Spaces:
Runtime error
Runtime error
Hritik
commited on
Commit
•
1040e55
1
Parent(s):
0187095
add pipeline video
Browse files- pipeline_video/__init__.py +0 -0
- pipeline_video/__pycache__/utils.cpython-310.pyc +0 -0
- pipeline_video/__pycache__/utils.cpython-39.pyc +0 -0
- pipeline_video/data_utils/__init__.py +29 -0
- pipeline_video/data_utils/__pycache__/__init__.cpython-310.pyc +0 -0
- pipeline_video/data_utils/__pycache__/__init__.cpython-39.pyc +0 -0
- pipeline_video/data_utils/__pycache__/randaugment.cpython-310.pyc +0 -0
- pipeline_video/data_utils/__pycache__/randaugment.cpython-39.pyc +0 -0
- pipeline_video/data_utils/__pycache__/registry.cpython-310.pyc +0 -0
- pipeline_video/data_utils/__pycache__/registry.cpython-39.pyc +0 -0
- pipeline_video/data_utils/__pycache__/xgpt3_dataset.cpython-310.pyc +0 -0
- pipeline_video/data_utils/__pycache__/xgpt3_dataset.cpython-39.pyc +0 -0
- pipeline_video/data_utils/processors/__init__.py +9 -0
- pipeline_video/data_utils/processors/__pycache__/__init__.cpython-310.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/__init__.cpython-39.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/builder.cpython-310.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/builder.cpython-39.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/caption_processor.cpython-310.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/caption_processor.cpython-39.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/default_processor.cpython-310.pyc +0 -0
- pipeline_video/data_utils/processors/__pycache__/default_processor.cpython-39.pyc +0 -0
- pipeline_video/data_utils/processors/builder.py +12 -0
- pipeline_video/data_utils/processors/caption_processor.py +53 -0
- pipeline_video/data_utils/processors/default_processor.py +42 -0
- pipeline_video/data_utils/randaugment.py +345 -0
- pipeline_video/data_utils/registry.py +422 -0
- pipeline_video/data_utils/xgpt3_dataset.py +204 -0
- pipeline_video/entailment_inference.py +122 -0
- pipeline_video/mplug_owl_video/__init__.py +77 -0
- pipeline_video/mplug_owl_video/__pycache__/__init__.cpython-310.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/__init__.cpython-39.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/configuration_mplug_owl.cpython-310.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/configuration_mplug_owl.cpython-39.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/modeling_mplug_owl.cpython-310.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/modeling_mplug_owl.cpython-39.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/processing_mplug_owl.cpython-310.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/processing_mplug_owl.cpython-39.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/tokenization_mplug_owl.cpython-310.pyc +0 -0
- pipeline_video/mplug_owl_video/__pycache__/tokenization_mplug_owl.cpython-39.pyc +0 -0
- pipeline_video/mplug_owl_video/configuration_mplug_owl.py +296 -0
- pipeline_video/mplug_owl_video/modeling_mplug_owl.py +1938 -0
- pipeline_video/mplug_owl_video/processing_mplug_owl.py +246 -0
- pipeline_video/mplug_owl_video/tokenization_mplug_owl.py +62 -0
- pipeline_video/nle_inference.py +126 -0
- pipeline_video/train.py +263 -0
- pipeline_video/utils.py +160 -0
pipeline_video/__init__.py
ADDED
File without changes
|
pipeline_video/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (7.93 kB). View file
|
|
pipeline_video/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (6.35 kB). View file
|
|
pipeline_video/data_utils/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from .processors.builder import build_processors
|
2 |
+
from .xgpt3_dataset import MultiModalDataset
|
3 |
+
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
|
4 |
+
|
5 |
+
def train_valid_test_datasets_provider(data_path, config, tokenizer, seq_length=1024, loss_objective = 'sequential'):
|
6 |
+
"""Build train and valid datasets."""
|
7 |
+
print('> building train and validation datasets for mPLUG-Owl ...')
|
8 |
+
train_ds, valid_ds = build_train_valid_test_datasets(
|
9 |
+
input_file=data_path,
|
10 |
+
tokenizer=tokenizer,
|
11 |
+
max_length=seq_length,
|
12 |
+
config=config, loss_objective = loss_objective)
|
13 |
+
print("> finished creating mPLUG-Owl datasets ...")
|
14 |
+
|
15 |
+
return train_ds, valid_ds
|
16 |
+
|
17 |
+
|
18 |
+
def build_train_valid_test_datasets(input_file, tokenizer, max_length=80, config=None):
|
19 |
+
|
20 |
+
# train_processors = build_processors(config['train_processors'])
|
21 |
+
# valid_processors = build_processors(config['valid_processors'])
|
22 |
+
|
23 |
+
image_processor = MplugOwlImageProcessor.from_pretrained(config['pretrained_ckpt'])
|
24 |
+
processor = MplugOwlProcessor(image_processor, tokenizer)
|
25 |
+
|
26 |
+
assert len(input_file) == 2 # If you have files more than 2, modify code at here or merger them into train and dev
|
27 |
+
train_ds = MultiModalDataset(input_file[0], tokenizer, processor, max_length, loss_objective = loss_objective)
|
28 |
+
valid_ds = MultiModalDataset(input_file[1], tokenizer, processor, max_length, loss_objective = loss_objective)
|
29 |
+
return (train_ds, valid_ds)
|
pipeline_video/data_utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
pipeline_video/data_utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.21 kB). View file
|
|
pipeline_video/data_utils/__pycache__/randaugment.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
pipeline_video/data_utils/__pycache__/randaugment.cpython-39.pyc
ADDED
Binary file (10.6 kB). View file
|
|
pipeline_video/data_utils/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
pipeline_video/data_utils/__pycache__/registry.cpython-39.pyc
ADDED
Binary file (13 kB). View file
|
|
pipeline_video/data_utils/__pycache__/xgpt3_dataset.cpython-310.pyc
ADDED
Binary file (6.59 kB). View file
|
|
pipeline_video/data_utils/__pycache__/xgpt3_dataset.cpython-39.pyc
ADDED
Binary file (5.45 kB). View file
|
|
pipeline_video/data_utils/processors/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba. All rights reserved.
|
2 |
+
from .builder import PROCESSORS, build_processors
|
3 |
+
from .default_processor import DefaultProcessor
|
4 |
+
from .caption_processor import CaptionProcessor
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'PROCESSORS', 'build_processors',
|
8 |
+
'DefaultProcessor', 'CaptionProcessor'
|
9 |
+
]
|
pipeline_video/data_utils/processors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (409 Bytes). View file
|
|
pipeline_video/data_utils/processors/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (407 Bytes). View file
|
|
pipeline_video/data_utils/processors/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (538 Bytes). View file
|
|
pipeline_video/data_utils/processors/__pycache__/builder.cpython-39.pyc
ADDED
Binary file (536 Bytes). View file
|
|
pipeline_video/data_utils/processors/__pycache__/caption_processor.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
pipeline_video/data_utils/processors/__pycache__/caption_processor.cpython-39.pyc
ADDED
Binary file (1.7 kB). View file
|
|
pipeline_video/data_utils/processors/__pycache__/default_processor.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
pipeline_video/data_utils/processors/__pycache__/default_processor.cpython-39.pyc
ADDED
Binary file (1.36 kB). View file
|
|
pipeline_video/data_utils/processors/builder.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from data_utils.registry import Registry, build_from_cfg
|
5 |
+
|
6 |
+
PROCESSORS = Registry('processors')
|
7 |
+
|
8 |
+
def build_processors(processors_cfg):
|
9 |
+
processors = dict()
|
10 |
+
for task, processor in processors_cfg.items():
|
11 |
+
processors[task] = build_from_cfg(processor, PROCESSORS)
|
12 |
+
return processors
|
pipeline_video/data_utils/processors/caption_processor.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import random
|
5 |
+
|
6 |
+
from data_utils.randaugment import RandomAugment
|
7 |
+
from .builder import PROCESSORS
|
8 |
+
|
9 |
+
|
10 |
+
@PROCESSORS.register_module()
|
11 |
+
class CaptionProcessor:
|
12 |
+
def __init__(self, image_size=224, min_scale = 0.5, randaug=False):
|
13 |
+
self.image_size = image_size
|
14 |
+
self.min_scale = min_scale
|
15 |
+
|
16 |
+
if randaug:
|
17 |
+
self.image_transform = transforms.Compose([
|
18 |
+
transforms.RandomResizedCrop(image_size,scale=(min_scale, 1.0), interpolation=Image.BICUBIC),
|
19 |
+
transforms.RandomHorizontalFlip(),
|
20 |
+
RandomAugment(2,7,isPIL=True,augs=['Identity','AutoContrast','Equalize','Brightness','Sharpness',
|
21 |
+
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
24 |
+
])
|
25 |
+
else:
|
26 |
+
self.image_transform = transforms.Compose([
|
27 |
+
transforms.RandomResizedCrop(image_size,scale=(min_scale, 1.0), interpolation=Image.BICUBIC),
|
28 |
+
transforms.RandomHorizontalFlip(),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
31 |
+
])
|
32 |
+
self.text_transform = None
|
33 |
+
|
34 |
+
def __call__(self, image, text):
|
35 |
+
assert image or text
|
36 |
+
|
37 |
+
if image:
|
38 |
+
image_input = self.image_transform(image)
|
39 |
+
else:
|
40 |
+
image_input = None
|
41 |
+
|
42 |
+
if text:
|
43 |
+
if isinstance(text["prompt"], list):
|
44 |
+
prompt = random.choice(text["prompt"])
|
45 |
+
else:
|
46 |
+
prompt = text["prompt"]
|
47 |
+
text_input = dict(
|
48 |
+
prompt=prompt,
|
49 |
+
completion=text["text"],
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
text_input = None
|
53 |
+
return image_input, text_input
|
pipeline_video/data_utils/processors/default_processor.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import random
|
5 |
+
|
6 |
+
from data_utils.randaugment import RandomAugment
|
7 |
+
from .builder import PROCESSORS
|
8 |
+
|
9 |
+
|
10 |
+
@PROCESSORS.register_module()
|
11 |
+
class DefaultProcessor:
|
12 |
+
def __init__(self, image_size=224):
|
13 |
+
self.image_size = image_size
|
14 |
+
|
15 |
+
self.image_transform = transforms.Compose([
|
16 |
+
transforms.Resize((image_size, image_size),interpolation=Image.BICUBIC),
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
19 |
+
])
|
20 |
+
|
21 |
+
self.text_transform = None
|
22 |
+
|
23 |
+
def __call__(self, image, text):
|
24 |
+
assert image or text
|
25 |
+
|
26 |
+
if image:
|
27 |
+
image_input = self.image_transform(image)
|
28 |
+
else:
|
29 |
+
image_input = None
|
30 |
+
|
31 |
+
if text:
|
32 |
+
if isinstance(text["prompt"], list):
|
33 |
+
prompt = random.choice(text["prompt"])
|
34 |
+
else:
|
35 |
+
prompt = text["prompt"]
|
36 |
+
text_input = dict(
|
37 |
+
prompt=prompt,
|
38 |
+
completion=text["text"],
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
text_input = None
|
42 |
+
return image_input, text_input
|
pipeline_video/data_utils/randaugment.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
## aug functions
|
7 |
+
def identity_func(img):
|
8 |
+
return img
|
9 |
+
|
10 |
+
|
11 |
+
def autocontrast_func(img, cutoff=0):
|
12 |
+
'''
|
13 |
+
same output as PIL.ImageOps.autocontrast
|
14 |
+
'''
|
15 |
+
n_bins = 256
|
16 |
+
|
17 |
+
def tune_channel(ch):
|
18 |
+
n = ch.size
|
19 |
+
cut = cutoff * n // 100
|
20 |
+
if cut == 0:
|
21 |
+
high, low = ch.max(), ch.min()
|
22 |
+
else:
|
23 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
24 |
+
low = np.argwhere(np.cumsum(hist) > cut)
|
25 |
+
low = 0 if low.shape[0] == 0 else low[0]
|
26 |
+
high = np.argwhere(np.cumsum(hist[::-1]) > cut)
|
27 |
+
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
|
28 |
+
if high <= low:
|
29 |
+
table = np.arange(n_bins)
|
30 |
+
else:
|
31 |
+
scale = (n_bins - 1) / (high - low)
|
32 |
+
offset = -low * scale
|
33 |
+
table = np.arange(n_bins) * scale + offset
|
34 |
+
table[table < 0] = 0
|
35 |
+
table[table > n_bins - 1] = n_bins - 1
|
36 |
+
table = table.clip(0, 255).astype(np.uint8)
|
37 |
+
return table[ch]
|
38 |
+
|
39 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
40 |
+
out = cv2.merge(channels)
|
41 |
+
return out
|
42 |
+
|
43 |
+
|
44 |
+
def equalize_func(img):
|
45 |
+
'''
|
46 |
+
same output as PIL.ImageOps.equalize
|
47 |
+
PIL's implementation is different from cv2.equalize
|
48 |
+
'''
|
49 |
+
n_bins = 256
|
50 |
+
|
51 |
+
def tune_channel(ch):
|
52 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
53 |
+
non_zero_hist = hist[hist != 0].reshape(-1)
|
54 |
+
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
|
55 |
+
if step == 0: return ch
|
56 |
+
n = np.empty_like(hist)
|
57 |
+
n[0] = step // 2
|
58 |
+
n[1:] = hist[:-1]
|
59 |
+
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
|
60 |
+
return table[ch]
|
61 |
+
|
62 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
63 |
+
out = cv2.merge(channels)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
def rotate_func(img, degree, fill=(0, 0, 0)):
|
68 |
+
'''
|
69 |
+
like PIL, rotate by degree, not radians
|
70 |
+
'''
|
71 |
+
H, W = img.shape[0], img.shape[1]
|
72 |
+
center = W / 2, H / 2
|
73 |
+
M = cv2.getRotationMatrix2D(center, degree, 1)
|
74 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
def solarize_func(img, thresh=128):
|
79 |
+
'''
|
80 |
+
same output as PIL.ImageOps.posterize
|
81 |
+
'''
|
82 |
+
table = np.array([el if el < thresh else 255 - el for el in range(256)])
|
83 |
+
table = table.clip(0, 255).astype(np.uint8)
|
84 |
+
out = table[img]
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
def color_func(img, factor):
|
89 |
+
'''
|
90 |
+
same output as PIL.ImageEnhance.Color
|
91 |
+
'''
|
92 |
+
## implementation according to PIL definition, quite slow
|
93 |
+
# degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
|
94 |
+
# out = blend(degenerate, img, factor)
|
95 |
+
# M = (
|
96 |
+
# np.eye(3) * factor
|
97 |
+
# + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
|
98 |
+
# )[np.newaxis, np.newaxis, :]
|
99 |
+
M = (
|
100 |
+
np.float32([
|
101 |
+
[0.886, -0.114, -0.114],
|
102 |
+
[-0.587, 0.413, -0.587],
|
103 |
+
[-0.299, -0.299, 0.701]]) * factor
|
104 |
+
+ np.float32([[0.114], [0.587], [0.299]])
|
105 |
+
)
|
106 |
+
out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
|
107 |
+
return out
|
108 |
+
|
109 |
+
|
110 |
+
def contrast_func(img, factor):
|
111 |
+
"""
|
112 |
+
same output as PIL.ImageEnhance.Contrast
|
113 |
+
"""
|
114 |
+
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
|
115 |
+
table = np.array([(
|
116 |
+
el - mean) * factor + mean
|
117 |
+
for el in range(256)
|
118 |
+
]).clip(0, 255).astype(np.uint8)
|
119 |
+
out = table[img]
|
120 |
+
return out
|
121 |
+
|
122 |
+
|
123 |
+
def brightness_func(img, factor):
|
124 |
+
'''
|
125 |
+
same output as PIL.ImageEnhance.Contrast
|
126 |
+
'''
|
127 |
+
table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
|
128 |
+
out = table[img]
|
129 |
+
return out
|
130 |
+
|
131 |
+
|
132 |
+
def sharpness_func(img, factor):
|
133 |
+
'''
|
134 |
+
The differences the this result and PIL are all on the 4 boundaries, the center
|
135 |
+
areas are same
|
136 |
+
'''
|
137 |
+
kernel = np.ones((3, 3), dtype=np.float32)
|
138 |
+
kernel[1][1] = 5
|
139 |
+
kernel /= 13
|
140 |
+
degenerate = cv2.filter2D(img, -1, kernel)
|
141 |
+
if factor == 0.0:
|
142 |
+
out = degenerate
|
143 |
+
elif factor == 1.0:
|
144 |
+
out = img
|
145 |
+
else:
|
146 |
+
out = img.astype(np.float32)
|
147 |
+
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
|
148 |
+
out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
|
149 |
+
out = out.astype(np.uint8)
|
150 |
+
return out
|
151 |
+
|
152 |
+
|
153 |
+
def shear_x_func(img, factor, fill=(0, 0, 0)):
|
154 |
+
H, W = img.shape[0], img.shape[1]
|
155 |
+
M = np.float32([[1, factor, 0], [0, 1, 0]])
|
156 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
157 |
+
return out
|
158 |
+
|
159 |
+
|
160 |
+
def translate_x_func(img, offset, fill=(0, 0, 0)):
|
161 |
+
'''
|
162 |
+
same output as PIL.Image.transform
|
163 |
+
'''
|
164 |
+
H, W = img.shape[0], img.shape[1]
|
165 |
+
M = np.float32([[1, 0, -offset], [0, 1, 0]])
|
166 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
167 |
+
return out
|
168 |
+
|
169 |
+
|
170 |
+
def translate_y_func(img, offset, fill=(0, 0, 0)):
|
171 |
+
'''
|
172 |
+
same output as PIL.Image.transform
|
173 |
+
'''
|
174 |
+
H, W = img.shape[0], img.shape[1]
|
175 |
+
M = np.float32([[1, 0, 0], [0, 1, -offset]])
|
176 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
177 |
+
return out
|
178 |
+
|
179 |
+
|
180 |
+
def posterize_func(img, bits):
|
181 |
+
'''
|
182 |
+
same output as PIL.ImageOps.posterize
|
183 |
+
'''
|
184 |
+
out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
|
185 |
+
return out
|
186 |
+
|
187 |
+
|
188 |
+
def shear_y_func(img, factor, fill=(0, 0, 0)):
|
189 |
+
H, W = img.shape[0], img.shape[1]
|
190 |
+
M = np.float32([[1, 0, 0], [factor, 1, 0]])
|
191 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
|
192 |
+
return out
|
193 |
+
|
194 |
+
|
195 |
+
def cutout_func(img, pad_size, replace=(0, 0, 0)):
|
196 |
+
replace = np.array(replace, dtype=np.uint8)
|
197 |
+
H, W = img.shape[0], img.shape[1]
|
198 |
+
rh, rw = np.random.random(2)
|
199 |
+
pad_size = pad_size // 2
|
200 |
+
ch, cw = int(rh * H), int(rw * W)
|
201 |
+
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
|
202 |
+
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
|
203 |
+
out = img.copy()
|
204 |
+
out[x1:x2, y1:y2, :] = replace
|
205 |
+
return out
|
206 |
+
|
207 |
+
|
208 |
+
### level to args
|
209 |
+
def enhance_level_to_args(MAX_LEVEL):
|
210 |
+
def level_to_args(level):
|
211 |
+
return ((level / MAX_LEVEL) * 1.8 + 0.1,)
|
212 |
+
return level_to_args
|
213 |
+
|
214 |
+
|
215 |
+
def shear_level_to_args(MAX_LEVEL, replace_value):
|
216 |
+
def level_to_args(level):
|
217 |
+
level = (level / MAX_LEVEL) * 0.3
|
218 |
+
if np.random.random() > 0.5: level = -level
|
219 |
+
return (level, replace_value)
|
220 |
+
|
221 |
+
return level_to_args
|
222 |
+
|
223 |
+
|
224 |
+
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
|
225 |
+
def level_to_args(level):
|
226 |
+
level = (level / MAX_LEVEL) * float(translate_const)
|
227 |
+
if np.random.random() > 0.5: level = -level
|
228 |
+
return (level, replace_value)
|
229 |
+
|
230 |
+
return level_to_args
|
231 |
+
|
232 |
+
|
233 |
+
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
|
234 |
+
def level_to_args(level):
|
235 |
+
level = int((level / MAX_LEVEL) * cutout_const)
|
236 |
+
return (level, replace_value)
|
237 |
+
|
238 |
+
return level_to_args
|
239 |
+
|
240 |
+
|
241 |
+
def solarize_level_to_args(MAX_LEVEL):
|
242 |
+
def level_to_args(level):
|
243 |
+
level = int((level / MAX_LEVEL) * 256)
|
244 |
+
return (level, )
|
245 |
+
return level_to_args
|
246 |
+
|
247 |
+
|
248 |
+
def none_level_to_args(level):
|
249 |
+
return ()
|
250 |
+
|
251 |
+
|
252 |
+
def posterize_level_to_args(MAX_LEVEL):
|
253 |
+
def level_to_args(level):
|
254 |
+
level = int((level / MAX_LEVEL) * 4)
|
255 |
+
return (level, )
|
256 |
+
return level_to_args
|
257 |
+
|
258 |
+
|
259 |
+
def rotate_level_to_args(MAX_LEVEL, replace_value):
|
260 |
+
def level_to_args(level):
|
261 |
+
level = (level / MAX_LEVEL) * 30
|
262 |
+
if np.random.random() < 0.5:
|
263 |
+
level = -level
|
264 |
+
return (level, replace_value)
|
265 |
+
|
266 |
+
return level_to_args
|
267 |
+
|
268 |
+
|
269 |
+
func_dict = {
|
270 |
+
'Identity': identity_func,
|
271 |
+
'AutoContrast': autocontrast_func,
|
272 |
+
'Equalize': equalize_func,
|
273 |
+
'Rotate': rotate_func,
|
274 |
+
'Solarize': solarize_func,
|
275 |
+
'Color': color_func,
|
276 |
+
'Contrast': contrast_func,
|
277 |
+
'Brightness': brightness_func,
|
278 |
+
'Sharpness': sharpness_func,
|
279 |
+
'ShearX': shear_x_func,
|
280 |
+
'TranslateX': translate_x_func,
|
281 |
+
'TranslateY': translate_y_func,
|
282 |
+
'Posterize': posterize_func,
|
283 |
+
'ShearY': shear_y_func,
|
284 |
+
}
|
285 |
+
|
286 |
+
translate_const = 10
|
287 |
+
MAX_LEVEL = 10
|
288 |
+
replace_value = (128, 128, 128)
|
289 |
+
arg_dict = {
|
290 |
+
'Identity': none_level_to_args,
|
291 |
+
'AutoContrast': none_level_to_args,
|
292 |
+
'Equalize': none_level_to_args,
|
293 |
+
'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
|
294 |
+
'Solarize': solarize_level_to_args(MAX_LEVEL),
|
295 |
+
'Color': enhance_level_to_args(MAX_LEVEL),
|
296 |
+
'Contrast': enhance_level_to_args(MAX_LEVEL),
|
297 |
+
'Brightness': enhance_level_to_args(MAX_LEVEL),
|
298 |
+
'Sharpness': enhance_level_to_args(MAX_LEVEL),
|
299 |
+
'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
|
300 |
+
'TranslateX': translate_level_to_args(
|
301 |
+
translate_const, MAX_LEVEL, replace_value
|
302 |
+
),
|
303 |
+
'TranslateY': translate_level_to_args(
|
304 |
+
translate_const, MAX_LEVEL, replace_value
|
305 |
+
),
|
306 |
+
'Posterize': posterize_level_to_args(MAX_LEVEL),
|
307 |
+
'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
|
308 |
+
}
|
309 |
+
|
310 |
+
|
311 |
+
class RandomAugment(object):
|
312 |
+
|
313 |
+
def __init__(self, N=2, M=10, isPIL=False, returnPIL=False, augs=[]):
|
314 |
+
self.N = N
|
315 |
+
self.M = M
|
316 |
+
self.isPIL = isPIL
|
317 |
+
self.returnPIL = returnPIL
|
318 |
+
if augs:
|
319 |
+
self.augs = augs
|
320 |
+
else:
|
321 |
+
self.augs = list(arg_dict.keys())
|
322 |
+
|
323 |
+
def get_random_ops(self):
|
324 |
+
sampled_ops = np.random.choice(self.augs, self.N)
|
325 |
+
return [(op, 0.5, self.M) for op in sampled_ops]
|
326 |
+
|
327 |
+
def __call__(self, img):
|
328 |
+
if self.isPIL:
|
329 |
+
img = np.array(img)
|
330 |
+
ops = self.get_random_ops()
|
331 |
+
for name, prob, level in ops:
|
332 |
+
if np.random.random() > prob:
|
333 |
+
continue
|
334 |
+
args = arg_dict[name](level)
|
335 |
+
img = func_dict[name](img, *args)
|
336 |
+
if self.returnPIL:
|
337 |
+
img = img.astype('uint8')
|
338 |
+
img = Image.fromarray(img)
|
339 |
+
return img
|
340 |
+
|
341 |
+
|
342 |
+
if __name__ == '__main__':
|
343 |
+
a = RandomAugment()
|
344 |
+
img = np.random.randn(32, 32, 3)
|
345 |
+
a(img)
|
pipeline_video/data_utils/registry.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba. All rights reserved.
|
2 |
+
import inspect
|
3 |
+
import warnings
|
4 |
+
import functools
|
5 |
+
from functools import partial
|
6 |
+
from typing import Any, Dict, Optional
|
7 |
+
from collections import abc
|
8 |
+
from inspect import getfullargspec
|
9 |
+
|
10 |
+
|
11 |
+
def is_seq_of(seq, expected_type, seq_type=None):
|
12 |
+
"""Check whether it is a sequence of some type.
|
13 |
+
Args:
|
14 |
+
seq (Sequence): The sequence to be checked.
|
15 |
+
expected_type (type): Expected type of sequence items.
|
16 |
+
seq_type (type, optional): Expected sequence type.
|
17 |
+
Returns:
|
18 |
+
bool: Whether the sequence is valid.
|
19 |
+
"""
|
20 |
+
if seq_type is None:
|
21 |
+
exp_seq_type = abc.Sequence
|
22 |
+
else:
|
23 |
+
assert isinstance(seq_type, type)
|
24 |
+
exp_seq_type = seq_type
|
25 |
+
if not isinstance(seq, exp_seq_type):
|
26 |
+
return False
|
27 |
+
for item in seq:
|
28 |
+
if not isinstance(item, expected_type):
|
29 |
+
return False
|
30 |
+
return True
|
31 |
+
|
32 |
+
|
33 |
+
def deprecated_api_warning(name_dict, cls_name=None):
|
34 |
+
"""A decorator to check if some arguments are deprecate and try to replace
|
35 |
+
deprecate src_arg_name to dst_arg_name.
|
36 |
+
Args:
|
37 |
+
name_dict(dict):
|
38 |
+
key (str): Deprecate argument names.
|
39 |
+
val (str): Expected argument names.
|
40 |
+
Returns:
|
41 |
+
func: New function.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def api_warning_wrapper(old_func):
|
45 |
+
|
46 |
+
@functools.wraps(old_func)
|
47 |
+
def new_func(*args, **kwargs):
|
48 |
+
# get the arg spec of the decorated method
|
49 |
+
args_info = getfullargspec(old_func)
|
50 |
+
# get name of the function
|
51 |
+
func_name = old_func.__name__
|
52 |
+
if cls_name is not None:
|
53 |
+
func_name = f'{cls_name}.{func_name}'
|
54 |
+
if args:
|
55 |
+
arg_names = args_info.args[:len(args)]
|
56 |
+
for src_arg_name, dst_arg_name in name_dict.items():
|
57 |
+
if src_arg_name in arg_names:
|
58 |
+
warnings.warn(
|
59 |
+
f'"{src_arg_name}" is deprecated in '
|
60 |
+
f'`{func_name}`, please use "{dst_arg_name}" '
|
61 |
+
'instead', DeprecationWarning)
|
62 |
+
arg_names[arg_names.index(src_arg_name)] = dst_arg_name
|
63 |
+
if kwargs:
|
64 |
+
for src_arg_name, dst_arg_name in name_dict.items():
|
65 |
+
if src_arg_name in kwargs:
|
66 |
+
|
67 |
+
assert dst_arg_name not in kwargs, (
|
68 |
+
f'The expected behavior is to replace '
|
69 |
+
f'the deprecated key `{src_arg_name}` to '
|
70 |
+
f'new key `{dst_arg_name}`, but got them '
|
71 |
+
f'in the arguments at the same time, which '
|
72 |
+
f'is confusing. `{src_arg_name} will be '
|
73 |
+
f'deprecated in the future, please '
|
74 |
+
f'use `{dst_arg_name}` instead.')
|
75 |
+
|
76 |
+
warnings.warn(
|
77 |
+
f'"{src_arg_name}" is deprecated in '
|
78 |
+
f'`{func_name}`, please use "{dst_arg_name}" '
|
79 |
+
'instead', DeprecationWarning)
|
80 |
+
kwargs[dst_arg_name] = kwargs.pop(src_arg_name)
|
81 |
+
|
82 |
+
# apply converted arguments to the decorated method
|
83 |
+
output = old_func(*args, **kwargs)
|
84 |
+
return output
|
85 |
+
|
86 |
+
return new_func
|
87 |
+
|
88 |
+
return api_warning_wrapper
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def build_from_cfg(cfg: Dict,
|
93 |
+
registry: 'Registry',
|
94 |
+
default_args: Optional[Dict] = None) -> Any:
|
95 |
+
"""Build a module from config dict when it is a class configuration, or
|
96 |
+
call a function from config dict when it is a function configuration.
|
97 |
+
|
98 |
+
Example:
|
99 |
+
>>> MODELS = Registry('models')
|
100 |
+
>>> @MODELS.register_module()
|
101 |
+
>>> class ResNet:
|
102 |
+
>>> pass
|
103 |
+
>>> resnet = build_from_cfg(dict(type='Resnet'), MODELS)
|
104 |
+
>>> # Returns an instantiated object
|
105 |
+
>>> @MODELS.register_module()
|
106 |
+
>>> def resnet50():
|
107 |
+
>>> pass
|
108 |
+
>>> resnet = build_from_cfg(dict(type='resnet50'), MODELS)
|
109 |
+
>>> # Return a result of the calling function
|
110 |
+
|
111 |
+
Args:
|
112 |
+
cfg (dict): Config dict. It should at least contain the key "type".
|
113 |
+
registry (:obj:`Registry`): The registry to search the type from.
|
114 |
+
default_args (dict, optional): Default initialization arguments.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
object: The constructed object.
|
118 |
+
"""
|
119 |
+
if not isinstance(cfg, dict):
|
120 |
+
raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
|
121 |
+
if 'type' not in cfg:
|
122 |
+
if default_args is None or 'type' not in default_args:
|
123 |
+
raise KeyError(
|
124 |
+
'`cfg` or `default_args` must contain the key "type", '
|
125 |
+
f'but got {cfg}\n{default_args}')
|
126 |
+
if not isinstance(registry, Registry):
|
127 |
+
raise TypeError('registry must be an mmcv.Registry object, '
|
128 |
+
f'but got {type(registry)}')
|
129 |
+
if not (isinstance(default_args, dict) or default_args is None):
|
130 |
+
raise TypeError('default_args must be a dict or None, '
|
131 |
+
f'but got {type(default_args)}')
|
132 |
+
|
133 |
+
args = cfg.copy()
|
134 |
+
|
135 |
+
if default_args is not None:
|
136 |
+
for name, value in default_args.items():
|
137 |
+
args.setdefault(name, value)
|
138 |
+
|
139 |
+
obj_type = args.pop('type')
|
140 |
+
if isinstance(obj_type, str):
|
141 |
+
obj_cls = registry.get(obj_type)
|
142 |
+
if obj_cls is None:
|
143 |
+
raise KeyError(
|
144 |
+
f'{obj_type} is not in the {registry.name} registry')
|
145 |
+
elif inspect.isclass(obj_type) or inspect.isfunction(obj_type):
|
146 |
+
obj_cls = obj_type
|
147 |
+
else:
|
148 |
+
raise TypeError(
|
149 |
+
f'type must be a str or valid type, but got {type(obj_type)}')
|
150 |
+
try:
|
151 |
+
return obj_cls(**args)
|
152 |
+
except Exception as e:
|
153 |
+
# Normal TypeError does not print class name.
|
154 |
+
raise type(e)(f'{obj_cls.__name__}: {e}')
|
155 |
+
|
156 |
+
|
157 |
+
class Registry:
|
158 |
+
"""A registry to map strings to classes or functions.
|
159 |
+
|
160 |
+
Registered object could be built from registry. Meanwhile, registered
|
161 |
+
functions could be called from registry.
|
162 |
+
|
163 |
+
Example:
|
164 |
+
>>> MODELS = Registry('models')
|
165 |
+
>>> @MODELS.register_module()
|
166 |
+
>>> class ResNet:
|
167 |
+
>>> pass
|
168 |
+
>>> resnet = MODELS.build(dict(type='ResNet'))
|
169 |
+
>>> @MODELS.register_module()
|
170 |
+
>>> def resnet50():
|
171 |
+
>>> pass
|
172 |
+
>>> resnet = MODELS.build(dict(type='resnet50'))
|
173 |
+
|
174 |
+
Please refer to
|
175 |
+
https://mmcv.readthedocs.io/en/latest/understand_mmcv/registry.html for
|
176 |
+
advanced usage.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
name (str): Registry name.
|
180 |
+
build_func(func, optional): Build function to construct instance from
|
181 |
+
Registry, func:`build_from_cfg` is used if neither ``parent`` or
|
182 |
+
``build_func`` is specified. If ``parent`` is specified and
|
183 |
+
``build_func`` is not given, ``build_func`` will be inherited
|
184 |
+
from ``parent``. Default: None.
|
185 |
+
parent (Registry, optional): Parent registry. The class registered in
|
186 |
+
children registry could be built from parent. Default: None.
|
187 |
+
scope (str, optional): The scope of registry. It is the key to search
|
188 |
+
for children registry. If not specified, scope will be the name of
|
189 |
+
the package where class is defined, e.g. mmdet, mmcls, mmseg.
|
190 |
+
Default: None.
|
191 |
+
"""
|
192 |
+
|
193 |
+
def __init__(self, name, build_func=None, parent=None, scope=None):
|
194 |
+
self._name = name
|
195 |
+
self._module_dict = dict()
|
196 |
+
self._children = dict()
|
197 |
+
self._scope = self.infer_scope() if scope is None else scope
|
198 |
+
|
199 |
+
# self.build_func will be set with the following priority:
|
200 |
+
# 1. build_func
|
201 |
+
# 2. parent.build_func
|
202 |
+
# 3. build_from_cfg
|
203 |
+
if build_func is None:
|
204 |
+
if parent is not None:
|
205 |
+
self.build_func = parent.build_func
|
206 |
+
else:
|
207 |
+
self.build_func = build_from_cfg
|
208 |
+
else:
|
209 |
+
self.build_func = build_func
|
210 |
+
if parent is not None:
|
211 |
+
assert isinstance(parent, Registry)
|
212 |
+
parent._add_children(self)
|
213 |
+
self.parent = parent
|
214 |
+
else:
|
215 |
+
self.parent = None
|
216 |
+
|
217 |
+
def __len__(self):
|
218 |
+
return len(self._module_dict)
|
219 |
+
|
220 |
+
def __contains__(self, key):
|
221 |
+
return self.get(key) is not None
|
222 |
+
|
223 |
+
def __repr__(self):
|
224 |
+
format_str = self.__class__.__name__ + \
|
225 |
+
f'(name={self._name}, ' \
|
226 |
+
f'items={self._module_dict})'
|
227 |
+
return format_str
|
228 |
+
|
229 |
+
@staticmethod
|
230 |
+
def infer_scope():
|
231 |
+
"""Infer the scope of registry.
|
232 |
+
|
233 |
+
The name of the package where registry is defined will be returned.
|
234 |
+
|
235 |
+
Example:
|
236 |
+
>>> # in mmdet/models/backbone/resnet.py
|
237 |
+
>>> MODELS = Registry('models')
|
238 |
+
>>> @MODELS.register_module()
|
239 |
+
>>> class ResNet:
|
240 |
+
>>> pass
|
241 |
+
The scope of ``ResNet`` will be ``mmdet``.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
str: The inferred scope name.
|
245 |
+
"""
|
246 |
+
# We access the caller using inspect.currentframe() instead of
|
247 |
+
# inspect.stack() for performance reasons. See details in PR #1844
|
248 |
+
frame = inspect.currentframe()
|
249 |
+
# get the frame where `infer_scope()` is called
|
250 |
+
infer_scope_caller = frame.f_back.f_back
|
251 |
+
filename = inspect.getmodule(infer_scope_caller).__name__
|
252 |
+
split_filename = filename.split('.')
|
253 |
+
return split_filename[0]
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def split_scope_key(key):
|
257 |
+
"""Split scope and key.
|
258 |
+
|
259 |
+
The first scope will be split from key.
|
260 |
+
|
261 |
+
Examples:
|
262 |
+
>>> Registry.split_scope_key('mmdet.ResNet')
|
263 |
+
'mmdet', 'ResNet'
|
264 |
+
>>> Registry.split_scope_key('ResNet')
|
265 |
+
None, 'ResNet'
|
266 |
+
|
267 |
+
Return:
|
268 |
+
tuple[str | None, str]: The former element is the first scope of
|
269 |
+
the key, which can be ``None``. The latter is the remaining key.
|
270 |
+
"""
|
271 |
+
split_index = key.find('.')
|
272 |
+
if split_index != -1:
|
273 |
+
return key[:split_index], key[split_index + 1:]
|
274 |
+
else:
|
275 |
+
return None, key
|
276 |
+
|
277 |
+
@property
|
278 |
+
def name(self):
|
279 |
+
return self._name
|
280 |
+
|
281 |
+
@property
|
282 |
+
def scope(self):
|
283 |
+
return self._scope
|
284 |
+
|
285 |
+
@property
|
286 |
+
def module_dict(self):
|
287 |
+
return self._module_dict
|
288 |
+
|
289 |
+
@property
|
290 |
+
def children(self):
|
291 |
+
return self._children
|
292 |
+
|
293 |
+
def get(self, key):
|
294 |
+
"""Get the registry record.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
key (str): The class name in string format.
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
class: The corresponding class.
|
301 |
+
"""
|
302 |
+
scope, real_key = self.split_scope_key(key)
|
303 |
+
if scope is None or scope == self._scope:
|
304 |
+
# get from self
|
305 |
+
if real_key in self._module_dict:
|
306 |
+
return self._module_dict[real_key]
|
307 |
+
else:
|
308 |
+
# get from self._children
|
309 |
+
if scope in self._children:
|
310 |
+
return self._children[scope].get(real_key)
|
311 |
+
else:
|
312 |
+
# goto root
|
313 |
+
parent = self.parent
|
314 |
+
while parent.parent is not None:
|
315 |
+
parent = parent.parent
|
316 |
+
return parent.get(key)
|
317 |
+
|
318 |
+
def build(self, *args, **kwargs):
|
319 |
+
return self.build_func(*args, **kwargs, registry=self)
|
320 |
+
|
321 |
+
def _add_children(self, registry):
|
322 |
+
"""Add children for a registry.
|
323 |
+
|
324 |
+
The ``registry`` will be added as children based on its scope.
|
325 |
+
The parent registry could build objects from children registry.
|
326 |
+
|
327 |
+
Example:
|
328 |
+
>>> models = Registry('models')
|
329 |
+
>>> mmdet_models = Registry('models', parent=models)
|
330 |
+
>>> @mmdet_models.register_module()
|
331 |
+
>>> class ResNet:
|
332 |
+
>>> pass
|
333 |
+
>>> resnet = models.build(dict(type='mmdet.ResNet'))
|
334 |
+
"""
|
335 |
+
|
336 |
+
assert isinstance(registry, Registry)
|
337 |
+
assert registry.scope is not None
|
338 |
+
assert registry.scope not in self.children, \
|
339 |
+
f'scope {registry.scope} exists in {self.name} registry'
|
340 |
+
self.children[registry.scope] = registry
|
341 |
+
|
342 |
+
@deprecated_api_warning(name_dict=dict(module_class='module'))
|
343 |
+
def _register_module(self, module, module_name=None, force=False):
|
344 |
+
if not inspect.isclass(module) and not inspect.isfunction(module):
|
345 |
+
raise TypeError('module must be a class or a function, '
|
346 |
+
f'but got {type(module)}')
|
347 |
+
|
348 |
+
if module_name is None:
|
349 |
+
module_name = module.__name__
|
350 |
+
if isinstance(module_name, str):
|
351 |
+
module_name = [module_name]
|
352 |
+
for name in module_name:
|
353 |
+
if not force and name in self._module_dict:
|
354 |
+
raise KeyError(f'{name} is already registered '
|
355 |
+
f'in {self.name}')
|
356 |
+
self._module_dict[name] = module
|
357 |
+
|
358 |
+
def deprecated_register_module(self, cls=None, force=False):
|
359 |
+
warnings.warn(
|
360 |
+
'The old API of register_module(module, force=False) '
|
361 |
+
'is deprecated and will be removed, please use the new API '
|
362 |
+
'register_module(name=None, force=False, module=None) instead.',
|
363 |
+
DeprecationWarning)
|
364 |
+
if cls is None:
|
365 |
+
return partial(self.deprecated_register_module, force=force)
|
366 |
+
self._register_module(cls, force=force)
|
367 |
+
return cls
|
368 |
+
|
369 |
+
def register_module(self, name=None, force=False, module=None):
|
370 |
+
"""Register a module.
|
371 |
+
|
372 |
+
A record will be added to `self._module_dict`, whose key is the class
|
373 |
+
name or the specified name, and value is the class itself.
|
374 |
+
It can be used as a decorator or a normal function.
|
375 |
+
|
376 |
+
Example:
|
377 |
+
>>> backbones = Registry('backbone')
|
378 |
+
>>> @backbones.register_module()
|
379 |
+
>>> class ResNet:
|
380 |
+
>>> pass
|
381 |
+
|
382 |
+
>>> backbones = Registry('backbone')
|
383 |
+
>>> @backbones.register_module(name='mnet')
|
384 |
+
>>> class MobileNet:
|
385 |
+
>>> pass
|
386 |
+
|
387 |
+
>>> backbones = Registry('backbone')
|
388 |
+
>>> class ResNet:
|
389 |
+
>>> pass
|
390 |
+
>>> backbones.register_module(ResNet)
|
391 |
+
|
392 |
+
Args:
|
393 |
+
name (str | None): The module name to be registered. If not
|
394 |
+
specified, the class name will be used.
|
395 |
+
force (bool, optional): Whether to override an existing class with
|
396 |
+
the same name. Default: False.
|
397 |
+
module (type): Module class or function to be registered.
|
398 |
+
"""
|
399 |
+
if not isinstance(force, bool):
|
400 |
+
raise TypeError(f'force must be a boolean, but got {type(force)}')
|
401 |
+
# NOTE: This is a walkaround to be compatible with the old api,
|
402 |
+
# while it may introduce unexpected bugs.
|
403 |
+
if isinstance(name, type):
|
404 |
+
return self.deprecated_register_module(name, force=force)
|
405 |
+
|
406 |
+
# raise the error ahead of time
|
407 |
+
if not (name is None or isinstance(name, str) or is_seq_of(name, str)):
|
408 |
+
raise TypeError(
|
409 |
+
'name must be either of None, an instance of str or a sequence'
|
410 |
+
f' of str, but got {type(name)}')
|
411 |
+
|
412 |
+
# use it as a normal method: x.register_module(module=SomeClass)
|
413 |
+
if module is not None:
|
414 |
+
self._register_module(module=module, module_name=name, force=force)
|
415 |
+
return module
|
416 |
+
|
417 |
+
# use it as a decorator: @x.register_module()
|
418 |
+
def _register(module):
|
419 |
+
self._register_module(module=module, module_name=name, force=force)
|
420 |
+
return module
|
421 |
+
|
422 |
+
return _register
|
pipeline_video/data_utils/xgpt3_dataset.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
import traceback
|
8 |
+
import warnings
|
9 |
+
from io import BytesIO
|
10 |
+
import pandas as pd
|
11 |
+
import h5py
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from icecream import ic
|
15 |
+
from PIL import Image, ImageFile
|
16 |
+
from torch.utils.data import Dataset, Subset
|
17 |
+
|
18 |
+
from utils import get_args
|
19 |
+
|
20 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
21 |
+
ImageFile.MAX_IMAGE_PIXELS = None
|
22 |
+
Image.MAX_IMAGE_PIXELS = None
|
23 |
+
|
24 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
25 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
26 |
+
level=logging.INFO)
|
27 |
+
warnings.filterwarnings("ignore")
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def load_jsonl(filename):
|
32 |
+
with open(filename, "r", encoding="utf-8") as f:
|
33 |
+
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
34 |
+
|
35 |
+
|
36 |
+
class MultiModalDataset(Dataset):
|
37 |
+
"""MultiModal dataset"""
|
38 |
+
|
39 |
+
def __init__(self, input_file, tokenizer, processor,
|
40 |
+
max_length=2048,
|
41 |
+
media_tokens=['<image>', '<|video|>'], loss_objective = 'sequential'):
|
42 |
+
|
43 |
+
args = get_args()
|
44 |
+
|
45 |
+
self.loss_objective = loss_objective
|
46 |
+
if 'sequential' in self.loss_objective:
|
47 |
+
self.dataset = pd.read_csv(input_file)
|
48 |
+
self.dataset = self.dataset.dropna()
|
49 |
+
else:
|
50 |
+
raise NotImplementedError('dataset loader not implemented for other loss objectives')
|
51 |
+
|
52 |
+
self.dataset = pd.read_csv(input_file)
|
53 |
+
self.tokenizer = tokenizer
|
54 |
+
self.max_length = max_length
|
55 |
+
self.processor = processor
|
56 |
+
self.media_tokens = {k: -int(i+1) for i, k in enumerate(media_tokens)}
|
57 |
+
self.media_lengths = {'<image>': 1+64,'<|video|>': 1+64}
|
58 |
+
print("num_media_token: ", self.media_lengths)
|
59 |
+
print(len(self.dataset))
|
60 |
+
self.bucket = {}
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.dataset)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
|
67 |
+
data = self.dataset.iloc[index]
|
68 |
+
videopath = data['videopath']
|
69 |
+
caption = data['caption']
|
70 |
+
video_input = self.processor(videos=[videopath], num_frames=32, return_tensors='pt') # video_pixel_values
|
71 |
+
text_input = self._extract_text_token_from_conversation(caption, self.max_length, index)
|
72 |
+
item = {'video': video_input, 'text': text_input, 'videopath': videopath, 'caption': caption}
|
73 |
+
return item
|
74 |
+
|
75 |
+
def _extract_text_token_from_conversation(self, data, max_length, index):
|
76 |
+
# output enc_chunk
|
77 |
+
enc_chunk = []
|
78 |
+
|
79 |
+
if self.tokenizer.bos_token_id > 0:
|
80 |
+
prompt_chunk = [self.tokenizer.bos_token_id]
|
81 |
+
else:
|
82 |
+
prompt_chunk = []
|
83 |
+
|
84 |
+
# conversation = data["completion"]
|
85 |
+
conversation = data
|
86 |
+
|
87 |
+
# For Text only data
|
88 |
+
if all([media_token not in conversation for media_token in self.media_tokens.keys()]):
|
89 |
+
pattern = '|'.join(map(re.escape, ['AI: ', '\nHuman: ']))
|
90 |
+
chunk_strs = re.split(f'({pattern})', conversation)
|
91 |
+
prompt_length = -1
|
92 |
+
stop_flag = False
|
93 |
+
for idx, chunk_str in enumerate(chunk_strs):
|
94 |
+
if idx == 0:
|
95 |
+
enc_chunk = prompt_chunk + \
|
96 |
+
self.tokenizer(chunk_str, add_special_tokens=False)[
|
97 |
+
'input_ids']
|
98 |
+
enc_length = len(enc_chunk)
|
99 |
+
label_chunk = [0] * enc_length
|
100 |
+
else:
|
101 |
+
if chunk_strs[idx-1] == 'AI: ':
|
102 |
+
curr_chunk = self.tokenizer(
|
103 |
+
chunk_str, add_special_tokens=False)['input_ids']
|
104 |
+
if enc_length + len(curr_chunk) >= max_length:
|
105 |
+
curr_chunk = curr_chunk[:max_length-enc_length]
|
106 |
+
stop_flag = True
|
107 |
+
curr_chunk += [self.tokenizer.eos_token_id]
|
108 |
+
enc_length += len(curr_chunk)
|
109 |
+
enc_chunk += curr_chunk
|
110 |
+
label_chunk += [1] * len(curr_chunk)
|
111 |
+
else:
|
112 |
+
curr_chunk = self.tokenizer(
|
113 |
+
chunk_str, add_special_tokens=False)['input_ids']
|
114 |
+
if enc_length + len(curr_chunk) >= max_length + 1:
|
115 |
+
curr_chunk = curr_chunk[:max_length+1-enc_length]
|
116 |
+
stop_flag = True
|
117 |
+
enc_length += len(curr_chunk)
|
118 |
+
enc_chunk += curr_chunk
|
119 |
+
label_chunk += [0] * len(curr_chunk)
|
120 |
+
if stop_flag:
|
121 |
+
break
|
122 |
+
|
123 |
+
# For Image-Text Data
|
124 |
+
else:
|
125 |
+
enc_length = 0
|
126 |
+
prompt_length = -2
|
127 |
+
pattern = '|'.join(
|
128 |
+
map(re.escape, list(self.media_tokens.keys()) + ['AI: ', '\nHuman: ']))
|
129 |
+
chunk_strs = re.split(f'({pattern})', conversation)
|
130 |
+
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
131 |
+
for idx, chunk_str in enumerate(chunk_strs):
|
132 |
+
if enc_length >= max_length + 1:
|
133 |
+
break
|
134 |
+
|
135 |
+
if idx == 0:
|
136 |
+
enc_chunk = prompt_chunk + \
|
137 |
+
self.tokenizer(chunk_str, add_special_tokens=False)[
|
138 |
+
'input_ids']
|
139 |
+
enc_length = len(enc_chunk)
|
140 |
+
label_chunk = [0] * enc_length
|
141 |
+
else:
|
142 |
+
if chunk_str in self.media_tokens:
|
143 |
+
# [CLS] + 256 + [EOS]
|
144 |
+
if enc_length + self.media_lengths[chunk_str] > max_length + 1:
|
145 |
+
break
|
146 |
+
else:
|
147 |
+
enc_chunk += [self.media_tokens[chunk_str]
|
148 |
+
] * self.media_lengths[chunk_str]
|
149 |
+
enc_length += self.media_lengths[chunk_str]
|
150 |
+
label_chunk += [0] * self.media_lengths[chunk_str]
|
151 |
+
else:
|
152 |
+
|
153 |
+
if chunk_strs[idx-1] == 'AI: ':
|
154 |
+
curr_chunk = self.tokenizer(
|
155 |
+
chunk_str, add_special_tokens=False)['input_ids']
|
156 |
+
if enc_length + len(curr_chunk) >= max_length:
|
157 |
+
curr_chunk = curr_chunk[:max_length-enc_length]
|
158 |
+
curr_chunk += [self.tokenizer.eos_token_id]
|
159 |
+
enc_length += len(curr_chunk)
|
160 |
+
enc_chunk += curr_chunk
|
161 |
+
label_chunk += [1] * len(curr_chunk)
|
162 |
+
else:
|
163 |
+
curr_chunk = self.tokenizer(
|
164 |
+
chunk_str, add_special_tokens=False)['input_ids']
|
165 |
+
if enc_length + len(curr_chunk) >= max_length + 1:
|
166 |
+
curr_chunk = curr_chunk[:max_length +
|
167 |
+
1-enc_length]
|
168 |
+
enc_length += len(curr_chunk)
|
169 |
+
enc_chunk += curr_chunk
|
170 |
+
label_chunk += [0] * len(curr_chunk)
|
171 |
+
|
172 |
+
if enc_length < max_length + 1:
|
173 |
+
padding_chunk = [self.tokenizer.pad_token_id] * \
|
174 |
+
(max_length + 1 - enc_length)
|
175 |
+
padding_length = len(padding_chunk)
|
176 |
+
label_chunk += [0] * (max_length + 1 - enc_length)
|
177 |
+
enc_chunk = enc_chunk + padding_chunk
|
178 |
+
else:
|
179 |
+
padding_length = 0
|
180 |
+
|
181 |
+
assert enc_length + padding_length == max_length + \
|
182 |
+
1, (index, prompt_length, enc_length,
|
183 |
+
padding_length, max_length + 1)
|
184 |
+
assert len(label_chunk) == max_length + \
|
185 |
+
1, (len(label_chunk), max_length + 1)
|
186 |
+
non_padding_mask = [1 if i < enc_length -
|
187 |
+
1 else 0 for i in range(max_length)]
|
188 |
+
|
189 |
+
enc_chunk = torch.tensor(enc_chunk).long()
|
190 |
+
non_padding_mask = torch.tensor(non_padding_mask).long()
|
191 |
+
prompt_mask = torch.tensor(label_chunk)[1:].long()
|
192 |
+
prompt_length = torch.tensor([prompt_length]).long()
|
193 |
+
|
194 |
+
# Create loss mask
|
195 |
+
if all([media_token not in conversation for media_token in self.media_tokens.keys()]):
|
196 |
+
non_media_mask = torch.ones_like(non_padding_mask).long()
|
197 |
+
else:
|
198 |
+
tmp_enc_chunk = enc_chunk.clone()
|
199 |
+
tmp_enc_chunk[tmp_enc_chunk >= 0] = 1
|
200 |
+
tmp_enc_chunk[tmp_enc_chunk < 0] = 0
|
201 |
+
non_media_mask = torch.tensor(tmp_enc_chunk).long()
|
202 |
+
non_media_mask = non_media_mask[1:].long()
|
203 |
+
return {'input_ids': enc_chunk, "prompt_length": prompt_length, 'seq_length': enc_length,
|
204 |
+
"non_padding_mask": non_padding_mask, 'non_media_mask': non_media_mask, 'prompt_mask': prompt_mask}
|
pipeline_video/entailment_inference.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import argparse
|
6 |
+
import pandas as pd
|
7 |
+
import torch.nn as nn
|
8 |
+
from tqdm import tqdm
|
9 |
+
from collections import defaultdict
|
10 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
|
13 |
+
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
|
14 |
+
from peft import LoraConfig, get_peft_model
|
15 |
+
from data_utils.xgpt3_dataset import MultiModalDataset
|
16 |
+
from utils import batchify
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
|
20 |
+
parser.add_argument('--input_csv', type = str, required = True, help = 'input json file')
|
21 |
+
parser.add_argument('--output_csv', type = str, help = 'output csv with scores')
|
22 |
+
parser.add_argument('--pretrained_ckpt', type = str, required = True, help = 'pretrained ckpt')
|
23 |
+
parser.add_argument('--trained_ckpt', type = str, help = 'trained ckpt')
|
24 |
+
parser.add_argument('--lora_r', type = int, default = 32)
|
25 |
+
parser.add_argument('--use_lora', action = 'store_true', help = 'lora model')
|
26 |
+
parser.add_argument('--all-params', action = 'store_true', help = 'use all params of the model')
|
27 |
+
parser.add_argument('--batch_size', type = int, default = 32)
|
28 |
+
|
29 |
+
args = parser.parse_args()
|
30 |
+
softmax = nn.Softmax(dim=2)
|
31 |
+
|
32 |
+
def get_entail(logits, input_ids, tokenizer):
|
33 |
+
logits = softmax(logits)
|
34 |
+
token_id_yes = tokenizer.encode('Yes', add_special_tokens = False)[0]
|
35 |
+
token_id_no = tokenizer.encode('No', add_special_tokens = False)[0]
|
36 |
+
entailment = []
|
37 |
+
for j in range(len(logits)):
|
38 |
+
for i in range(len(input_ids[j])):
|
39 |
+
if input_ids[j][i] == tokenizer.pad_token_id: # pad token if the answer is not present
|
40 |
+
i = i - 1
|
41 |
+
break
|
42 |
+
elif i == len(input_ids[j]) - 1:
|
43 |
+
break
|
44 |
+
score = logits[j][i][token_id_yes] / (logits[j][i][token_id_yes] + logits[j][i][token_id_no])
|
45 |
+
entailment.append(score)
|
46 |
+
entailment = torch.stack(entailment)
|
47 |
+
return entailment
|
48 |
+
|
49 |
+
def get_scores(model, tokenizer, dataloader):
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
for index, inputs in tqdm(enumerate(dataloader)):
|
53 |
+
for k, v in inputs.items():
|
54 |
+
if torch.is_tensor(v):
|
55 |
+
if v.dtype == torch.float:
|
56 |
+
inputs[k] = v.bfloat16()
|
57 |
+
inputs[k] = inputs[k].to(model.device)
|
58 |
+
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = None, \
|
59 |
+
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
|
60 |
+
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
|
61 |
+
logits = outputs['logits']
|
62 |
+
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
|
63 |
+
for m in range(len(entail_scores)):
|
64 |
+
with open(args.output_csv, 'a') as f:
|
65 |
+
writer = csv.writer(f)
|
66 |
+
writer.writerow([inputs['videopaths'][m], inputs['captions'][m], entail_scores[m].item()])
|
67 |
+
print(f"Batch {index} Done")
|
68 |
+
|
69 |
+
def main():
|
70 |
+
|
71 |
+
pretrained_ckpt = args.pretrained_ckpt
|
72 |
+
|
73 |
+
# Processors
|
74 |
+
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
|
75 |
+
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
|
76 |
+
processor = MplugOwlProcessor(image_processor, tokenizer)
|
77 |
+
|
78 |
+
valid_data = MultiModalDataset(args.input_csv, tokenizer, processor, max_length = 256, loss_objective = 'sequential')
|
79 |
+
dataloader = DataLoader(valid_data, batch_size=args.batch_size, pin_memory=True, collate_fn=batchify)
|
80 |
+
|
81 |
+
# Instantiate model
|
82 |
+
model = MplugOwlForConditionalGeneration.from_pretrained(
|
83 |
+
pretrained_ckpt,
|
84 |
+
torch_dtype=torch.bfloat16,
|
85 |
+
device_map={'':0}
|
86 |
+
)
|
87 |
+
|
88 |
+
if args.use_lora:
|
89 |
+
for name, param in model.named_parameters():
|
90 |
+
param.requires_grad = False
|
91 |
+
if args.all_params:
|
92 |
+
peft_config = LoraConfig(
|
93 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
|
94 |
+
inference_mode=True,
|
95 |
+
r=args.lora_r,
|
96 |
+
lora_alpha=16,
|
97 |
+
lora_dropout=0.05
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
peft_config = LoraConfig(
|
101 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
|
102 |
+
inference_mode=True,
|
103 |
+
r=args.lora_r,
|
104 |
+
lora_alpha=16,
|
105 |
+
lora_dropout=0.05
|
106 |
+
)
|
107 |
+
|
108 |
+
model = get_peft_model(model, peft_config)
|
109 |
+
model.print_trainable_parameters()
|
110 |
+
|
111 |
+
with open(args.trained_ckpt, 'rb') as f:
|
112 |
+
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
|
113 |
+
model.load_state_dict(ckpt)
|
114 |
+
model = model.to(torch.bfloat16)
|
115 |
+
print('Model Loaded')
|
116 |
+
|
117 |
+
model.eval()
|
118 |
+
|
119 |
+
get_scores(model, tokenizer, dataloader)
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
main()
|
pipeline_video/mplug_owl_video/__init__.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from transformers.utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mplug_owl": ["MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MplugOwlConfig"],
|
21 |
+
"processing_mplug_owl": ["MplugOwlImageProcessor", "MplugOwlProcessor"],
|
22 |
+
"tokenization_mplug_owl": ["MplugOwlTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_tokenizers_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_mplug_owl"] = [
|
39 |
+
"MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"MplugOwlForConditionalGeneration",
|
41 |
+
"MplugOwlModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_mplug_owl import MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP, MplugOwlConfig
|
47 |
+
from .tokenization_mplug_owl import MplugOwlTokenizer
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_tokenizers_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_torch_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
from .modeling_mplug_owl import (
|
62 |
+
MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
63 |
+
MplugOwlForConditionalGeneration,
|
64 |
+
MplugOwlModel,
|
65 |
+
MplugOwlPreTrainedModel,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
else:
|
70 |
+
import sys
|
71 |
+
|
72 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
73 |
+
|
74 |
+
from .configuration_mplug_owl import *
|
75 |
+
from .modeling_mplug_owl import *
|
76 |
+
from .processing_mplug_owl import *
|
77 |
+
from .tokenization_mplug_owl import *
|
pipeline_video/mplug_owl_video/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.26 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/configuration_mplug_owl.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/configuration_mplug_owl.cpython-39.pyc
ADDED
Binary file (10.5 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/modeling_mplug_owl.cpython-310.pyc
ADDED
Binary file (57.1 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/modeling_mplug_owl.cpython-39.pyc
ADDED
Binary file (57 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/processing_mplug_owl.cpython-310.pyc
ADDED
Binary file (7.32 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/processing_mplug_owl.cpython-39.pyc
ADDED
Binary file (7.36 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/tokenization_mplug_owl.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
pipeline_video/mplug_owl_video/__pycache__/tokenization_mplug_owl.cpython-39.pyc
ADDED
Binary file (1.28 kB). View file
|
|
pipeline_video/mplug_owl_video/configuration_mplug_owl.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MplugOwl model configuration """
|
16 |
+
import copy
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
22 |
+
from transformers.utils import logging
|
23 |
+
from transformers.models.auto import CONFIG_MAPPING
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json",
|
30 |
+
# See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class MplugOwlVisionConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a
|
37 |
+
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
38 |
+
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
|
39 |
+
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
image_size (`int`, *optional*, defaults to 224):
|
54 |
+
The size (resolution) of each image.
|
55 |
+
patch_size (`int`, *optional*, defaults to 32):
|
56 |
+
The size (resolution) of each patch.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
67 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
68 |
+
testing).
|
69 |
+
|
70 |
+
|
71 |
+
```"""
|
72 |
+
|
73 |
+
model_type = "mplug_owl_vision_model"
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
hidden_size=1024,
|
78 |
+
intermediate_size=4096,
|
79 |
+
projection_dim=768,
|
80 |
+
num_hidden_layers=24,
|
81 |
+
num_attention_heads=16,
|
82 |
+
num_channels=3,
|
83 |
+
image_size=224,
|
84 |
+
patch_size=14,
|
85 |
+
hidden_act="quick_gelu",
|
86 |
+
layer_norm_eps=1e-6,
|
87 |
+
attention_dropout=0.0,
|
88 |
+
initializer_range=0.02,
|
89 |
+
initializer_factor=1.0,
|
90 |
+
use_flash_attn=False,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
super().__init__(**kwargs)
|
94 |
+
self.hidden_size = hidden_size
|
95 |
+
self.intermediate_size = intermediate_size
|
96 |
+
self.projection_dim = projection_dim
|
97 |
+
self.num_hidden_layers = num_hidden_layers
|
98 |
+
self.num_attention_heads = num_attention_heads
|
99 |
+
self.num_channels = num_channels
|
100 |
+
self.patch_size = patch_size
|
101 |
+
self.image_size = image_size
|
102 |
+
self.initializer_range = initializer_range
|
103 |
+
self.initializer_factor = initializer_factor
|
104 |
+
self.attention_dropout = attention_dropout
|
105 |
+
self.layer_norm_eps = layer_norm_eps
|
106 |
+
self.hidden_act = hidden_act
|
107 |
+
self.use_flash_attn = use_flash_attn
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
111 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
112 |
+
|
113 |
+
# get the vision config dict if we are loading from MplugOwlConfig
|
114 |
+
if config_dict.get("model_type") == "mplug-owl":
|
115 |
+
config_dict = config_dict["vision_config"]
|
116 |
+
|
117 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
118 |
+
logger.warning(
|
119 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
120 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
121 |
+
)
|
122 |
+
|
123 |
+
return cls.from_dict(config_dict, **kwargs)
|
124 |
+
|
125 |
+
|
126 |
+
class MplugOwlVisualAbstractorConfig(PretrainedConfig):
|
127 |
+
model_type = "mplug_owl_visual_abstract"
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
hidden_size=1024, #
|
132 |
+
num_hidden_layers=6, #
|
133 |
+
num_attention_heads=16, #
|
134 |
+
intermediate_size=4096, #
|
135 |
+
attention_probs_dropout_prob=0.1, #
|
136 |
+
initializer_range=0.02,
|
137 |
+
layer_norm_eps=1e-6, #
|
138 |
+
encoder_hidden_size=1024, #
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
super().__init__(**kwargs)
|
142 |
+
self.hidden_size = hidden_size
|
143 |
+
self.num_hidden_layers = num_hidden_layers
|
144 |
+
self.num_attention_heads = num_attention_heads
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
147 |
+
self.initializer_range = initializer_range
|
148 |
+
self.layer_norm_eps = layer_norm_eps
|
149 |
+
self.encoder_hidden_size = encoder_hidden_size
|
150 |
+
|
151 |
+
@classmethod
|
152 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
153 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
154 |
+
|
155 |
+
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
|
156 |
+
if config_dict.get("model_type") == "mplug-owl":
|
157 |
+
config_dict = config_dict["abstractor_config"]
|
158 |
+
|
159 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
160 |
+
logger.warning(
|
161 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
162 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
163 |
+
)
|
164 |
+
|
165 |
+
return cls.from_dict(config_dict, **kwargs)
|
166 |
+
|
167 |
+
|
168 |
+
class MplugOwlConfig(PretrainedConfig):
|
169 |
+
r"""
|
170 |
+
[`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is
|
171 |
+
used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model
|
172 |
+
and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to
|
173 |
+
that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
|
174 |
+
|
175 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
176 |
+
documentation from [`PretrainedConfig`] for more information.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
vision_config (`dict`, *optional*):
|
180 |
+
Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`].
|
181 |
+
visual_abstractor_config (`dict`, *optional*):
|
182 |
+
Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`].
|
183 |
+
text_config (`dict`, *optional*):
|
184 |
+
Dictionary of configuration options used to initialize any [`PretrainedConfig`].
|
185 |
+
num_query_tokens (`int`, *optional*, defaults to 32):
|
186 |
+
The number of query tokens passed through the Transformer.
|
187 |
+
|
188 |
+
kwargs (*optional*):
|
189 |
+
Dictionary of keyword arguments.
|
190 |
+
|
191 |
+
Example:
|
192 |
+
|
193 |
+
```python
|
194 |
+
>>> from transformers import (
|
195 |
+
... MplugOwlVisionConfig,
|
196 |
+
... MplugOwlVisualAbstractorConfig,
|
197 |
+
... OPTConfig,
|
198 |
+
... MplugOwlConfig,
|
199 |
+
... MplugOwlForConditionalGeneration,
|
200 |
+
... )
|
201 |
+
|
202 |
+
>>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration
|
203 |
+
>>> configuration = MplugOwlConfig()
|
204 |
+
|
205 |
+
>>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration
|
206 |
+
>>> model = MplugOwlForConditionalGeneration(configuration)
|
207 |
+
|
208 |
+
>>> # Accessing the model configuration
|
209 |
+
>>> configuration = model.config
|
210 |
+
|
211 |
+
>>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig
|
212 |
+
|
213 |
+
>>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations
|
214 |
+
>>> vision_config = MplugOwlVisionConfig()
|
215 |
+
>>> visual_abstractor_config = MplugOwlVisualAbstractorConfig()
|
216 |
+
>>> text_config = OPTConfig()
|
217 |
+
|
218 |
+
>>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config)
|
219 |
+
```"""
|
220 |
+
model_type = "mplug-owl"
|
221 |
+
is_composition = True
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs
|
225 |
+
):
|
226 |
+
super().__init__(**kwargs)
|
227 |
+
if vision_config is None:
|
228 |
+
vision_config = MplugOwlVisionConfig().to_dict()
|
229 |
+
logger.info("vision_config is None.")
|
230 |
+
|
231 |
+
if visual_abstractor_config is None:
|
232 |
+
visual_abstractor_config = {}
|
233 |
+
logger.info("abstractor_config is None. ")
|
234 |
+
|
235 |
+
if text_config is None:
|
236 |
+
# we use LLAMA 7b by default
|
237 |
+
from ..llama.configuration_llama import LlamaConfig
|
238 |
+
|
239 |
+
text_config = LlamaConfig(pad_token_id=2).to_dict()
|
240 |
+
logger.info("text_config is None.")
|
241 |
+
|
242 |
+
self.vision_config = MplugOwlVisionConfig(**vision_config)
|
243 |
+
self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config)
|
244 |
+
# self.visual_abstractor_config.layer_norm_eps = 1e-6
|
245 |
+
text_model_type = text_config["model_type"] if "model_type" in text_config else "llama"
|
246 |
+
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
|
247 |
+
|
248 |
+
self.tie_word_embeddings = self.text_config.tie_word_embeddings
|
249 |
+
self.is_encoder_decoder = self.text_config.is_encoder_decoder
|
250 |
+
|
251 |
+
self.num_query_tokens = num_query_tokens
|
252 |
+
# self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
|
253 |
+
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
254 |
+
self.initializer_factor = 1.0
|
255 |
+
self.initializer_range = 0.02
|
256 |
+
|
257 |
+
for attr in dir(self.text_config):
|
258 |
+
if not hasattr(self, attr):
|
259 |
+
setattr(self, attr, getattr(self.text_config, attr))
|
260 |
+
|
261 |
+
@classmethod
|
262 |
+
def from_vision_visual_abstractor_text_configs(
|
263 |
+
cls,
|
264 |
+
vision_config: MplugOwlVisionConfig,
|
265 |
+
visual_abstractor_config: MplugOwlVisualAbstractorConfig,
|
266 |
+
text_config: PretrainedConfig,
|
267 |
+
**kwargs,
|
268 |
+
):
|
269 |
+
r"""
|
270 |
+
Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model
|
271 |
+
configurations.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
[`MplugOwlConfig`]: An instance of a configuration object
|
275 |
+
"""
|
276 |
+
|
277 |
+
return cls(
|
278 |
+
vision_config=vision_config.to_dict(),
|
279 |
+
visual_abstractor_config=visual_abstractor_config.to_dict(),
|
280 |
+
text_config=text_config.to_dict(),
|
281 |
+
**kwargs,
|
282 |
+
)
|
283 |
+
|
284 |
+
def to_dict(self):
|
285 |
+
"""
|
286 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
290 |
+
"""
|
291 |
+
output = copy.deepcopy(self.__dict__)
|
292 |
+
output["vision_config"] = self.vision_config.to_dict()
|
293 |
+
output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict()
|
294 |
+
output["text_config"] = self.text_config.to_dict()
|
295 |
+
output["model_type"] = self.__class__.model_type
|
296 |
+
return output
|
pipeline_video/mplug_owl_video/modeling_mplug_owl.py
ADDED
@@ -0,0 +1,1938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 x-plug The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch MplugOwl model. """
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
try:
|
22 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
23 |
+
|
24 |
+
flash_attn_func = flash_attn_unpadded_func
|
25 |
+
except:
|
26 |
+
flash_attn_func = None
|
27 |
+
print("install flash-attn first.")
|
28 |
+
import math
|
29 |
+
from dataclasses import dataclass
|
30 |
+
from typing import Any, Optional, Tuple, Union
|
31 |
+
|
32 |
+
import torch
|
33 |
+
import torch.utils.checkpoint
|
34 |
+
from torch import nn
|
35 |
+
import einops
|
36 |
+
|
37 |
+
from transformers.modeling_outputs import (
|
38 |
+
BaseModelOutput,
|
39 |
+
BaseModelOutputWithPooling,
|
40 |
+
BaseModelOutputWithPastAndCrossAttentions
|
41 |
+
)
|
42 |
+
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
44 |
+
from transformers.utils import (
|
45 |
+
ModelOutput,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from transformers.models.auto import AutoModelForCausalLM
|
52 |
+
from .configuration_mplug_owl import MplugOwlConfig, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CHECKPOINT_FOR_DOC = "MAGAer13/mplug-owl-llama-7b"
|
58 |
+
_CONFIG_FOR_DOC = "MplugOwlConfig"
|
59 |
+
|
60 |
+
|
61 |
+
MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
62 |
+
"MAGAer13/mplug-owl-llama-7b",
|
63 |
+
# See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class MplugOwlForConditionalGenerationModelOutput(ModelOutput):
|
69 |
+
"""
|
70 |
+
Class defining the outputs of [`MPlugOwlForConditionalGeneration`].
|
71 |
+
|
72 |
+
Args:
|
73 |
+
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
74 |
+
Language modeling loss from the language model.
|
75 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
76 |
+
Prediction scores of the language modeling head of the language model.
|
77 |
+
vision_outputs (`BaseModelOutputWithPooling`):
|
78 |
+
Outputs of the vision encoder.
|
79 |
+
|
80 |
+
language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):
|
81 |
+
Outputs of the language model.
|
82 |
+
"""
|
83 |
+
|
84 |
+
loss: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
+
logits: Optional[Tuple[torch.FloatTensor]] = None
|
86 |
+
vision_outputs: Optional[torch.FloatTensor] = None
|
87 |
+
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
|
88 |
+
|
89 |
+
def to_tuple(self) -> Tuple[Any]:
|
90 |
+
return tuple(
|
91 |
+
self[k] if k not in ["vision_outputs", "language_model_outputs"] else getattr(self, k).to_tuple()
|
92 |
+
for k in self.keys()
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def get_ltor_masks_and_position_ids_from_embeddings(data):
|
97 |
+
"""Build masks and position id for left to right model."""
|
98 |
+
|
99 |
+
# Extract batch size and sequence length.
|
100 |
+
micro_batch_size, seq_length = data.size()[:2]
|
101 |
+
|
102 |
+
# Attention mask (lower triangular).
|
103 |
+
att_mask_batch = 1
|
104 |
+
attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view(
|
105 |
+
att_mask_batch, 1, seq_length, seq_length
|
106 |
+
)
|
107 |
+
|
108 |
+
# Loss mask.
|
109 |
+
loss_mask = torch.ones(data.size()[:2], dtype=torch.float, device=data.device)
|
110 |
+
|
111 |
+
# Position ids.
|
112 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
113 |
+
position_ids = position_ids.unsqueeze(0).expand_as(data[..., 0])
|
114 |
+
|
115 |
+
# Convert attention mask to binary:
|
116 |
+
attention_mask = attention_mask < 0.5
|
117 |
+
|
118 |
+
return attention_mask, loss_mask, position_ids
|
119 |
+
|
120 |
+
|
121 |
+
class MplugOwlVisionEmbeddings(nn.Module):
|
122 |
+
def __init__(self, config: MplugOwlVisionConfig):
|
123 |
+
super().__init__()
|
124 |
+
self.config = config
|
125 |
+
self.hidden_size = config.hidden_size
|
126 |
+
self.image_size = config.image_size
|
127 |
+
self.patch_size = config.patch_size
|
128 |
+
|
129 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
130 |
+
|
131 |
+
self.patch_embed = nn.Conv2d(
|
132 |
+
in_channels=3,
|
133 |
+
out_channels=self.hidden_size,
|
134 |
+
kernel_size=self.patch_size,
|
135 |
+
stride=self.patch_size,
|
136 |
+
bias=False,
|
137 |
+
)
|
138 |
+
|
139 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
140 |
+
|
141 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
142 |
+
|
143 |
+
self.pre_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps)
|
144 |
+
|
145 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
146 |
+
# [B, C, T, H, W] or [B, C, H, W]
|
147 |
+
batch_size = pixel_values.size(0)
|
148 |
+
T = pixel_values.size(2) if pixel_values.dim() > 4 else 1
|
149 |
+
if T > 1:
|
150 |
+
pixel_values = einops.rearrange(pixel_values, 'b c t h w -> (b t) c h w')
|
151 |
+
image_embeds = self.patch_embed(pixel_values)
|
152 |
+
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
153 |
+
|
154 |
+
class_embeds = self.cls_token.expand(batch_size * T, 1, -1).to(image_embeds.dtype)
|
155 |
+
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
156 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
|
157 |
+
embeddings = self.pre_layernorm(embeddings)
|
158 |
+
embeddings = einops.rearrange(embeddings, '(b t) n d -> b t n d', b=batch_size)
|
159 |
+
return embeddings
|
160 |
+
|
161 |
+
|
162 |
+
class LayerNormFp32(nn.LayerNorm):
|
163 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
164 |
+
|
165 |
+
def __init__(self, *args, **kwargs):
|
166 |
+
super().__init__(*args, **kwargs)
|
167 |
+
|
168 |
+
def forward(self, x: torch.Tensor):
|
169 |
+
output = torch.nn.functional.layer_norm(
|
170 |
+
x.float(),
|
171 |
+
self.normalized_shape,
|
172 |
+
self.weight.float() if self.weight is not None else None,
|
173 |
+
self.bias.float() if self.bias is not None else None,
|
174 |
+
self.eps,
|
175 |
+
)
|
176 |
+
return output.type_as(x)
|
177 |
+
|
178 |
+
|
179 |
+
class QuickGELU(nn.Module):
|
180 |
+
def forward(self, x: torch.Tensor):
|
181 |
+
return x * torch.sigmoid(1.702 * x)
|
182 |
+
|
183 |
+
|
184 |
+
class MplugOwlVisionLocalTemporal(nn.Module):
|
185 |
+
def __init__(self, config):
|
186 |
+
super(MplugOwlVisionLocalTemporal, self).__init__()
|
187 |
+
|
188 |
+
self.image_size = config.image_size
|
189 |
+
self.patch_size = config.patch_size
|
190 |
+
self.num_patches = 1 + (self.image_size // self.patch_size) ** 2
|
191 |
+
self.hidden_size = config.hidden_size
|
192 |
+
d_bottleneck = self.hidden_size // 2
|
193 |
+
|
194 |
+
self.ln = LayerNormFp32(self.hidden_size)
|
195 |
+
self.down_proj = nn.Conv3d(self.hidden_size, d_bottleneck, kernel_size=1, stride=1, padding=0)
|
196 |
+
self.conv = nn.Conv3d(d_bottleneck, d_bottleneck, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0), groups=d_bottleneck)
|
197 |
+
self.up_proj = nn.Conv3d(d_bottleneck, self.hidden_size, kernel_size=1, stride=1, padding=0)
|
198 |
+
|
199 |
+
nn.init.constant_(self.up_proj.weight, 0)
|
200 |
+
nn.init.constant_(self.up_proj.bias, 0)
|
201 |
+
|
202 |
+
self.activation_func = QuickGELU()
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
# [b, t, s, c]
|
206 |
+
T = x.size(1)
|
207 |
+
H = int((self.num_patches - 1)**0.5)
|
208 |
+
cls_token, x = x[:, :, 0:1], x[:, :, 1:]
|
209 |
+
x = self.ln(x)
|
210 |
+
x = einops.rearrange(x, 'b t (h w) c -> b c t h w', h=H)
|
211 |
+
x = self.down_proj(x)
|
212 |
+
_device = x.device
|
213 |
+
self = self.to('cpu') # hack: cpu offloading since bfloat16 on gpu gives error with conv_depthwise3d
|
214 |
+
x = x.to('cpu')
|
215 |
+
x = self.conv(x)
|
216 |
+
self = self.to(_device)
|
217 |
+
x = x.to(_device)
|
218 |
+
x = self.activation_func(x)
|
219 |
+
x = self.up_proj(x)
|
220 |
+
x = einops.rearrange(x, 'b c t h w -> b t (h w) c')
|
221 |
+
x = torch.cat([cls_token, x], dim = 2)
|
222 |
+
return x
|
223 |
+
|
224 |
+
|
225 |
+
class MplugOwlVisionAttention(nn.Module):
|
226 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
227 |
+
|
228 |
+
def __init__(self, config):
|
229 |
+
super().__init__()
|
230 |
+
self.config = config
|
231 |
+
self.hidden_size = config.hidden_size
|
232 |
+
self.num_heads = config.num_attention_heads
|
233 |
+
self.head_dim = self.hidden_size // self.num_heads
|
234 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
235 |
+
raise ValueError(
|
236 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
237 |
+
f" {self.num_heads})."
|
238 |
+
)
|
239 |
+
self.scale = self.head_dim**-0.5
|
240 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
241 |
+
|
242 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
243 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
244 |
+
|
245 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
246 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
hidden_states: torch.Tensor,
|
251 |
+
head_mask: Optional[torch.Tensor] = None,
|
252 |
+
output_attentions: Optional[bool] = False,
|
253 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
254 |
+
"""Input shape: Batch x Time x Channel"""
|
255 |
+
|
256 |
+
bsz, seq_len, embed_dim = hidden_states.size()
|
257 |
+
|
258 |
+
mixed_qkv = self.query_key_value(hidden_states)
|
259 |
+
|
260 |
+
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
261 |
+
3, 0, 2, 1, 4
|
262 |
+
) # [3, b, np, sq, hn]
|
263 |
+
query_states, key_states, value_states = (
|
264 |
+
mixed_qkv[0],
|
265 |
+
mixed_qkv[1],
|
266 |
+
mixed_qkv[2],
|
267 |
+
)
|
268 |
+
# if self.config.use_flash_attn and flash_attn_func is not None:
|
269 |
+
if False:
|
270 |
+
# [b*sq, np, hn]
|
271 |
+
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
272 |
+
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
273 |
+
|
274 |
+
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
275 |
+
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
276 |
+
|
277 |
+
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
278 |
+
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
279 |
+
|
280 |
+
cu_seqlens = torch.arange(
|
281 |
+
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
282 |
+
)
|
283 |
+
|
284 |
+
context_layer = flash_attn_func(
|
285 |
+
query_states,
|
286 |
+
key_states,
|
287 |
+
value_states,
|
288 |
+
cu_seqlens,
|
289 |
+
cu_seqlens,
|
290 |
+
seq_len,
|
291 |
+
seq_len,
|
292 |
+
self.dropout if self.training else 0.0,
|
293 |
+
softmax_scale=self.scale,
|
294 |
+
causal=False,
|
295 |
+
return_attn_probs=False,
|
296 |
+
)
|
297 |
+
# [b*sq, np, hn] => [b, sq, np, hn]
|
298 |
+
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
299 |
+
else:
|
300 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
301 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
302 |
+
|
303 |
+
attention_scores = attention_scores * self.scale
|
304 |
+
|
305 |
+
# Normalize the attention scores to probabilities.
|
306 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
307 |
+
|
308 |
+
# This is actually dropping out entire tokens to attend to, which might
|
309 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
310 |
+
attention_probs = self.dropout(attention_probs)
|
311 |
+
|
312 |
+
# Mask heads if we want to
|
313 |
+
if head_mask is not None:
|
314 |
+
attention_probs = attention_probs * head_mask
|
315 |
+
|
316 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
317 |
+
|
318 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
319 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
320 |
+
|
321 |
+
output = self.dense(context_layer)
|
322 |
+
|
323 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
324 |
+
|
325 |
+
return outputs
|
326 |
+
|
327 |
+
|
328 |
+
class MplugOwlMLP(nn.Module):
|
329 |
+
def __init__(self, config):
|
330 |
+
super().__init__()
|
331 |
+
self.config = config
|
332 |
+
self.activation_fn = QuickGELU()
|
333 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
334 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
335 |
+
|
336 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
337 |
+
hidden_states = self.fc1(hidden_states)
|
338 |
+
hidden_states = self.activation_fn(hidden_states)
|
339 |
+
hidden_states = self.fc2(hidden_states)
|
340 |
+
return hidden_states
|
341 |
+
|
342 |
+
|
343 |
+
class MplugOwlVisionEncoderLayer(nn.Module):
|
344 |
+
def __init__(self, config: MplugOwlVisionConfig):
|
345 |
+
super().__init__()
|
346 |
+
self.hidden_size = config.hidden_size
|
347 |
+
self.temporal = MplugOwlVisionLocalTemporal(config)
|
348 |
+
self.self_attn = MplugOwlVisionAttention(config)
|
349 |
+
self.input_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps)
|
350 |
+
self.mlp = MplugOwlMLP(config)
|
351 |
+
self.post_attention_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps)
|
352 |
+
|
353 |
+
def forward(
|
354 |
+
self,
|
355 |
+
hidden_states: torch.Tensor,
|
356 |
+
attention_mask: torch.Tensor,
|
357 |
+
output_attentions: Optional[bool] = False,
|
358 |
+
) -> Tuple[torch.FloatTensor]:
|
359 |
+
"""
|
360 |
+
Args:
|
361 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, time, seq_len, embed_dim)`
|
362 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
363 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
364 |
+
`(config.encoder_attention_heads,)`.
|
365 |
+
output_attentions (`bool`, *optional*):
|
366 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
367 |
+
returned tensors for more detail.
|
368 |
+
"""
|
369 |
+
B, T = hidden_states.size(0), hidden_states.size(1)
|
370 |
+
if T > 1:
|
371 |
+
hidden_states = hidden_states + self.temporal(hidden_states)
|
372 |
+
hidden_states = einops.rearrange(hidden_states, 'b t n d -> (b t) n d')
|
373 |
+
|
374 |
+
residual = hidden_states
|
375 |
+
|
376 |
+
hidden_states = self.input_layernorm(hidden_states)
|
377 |
+
hidden_states, attn_weights = self.self_attn(
|
378 |
+
hidden_states=hidden_states,
|
379 |
+
head_mask=attention_mask,
|
380 |
+
output_attentions=output_attentions,
|
381 |
+
)
|
382 |
+
hidden_states = hidden_states + residual
|
383 |
+
residual = hidden_states
|
384 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
385 |
+
hidden_states = self.mlp(hidden_states)
|
386 |
+
|
387 |
+
hidden_states = hidden_states + residual
|
388 |
+
hidden_states = einops.rearrange(hidden_states, '(b t) n d -> b t n d', b=B)
|
389 |
+
|
390 |
+
outputs = (hidden_states,)
|
391 |
+
|
392 |
+
if output_attentions:
|
393 |
+
outputs += (attn_weights,)
|
394 |
+
|
395 |
+
return outputs
|
396 |
+
|
397 |
+
|
398 |
+
class MplugOwlPreTrainedModel(PreTrainedModel):
|
399 |
+
"""
|
400 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
401 |
+
models.
|
402 |
+
"""
|
403 |
+
|
404 |
+
config_class = MplugOwlConfig
|
405 |
+
base_model_prefix = "mplug_owl"
|
406 |
+
supports_gradient_checkpointing = True
|
407 |
+
_keys_to_ignore_on_load_missing = [
|
408 |
+
r"position_ids",
|
409 |
+
r"language_model.encoder.embed_tokens.weight",
|
410 |
+
r"language_model.decoder.embed_tokens.weight",
|
411 |
+
r"language_model.lm_head.weight",
|
412 |
+
]
|
413 |
+
_no_split_modules = [
|
414 |
+
"MplugOwlVisionEncoderLayer",
|
415 |
+
"LlamaDecoderLayer",
|
416 |
+
"MplugOwlVisualAbstractorLayer",
|
417 |
+
"LlamaForCausalLM",
|
418 |
+
"Parameter",
|
419 |
+
]
|
420 |
+
_keep_in_fp32_modules = ["wo"]
|
421 |
+
|
422 |
+
def _init_weights(self, module):
|
423 |
+
"""Initialize the weights"""
|
424 |
+
factor = self.config.initializer_range
|
425 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
426 |
+
module.weight.data.normal_(mean=0.0, std=factor)
|
427 |
+
if hasattr(module, "bias") and module.bias is not None:
|
428 |
+
module.bias.data.zero_()
|
429 |
+
|
430 |
+
if isinstance(module, MplugOwlVisionEmbeddings):
|
431 |
+
if hasattr(self.config, "vision_config"):
|
432 |
+
factor = self.config.vision_config.initializer_range
|
433 |
+
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
|
434 |
+
nn.init.trunc_normal_(module.cls_token, mean=0.0, std=factor)
|
435 |
+
|
436 |
+
elif isinstance(module, nn.LayerNorm):
|
437 |
+
module.bias.data.zero_()
|
438 |
+
module.weight.data.fill_(1.0)
|
439 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
440 |
+
module.bias.data.zero_()
|
441 |
+
elif isinstance(module, nn.Parameter):
|
442 |
+
raise ValueError
|
443 |
+
nn.init.trunc_normal_(module.data, mean=0.0, std=factor)
|
444 |
+
|
445 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
446 |
+
if isinstance(module, MplugOwlVisionEncoder):
|
447 |
+
module.gradient_checkpointing = value
|
448 |
+
|
449 |
+
|
450 |
+
MPLUG_OWL_START_DOCSTRING = r"""
|
451 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
452 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
453 |
+
etc.)
|
454 |
+
|
455 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
456 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
457 |
+
and behavior.
|
458 |
+
|
459 |
+
Parameters:
|
460 |
+
config ([`MplugOwlConfig`]): Model configuration class with all the parameters of the model.
|
461 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
462 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
463 |
+
"""
|
464 |
+
|
465 |
+
MPLUG_OWL_VISION_INPUTS_DOCSTRING = r"""
|
466 |
+
Args:
|
467 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
468 |
+
Pixel values. Pixel values can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for
|
469 |
+
details.
|
470 |
+
output_attentions (`bool`, *optional*):
|
471 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
472 |
+
tensors for more detail.
|
473 |
+
output_hidden_states (`bool`, *optional*):
|
474 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
475 |
+
more detail.
|
476 |
+
return_dict (`bool`, *optional*):
|
477 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
478 |
+
"""
|
479 |
+
|
480 |
+
MPLUG_OWL_TEXT_INPUTS_DOCSTRING = r"""
|
481 |
+
Args:
|
482 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
483 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
484 |
+
it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
485 |
+
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
|
486 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
487 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
488 |
+
- 1 for tokens that are **not masked**,
|
489 |
+
- 0 for tokens that are **masked**.
|
490 |
+
[What are attention masks?](../glossary#attention-mask)
|
491 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
492 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
493 |
+
|
494 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
495 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
496 |
+
|
497 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
498 |
+
|
499 |
+
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
500 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
501 |
+
|
502 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
|
503 |
+
Training](./t5#training).
|
504 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
505 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
506 |
+
be used by default.
|
507 |
+
output_attentions (`bool`, *optional*):
|
508 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
509 |
+
tensors for more detail.
|
510 |
+
output_hidden_states (`bool`, *optional*):
|
511 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
512 |
+
more detail.
|
513 |
+
return_dict (`bool`, *optional*):
|
514 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
515 |
+
"""
|
516 |
+
|
517 |
+
MPLUG_OWL_INPUTS_DOCSTRING = r"""
|
518 |
+
Args:
|
519 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
520 |
+
Pixel values. Pixel values can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for
|
521 |
+
details.
|
522 |
+
|
523 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
524 |
+
Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be
|
525 |
+
provided to serve as text prompt, which the language model can continue.
|
526 |
+
|
527 |
+
Indices can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for details.
|
528 |
+
|
529 |
+
[What are input IDs?](../glossary#input-ids)
|
530 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
531 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
532 |
+
|
533 |
+
- 1 for tokens that are **not masked**,
|
534 |
+
- 0 for tokens that are **masked**.
|
535 |
+
|
536 |
+
[What are attention masks?](../glossary#attention-mask)
|
537 |
+
|
538 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
539 |
+
Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an
|
540 |
+
encoder-decoder language model (like T5) is used.
|
541 |
+
|
542 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
543 |
+
[`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids)
|
544 |
+
|
545 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
546 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
547 |
+
be used by default.
|
548 |
+
|
549 |
+
Only relevant in case an encoder-decoder language model (like T5) is used.
|
550 |
+
|
551 |
+
output_attentions (`bool`, *optional*):
|
552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
553 |
+
tensors for more detail.
|
554 |
+
output_hidden_states (`bool`, *optional*):
|
555 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
556 |
+
more detail.
|
557 |
+
return_dict (`bool`, *optional*):
|
558 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
559 |
+
"""
|
560 |
+
|
561 |
+
|
562 |
+
class MplugOwlVisionEncoder(nn.Module):
|
563 |
+
"""
|
564 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
565 |
+
[`MplugOwlVisionEncoderLayer`].
|
566 |
+
|
567 |
+
Args:
|
568 |
+
config (`MplugOwlVisionConfig`):
|
569 |
+
The corresponding vision configuration for the `MplugOwlEncoder`.
|
570 |
+
"""
|
571 |
+
|
572 |
+
def __init__(self, config: MplugOwlVisionConfig):
|
573 |
+
super().__init__()
|
574 |
+
self.config = config
|
575 |
+
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
576 |
+
self.gradient_checkpointing = False
|
577 |
+
|
578 |
+
def forward(
|
579 |
+
self,
|
580 |
+
inputs_embeds,
|
581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
582 |
+
output_attentions: Optional[bool] = None,
|
583 |
+
output_hidden_states: Optional[bool] = None,
|
584 |
+
return_dict: Optional[bool] = None,
|
585 |
+
) -> Union[Tuple, BaseModelOutput]:
|
586 |
+
r"""
|
587 |
+
Args:
|
588 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
589 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
590 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
591 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
592 |
+
|
593 |
+
- 1 for tokens that are **not masked**,
|
594 |
+
- 0 for tokens that are **masked**.
|
595 |
+
|
596 |
+
[What are attention masks?](../glossary#attention-mask)
|
597 |
+
output_attentions (`bool`, *optional*):
|
598 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
599 |
+
returned tensors for more detail.
|
600 |
+
output_hidden_states (`bool`, *optional*):
|
601 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
602 |
+
for more detail.
|
603 |
+
return_dict (`bool`, *optional*):
|
604 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
605 |
+
"""
|
606 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
607 |
+
output_hidden_states = (
|
608 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
609 |
+
)
|
610 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
611 |
+
|
612 |
+
encoder_states = () if output_hidden_states else None
|
613 |
+
all_attentions = () if output_attentions else None
|
614 |
+
|
615 |
+
hidden_states = inputs_embeds
|
616 |
+
for idx, encoder_layer in enumerate(self.layers):
|
617 |
+
if output_hidden_states:
|
618 |
+
encoder_states = encoder_states + (hidden_states,)
|
619 |
+
if self.gradient_checkpointing and self.training:
|
620 |
+
|
621 |
+
def create_custom_forward(module):
|
622 |
+
def custom_forward(*inputs):
|
623 |
+
return module(*inputs, output_attentions)
|
624 |
+
|
625 |
+
return custom_forward
|
626 |
+
|
627 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
628 |
+
create_custom_forward(encoder_layer),
|
629 |
+
hidden_states,
|
630 |
+
attention_mask,
|
631 |
+
)
|
632 |
+
else:
|
633 |
+
layer_outputs = encoder_layer(
|
634 |
+
hidden_states,
|
635 |
+
attention_mask,
|
636 |
+
output_attentions=output_attentions,
|
637 |
+
)
|
638 |
+
|
639 |
+
hidden_states = layer_outputs[0]
|
640 |
+
|
641 |
+
if output_attentions:
|
642 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
643 |
+
|
644 |
+
if output_hidden_states:
|
645 |
+
encoder_states = encoder_states + (hidden_states,)
|
646 |
+
|
647 |
+
if not return_dict:
|
648 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
649 |
+
return BaseModelOutput(
|
650 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
651 |
+
)
|
652 |
+
|
653 |
+
|
654 |
+
class MplugOwlVisionModel(MplugOwlPreTrainedModel):
|
655 |
+
main_input_name = "pixel_values"
|
656 |
+
config_class = MplugOwlVisionConfig
|
657 |
+
|
658 |
+
def __init__(self, config: MplugOwlVisionConfig):
|
659 |
+
super().__init__(config)
|
660 |
+
self.config = config
|
661 |
+
self.hidden_size = config.hidden_size
|
662 |
+
|
663 |
+
self.embeddings = MplugOwlVisionEmbeddings(config)
|
664 |
+
self.encoder = MplugOwlVisionEncoder(config)
|
665 |
+
self.post_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps)
|
666 |
+
|
667 |
+
self.post_init()
|
668 |
+
|
669 |
+
@add_start_docstrings_to_model_forward(MPLUG_OWL_VISION_INPUTS_DOCSTRING)
|
670 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=MplugOwlVisionConfig)
|
671 |
+
def forward(
|
672 |
+
self,
|
673 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
674 |
+
output_attentions: Optional[bool] = None,
|
675 |
+
output_hidden_states: Optional[bool] = None,
|
676 |
+
return_dict: Optional[bool] = None,
|
677 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
678 |
+
r"""
|
679 |
+
Returns:
|
680 |
+
|
681 |
+
"""
|
682 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
683 |
+
output_hidden_states = (
|
684 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
685 |
+
)
|
686 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
687 |
+
|
688 |
+
if pixel_values is None:
|
689 |
+
raise ValueError("You have to specify pixel_values")
|
690 |
+
|
691 |
+
hidden_states = self.embeddings(pixel_values) # [B, T, N, D]
|
692 |
+
|
693 |
+
encoder_outputs = self.encoder(
|
694 |
+
inputs_embeds=hidden_states,
|
695 |
+
output_attentions=output_attentions,
|
696 |
+
output_hidden_states=output_hidden_states,
|
697 |
+
return_dict=return_dict,
|
698 |
+
)
|
699 |
+
|
700 |
+
last_hidden_state = encoder_outputs[0]
|
701 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
702 |
+
|
703 |
+
pooled_output = last_hidden_state[:, :, 0, :].mean(1)
|
704 |
+
pooled_output = self.post_layernorm(pooled_output)
|
705 |
+
|
706 |
+
if not return_dict:
|
707 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
708 |
+
|
709 |
+
return BaseModelOutputWithPooling(
|
710 |
+
last_hidden_state=last_hidden_state,
|
711 |
+
pooler_output=pooled_output,
|
712 |
+
hidden_states=encoder_outputs.hidden_states,
|
713 |
+
attentions=encoder_outputs.attentions,
|
714 |
+
)
|
715 |
+
|
716 |
+
def get_input_embeddings(self):
|
717 |
+
return self.embeddings
|
718 |
+
|
719 |
+
|
720 |
+
class MplugOwlVisualAbstractorMLP(nn.Module):
|
721 |
+
def __init__(self, config: MplugOwlVisualAbstractorConfig):
|
722 |
+
super().__init__()
|
723 |
+
self.config = config
|
724 |
+
in_features = config.hidden_size
|
725 |
+
hidden_features = config.intermediate_size
|
726 |
+
if hidden_features != 2816:
|
727 |
+
hidden_features = int(2 * hidden_features / 3)
|
728 |
+
multiple_of = 256
|
729 |
+
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
|
730 |
+
self.act = nn.SiLU()
|
731 |
+
|
732 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
733 |
+
self.w2 = nn.Linear(hidden_features, in_features)
|
734 |
+
self.w3 = nn.Linear(in_features, hidden_features)
|
735 |
+
self.ffn_ln = LayerNormFp32(hidden_features, eps=config.layer_norm_eps)
|
736 |
+
|
737 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
738 |
+
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
|
739 |
+
hidden_states = self.ffn_ln(hidden_states)
|
740 |
+
hidden_states = self.w2(hidden_states)
|
741 |
+
return hidden_states
|
742 |
+
|
743 |
+
|
744 |
+
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module):
|
745 |
+
def __init__(self, config: MplugOwlVisualAbstractorConfig):
|
746 |
+
super().__init__()
|
747 |
+
self.config = config
|
748 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
749 |
+
raise ValueError(
|
750 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
751 |
+
% (config.hidden_size, config.num_attention_heads)
|
752 |
+
)
|
753 |
+
|
754 |
+
self.num_attention_heads = config.num_attention_heads
|
755 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
756 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
757 |
+
|
758 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
759 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
760 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
761 |
+
|
762 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
763 |
+
self.save_attention = False
|
764 |
+
|
765 |
+
def save_attn_gradients(self, attn_gradients):
|
766 |
+
self.attn_gradients = attn_gradients
|
767 |
+
|
768 |
+
def get_attn_gradients(self):
|
769 |
+
return self.attn_gradients
|
770 |
+
|
771 |
+
def save_attention_map(self, attention_map):
|
772 |
+
self.attention_map = attention_map
|
773 |
+
|
774 |
+
def get_attention_map(self):
|
775 |
+
return self.attention_map
|
776 |
+
|
777 |
+
def transpose_for_scores(self, x):
|
778 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
779 |
+
x = x.view(*new_x_shape)
|
780 |
+
return x.permute(0, 2, 1, 3)
|
781 |
+
|
782 |
+
def forward(
|
783 |
+
self,
|
784 |
+
hidden_states,
|
785 |
+
attention_mask=None,
|
786 |
+
head_mask=None,
|
787 |
+
encoder_hidden_states=None,
|
788 |
+
encoder_attention_mask=None,
|
789 |
+
past_key_value=None,
|
790 |
+
output_attentions=False,
|
791 |
+
):
|
792 |
+
# If this is instantiated as a cross-attention module, the keys
|
793 |
+
# and values come from an encoder; the attention mask needs to be
|
794 |
+
# such that the encoder's padding tokens are not attended to.
|
795 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
796 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
797 |
+
attention_mask = encoder_attention_mask
|
798 |
+
|
799 |
+
mixed_query_layer = self.query(hidden_states)
|
800 |
+
|
801 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
802 |
+
|
803 |
+
past_key_value = (key_layer, value_layer)
|
804 |
+
|
805 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
806 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
807 |
+
|
808 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
809 |
+
|
810 |
+
if attention_mask is not None:
|
811 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
812 |
+
attention_scores = attention_scores + attention_mask
|
813 |
+
|
814 |
+
# Normalize the attention scores to probabilities.
|
815 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
816 |
+
|
817 |
+
if self.save_attention:
|
818 |
+
self.save_attention_map(attention_probs)
|
819 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
820 |
+
|
821 |
+
# This is actually dropping out entire tokens to attend to, which might
|
822 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
823 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
824 |
+
|
825 |
+
# Mask heads if we want to
|
826 |
+
if head_mask is not None:
|
827 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
828 |
+
|
829 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
830 |
+
|
831 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
832 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
833 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
834 |
+
|
835 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
836 |
+
|
837 |
+
outputs = outputs + (past_key_value,)
|
838 |
+
return outputs
|
839 |
+
|
840 |
+
|
841 |
+
class MplugOwlVisualAbstractorCrossOutput(nn.Module):
|
842 |
+
def __init__(self, config: MplugOwlVisualAbstractorConfig):
|
843 |
+
super().__init__()
|
844 |
+
dim = config.hidden_size
|
845 |
+
self.out_proj = nn.Linear(dim, dim, bias=True)
|
846 |
+
self.norm2 = LayerNormFp32(dim)
|
847 |
+
self.mlp = MplugOwlVisualAbstractorMLP(config)
|
848 |
+
|
849 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
850 |
+
input_tensor = input_tensor + self.out_proj(hidden_states)
|
851 |
+
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
|
852 |
+
return input_tensor
|
853 |
+
|
854 |
+
|
855 |
+
class MplugOwlVisualAbstractorAttention(nn.Module):
|
856 |
+
def __init__(self, config: MplugOwlVisualAbstractorConfig):
|
857 |
+
super().__init__()
|
858 |
+
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config)
|
859 |
+
self.output = MplugOwlVisualAbstractorCrossOutput(config)
|
860 |
+
self.pruned_heads = set()
|
861 |
+
self.norm1 = LayerNormFp32(config.hidden_size)
|
862 |
+
self.normk = LayerNormFp32(config.hidden_size)
|
863 |
+
|
864 |
+
def prune_heads(self, heads):
|
865 |
+
if len(heads) == 0:
|
866 |
+
return
|
867 |
+
heads, index = find_pruneable_heads_and_indices(
|
868 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
869 |
+
)
|
870 |
+
|
871 |
+
# Prune linear layers
|
872 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
873 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
874 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
875 |
+
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1)
|
876 |
+
|
877 |
+
# Update hyper params and store pruned heads
|
878 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
879 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
880 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
881 |
+
|
882 |
+
def forward(
|
883 |
+
self,
|
884 |
+
hidden_states: torch.Tensor,
|
885 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
886 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
887 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
888 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
889 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
890 |
+
output_attentions: Optional[bool] = False,
|
891 |
+
) -> Tuple[torch.Tensor]:
|
892 |
+
# HACK we apply norm on q and k
|
893 |
+
hidden_states = self.norm1(hidden_states)
|
894 |
+
encoder_hidden_states = self.normk(encoder_hidden_states)
|
895 |
+
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
896 |
+
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1)
|
897 |
+
self_outputs = self.attention(
|
898 |
+
hidden_states,
|
899 |
+
attention_mask,
|
900 |
+
head_mask,
|
901 |
+
encoder_hidden_states,
|
902 |
+
encoder_attention_mask,
|
903 |
+
past_key_value,
|
904 |
+
output_attentions,
|
905 |
+
)
|
906 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
907 |
+
# add attentions if we output them
|
908 |
+
outputs = (attention_output,) + self_outputs[1:]
|
909 |
+
return outputs
|
910 |
+
|
911 |
+
|
912 |
+
class MplugOwlVisualAbstractorLayer(nn.Module):
|
913 |
+
def __init__(self, config, layer_idx):
|
914 |
+
super().__init__()
|
915 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
916 |
+
self.seq_len_dim = 1
|
917 |
+
|
918 |
+
self.layer_idx = layer_idx
|
919 |
+
|
920 |
+
self.crossattention = MplugOwlVisualAbstractorAttention(config)
|
921 |
+
self.has_cross_attention = True
|
922 |
+
|
923 |
+
def forward(
|
924 |
+
self,
|
925 |
+
hidden_states,
|
926 |
+
attention_mask=None,
|
927 |
+
head_mask=None,
|
928 |
+
encoder_hidden_states=None,
|
929 |
+
encoder_attention_mask=None,
|
930 |
+
output_attentions=False,
|
931 |
+
):
|
932 |
+
if encoder_hidden_states is None:
|
933 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
934 |
+
cross_attention_outputs = self.crossattention(
|
935 |
+
hidden_states,
|
936 |
+
attention_mask,
|
937 |
+
head_mask,
|
938 |
+
encoder_hidden_states,
|
939 |
+
encoder_attention_mask,
|
940 |
+
output_attentions=output_attentions,
|
941 |
+
)
|
942 |
+
query_attention_output = cross_attention_outputs[0]
|
943 |
+
|
944 |
+
outputs = (query_attention_output,)
|
945 |
+
return outputs
|
946 |
+
|
947 |
+
|
948 |
+
class MplugOwlVisualAbstractorEncoder(nn.Module):
|
949 |
+
def __init__(self, config):
|
950 |
+
super().__init__()
|
951 |
+
self.config = config
|
952 |
+
self.layers = nn.ModuleList(
|
953 |
+
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
954 |
+
)
|
955 |
+
self.gradient_checkpointing = False
|
956 |
+
|
957 |
+
def forward(
|
958 |
+
self,
|
959 |
+
hidden_states,
|
960 |
+
attention_mask=None,
|
961 |
+
head_mask=None,
|
962 |
+
encoder_hidden_states=None,
|
963 |
+
encoder_attention_mask=None,
|
964 |
+
past_key_values=None,
|
965 |
+
output_attentions=False,
|
966 |
+
output_hidden_states=False,
|
967 |
+
return_dict=True,
|
968 |
+
):
|
969 |
+
all_hidden_states = () if output_hidden_states else None
|
970 |
+
|
971 |
+
for i in range(self.config.num_hidden_layers):
|
972 |
+
layer_module = self.layers[i]
|
973 |
+
if output_hidden_states:
|
974 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
975 |
+
|
976 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
977 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
978 |
+
|
979 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
980 |
+
|
981 |
+
def create_custom_forward(module):
|
982 |
+
def custom_forward(*inputs):
|
983 |
+
return module(*inputs, past_key_value, output_attentions)
|
984 |
+
|
985 |
+
return custom_forward
|
986 |
+
|
987 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
988 |
+
create_custom_forward(layer_module),
|
989 |
+
hidden_states,
|
990 |
+
attention_mask,
|
991 |
+
layer_head_mask,
|
992 |
+
encoder_hidden_states,
|
993 |
+
encoder_attention_mask,
|
994 |
+
)
|
995 |
+
else:
|
996 |
+
layer_outputs = layer_module(
|
997 |
+
hidden_states,
|
998 |
+
attention_mask,
|
999 |
+
layer_head_mask,
|
1000 |
+
encoder_hidden_states,
|
1001 |
+
encoder_attention_mask,
|
1002 |
+
output_attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
hidden_states = layer_outputs[0]
|
1006 |
+
|
1007 |
+
return BaseModelOutput(
|
1008 |
+
last_hidden_state=hidden_states,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
|
1012 |
+
class MplugOwlVisualAbstractorModel(MplugOwlPreTrainedModel):
|
1013 |
+
def __init__(self, config: MplugOwlVisualAbstractorConfig, language_hidden_size):
|
1014 |
+
super().__init__(config)
|
1015 |
+
self.config = config
|
1016 |
+
|
1017 |
+
self.encoder = MplugOwlVisualAbstractorEncoder(config)
|
1018 |
+
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size)
|
1019 |
+
self.temporal_visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size)
|
1020 |
+
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
1021 |
+
nn.init.trunc_normal_(self.vit_eos, mean=0.0, std=self.config.initializer_range)
|
1022 |
+
self.post_init()
|
1023 |
+
|
1024 |
+
def _prune_heads(self, heads_to_prune):
|
1025 |
+
"""
|
1026 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1027 |
+
class PreTrainedModel
|
1028 |
+
"""
|
1029 |
+
for layer, heads in heads_to_prune.items():
|
1030 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1031 |
+
|
1032 |
+
def get_extended_attention_mask(
|
1033 |
+
self,
|
1034 |
+
attention_mask: torch.Tensor,
|
1035 |
+
input_shape: Tuple[int],
|
1036 |
+
device: torch.device,
|
1037 |
+
) -> torch.Tensor:
|
1038 |
+
"""
|
1039 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
1040 |
+
|
1041 |
+
Arguments:
|
1042 |
+
attention_mask (`torch.Tensor`):
|
1043 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
1044 |
+
input_shape (`Tuple[int]`):
|
1045 |
+
The shape of the input to the model.
|
1046 |
+
device: (`torch.device`):
|
1047 |
+
The device of the input to the model.
|
1048 |
+
|
1049 |
+
Returns:
|
1050 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
1051 |
+
"""
|
1052 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1053 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1054 |
+
if attention_mask.dim() == 3:
|
1055 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
1056 |
+
elif attention_mask.dim() == 2:
|
1057 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
1058 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1059 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
1060 |
+
else:
|
1061 |
+
raise ValueError(
|
1062 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
1063 |
+
input_shape, attention_mask.shape
|
1064 |
+
)
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1068 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1069 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1070 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1071 |
+
# effectively the same as removing these entirely.
|
1072 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
1073 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
1074 |
+
return extended_attention_mask
|
1075 |
+
|
1076 |
+
def forward(
|
1077 |
+
self,
|
1078 |
+
query_embeds,
|
1079 |
+
temporal_query_embeds=None,
|
1080 |
+
attention_mask=None,
|
1081 |
+
head_mask=None,
|
1082 |
+
encoder_hidden_states=None,
|
1083 |
+
encoder_attention_mask=None,
|
1084 |
+
past_key_values=None,
|
1085 |
+
output_attentions=None,
|
1086 |
+
output_hidden_states=None,
|
1087 |
+
return_dict=None,
|
1088 |
+
):
|
1089 |
+
r"""
|
1090 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
1091 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1092 |
+
the model is configured as a decoder.
|
1093 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
1094 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1095 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1096 |
+
- 1 for tokens that are **not masked**,
|
1097 |
+
- 0 for tokens that are **masked**.
|
1098 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
|
1099 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
|
1100 |
+
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
|
1101 |
+
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
|
1102 |
+
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
1103 |
+
`(batch_size, sequence_length)`.
|
1104 |
+
"""
|
1105 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1106 |
+
output_hidden_states = (
|
1107 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1108 |
+
)
|
1109 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1110 |
+
|
1111 |
+
T = encoder_hidden_states.size(1)
|
1112 |
+
if T == 1 or temporal_query_embeds is None:
|
1113 |
+
embedding_output = query_embeds
|
1114 |
+
else:
|
1115 |
+
embedding_output = torch.cat([query_embeds, temporal_query_embeds], dim=1)
|
1116 |
+
input_shape = embedding_output.size()[:-1]
|
1117 |
+
batch_size, seq_length = input_shape
|
1118 |
+
device = embedding_output.device
|
1119 |
+
|
1120 |
+
encoder_hidden_states = einops.rearrange(
|
1121 |
+
encoder_hidden_states, 'b t n d -> b (t n) d'
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1125 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1126 |
+
if attention_mask is None:
|
1127 |
+
attention_mask = torch.ones(
|
1128 |
+
(embedding_output.shape[0], embedding_output.shape[1]), dtype=torch.long, device=embedding_output.device
|
1129 |
+
)
|
1130 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1131 |
+
|
1132 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1133 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1134 |
+
if encoder_hidden_states is not None:
|
1135 |
+
if type(encoder_hidden_states) == list:
|
1136 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
1137 |
+
else:
|
1138 |
+
(
|
1139 |
+
encoder_batch_size,
|
1140 |
+
encoder_sequence_length,
|
1141 |
+
_,
|
1142 |
+
) = encoder_hidden_states.size()
|
1143 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1144 |
+
|
1145 |
+
if type(encoder_attention_mask) == list:
|
1146 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
1147 |
+
elif encoder_attention_mask is None:
|
1148 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1149 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1150 |
+
else:
|
1151 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1152 |
+
else:
|
1153 |
+
encoder_extended_attention_mask = None
|
1154 |
+
|
1155 |
+
# Prepare head mask if needed
|
1156 |
+
# 1.0 in head_mask indicate we keep the head
|
1157 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1158 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1159 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1160 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1161 |
+
|
1162 |
+
encoder_outputs = self.encoder(
|
1163 |
+
embedding_output,
|
1164 |
+
attention_mask=extended_attention_mask,
|
1165 |
+
head_mask=head_mask,
|
1166 |
+
encoder_hidden_states=encoder_hidden_states,
|
1167 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1168 |
+
past_key_values=past_key_values,
|
1169 |
+
output_attentions=output_attentions,
|
1170 |
+
output_hidden_states=output_hidden_states,
|
1171 |
+
return_dict=return_dict,
|
1172 |
+
)
|
1173 |
+
sequence_output = encoder_outputs[0]
|
1174 |
+
pooled_output = sequence_output[:, 0, :]
|
1175 |
+
|
1176 |
+
if T == 1 or temporal_query_embeds is None:
|
1177 |
+
temporal_sequence_output = None
|
1178 |
+
else:
|
1179 |
+
temporal_sequence_output = sequence_output[:, query_embeds.size(1):]
|
1180 |
+
sequence_output = sequence_output[:, :query_embeds.size(1)]
|
1181 |
+
|
1182 |
+
sequence_output = self.visual_fc(sequence_output)
|
1183 |
+
if temporal_sequence_output is not None:
|
1184 |
+
sequence_output += self.temporal_visual_fc(temporal_sequence_output)
|
1185 |
+
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1)
|
1186 |
+
|
1187 |
+
return BaseModelOutputWithPooling(
|
1188 |
+
last_hidden_state=sequence_output,
|
1189 |
+
pooler_output=pooled_output,
|
1190 |
+
hidden_states=encoder_outputs.hidden_states,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
|
1194 |
+
@add_start_docstrings(
|
1195 |
+
"""
|
1196 |
+
mPLUG-Owl Model for generating text and image features. The model consists of a vision encoder, Querying Transformer
|
1197 |
+
(Q-Former) and a language model.
|
1198 |
+
""",
|
1199 |
+
MPLUG_OWL_START_DOCSTRING,
|
1200 |
+
)
|
1201 |
+
class MplugOwlModel(MplugOwlPreTrainedModel):
|
1202 |
+
config_class = MplugOwlConfig
|
1203 |
+
main_input_name = "pixel_values"
|
1204 |
+
|
1205 |
+
def __init__(self, config: MplugOwlConfig, *inputs, **kwargs):
|
1206 |
+
super().__init__(config, *inputs, **kwargs)
|
1207 |
+
|
1208 |
+
self.vision_model = MplugOwlVisionModel(config.vision_config)
|
1209 |
+
|
1210 |
+
self.query_tokens = nn.Parameter(
|
1211 |
+
torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size)
|
1212 |
+
)
|
1213 |
+
self.temporal_query_tokens = nn.Parameter(
|
1214 |
+
torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size)
|
1215 |
+
)
|
1216 |
+
self.abstractor = MplugOwlVisualAbstractorModel(
|
1217 |
+
config.visual_abstractor_config, config.text_config.hidden_size
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
# if config.use_decoder_only_language_model:
|
1221 |
+
# from llama.modeling_llama import LlamaForCausalLM
|
1222 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
1223 |
+
# else:
|
1224 |
+
# language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
|
1225 |
+
self.language_model = language_model
|
1226 |
+
|
1227 |
+
# Initialize weights and apply final processing
|
1228 |
+
self.post_init()
|
1229 |
+
|
1230 |
+
def get_input_embeddings(self):
|
1231 |
+
return self.language_model.get_input_embeddings()
|
1232 |
+
|
1233 |
+
def set_input_embeddings(self, value):
|
1234 |
+
self.language_model.set_input_embeddings(value)
|
1235 |
+
|
1236 |
+
def set_output_embeddings(self, new_embeddings):
|
1237 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1238 |
+
|
1239 |
+
def get_output_embeddings(self) -> nn.Module:
|
1240 |
+
return self.language_model.get_output_embeddings()
|
1241 |
+
|
1242 |
+
def get_encoder(self):
|
1243 |
+
return self.language_model.get_encoder()
|
1244 |
+
|
1245 |
+
def get_decoder(self):
|
1246 |
+
return self.language_model.get_decoder()
|
1247 |
+
|
1248 |
+
def _tie_weights(self):
|
1249 |
+
if not self.config.use_decoder_only_language_model:
|
1250 |
+
self.language_model.encoder.embed_tokens = self.language_model.shared
|
1251 |
+
self.language_model.decoder.embed_tokens = self.language_model.shared
|
1252 |
+
|
1253 |
+
def get_text_features(
|
1254 |
+
self,
|
1255 |
+
input_ids: Optional[torch.Tensor] = None,
|
1256 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1257 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1258 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1259 |
+
labels: Optional[torch.Tensor] = None,
|
1260 |
+
output_attentions: Optional[bool] = None,
|
1261 |
+
output_hidden_states: Optional[bool] = None,
|
1262 |
+
return_dict: Optional[bool] = None,
|
1263 |
+
):
|
1264 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1265 |
+
output_hidden_states = (
|
1266 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1267 |
+
)
|
1268 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1269 |
+
|
1270 |
+
if self.config.use_decoder_only_language_model:
|
1271 |
+
text_outputs = self.language_model(
|
1272 |
+
input_ids=input_ids,
|
1273 |
+
attention_mask=attention_mask,
|
1274 |
+
output_attentions=output_attentions,
|
1275 |
+
output_hidden_states=output_hidden_states,
|
1276 |
+
return_dict=return_dict,
|
1277 |
+
)
|
1278 |
+
else:
|
1279 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
1280 |
+
|
1281 |
+
text_outputs = self.language_model(
|
1282 |
+
inputs_embeds=inputs_embeds,
|
1283 |
+
attention_mask=attention_mask,
|
1284 |
+
decoder_input_ids=decoder_input_ids,
|
1285 |
+
decoder_attention_mask=decoder_attention_mask,
|
1286 |
+
output_attentions=output_attentions,
|
1287 |
+
output_hidden_states=output_hidden_states,
|
1288 |
+
return_dict=return_dict,
|
1289 |
+
labels=labels,
|
1290 |
+
)
|
1291 |
+
|
1292 |
+
return text_outputs
|
1293 |
+
|
1294 |
+
def get_image_features(
|
1295 |
+
self,
|
1296 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1297 |
+
output_attentions: Optional[bool] = None,
|
1298 |
+
output_hidden_states: Optional[bool] = None,
|
1299 |
+
return_dict: Optional[bool] = None,
|
1300 |
+
):
|
1301 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1302 |
+
output_hidden_states = (
|
1303 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1304 |
+
)
|
1305 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1306 |
+
|
1307 |
+
vision_outputs = self.vision_model(
|
1308 |
+
pixel_values=pixel_values,
|
1309 |
+
output_attentions=output_attentions,
|
1310 |
+
output_hidden_states=output_hidden_states,
|
1311 |
+
return_dict=return_dict,
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
return vision_outputs
|
1315 |
+
|
1316 |
+
|
1317 |
+
def get_media_indices(my_list):
|
1318 |
+
if isinstance(my_list, torch.Tensor):
|
1319 |
+
my_list = my_list.cpu().tolist()
|
1320 |
+
result = []
|
1321 |
+
for i in range(len(my_list)):
|
1322 |
+
if i == 0 and my_list[i] < 0:
|
1323 |
+
result.append(i)
|
1324 |
+
elif my_list[i] != my_list[i - 1] and my_list[i] < 0:
|
1325 |
+
result.append(i)
|
1326 |
+
return result
|
1327 |
+
|
1328 |
+
def get_media_types(tensors, positions):
|
1329 |
+
if isinstance(tensors, torch.Tensor):
|
1330 |
+
tensors = tensors.cpu().tolist()
|
1331 |
+
result = []
|
1332 |
+
for pos in positions:
|
1333 |
+
result.append(tensors[pos])
|
1334 |
+
return result
|
1335 |
+
|
1336 |
+
|
1337 |
+
@add_start_docstrings(
|
1338 |
+
"""
|
1339 |
+
mPLUG-Owl Model for generating text given an image and an optional text prompt.
|
1340 |
+
""",
|
1341 |
+
MPLUG_OWL_START_DOCSTRING,
|
1342 |
+
)
|
1343 |
+
class MplugOwlForConditionalGeneration(MplugOwlPreTrainedModel):
|
1344 |
+
config_class = MplugOwlConfig
|
1345 |
+
main_input_name = "pixel_values"
|
1346 |
+
|
1347 |
+
def __init__(self, config: MplugOwlConfig):
|
1348 |
+
super().__init__(config)
|
1349 |
+
|
1350 |
+
self.vision_model = MplugOwlVisionModel(config.vision_config)
|
1351 |
+
|
1352 |
+
self.query_tokens = nn.Parameter(
|
1353 |
+
torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size)
|
1354 |
+
)
|
1355 |
+
self.temporal_query_tokens = nn.Parameter(
|
1356 |
+
torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size)
|
1357 |
+
)
|
1358 |
+
self.abstractor = MplugOwlVisualAbstractorModel(
|
1359 |
+
config.visual_abstractor_config, config.text_config.hidden_size
|
1360 |
+
)
|
1361 |
+
|
1362 |
+
# if config.use_decoder_only_language_model:
|
1363 |
+
# from llama.modeling_llama import LlamaForCausalLM
|
1364 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
1365 |
+
# else:
|
1366 |
+
# language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
|
1367 |
+
self.language_model = language_model
|
1368 |
+
|
1369 |
+
# Initialize weights and apply final processing
|
1370 |
+
self.post_init()
|
1371 |
+
self.main_input_name = "input_ids"
|
1372 |
+
from transformers import GenerationConfig
|
1373 |
+
|
1374 |
+
self.generation_config = GenerationConfig(
|
1375 |
+
max_length=512, do_sample=True, top_k=3, pad_token_id=0, unk_token_id=0, bos_token_id=1, eos_token_id=2
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
# Hack Bloom
|
1379 |
+
if config.text_config.model_type == 'bloom':
|
1380 |
+
bound_method = bloom_forward.__get__(self.language_model.transformer, self.language_model.transformer.__class__)
|
1381 |
+
setattr(self.language_model.transformer, 'forward', bound_method)
|
1382 |
+
|
1383 |
+
def get_input_embeddings(self):
|
1384 |
+
return self.language_model.get_input_embeddings()
|
1385 |
+
|
1386 |
+
def set_input_embeddings(self, value):
|
1387 |
+
self.language_model.set_input_embeddings(value)
|
1388 |
+
|
1389 |
+
def set_output_embeddings(self, new_embeddings):
|
1390 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1391 |
+
|
1392 |
+
def get_output_embeddings(self) -> nn.Module:
|
1393 |
+
return self.language_model.get_output_embeddings()
|
1394 |
+
|
1395 |
+
def get_encoder(self):
|
1396 |
+
return self.language_model.get_encoder()
|
1397 |
+
|
1398 |
+
def get_decoder(self):
|
1399 |
+
return self.language_model.get_decoder()
|
1400 |
+
|
1401 |
+
def _tie_weights(self):
|
1402 |
+
if not self.config.use_decoder_only_language_model:
|
1403 |
+
self.language_model.encoder.embed_tokens = self.language_model.shared
|
1404 |
+
self.language_model.decoder.embed_tokens = self.language_model.shared
|
1405 |
+
|
1406 |
+
def _preprocess_accelerate(self):
|
1407 |
+
r"""
|
1408 |
+
Some pre-processing hacks to make the model `accelerate` compatible. Check
|
1409 |
+
https://github.com/huggingface/transformers/pull/21707 for more details.
|
1410 |
+
"""
|
1411 |
+
hf_device_map = self.hf_device_map
|
1412 |
+
|
1413 |
+
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
|
1414 |
+
# warn users about unexpected behavior when using multi-GPU + mPLUG-Owl + `accelerate`.
|
1415 |
+
logger.warning(
|
1416 |
+
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
|
1417 |
+
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
|
1418 |
+
" Please pass a `device_map` that contains `language_model` to remove this warning."
|
1419 |
+
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
|
1420 |
+
" more details on creating a `device_map` for large models.",
|
1421 |
+
)
|
1422 |
+
|
1423 |
+
if hasattr(self.language_model, "_hf_hook"):
|
1424 |
+
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
|
1425 |
+
|
1426 |
+
@add_start_docstrings_to_model_forward(MPLUG_OWL_INPUTS_DOCSTRING)
|
1427 |
+
@replace_return_docstrings(
|
1428 |
+
output_type=MplugOwlForConditionalGenerationModelOutput, config_class=MplugOwlVisionConfig
|
1429 |
+
)
|
1430 |
+
def forward(
|
1431 |
+
self,
|
1432 |
+
pixel_values: torch.FloatTensor,
|
1433 |
+
video_pixel_values: torch.FloatTensor,
|
1434 |
+
input_ids: torch.FloatTensor,
|
1435 |
+
num_images,
|
1436 |
+
num_videos,
|
1437 |
+
non_padding_mask: Optional[torch.LongTensor] = None,
|
1438 |
+
non_media_mask: Optional[torch.LongTensor] = None,
|
1439 |
+
prompt_mask: Optional[torch.LongTensor] = None,
|
1440 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1441 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1442 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1443 |
+
output_attentions: Optional[bool] = None,
|
1444 |
+
output_hidden_states: Optional[bool] = None,
|
1445 |
+
labels: Optional[torch.LongTensor] = None,
|
1446 |
+
return_dict: Optional[bool] = None,
|
1447 |
+
**forward_kwargs,
|
1448 |
+
) -> Union[Tuple, MplugOwlForConditionalGenerationModelOutput]:
|
1449 |
+
r"""
|
1450 |
+
Returns:
|
1451 |
+
|
1452 |
+
Examples:
|
1453 |
+
|
1454 |
+
Image captioning (without providing a text prompt):
|
1455 |
+
|
1456 |
+
```python
|
1457 |
+
>>> from PIL import Image
|
1458 |
+
>>> import requests
|
1459 |
+
>>> from transformers import MplugOwlProcessor, MplugOwlForConditionalGeneration
|
1460 |
+
>>> import torch
|
1461 |
+
|
1462 |
+
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
1463 |
+
|
1464 |
+
>>> processor = MplugOwlProcessor.from_pretrained("x-plug/x_plug-llama-7b")
|
1465 |
+
>>> model = MplugOwlForConditionalGeneration.from_pretrained(
|
1466 |
+
... "x-plug/x_plug-llama-7b", torch_dtype=torch.float16
|
1467 |
+
... )
|
1468 |
+
>>> model.to(device) # doctest: +IGNORE_RESULT
|
1469 |
+
|
1470 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1471 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1472 |
+
|
1473 |
+
>>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
1474 |
+
|
1475 |
+
>>> generated_ids = model.generate(**inputs)
|
1476 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
1477 |
+
>>> print(generated_text)
|
1478 |
+
two cats laying on a couch
|
1479 |
+
```
|
1480 |
+
|
1481 |
+
Visual question answering (prompt = question):
|
1482 |
+
|
1483 |
+
```python
|
1484 |
+
>>> from PIL import Image
|
1485 |
+
>>> import requests
|
1486 |
+
>>> from transformers import MplugOwlProcessor, MplugOwlForConditionalGeneration
|
1487 |
+
>>> import torch
|
1488 |
+
|
1489 |
+
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
1490 |
+
|
1491 |
+
>>> processor = MplugOwlProcessor.from_pretrained("x-plug/x_plug-llama-7b")
|
1492 |
+
>>> model = MplugOwlForConditionalGeneration.from_pretrained(
|
1493 |
+
... "x-plug/x_plug-llama-7b", torch_dtype=torch.float16
|
1494 |
+
... )
|
1495 |
+
>>> model.to(device) # doctest: +IGNORE_RESULT
|
1496 |
+
|
1497 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1498 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1499 |
+
|
1500 |
+
>>> prompt = "Question: how many cats are there? Answer:"
|
1501 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
1502 |
+
|
1503 |
+
>>> generated_ids = model.generate(**inputs)
|
1504 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
1505 |
+
>>> print(generated_text)
|
1506 |
+
two
|
1507 |
+
```"""
|
1508 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1509 |
+
|
1510 |
+
if attention_mask is None:
|
1511 |
+
attention_mask = input_ids.new_ones(*input_ids.shape)
|
1512 |
+
|
1513 |
+
# get text embedding
|
1514 |
+
text_tokens_ = input_ids.clone()
|
1515 |
+
batch_size = input_ids.shape[0]
|
1516 |
+
|
1517 |
+
media_token_indices = [
|
1518 |
+
# [:-1] since we would not use the last token for embedding
|
1519 |
+
get_media_indices(text_tokens_[i][:-1])
|
1520 |
+
for i in range(batch_size)
|
1521 |
+
]
|
1522 |
+
|
1523 |
+
media_token_types = [
|
1524 |
+
get_media_types(text_tokens_[i][:-1], media_token_indices[i])
|
1525 |
+
for i in range(batch_size)
|
1526 |
+
]
|
1527 |
+
|
1528 |
+
text_tokens_[text_tokens_ < 0] = 1 # Not used
|
1529 |
+
inputs_embeds = self.get_input_embeddings()(text_tokens_) # Temporally Embedding
|
1530 |
+
|
1531 |
+
if hasattr(self.language_model, 'transformer') and hasattr(self.language_model.transformer, 'word_embeddings_layernorm'):
|
1532 |
+
inputs_embeds = self.language_model.transformer.word_embeddings_layernorm(inputs_embeds)
|
1533 |
+
|
1534 |
+
if pixel_values is not None:
|
1535 |
+
image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
|
1536 |
+
|
1537 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1538 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1539 |
+
temporal_query_tokens = self.temporal_query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1540 |
+
|
1541 |
+
query_features = self.abstractor(
|
1542 |
+
query_embeds=query_tokens,
|
1543 |
+
encoder_hidden_states=image_embeds,
|
1544 |
+
encoder_attention_mask=image_attention_mask,
|
1545 |
+
)["last_hidden_state"]
|
1546 |
+
img_seq_length = query_features.shape[1]
|
1547 |
+
|
1548 |
+
if video_pixel_values is not None:
|
1549 |
+
video_embeds = self.vision_model(video_pixel_values, return_dict=True).last_hidden_state
|
1550 |
+
|
1551 |
+
video_attention_mask = torch.ones(video_embeds.size()[:-1], dtype=torch.long, device=video_embeds.device)
|
1552 |
+
video_attention_mask = einops.rearrange(
|
1553 |
+
video_attention_mask, 'b t n -> b (t n)'
|
1554 |
+
)
|
1555 |
+
query_tokens = self.query_tokens.expand(video_embeds.shape[0], -1, -1)
|
1556 |
+
temporal_query_tokens = self.temporal_query_tokens.expand(video_embeds.shape[0], -1, -1)
|
1557 |
+
|
1558 |
+
video_query_features = self.abstractor(
|
1559 |
+
query_embeds=query_tokens,
|
1560 |
+
temporal_query_embeds=temporal_query_tokens,
|
1561 |
+
encoder_hidden_states=video_embeds,
|
1562 |
+
encoder_attention_mask=video_attention_mask,
|
1563 |
+
)["last_hidden_state"]
|
1564 |
+
video_embeds = video_query_features
|
1565 |
+
vid_seq_length = video_query_features.shape[1]
|
1566 |
+
|
1567 |
+
num_images_per_sample = num_images.long().cpu().tolist()
|
1568 |
+
num_videos_per_sample = num_videos.long().cpu().tolist()
|
1569 |
+
|
1570 |
+
text_chunk_embeds = []
|
1571 |
+
text_chunk_attns = []
|
1572 |
+
img_idx = 0
|
1573 |
+
vid_idx = 0
|
1574 |
+
for b in range(batch_size):
|
1575 |
+
start = 0
|
1576 |
+
result = []
|
1577 |
+
result_attn = []
|
1578 |
+
for i, pos in enumerate(media_token_indices[b]):
|
1579 |
+
curr_image_idx, curr_video_idx = 0, 0
|
1580 |
+
if pos > start:
|
1581 |
+
result.append(inputs_embeds[b, start:pos])
|
1582 |
+
result_attn.append(attention_mask[b, start:pos])
|
1583 |
+
if media_token_types[b][i] == -1:
|
1584 |
+
result.append(image_embeds[img_idx + curr_image_idx])
|
1585 |
+
result_attn.append(torch.ones(image_embeds[img_idx + curr_image_idx].shape[0], device=inputs_embeds.device))
|
1586 |
+
start = pos + img_seq_length
|
1587 |
+
curr_image_idx += 1
|
1588 |
+
else:
|
1589 |
+
result.append(video_embeds[vid_idx + curr_video_idx])
|
1590 |
+
result_attn.append(torch.ones(video_embeds[vid_idx + curr_video_idx].shape[0], device=inputs_embeds.device))
|
1591 |
+
start = pos + vid_seq_length
|
1592 |
+
curr_video_idx += 1
|
1593 |
+
if start < inputs_embeds.shape[1]:
|
1594 |
+
result.append(inputs_embeds[b, start:])
|
1595 |
+
result_attn.append(attention_mask[b, start:])
|
1596 |
+
|
1597 |
+
img_idx += num_images_per_sample[b]
|
1598 |
+
vid_idx += num_videos_per_sample[b]
|
1599 |
+
text_chunk_embeds.append(torch.cat(result, dim=0))
|
1600 |
+
text_chunk_attns.append(torch.cat(result_attn, dim=0))
|
1601 |
+
|
1602 |
+
inputs_embeds = torch.stack(text_chunk_embeds, dim=0)
|
1603 |
+
attention_mask = torch.stack(text_chunk_attns, dim=0)
|
1604 |
+
|
1605 |
+
if labels is not None:
|
1606 |
+
# Create causal mask and position ids
|
1607 |
+
_, loss_mask, position_ids = get_ltor_masks_and_position_ids_from_embeddings(inputs_embeds)
|
1608 |
+
|
1609 |
+
# Calculate the loss_mask
|
1610 |
+
non_padding_mask = non_padding_mask.long()
|
1611 |
+
non_media_mask = non_media_mask.long()
|
1612 |
+
prompt_mask = prompt_mask.long() # TODO How to deal with prompt mask
|
1613 |
+
loss_mask = loss_mask[:, :-1]
|
1614 |
+
|
1615 |
+
loss_mask = loss_mask * non_padding_mask * non_media_mask * prompt_mask
|
1616 |
+
labels[:, 1:][loss_mask != 1] = -100
|
1617 |
+
|
1618 |
+
# Forward into GPT
|
1619 |
+
outputs = self.language_model(
|
1620 |
+
inputs_embeds=inputs_embeds,
|
1621 |
+
attention_mask=attention_mask,
|
1622 |
+
labels=labels,
|
1623 |
+
return_dict=return_dict,
|
1624 |
+
output_attentions=self.config.output_attentions,
|
1625 |
+
)
|
1626 |
+
|
1627 |
+
return outputs
|
1628 |
+
|
1629 |
+
@torch.no_grad()
|
1630 |
+
def generate(
|
1631 |
+
self,
|
1632 |
+
pixel_values: torch.FloatTensor = None,
|
1633 |
+
video_pixel_values: torch.FloatTensor = None,
|
1634 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1635 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1636 |
+
isdecoder=True,
|
1637 |
+
get_logits_only=False,
|
1638 |
+
**generate_kwargs,
|
1639 |
+
) -> torch.LongTensor:
|
1640 |
+
"""
|
1641 |
+
Overrides `generate` function to be able to use the model as a conditional generator.
|
1642 |
+
|
1643 |
+
Args:
|
1644 |
+
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
|
1645 |
+
Input images to be processed.
|
1646 |
+
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
1647 |
+
The sequence used as a prompt for the generation.
|
1648 |
+
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
1649 |
+
Mask to avoid performing attention on padding token indices
|
1650 |
+
|
1651 |
+
Returns:
|
1652 |
+
captions (list): A list of strings of length batch_size * num_captions.
|
1653 |
+
"""
|
1654 |
+
if input_ids is None:
|
1655 |
+
return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs)
|
1656 |
+
|
1657 |
+
if attention_mask is None:
|
1658 |
+
attention_mask = input_ids.new_ones(*input_ids.shape)
|
1659 |
+
|
1660 |
+
batch_size = input_ids.size(0)
|
1661 |
+
media_token_indices = [get_media_indices(input_ids[i]) for i in range(batch_size)]
|
1662 |
+
media_token_types = [
|
1663 |
+
get_media_types(input_ids[i], media_token_indices[i])
|
1664 |
+
for i in range(batch_size)
|
1665 |
+
]
|
1666 |
+
num_images_per_sample = [len([y for y in x if y==-1]) for x in media_token_types]
|
1667 |
+
num_videos_per_sample = [len([y for y in x if y<-1]) for x in media_token_types]
|
1668 |
+
input_ids = input_ids.clone() # prevent inplace modify
|
1669 |
+
input_ids[input_ids < 0] = 0 # Not used
|
1670 |
+
|
1671 |
+
if hasattr(self, "hf_device_map"):
|
1672 |
+
# preprocess for `accelerate`
|
1673 |
+
self._preprocess_accelerate()
|
1674 |
+
|
1675 |
+
batch_size = input_ids.shape[0]
|
1676 |
+
# get text embedding
|
1677 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1678 |
+
if hasattr(self.language_model, 'transformer') and hasattr(self.language_model.transformer, 'word_embeddings_layernorm'):
|
1679 |
+
inputs_embeds = self.language_model.transformer.word_embeddings_layernorm(inputs_embeds)
|
1680 |
+
# get visual embedding
|
1681 |
+
if pixel_values is not None:
|
1682 |
+
pixel_values = pixel_values.to(input_ids.device)
|
1683 |
+
with torch.no_grad():
|
1684 |
+
image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
|
1685 |
+
image_attention_mask = torch.ones(
|
1686 |
+
image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device
|
1687 |
+
)
|
1688 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1689 |
+
query_outputs = self.abstractor(
|
1690 |
+
query_embeds=query_tokens,
|
1691 |
+
encoder_hidden_states=image_embeds,
|
1692 |
+
encoder_attention_mask=image_attention_mask,
|
1693 |
+
return_dict=True,
|
1694 |
+
)
|
1695 |
+
query_output = query_outputs["last_hidden_state"]
|
1696 |
+
image_embeds = query_output
|
1697 |
+
img_seq_length = image_embeds.shape[1]
|
1698 |
+
|
1699 |
+
if video_pixel_values is not None:
|
1700 |
+
video_pixel_values = video_pixel_values.to(input_ids.device)
|
1701 |
+
with torch.no_grad():
|
1702 |
+
video_embeds = self.vision_model(video_pixel_values, return_dict=True).last_hidden_state
|
1703 |
+
video_attention_mask = torch.ones(
|
1704 |
+
video_embeds.size()[:-1], dtype=torch.long, device=video_embeds.device
|
1705 |
+
)
|
1706 |
+
video_attention_mask = einops.rearrange(
|
1707 |
+
video_attention_mask, 'b t n -> b (t n)'
|
1708 |
+
)
|
1709 |
+
query_tokens = self.query_tokens.expand(video_embeds.shape[0], -1, -1)
|
1710 |
+
temporal_query_tokens = self.temporal_query_tokens.expand(video_embeds.shape[0], -1, -1)
|
1711 |
+
query_outputs = self.abstractor(
|
1712 |
+
query_embeds=query_tokens,
|
1713 |
+
temporal_query_embeds=temporal_query_tokens,
|
1714 |
+
encoder_hidden_states=video_embeds,
|
1715 |
+
encoder_attention_mask=video_attention_mask,
|
1716 |
+
return_dict=True,
|
1717 |
+
)
|
1718 |
+
query_output = query_outputs["last_hidden_state"]
|
1719 |
+
video_embeds = query_output
|
1720 |
+
vid_seq_length = video_embeds.shape[1]
|
1721 |
+
|
1722 |
+
# ===================
|
1723 |
+
# Get actual input embeddings
|
1724 |
+
# ===================
|
1725 |
+
text_chunk_embeds = []
|
1726 |
+
text_chunk_attns = []
|
1727 |
+
img_idx = 0
|
1728 |
+
vid_idx = 0
|
1729 |
+
|
1730 |
+
for b in range(batch_size):
|
1731 |
+
start = 0
|
1732 |
+
result = []
|
1733 |
+
result_attn = []
|
1734 |
+
for i, pos in enumerate(media_token_indices[b]):
|
1735 |
+
curr_image_idx, curr_video_idx = 0, 0
|
1736 |
+
if pos > start:
|
1737 |
+
result.append(inputs_embeds[b, start:pos])
|
1738 |
+
result_attn.append(attention_mask[b, start:pos])
|
1739 |
+
if media_token_types[b][i] == -1:
|
1740 |
+
result.append(image_embeds[img_idx + curr_image_idx])
|
1741 |
+
result_attn.append(torch.ones(image_embeds[img_idx + curr_image_idx].shape[0], device=inputs_embeds.device))
|
1742 |
+
start = pos + img_seq_length
|
1743 |
+
curr_image_idx += 1
|
1744 |
+
else:
|
1745 |
+
result.append(video_embeds[vid_idx + curr_video_idx])
|
1746 |
+
result_attn.append(torch.ones(video_embeds[vid_idx + curr_video_idx].shape[0], device=inputs_embeds.device))
|
1747 |
+
start = pos + vid_seq_length
|
1748 |
+
curr_video_idx += 1
|
1749 |
+
if start < inputs_embeds.shape[1]:
|
1750 |
+
result.append(inputs_embeds[b, start:])
|
1751 |
+
result_attn.append(attention_mask[b, start:])
|
1752 |
+
|
1753 |
+
img_idx += num_images_per_sample[b]
|
1754 |
+
vid_idx += num_videos_per_sample[b]
|
1755 |
+
text_chunk_embeds.append(torch.cat(result, dim=0))
|
1756 |
+
text_chunk_attns.append(torch.cat(result_attn, dim=0))
|
1757 |
+
inputs_embeds = torch.stack(text_chunk_embeds, dim=0)
|
1758 |
+
attention_mask = torch.stack(text_chunk_attns, dim=0)
|
1759 |
+
|
1760 |
+
if get_logits_only:
|
1761 |
+
outputs = self.language_model(
|
1762 |
+
inputs_embeds=inputs_embeds,
|
1763 |
+
attention_mask=attention_mask,
|
1764 |
+
return_dict=True,
|
1765 |
+
output_attentions=self.config.output_attentions,
|
1766 |
+
)
|
1767 |
+
else:
|
1768 |
+
outputs = self.language_model.generate(
|
1769 |
+
inputs_embeds=inputs_embeds,
|
1770 |
+
attention_mask=attention_mask,
|
1771 |
+
**generate_kwargs,
|
1772 |
+
)
|
1773 |
+
|
1774 |
+
return outputs
|
1775 |
+
|
1776 |
+
def prepare_inputs_for_generation(
|
1777 |
+
self, input_ids, pixel_values=None, video_pixel_values=None,
|
1778 |
+
past_key_values=None, attention_mask=None, **model_kwargs
|
1779 |
+
):
|
1780 |
+
input_shape = input_ids.shape
|
1781 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1782 |
+
if attention_mask is None:
|
1783 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1784 |
+
|
1785 |
+
# # cut decoder_input_ids if past_key_values is used
|
1786 |
+
# if past_key_values is not None:
|
1787 |
+
# input_ids = input_ids[:, -1:]
|
1788 |
+
|
1789 |
+
return {
|
1790 |
+
"input_ids": input_ids,
|
1791 |
+
"pixel_values": pixel_values,
|
1792 |
+
"video_pixel_values": video_pixel_values,
|
1793 |
+
"attention_mask": attention_mask,
|
1794 |
+
# "past_key_values": past_key_values,
|
1795 |
+
# "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1796 |
+
# "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1797 |
+
"is_decoder": True,
|
1798 |
+
}
|
1799 |
+
|
1800 |
+
|
1801 |
+
def bloom_forward(
|
1802 |
+
self,
|
1803 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1804 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1805 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1806 |
+
head_mask: Optional[torch.LongTensor] = None,
|
1807 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1808 |
+
use_cache: Optional[bool] = None,
|
1809 |
+
output_attentions: Optional[bool] = None,
|
1810 |
+
output_hidden_states: Optional[bool] = None,
|
1811 |
+
return_dict: Optional[bool] = None,
|
1812 |
+
**deprecated_arguments,
|
1813 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
1814 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
1815 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
1816 |
+
warnings.warn(
|
1817 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
1818 |
+
" passing `position_ids`.",
|
1819 |
+
FutureWarning,
|
1820 |
+
)
|
1821 |
+
if len(deprecated_arguments) > 0:
|
1822 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
1823 |
+
|
1824 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1825 |
+
output_hidden_states = (
|
1826 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1827 |
+
)
|
1828 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1829 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1830 |
+
|
1831 |
+
if input_ids is not None and inputs_embeds is not None:
|
1832 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1833 |
+
elif input_ids is not None:
|
1834 |
+
batch_size, seq_length = input_ids.shape
|
1835 |
+
elif inputs_embeds is not None:
|
1836 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1837 |
+
else:
|
1838 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1839 |
+
|
1840 |
+
if past_key_values is None:
|
1841 |
+
past_key_values = tuple([None] * len(self.h))
|
1842 |
+
|
1843 |
+
# Prepare head mask if needed
|
1844 |
+
# 1.0 in head_mask indicate we keep the head
|
1845 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
1846 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
1847 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
1848 |
+
|
1849 |
+
if inputs_embeds is None:
|
1850 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
1851 |
+
inputs_embeds = self.word_embeddings_layernorm(inputs_embeds)
|
1852 |
+
|
1853 |
+
hidden_states = inputs_embeds
|
1854 |
+
|
1855 |
+
presents = () if use_cache else None
|
1856 |
+
all_self_attentions = () if output_attentions else None
|
1857 |
+
all_hidden_states = () if output_hidden_states else None
|
1858 |
+
|
1859 |
+
if self.gradient_checkpointing and self.training:
|
1860 |
+
if use_cache:
|
1861 |
+
logger.warning_once(
|
1862 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1863 |
+
)
|
1864 |
+
use_cache = False
|
1865 |
+
|
1866 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
1867 |
+
seq_length_with_past = seq_length
|
1868 |
+
past_key_values_length = 0
|
1869 |
+
if past_key_values[0] is not None:
|
1870 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1871 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1872 |
+
if attention_mask is None:
|
1873 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
1874 |
+
else:
|
1875 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
1876 |
+
|
1877 |
+
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
1878 |
+
|
1879 |
+
causal_mask = self._prepare_attn_mask(
|
1880 |
+
attention_mask,
|
1881 |
+
input_shape=(batch_size, seq_length),
|
1882 |
+
past_key_values_length=past_key_values_length,
|
1883 |
+
)
|
1884 |
+
|
1885 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
1886 |
+
if output_hidden_states:
|
1887 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1888 |
+
|
1889 |
+
if self.gradient_checkpointing and self.training:
|
1890 |
+
|
1891 |
+
def create_custom_forward(module):
|
1892 |
+
def custom_forward(*inputs):
|
1893 |
+
# None for past_key_value
|
1894 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
1895 |
+
|
1896 |
+
return custom_forward
|
1897 |
+
|
1898 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
1899 |
+
create_custom_forward(block),
|
1900 |
+
hidden_states,
|
1901 |
+
alibi,
|
1902 |
+
causal_mask,
|
1903 |
+
layer_past,
|
1904 |
+
head_mask[i],
|
1905 |
+
)
|
1906 |
+
else:
|
1907 |
+
outputs = block(
|
1908 |
+
hidden_states,
|
1909 |
+
layer_past=layer_past,
|
1910 |
+
attention_mask=causal_mask,
|
1911 |
+
head_mask=head_mask[i],
|
1912 |
+
use_cache=use_cache,
|
1913 |
+
output_attentions=output_attentions,
|
1914 |
+
alibi=alibi,
|
1915 |
+
)
|
1916 |
+
|
1917 |
+
hidden_states = outputs[0]
|
1918 |
+
if use_cache is True:
|
1919 |
+
presents = presents + (outputs[1],)
|
1920 |
+
|
1921 |
+
if output_attentions:
|
1922 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
1923 |
+
|
1924 |
+
# Add last hidden state
|
1925 |
+
hidden_states = self.ln_f(hidden_states)
|
1926 |
+
|
1927 |
+
if output_hidden_states:
|
1928 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1929 |
+
|
1930 |
+
if not return_dict:
|
1931 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1932 |
+
|
1933 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1934 |
+
last_hidden_state=hidden_states,
|
1935 |
+
past_key_values=presents,
|
1936 |
+
hidden_states=all_hidden_states,
|
1937 |
+
attentions=all_self_attentions,
|
1938 |
+
)
|
pipeline_video/mplug_owl_video/processing_mplug_owl.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
|
6 |
+
from transformers.processing_utils import ProcessorMixin
|
7 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
8 |
+
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
|
9 |
+
from .tokenization_mplug_owl import MplugOwlTokenizer
|
10 |
+
|
11 |
+
from decord import VideoReader
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
def get_index(num_frames, num_segments):
|
16 |
+
seg_size = float(num_frames - 1) / num_segments
|
17 |
+
start = int(seg_size / 2)
|
18 |
+
offsets = np.array([
|
19 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
20 |
+
])
|
21 |
+
return offsets
|
22 |
+
|
23 |
+
def load_video(path, num_frames=4):
|
24 |
+
vr = VideoReader(path, height=224, width=224)
|
25 |
+
total_frames = len(vr)
|
26 |
+
frame_indices = get_index(total_frames, num_frames)
|
27 |
+
images_group = list()
|
28 |
+
for frame_index in frame_indices:
|
29 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
30 |
+
images_group.append(img)
|
31 |
+
return images_group
|
32 |
+
|
33 |
+
class MplugOwlProcessor(ProcessorMixin):
|
34 |
+
attributes = []
|
35 |
+
tokenizer_class = ("MplugOwlTokenizer")
|
36 |
+
|
37 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
38 |
+
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
self.tokens_to_generate = 0
|
41 |
+
self.image_processor = image_processor
|
42 |
+
self.tokenizer = tokenizer
|
43 |
+
self.add_BOS = True
|
44 |
+
|
45 |
+
def __call__(self, videos=None, text=None, num_frames=4, return_tensors=None, **kwargs):
|
46 |
+
|
47 |
+
if text is not None:
|
48 |
+
encoding = tokenize_prompts(
|
49 |
+
prompts=text,
|
50 |
+
tokens_to_generate=self.tokens_to_generate,
|
51 |
+
add_BOS=self.add_BOS,
|
52 |
+
tokenizer=self.tokenizer,
|
53 |
+
ignore_dist=True,
|
54 |
+
**kwargs,
|
55 |
+
)
|
56 |
+
|
57 |
+
if videos is not None:
|
58 |
+
video_features = []
|
59 |
+
for video in videos:
|
60 |
+
video_frames = load_video(video, num_frames)
|
61 |
+
video_feature = self.image_processor(video_frames, return_tensors=return_tensors, **kwargs)['pixel_values']
|
62 |
+
video_features.append(video_feature)
|
63 |
+
video_features = torch.stack(video_features, dim=0)
|
64 |
+
video_features = video_features.permute(0, 2, 1, 3, 4)
|
65 |
+
|
66 |
+
if text is not None and videos is not None:
|
67 |
+
encoding["video_pixel_values"] = video_features
|
68 |
+
return encoding
|
69 |
+
if text is not None and videos is None:
|
70 |
+
return encoding
|
71 |
+
|
72 |
+
return video_features
|
73 |
+
|
74 |
+
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
|
75 |
+
"""
|
76 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
77 |
+
refer to the docstring of this method for more information.
|
78 |
+
"""
|
79 |
+
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
80 |
+
|
81 |
+
def decode(self, skip_special_tokens=True, *args, **kwargs):
|
82 |
+
"""
|
83 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
84 |
+
the docstring of this method for more information.
|
85 |
+
"""
|
86 |
+
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
class MplugOwlImageProcessor(CLIPImageProcessor):
|
90 |
+
pass
|
91 |
+
|
92 |
+
|
93 |
+
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer):
|
94 |
+
"""Detokenize the generated tokens."""
|
95 |
+
|
96 |
+
prompts_plus_generations = []
|
97 |
+
if return_segments:
|
98 |
+
prompts_plus_generations_segments = []
|
99 |
+
|
100 |
+
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
|
101 |
+
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
|
102 |
+
for sequence_tokens, length in zip(tokens, lengths):
|
103 |
+
sequence_tokens = sequence_tokens[:length]
|
104 |
+
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens))
|
105 |
+
if return_segments:
|
106 |
+
from tokenizers.decoders import Metaspace
|
107 |
+
|
108 |
+
if hasattr(tokenizer, "tokenizer"):
|
109 |
+
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
|
110 |
+
words = tokenizer.tokenizer.decode(sequence_tokens)
|
111 |
+
else:
|
112 |
+
words = []
|
113 |
+
for token in sequence_tokens:
|
114 |
+
word = tokenizer.tokenizer.decoder[token]
|
115 |
+
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
116 |
+
"utf-8", errors="replace"
|
117 |
+
)
|
118 |
+
words.append(word)
|
119 |
+
prompts_plus_generations_segments.append(words)
|
120 |
+
else:
|
121 |
+
words = tokenizer.detokenize(sequence_tokens)
|
122 |
+
# else:
|
123 |
+
# words = []
|
124 |
+
# for token in sequence_tokens:
|
125 |
+
# word = tokenizer.tokenizer.decoder[token]
|
126 |
+
# word = bytearray(
|
127 |
+
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
128 |
+
# 'utf-8', errors='replace')
|
129 |
+
# words.append(word)
|
130 |
+
prompts_plus_generations_segments.append(words)
|
131 |
+
|
132 |
+
if return_segments:
|
133 |
+
return tokens, prompts_plus_generations, prompts_plus_generations_segments
|
134 |
+
|
135 |
+
return tokens, prompts_plus_generations
|
136 |
+
|
137 |
+
|
138 |
+
def tokenize_prompts(
|
139 |
+
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs
|
140 |
+
):
|
141 |
+
"""Tokenize prompts and make them avaiable on all ranks."""
|
142 |
+
|
143 |
+
# On all ranks set to None so we can pass them to functions
|
144 |
+
prompts_tokens_cuda_long_tensor = None
|
145 |
+
prompts_length_cuda_long_tensor = None
|
146 |
+
|
147 |
+
# On the specified rank, build the above.
|
148 |
+
attention_mask = None
|
149 |
+
if ignore_dist or torch.distributed.get_rank() == rank:
|
150 |
+
assert prompts is not None
|
151 |
+
assert tokens_to_generate is not None
|
152 |
+
# Tensor of tokens padded and their unpadded length.
|
153 |
+
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch(
|
154 |
+
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs
|
155 |
+
)
|
156 |
+
# We need the sizes of these tensors for the boradcast
|
157 |
+
[
|
158 |
+
prompts_tokens_cuda_long_tensor.size(0), # Batch size
|
159 |
+
prompts_tokens_cuda_long_tensor.size(1),
|
160 |
+
] # Sequence lenght
|
161 |
+
|
162 |
+
return {
|
163 |
+
"input_ids": prompts_tokens_cuda_long_tensor,
|
164 |
+
"attention_mask": attention_mask,
|
165 |
+
# "prompt_length": prompts_length_cuda_long_tensor,
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs):
|
170 |
+
"""Given a set of prompts and number of tokens to generate:
|
171 |
+
- tokenize prompts
|
172 |
+
- set the sequence length to be the max of length of prompts
|
173 |
+
plus the number of tokens we would like to generate
|
174 |
+
- pad all the sequences to this length so we can convert them
|
175 |
+
into a 2D tensor.
|
176 |
+
"""
|
177 |
+
|
178 |
+
# Tokenize all the prompts.
|
179 |
+
# if add_BOS:
|
180 |
+
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
|
181 |
+
# for prompt in prompts]
|
182 |
+
# else:
|
183 |
+
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
|
184 |
+
|
185 |
+
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts]
|
186 |
+
|
187 |
+
# Now we have a list of list of tokens which each list has a different
|
188 |
+
# size. We want to extend this list to:
|
189 |
+
# - incorporate the tokens that need to be generated
|
190 |
+
# - make all the sequences equal length.
|
191 |
+
# Get the prompts length.
|
192 |
+
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
|
193 |
+
# Get the max prompts length.
|
194 |
+
max_prompt_len = max(prompts_length)
|
195 |
+
# Number of tokens in the each sample of the batch.
|
196 |
+
samples_length = max_prompt_len + tokens_to_generate
|
197 |
+
# Now update the list of list to be of the same size: samples_length.
|
198 |
+
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
|
199 |
+
padding_size = samples_length - prompt_length
|
200 |
+
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
|
201 |
+
|
202 |
+
# Now we are in a structured format, we can convert to tensors.
|
203 |
+
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
|
204 |
+
prompts_length_tensor = torch.LongTensor(prompts_length)
|
205 |
+
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
|
206 |
+
for i, l in enumerate(prompts_length_tensor):
|
207 |
+
attention_mask[i, :l] = 1
|
208 |
+
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
|
209 |
+
|
210 |
+
|
211 |
+
def _tokenize_prompt(
|
212 |
+
prompt, tokenizer, add_BOS=False,
|
213 |
+
media_info={"<image>": 65, "<|video|>": 65},
|
214 |
+
**kwargs
|
215 |
+
):
|
216 |
+
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())}
|
217 |
+
media_lengths = media_info.copy()
|
218 |
+
|
219 |
+
if add_BOS:
|
220 |
+
prompt_chunk = [tokenizer.bos_token_id]
|
221 |
+
else:
|
222 |
+
prompt_chunk = []
|
223 |
+
|
224 |
+
# Pure Text
|
225 |
+
if all([media_token not in prompt for media_token in media_tokens.keys()]):
|
226 |
+
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"]
|
227 |
+
|
228 |
+
# Multi-Modal Text
|
229 |
+
else:
|
230 |
+
enc_chunk = prompt_chunk
|
231 |
+
pattern = "|".join(map(re.escape, list(media_tokens.keys())))
|
232 |
+
chunk_strs = re.split(f"({pattern})", prompt)
|
233 |
+
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
234 |
+
for idx, chunk_str in enumerate(chunk_strs):
|
235 |
+
if chunk_str in media_tokens:
|
236 |
+
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str]
|
237 |
+
else:
|
238 |
+
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"]
|
239 |
+
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
|
240 |
+
# tmp_chunk += [tokenizer.eod_id]
|
241 |
+
enc_chunk += tmp_chunk
|
242 |
+
return enc_chunk
|
243 |
+
|
244 |
+
|
245 |
+
if __name__ == "__main__":
|
246 |
+
pass
|
pipeline_video/mplug_owl_video/tokenization_mplug_owl.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for MplugOwl."""
|
16 |
+
|
17 |
+
from transformers.utils import logging
|
18 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
24 |
+
|
25 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
26 |
+
"vocab_file": {
|
27 |
+
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/vocab.txt",
|
28 |
+
},
|
29 |
+
}
|
30 |
+
|
31 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
32 |
+
"MAGAer13/mplug-owl-llama-7b": 2048,
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
class MplugOwlTokenizer(LlamaTokenizer):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token="<unk>",
|
44 |
+
sp_model_kwargs=None,
|
45 |
+
add_bos_token=False,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
super().__init__(
|
51 |
+
vocab_file,
|
52 |
+
unk_token,
|
53 |
+
bos_token,
|
54 |
+
eos_token,
|
55 |
+
pad_token,
|
56 |
+
sp_model_kwargs,
|
57 |
+
add_bos_token,
|
58 |
+
add_eos_token,
|
59 |
+
clean_up_tokenization_spaces,
|
60 |
+
**kwargs,
|
61 |
+
)
|
62 |
+
self.eod_id = self.eos_token_id
|
pipeline_video/nle_inference.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import argparse
|
6 |
+
import pandas as pd
|
7 |
+
from tqdm import tqdm
|
8 |
+
from peft import LoraConfig, get_peft_model
|
9 |
+
from torch.utils.data import Dataset, DataLoader
|
10 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
11 |
+
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
|
12 |
+
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
|
13 |
+
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
|
16 |
+
parser.add_argument('--input_file', type = str, required = True, help = 'input csv file')
|
17 |
+
parser.add_argument('--output_file', type = str, help = 'output csv file')
|
18 |
+
parser.add_argument('--pretrained_ckpt', type = str, required = True, help = 'pretrained ckpt')
|
19 |
+
parser.add_argument('--trained_ckpt', type = str, help = 'trained ckpt')
|
20 |
+
parser.add_argument('--lora_r', type = int, default = 32)
|
21 |
+
parser.add_argument('--use_lora', action = 'store_true', help = 'lora model')
|
22 |
+
parser.add_argument('--all_params', action = 'store_true', help = 'all params')
|
23 |
+
parser.add_argument('--batch_size', type = int, default = 1)
|
24 |
+
parser.add_argument('--num_frames', type = int, default = 32)
|
25 |
+
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
PROMPT_FEEDBACK = '''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
29 |
+
Human: <|video|>
|
30 |
+
Human: What is the misalignment between this video and the description: "{caption}"?
|
31 |
+
AI: '''
|
32 |
+
|
33 |
+
generate_kwargs = {
|
34 |
+
'do_sample': True,
|
35 |
+
'top_k': 5,
|
36 |
+
'max_length': 512
|
37 |
+
}
|
38 |
+
|
39 |
+
class VideoCaptionDataset(Dataset):
|
40 |
+
|
41 |
+
def __init__(self, input_file):
|
42 |
+
self.data = pd.read_csv(input_file)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return len(self.data)
|
46 |
+
|
47 |
+
def __getitem__(self, index):
|
48 |
+
item = {}
|
49 |
+
item['videopath'] = self.data.iloc[index]['videopath']
|
50 |
+
item['neg_caption'] = self.data.iloc[index]['neg_caption']
|
51 |
+
return item
|
52 |
+
|
53 |
+
def get_nle(args, model, processor, tokenizer, dataloader):
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
for _, batch in tqdm(enumerate(dataloader)):
|
57 |
+
videopaths = batch['videopath']
|
58 |
+
neg_caption = batch['neg_caption'][0]
|
59 |
+
prompts = [PROMPT_FEEDBACK.format(caption = neg_caption)]
|
60 |
+
inputs = processor(text=prompts, videos=videopaths, num_frames=args.num_frames, return_tensors='pt')
|
61 |
+
inputs = {k: v.bfloat16() if v.dtype == torch.float else v for k, v in inputs.items()}
|
62 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
63 |
+
res = model.generate(**inputs, **generate_kwargs)
|
64 |
+
generated_nle = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
|
65 |
+
|
66 |
+
with open(args.output_file, 'a') as f:
|
67 |
+
writer = csv.writer(f)
|
68 |
+
writer.writerow([videopaths[0], neg_caption, generated_nle])
|
69 |
+
|
70 |
+
def main():
|
71 |
+
|
72 |
+
# Create dataloader
|
73 |
+
dataset = VideoCaptionDataset(args.input_file)
|
74 |
+
dataloader = DataLoader(dataset, batch_size = args.batch_size)
|
75 |
+
|
76 |
+
pretrained_ckpt = args.pretrained_ckpt
|
77 |
+
|
78 |
+
# Processors
|
79 |
+
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
|
80 |
+
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
|
81 |
+
processor = MplugOwlProcessor(image_processor, tokenizer)
|
82 |
+
|
83 |
+
# Instantiate model
|
84 |
+
model = MplugOwlForConditionalGeneration.from_pretrained(
|
85 |
+
pretrained_ckpt,
|
86 |
+
torch_dtype=torch.bfloat16,
|
87 |
+
device_map={'':0}
|
88 |
+
)
|
89 |
+
|
90 |
+
if args.use_lora:
|
91 |
+
for name, param in model.named_parameters():
|
92 |
+
param.requires_grad = False
|
93 |
+
if args.all_params:
|
94 |
+
peft_config = LoraConfig(
|
95 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
|
96 |
+
inference_mode=True,
|
97 |
+
r=args.lora_r,
|
98 |
+
lora_alpha=16,
|
99 |
+
lora_dropout=0.05
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
peft_config = LoraConfig(
|
103 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
|
104 |
+
inference_mode=True,
|
105 |
+
r=args.lora_r,
|
106 |
+
lora_alpha=16,
|
107 |
+
lora_dropout=0.05
|
108 |
+
)
|
109 |
+
|
110 |
+
model = get_peft_model(model, peft_config)
|
111 |
+
model.print_trainable_parameters()
|
112 |
+
with open(args.trained_ckpt, 'rb') as f:
|
113 |
+
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
|
114 |
+
model.load_state_dict(ckpt)
|
115 |
+
model = model.to(torch.bfloat16)
|
116 |
+
print('Model Loaded')
|
117 |
+
|
118 |
+
model.eval()
|
119 |
+
|
120 |
+
# get nle
|
121 |
+
get_nle(args, model, processor, tokenizer, dataloader)
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|
pipeline_video/train.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from functools import partial
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from torch.utils.data.distributed import DistributedSampler
|
8 |
+
|
9 |
+
from sconf import Config
|
10 |
+
from icecream import ic
|
11 |
+
from peft import LoraConfig, get_peft_model
|
12 |
+
from transformers import Trainer
|
13 |
+
from transformers.training_args import TrainingArguments
|
14 |
+
|
15 |
+
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
|
16 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
17 |
+
from data_utils import train_valid_test_datasets_provider
|
18 |
+
from utils import batchify, set_args
|
19 |
+
|
20 |
+
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
# Model
|
23 |
+
parser.add_argument('--pretrained-ckpt', type=str, default='MAGAer13/mplug-owl-llama-7b-pt',
|
24 |
+
help='Path to the pretrained checkpoint.')
|
25 |
+
parser.add_argument('--finetuned-ckpt', type=str, default=None,
|
26 |
+
help='Path to the finetuned checkpoint.')
|
27 |
+
parser.add_argument('--inference_mode', type=bool, default=False,
|
28 |
+
help='The inference mode.')
|
29 |
+
parser.add_argument('--seq-length', type=int, default=1024,
|
30 |
+
help='Maximum sequence length to process.')
|
31 |
+
|
32 |
+
parser.add_argument('--use-lora', action='store_true', help='LORA.')
|
33 |
+
parser.add_argument('--all-params', action='store_true', help='All params in LORA')
|
34 |
+
parser.add_argument('--lora-r', type=int, default=8,
|
35 |
+
help='curvature.')
|
36 |
+
parser.add_argument('--lora-alpha', type=int, default=32,
|
37 |
+
help='The initialization coefficient of lora-alpha.')
|
38 |
+
parser.add_argument('--lora-dropout', type=int, default=0.05,
|
39 |
+
help='The initialization coefficient of lora_dropout.')
|
40 |
+
parser.add_argument('--bf16', action='store_true', default=False,
|
41 |
+
help='Run model in bfloat16 mode.')
|
42 |
+
|
43 |
+
parser.add_argument('--wandb_run_name', type=str, default="test", help='wandb run name.')
|
44 |
+
|
45 |
+
# Data
|
46 |
+
parser.add_argument('--mm-config', type=str, default=None, help='Multimodal Config.')
|
47 |
+
parser.add_argument('--num-workers', type=int, default=8,
|
48 |
+
help="Dataloader number of workers.")
|
49 |
+
|
50 |
+
# Training HyperParameters
|
51 |
+
parser.add_argument('--train-epochs', type=int, default=3,
|
52 |
+
help='Total number of epochs to train over all '
|
53 |
+
'training runs.')
|
54 |
+
parser.add_argument('--micro-batch-size', type=int, default=None,
|
55 |
+
help='Batch size per model instance (local batch size). '
|
56 |
+
'Global batch size is local batch size times data '
|
57 |
+
'parallel size times number of micro batches.')
|
58 |
+
parser.add_argument('--lr', type=float, default=None,
|
59 |
+
help='Initial learning rate. Depending on decay style '
|
60 |
+
'and initial warmup, the learing rate at each '
|
61 |
+
'iteration would be different.')
|
62 |
+
parser.add_argument('--min-lr', type=float, default=1e-6,
|
63 |
+
help='Minumum value for learning rate. The scheduler'
|
64 |
+
'clip values below this threshold.')
|
65 |
+
parser.add_argument('--weight-decay', type=float, default=0.01,
|
66 |
+
help='Weight decay coefficient for L2 regularization.')
|
67 |
+
parser.add_argument('--gradient-accumulation-steps', type=int, default=8,
|
68 |
+
help='The gradient accumulation steps.')
|
69 |
+
parser.add_argument('--clip-grad', type=float, default=1.0,
|
70 |
+
help='Gradient clipping based on global L2 norm.')
|
71 |
+
parser.add_argument('--adam-beta1', type=float, default=0.9,
|
72 |
+
help='First coefficient for computing running averages '
|
73 |
+
'of gradient and its square')
|
74 |
+
parser.add_argument('--adam-beta2', type=float, default=0.999,
|
75 |
+
help='Second coefficient for computing running averages '
|
76 |
+
'of gradient and its square')
|
77 |
+
parser.add_argument('--adam-eps', type=float, default=1e-08,
|
78 |
+
help='Term added to the denominator to improve'
|
79 |
+
'numerical stability')
|
80 |
+
|
81 |
+
parser.add_argument('--num-warmup-steps', type=int, default=50,
|
82 |
+
help='The number of warmup steps.')
|
83 |
+
parser.add_argument('--num-training-steps', type=int, default=4236,
|
84 |
+
help='The number of total training steps for lr scheduler.')
|
85 |
+
parser.add_argument('--loss_objective', default = 'sequential', choices = ['sequential'], help = 'toggle loss objectives')
|
86 |
+
|
87 |
+
# Evaluation & Save
|
88 |
+
parser.add_argument('--save-path', type=str, default=None,
|
89 |
+
help='Output directory to save checkpoints to.')
|
90 |
+
parser.add_argument('--save-interval', type=int, default=None,
|
91 |
+
help='Number of iterations between checkpoint saves.')
|
92 |
+
parser.add_argument('--eval-iters', type=int, default=100,
|
93 |
+
help='Number of iterations to run for evaluation'
|
94 |
+
'validation/test for.')
|
95 |
+
|
96 |
+
# Other
|
97 |
+
parser.add_argument('--gradient-checkpointing', action='store_true',
|
98 |
+
help='The gradient checkpointing.')
|
99 |
+
parser.add_argument('--logging-nan-inf-filter', action='store_true',
|
100 |
+
help='The logging nan inf filter.')
|
101 |
+
parser.add_argument('--ddp-find-unused-parameters', action='store_true',
|
102 |
+
help='unused parameters finding.')
|
103 |
+
parser.add_argument('--do-train', action='store_true', default=True,
|
104 |
+
help='Whether to do training.')
|
105 |
+
parser.add_argument('--local_rank', type=int, default=-1,
|
106 |
+
help='Local rank')
|
107 |
+
|
108 |
+
softmax = nn.Softmax(dim=2)
|
109 |
+
sigm = torch.nn.Sigmoid()
|
110 |
+
|
111 |
+
|
112 |
+
class CustomTrainer(Trainer):
|
113 |
+
def __init__(self, **kwargs):
|
114 |
+
super().__init__(**kwargs)
|
115 |
+
|
116 |
+
def get_train_dataloader(self) -> DataLoader:
|
117 |
+
dataset = self.train_dataset
|
118 |
+
sampler = DistributedSampler(dataset)
|
119 |
+
return torch.utils.data.DataLoader(
|
120 |
+
dataset, batch_size=self._train_batch_size,
|
121 |
+
sampler=sampler,
|
122 |
+
num_workers=self.args.dataloader_num_workers,
|
123 |
+
drop_last=True,
|
124 |
+
pin_memory=True,
|
125 |
+
collate_fn=batchify)
|
126 |
+
|
127 |
+
def get_eval_dataloader(self, eval_dataset) -> DataLoader:
|
128 |
+
dataset = self.eval_dataset
|
129 |
+
sampler = DistributedSampler(dataset, shuffle=False)
|
130 |
+
return torch.utils.data.DataLoader(
|
131 |
+
dataset, batch_size=self._train_batch_size,
|
132 |
+
sampler=sampler,
|
133 |
+
num_workers=self.args.dataloader_num_workers,
|
134 |
+
drop_last=True,
|
135 |
+
pin_memory=True,
|
136 |
+
collate_fn=batchify)
|
137 |
+
|
138 |
+
def compute_loss(self, model, inputs, return_outputs = False):
|
139 |
+
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = inputs['labels'],
|
140 |
+
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
|
141 |
+
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
|
142 |
+
loss = outputs.loss
|
143 |
+
return loss
|
144 |
+
|
145 |
+
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys = None):
|
146 |
+
for k, v in inputs.items():
|
147 |
+
if torch.is_tensor(v):
|
148 |
+
if v.dtype == torch.float:
|
149 |
+
inputs[k] = v.bfloat16()
|
150 |
+
inputs[k] = inputs[k].to(model.device)
|
151 |
+
with torch.no_grad():
|
152 |
+
loss = self.compute_loss(model, inputs)
|
153 |
+
loss = loss.detach()
|
154 |
+
return loss, None, None
|
155 |
+
|
156 |
+
def main():
|
157 |
+
args, left_argv = parser.parse_known_args()
|
158 |
+
ic(left_argv)
|
159 |
+
config = Config(args.mm_config)
|
160 |
+
|
161 |
+
set_args(args)
|
162 |
+
print(args.pretrained_ckpt)
|
163 |
+
model = MplugOwlForConditionalGeneration.from_pretrained(
|
164 |
+
args.pretrained_ckpt,
|
165 |
+
torch_dtype=torch.bfloat16 if args.bf16 else torch.half,
|
166 |
+
)
|
167 |
+
tokenizer = LlamaTokenizer.from_pretrained(args.pretrained_ckpt)
|
168 |
+
if args.use_lora:
|
169 |
+
for name, param in model.named_parameters():
|
170 |
+
param.requires_grad = False
|
171 |
+
if args.all_params:
|
172 |
+
peft_config = LoraConfig(
|
173 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
|
174 |
+
inference_mode=args.inference_mode,
|
175 |
+
r=args.lora_r,
|
176 |
+
lora_alpha=args.lora_alpha,
|
177 |
+
lora_dropout=args.lora_dropout
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
peft_config = LoraConfig(
|
181 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
|
182 |
+
inference_mode=args.inference_mode,
|
183 |
+
r=args.lora_r,
|
184 |
+
lora_alpha=args.lora_alpha,
|
185 |
+
lora_dropout=args.lora_dropout
|
186 |
+
)
|
187 |
+
model = get_peft_model(model, peft_config)
|
188 |
+
model.print_trainable_parameters()
|
189 |
+
|
190 |
+
if args.gradient_checkpointing:
|
191 |
+
def make_inputs_require_grad(module, input, output):
|
192 |
+
output.requires_grad_(True)
|
193 |
+
model.language_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
194 |
+
model.language_model.apply(
|
195 |
+
partial(model.language_model._set_gradient_checkpointing, value=True))
|
196 |
+
|
197 |
+
else:
|
198 |
+
for name, param in model.named_parameters():
|
199 |
+
if 'language_model' in name:
|
200 |
+
param.requires_grad = True
|
201 |
+
else:
|
202 |
+
param.requires_grad = False
|
203 |
+
if args.gradient_checkpointing:
|
204 |
+
model.language_model.apply(
|
205 |
+
partial(model.language_model._set_gradient_checkpointing, value=True))
|
206 |
+
|
207 |
+
model.train()
|
208 |
+
|
209 |
+
train_data, valid_data = train_valid_test_datasets_provider(
|
210 |
+
config.data_files, config=config,
|
211 |
+
tokenizer=tokenizer, seq_length=args.seq_length, loss_objective = args.loss_objective
|
212 |
+
)
|
213 |
+
|
214 |
+
if len(valid_data) > 500:
|
215 |
+
valid_data = torch.utils.data.Subset(valid_data, range(500))
|
216 |
+
|
217 |
+
trainer = CustomTrainer(
|
218 |
+
model=model,
|
219 |
+
train_dataset=train_data,
|
220 |
+
eval_dataset=valid_data,
|
221 |
+
args=TrainingArguments(
|
222 |
+
learning_rate=args.lr,
|
223 |
+
warmup_steps=args.num_warmup_steps,
|
224 |
+
do_train=args.do_train,
|
225 |
+
do_eval=True,
|
226 |
+
num_train_epochs=args.train_epochs,
|
227 |
+
output_dir=args.save_path,
|
228 |
+
save_strategy='epoch',
|
229 |
+
evaluation_strategy='steps',
|
230 |
+
eval_steps=args.eval_iters,
|
231 |
+
per_device_train_batch_size=args.micro_batch_size,
|
232 |
+
max_grad_norm=args.clip_grad,
|
233 |
+
weight_decay=args.weight_decay,
|
234 |
+
bf16=args.bf16,
|
235 |
+
fp16=not args.bf16,
|
236 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
237 |
+
gradient_checkpointing=args.gradient_checkpointing,
|
238 |
+
logging_steps=args.eval_iters//10,
|
239 |
+
logging_dir=args.save_path,
|
240 |
+
logging_nan_inf_filter=args.logging_nan_inf_filter,
|
241 |
+
ddp_find_unused_parameters=args.ddp_find_unused_parameters,
|
242 |
+
run_name=args.wandb_run_name,
|
243 |
+
prediction_loss_only=True,
|
244 |
+
),
|
245 |
+
)
|
246 |
+
trainer.loss_objective = args.loss_objective
|
247 |
+
trainer.tokenizer = tokenizer
|
248 |
+
|
249 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
250 |
+
model = torch.compile(model)
|
251 |
+
|
252 |
+
if args.local_rank == 0:
|
253 |
+
with open(os.path.join(args.save_path, "params.txt"), "w") as file:
|
254 |
+
for key in sorted(vars(args)):
|
255 |
+
value = getattr(args, key)
|
256 |
+
file.write(f"{key}: {value}\n")
|
257 |
+
|
258 |
+
trainer.train()
|
259 |
+
|
260 |
+
model.save_pretrained(args.save_path)
|
261 |
+
|
262 |
+
if __name__ == '__main__':
|
263 |
+
main()
|
pipeline_video/utils.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from icecream import ic
|
6 |
+
|
7 |
+
def print_rank_0(message):
|
8 |
+
"""If distributed is initialized, print only on rank 0."""
|
9 |
+
if torch.distributed.is_initialized():
|
10 |
+
if torch.distributed.get_rank() == 0:
|
11 |
+
print(message, flush=True)
|
12 |
+
else:
|
13 |
+
print(message, flush=True)
|
14 |
+
|
15 |
+
ARGS = None
|
16 |
+
def set_args(args):
|
17 |
+
global ARGS
|
18 |
+
ARGS = args
|
19 |
+
|
20 |
+
def get_args():
|
21 |
+
return ARGS
|
22 |
+
|
23 |
+
TOKENIZER = None
|
24 |
+
def set_tokenizer(tokenizer):
|
25 |
+
global TOKENIZER
|
26 |
+
TOKENIZER = tokenizer
|
27 |
+
|
28 |
+
def get_tokenizer():
|
29 |
+
return TOKENIZER
|
30 |
+
from torch import distributed as dist
|
31 |
+
|
32 |
+
class worker_init:
|
33 |
+
def __init__(self, epoch_id):
|
34 |
+
self.epoch_id = epoch_id
|
35 |
+
def _worker_init_fn(self, worker_id):
|
36 |
+
random.seed(worker_id + self.epoch_id*1e4 + dist.get_rank()*1e8)
|
37 |
+
|
38 |
+
|
39 |
+
def batchify(batch):
|
40 |
+
# collate_fn
|
41 |
+
video = [data["video"] if data["video"] is not None else None for data in batch]
|
42 |
+
if all([img is None for img in video]):
|
43 |
+
video = None
|
44 |
+
else:
|
45 |
+
video = torch.cat([img for img in video if img is not None], dim=0)
|
46 |
+
num_videos_per_sample = torch.LongTensor([data["video"].size(0) if data['video'] is not None else 0 for data in batch])
|
47 |
+
num_images_per_sample = torch.LongTensor([0 for data in batch])
|
48 |
+
|
49 |
+
text = torch.stack([torch.LongTensor(data["text"]['input_ids']) for data in batch], dim=0)
|
50 |
+
non_padding_mask = torch.stack([torch.LongTensor(data["text"]['non_padding_mask']) for data in batch], dim=0)
|
51 |
+
non_media_mask = torch.stack([torch.LongTensor(data["text"]['non_media_mask']) for data in batch], dim=0)
|
52 |
+
prompt_mask = torch.stack([torch.LongTensor(data["text"]['prompt_mask']) for data in batch], dim=0)
|
53 |
+
videopaths = [data["videopath"] for data in batch]
|
54 |
+
captions = [data["caption"] for data in batch]
|
55 |
+
output_batch = {
|
56 |
+
"pixel_values": None,
|
57 |
+
"video_pixel_values": video,
|
58 |
+
"input_ids": text.long(),
|
59 |
+
"labels": text.long().clone(),
|
60 |
+
"num_images": num_images_per_sample.long(),
|
61 |
+
"num_videos": num_videos_per_sample.long(),
|
62 |
+
"non_padding_mask": non_padding_mask.long(),
|
63 |
+
"non_media_mask": non_media_mask.long(),
|
64 |
+
"prompt_mask": prompt_mask.long(),
|
65 |
+
"videopaths": videopaths,
|
66 |
+
"captions": captions,
|
67 |
+
}
|
68 |
+
|
69 |
+
return output_batch
|
70 |
+
|
71 |
+
|
72 |
+
def get_param_groups(modules,
|
73 |
+
no_weight_decay_cond,
|
74 |
+
scale_lr_cond,
|
75 |
+
lr_mult):
|
76 |
+
"""creates param groups based on weight decay condition (regularized vs non regularized)
|
77 |
+
and learning rate scale condition (args.lr vs lr_mult * args.lr)
|
78 |
+
scale_lr_cond is used during finetuning where head of the network requires a scaled
|
79 |
+
version of the base learning rate.
|
80 |
+
"""
|
81 |
+
wd_no_scale_lr = []
|
82 |
+
wd_scale_lr = []
|
83 |
+
no_wd_no_scale_lr = []
|
84 |
+
no_wd_scale_lr = []
|
85 |
+
for module in modules:
|
86 |
+
for name, param in module.named_parameters():
|
87 |
+
if not param.requires_grad:
|
88 |
+
continue
|
89 |
+
|
90 |
+
if no_weight_decay_cond is not None:
|
91 |
+
no_wd = no_weight_decay_cond(name, param)
|
92 |
+
else:
|
93 |
+
# do not regularize biases nor Norm parameters
|
94 |
+
no_wd = name.endswith(".bias") or len(param.shape) == 1
|
95 |
+
|
96 |
+
if scale_lr_cond is not None:
|
97 |
+
scale_lr = scale_lr_cond(name, param)
|
98 |
+
else:
|
99 |
+
scale_lr = False
|
100 |
+
|
101 |
+
if not no_wd and not scale_lr:
|
102 |
+
wd_no_scale_lr.append(param)
|
103 |
+
elif not no_wd and scale_lr:
|
104 |
+
wd_scale_lr.append(param)
|
105 |
+
elif no_wd and not scale_lr:
|
106 |
+
no_wd_no_scale_lr.append(param)
|
107 |
+
else:
|
108 |
+
no_wd_scale_lr.append(param)
|
109 |
+
|
110 |
+
param_groups = []
|
111 |
+
if len(wd_no_scale_lr):
|
112 |
+
param_groups.append(
|
113 |
+
{'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
|
114 |
+
if len(wd_scale_lr):
|
115 |
+
param_groups.append(
|
116 |
+
{'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
|
117 |
+
if len(no_wd_no_scale_lr):
|
118 |
+
param_groups.append({'params': no_wd_no_scale_lr,
|
119 |
+
'wd_mult': 0.0, 'lr_mult': 1.0})
|
120 |
+
if len(no_wd_scale_lr):
|
121 |
+
param_groups.append(
|
122 |
+
{'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})
|
123 |
+
|
124 |
+
return param_groups
|
125 |
+
|
126 |
+
def get_cosine_schedule_with_warmup(
|
127 |
+
optimizer, lr, min_lr, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
|
128 |
+
):
|
129 |
+
"""
|
130 |
+
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
131 |
+
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
132 |
+
initial lr set in the optimizer.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
136 |
+
The optimizer for which to schedule the learning rate.
|
137 |
+
num_warmup_steps (`int`):
|
138 |
+
The number of steps for the warmup phase.
|
139 |
+
num_training_steps (`int`):
|
140 |
+
The total number of training steps.
|
141 |
+
num_cycles (`float`, *optional*, defaults to 0.5):
|
142 |
+
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
|
143 |
+
following a half-cosine).
|
144 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
145 |
+
The index of the last epoch when resuming training.
|
146 |
+
|
147 |
+
Return:
|
148 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
149 |
+
"""
|
150 |
+
|
151 |
+
delta_min_lr = (lr-min_lr)/lr # 0.95
|
152 |
+
|
153 |
+
def lr_lambda(current_step):
|
154 |
+
if current_step < num_warmup_steps:
|
155 |
+
return (1-delta_min_lr) + delta_min_lr * float(current_step) / float(max(1, num_warmup_steps))
|
156 |
+
progress = float(current_step - num_warmup_steps) / \
|
157 |
+
float(max(1, num_training_steps - num_warmup_steps))
|
158 |
+
return delta_min_lr + (1-delta_min_lr) * max(0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
159 |
+
from torch.optim.lr_scheduler import LambdaLR
|
160 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch)
|