpha=16, 
                lora_dropout=0.05
            )
        else:
            peft_config = LoraConfig(
                target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)', 
                inference_mode=True, 
                r=args.lora_r, 
                lora_alpha=16, 
                lora_dropout=0.05
            )

        model = get_peft_model(model, peft_config)
        model.print_trainable_parameters()
        with open(args.trained_ckpt, 'rb') as f:
            ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
        model.load_state_dict(ckpt)
        model = model.to(torch.bfloat16)
        print('Model Loaded')
        
    model.eval()

    # get nle
    get_nle(args, model, processor, tokenizer, dataloader)



if __name__  == "__main__":
    main()