File size: 4,476 Bytes
4a285f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import time
from collections import OrderedDict
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
import os
import numpy as np
import torch
from torch.autograd import Variable
#from tensorboardX import SummaryWriter
import cv2
#writer = SummaryWriter('runs/G1G2')
SIZE = 320
NC = 14


def generate_label_plain(inputs):
    size = inputs.size()
    pred_batch = []
    for input in inputs:
        input = input.view(1, NC, 256, 192)
        pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
        pred_batch.append(pred)

    pred_batch = np.array(pred_batch)
    pred_batch = torch.from_numpy(pred_batch)
    label_batch = pred_batch.view(size[0], 1, 256, 192)

    return label_batch


def generate_label_color(inputs):
    label_batch = []
    for i in range(len(inputs)):
        label_batch.append(util.tensor2label(inputs[i], NC))
    label_batch = np.array(label_batch)
    label_batch = label_batch * 2 - 1
    input_label = torch.from_numpy(label_batch)

    return input_label


def complete_compose(img, mask, label):
    label = label.cpu().numpy()
    M_f = label > 0
    M_f = M_f.astype(np.int)
    M_f = torch.FloatTensor(M_f).cuda()
    masked_img = img*(1-mask)
    M_c = (1-mask.cuda())*M_f
    M_c = M_c+torch.zeros(img.shape).cuda()  # broadcasting
    return masked_img, M_c, M_f


def compose(label, mask, color_mask, edge, color, noise):
    masked_label = label*(1-mask)
    masked_edge = mask*edge
    masked_color_strokes = mask*(1-color_mask)*color
    masked_noise = mask*noise
    return masked_label, masked_edge, masked_color_strokes, masked_noise


def changearm(old_label):
    label = old_label
    arm1 = torch.FloatTensor((old_label.cpu().numpy() == 11).astype(np.int))
    arm2 = torch.FloatTensor((old_label.cpu().numpy() == 13).astype(np.int))
    noise = torch.FloatTensor((old_label.cpu().numpy() == 7).astype(np.int))
    label = label*(1-arm1)+arm1*4
    label = label*(1-arm2)+arm2*4
    label = label*(1-noise)+noise*4
    return label


def main():
    os.makedirs('sample', exist_ok=True)
    opt = TestOptions().parse()

    data_loader = CreateDataLoader(opt)
    dataset = data_loader.load_data()
    dataset_size = len(data_loader)
    print('# Inference images = %d' % dataset_size)

    model = create_model(opt)

    for i, data in enumerate(dataset):

        # add gaussian noise channel
        # wash the label
        t_mask = torch.FloatTensor(
            (data['label'].cpu().numpy() == 7).astype(np.float))
        #
        # data['label'] = data['label'] * (1 - t_mask) + t_mask * 4
        mask_clothes = torch.FloatTensor(
            (data['label'].cpu().numpy() == 4).astype(np.int))
        mask_fore = torch.FloatTensor(
            (data['label'].cpu().numpy() > 0).astype(np.int))
        img_fore = data['image'] * mask_fore
        img_fore_wc = img_fore * mask_fore
        all_clothes_label = changearm(data['label'])

        ############## Forward Pass ######################
        fake_image, warped_cloth, refined_cloth = model(Variable(data['label'].cuda()), Variable(data['edge'].cuda()), Variable(img_fore.cuda()), Variable(
            mask_clothes.cuda()), Variable(data['color'].cuda()), Variable(all_clothes_label.cuda()), Variable(data['image'].cuda()), Variable(data['pose'].cuda()), Variable(data['image'].cuda()), Variable(mask_fore.cuda()))

        # make output folders
        output_dir = os.path.join(opt.results_dir, opt.phase)
        fake_image_dir = os.path.join(output_dir, 'try-on')
        os.makedirs(fake_image_dir, exist_ok=True)
        warped_cloth_dir = os.path.join(output_dir, 'warped_cloth')
        os.makedirs(warped_cloth_dir, exist_ok=True)
        refined_cloth_dir = os.path.join(output_dir, 'refined_cloth')
        os.makedirs(refined_cloth_dir, exist_ok=True)

        # save output
        for j in range(opt.batchSize):
            print("Saving", data['name'][j])
            util.save_tensor_as_image(fake_image[j],
                                      os.path.join(fake_image_dir, data['name'][j]))
            util.save_tensor_as_image(warped_cloth[j],
                                      os.path.join(warped_cloth_dir, data['name'][j]))
            util.save_tensor_as_image(refined_cloth[j],
                                      os.path.join(refined_cloth_dir, data['name'][j]))


if __name__ == '__main__':
    main()