File size: 21,055 Bytes
4a285f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import torch
import os
from torch.autograd import Variable
from util.image_pool import ImagePool
import torch.nn as nn

import cv2
from .base_model import BaseModel
from . import networks
import torch.nn.functional as F

NC = 20


def generate_discrete_label(inputs, label_nc, onehot=True, encode=True):
    pred_batch = []
    size = inputs.size()
    for input in inputs:
        input = input.view(1, label_nc, size[2], size[3])
        pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
        pred_batch.append(pred)

    pred_batch = np.array(pred_batch)
    pred_batch = torch.from_numpy(pred_batch)
    label_map = []
    for p in pred_batch:
        p = p.view(1, 256, 192)
        label_map.append(p)
    label_map = torch.stack(label_map, 0)
    if not onehot:
        return label_map.float().cuda()
    size = label_map.size()
    oneHot_size = (size[0], label_nc, size[2], size[3])
    input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
    input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)

    return input_label


def morpho(mask, iter, bigger=True):
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
    new = []
    for i in range(len(mask)):
        tem = mask[i].cpu().detach().numpy().squeeze().reshape(256, 192, 1)*255
        tem = tem.astype(np.uint8)
        if bigger:
            tem = cv2.dilate(tem, kernel, iterations=iter)
        else:
            tem = cv2.erode(tem, kernel, iterations=iter)
        tem = tem.astype(np.float64)
        tem = tem.reshape(1, 256, 192)
        new.append(tem.astype(np.float64)/255.0)
    new = np.stack(new)
    new = torch.FloatTensor(new).cuda()
    return new


def morpho_smaller(mask, iter, bigger=True):
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 1))
    new = []
    for i in range(len(mask)):
        tem = mask[i].cpu().detach().numpy().squeeze().reshape(256, 192, 1)*255
        tem = tem.astype(np.uint8)
        if bigger:
            tem = cv2.dilate(tem, kernel, iterations=iter)
        else:
            tem = cv2.erode(tem, kernel, iterations=iter)
        tem = tem.astype(np.float64)
        tem = tem.reshape(1, 256, 192)
        new.append(tem.astype(np.float64)/255.0)
    new = np.stack(new)
    new = torch.FloatTensor(new).cuda()
    return new


def encode(label_map, size):
    label_nc = 14
    oneHot_size = (size[0], label_nc, size[2], size[3])
    input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
    input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
    return input_label


class Pix2PixHDModel(BaseModel):
    def name(self):
        return 'Pix2PixHDModel'

    def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss):
        flags = (True, use_gan_feat_loss, use_vgg_loss, True, True)

        def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake):
            return [l for (l, f) in zip((g_gan, g_gan_feat, g_vgg, d_real, d_fake), flags) if f]

        return loss_filter

    def get_G(self, in_C, out_c, n_blocks, opt, L=1, S=1):
        return networks.define_G(in_C, out_c, opt.ngf, opt.netG, L, S,
                                 opt.n_downsample_global, n_blocks, opt.n_local_enhancers,
                                 opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)

    def get_D(self, inc, opt):
        netD = networks.define_D(inc, opt.ndf, opt.n_layers_D, opt.norm, opt.no_lsgan,
                                 opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids)
        return netD

    def cross_entropy2d(self, input, target, weight=None, size_average=True):
        n, c, h, w = input.size()
        nt, ht, wt = target.size()

        # Handle inconsistent size between input and target
        if h != ht or w != wt:
            input = F.interpolate(input, size=(
                ht, wt), mode="bilinear", align_corners=True)

        input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
        target = target.view(-1)
        loss = F.cross_entropy(
            input, target, weight=weight, size_average=size_average, ignore_index=250
        )

        return loss

    def ger_average_color(self, mask, arms):
        color = torch.zeros(arms.shape).cuda()
        for i in range(arms.shape[0]):
            count = len(torch.nonzero(mask[i, :, :, :]))
            if count < 10:
                color[i, 0, :, :] = 0
                color[i, 1, :, :] = 0
                color[i, 2, :, :] = 0

            else:
                color[i, 0, :, :] = arms[i, 0, :, :].sum() / count
                color[i, 1, :, :] = arms[i, 1, :, :].sum() / count
                color[i, 2, :, :] = arms[i, 2, :, :].sum() / count
        return color

    def initialize(self, opt):
        BaseModel.initialize(self, opt)
        if opt.resize_or_crop != 'none' or not opt.isTrain:  # when training at full res this causes OOM
            torch.backends.cudnn.benchmark = True
        self.isTrain = opt.isTrain
        input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc
        self.count = 0
        # define networks
        # Generator network
        netG_input_nc = input_nc
        # Main Generator
        with torch.no_grad():
            self.Unet = networks.define_UnetMask(4, self.gpu_ids).eval()
            self.G1 = networks.define_Refine_ResUnet(37, 14, self.gpu_ids).eval()
            self.G2 = networks.define_Refine(19+18, 1, self.gpu_ids).eval()
            self.G = networks.define_Refine(24, 3, self.gpu_ids).eval()

        self.tanh = nn.Tanh()
        self.sigmoid = nn.Sigmoid()
        self.BCE = torch.nn.BCEWithLogitsLoss()

        # Discriminator network
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            netD_input_nc = input_nc + opt.output_nc
            netB_input_nc = opt.output_nc * 2
            # self.D1 = self.get_D(17, opt)
            # self.D2 = self.get_D(4, opt)
            # self.D3=self.get_D(7+3,opt)
            # self.D = self.get_D(20, opt)
            # self.netB = networks.define_B(netB_input_nc, opt.output_nc, 32, 3, 3, opt.norm, gpu_ids=self.gpu_ids)

        if self.opt.verbose:
            print('---------- Networks initialized -------------')

        # load networks
        if not self.isTrain or opt.continue_train or opt.load_pretrain:
            pretrained_path = '' if not self.isTrain else opt.load_pretrain
            self.load_network(self.Unet, 'U', opt.which_epoch, pretrained_path)
            self.load_network(self.G1, 'G1', opt.which_epoch, pretrained_path)
            self.load_network(self.G2, 'G2', opt.which_epoch, pretrained_path)
            self.load_network(self.G, 'G', opt.which_epoch, pretrained_path)
        # set loss functions and optimizers
        if self.isTrain:
            if opt.pool_size > 0 and (len(self.gpu_ids)) > 1:
                raise NotImplementedError(
                    "Fake Pool Not Implemented for MultiGPU")
            self.fake_pool = ImagePool(opt.pool_size)
            self.old_lr = opt.lr

            # define loss functions
            self.loss_filter = self.init_loss_filter(
                not opt.no_ganFeat_loss, not opt.no_vgg_loss)

            self.criterionGAN = networks.GANLoss(
                use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            self.criterionFeat = torch.nn.L1Loss()
            if not opt.no_vgg_loss:
                self.criterionVGG = networks.VGGLoss(self.gpu_ids)
            self.criterionStyle = networks.StyleLoss(self.gpu_ids)
            # Names so we can breakout loss
            self.loss_names = self.loss_filter(
                'G_GAN', 'G_GAN_Feat', 'G_VGG', 'D_real', 'D_fake')
            # initialize optimizers
            # optimizer G
            if opt.niter_fix_global > 0:
                import sys
                if sys.version_info >= (3, 0):
                    finetune_list = set()
                else:
                    from sets import Set
                    finetune_list = Set()

                params_dict = dict(self.netG.named_parameters())
                params = []
                for key, value in params_dict.items():
                    if key.startswith('model' + str(opt.n_local_enhancers)):
                        params += [value]
                        finetune_list.add(key.split('.')[0])
                print(
                    '------------- Only training the local enhancer ork (for %d epochs) ------------' % opt.niter_fix_global)
                print('The layers that are finetuned are ',
                      sorted(finetune_list))

    def encode_input(self, label_map, clothes_mask, all_clothes_label):

        size = label_map.size()
        oneHot_size = (size[0], 14, size[2], size[3])
        input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
        input_label = input_label.scatter_(
            1, label_map.data.long().cuda(), 1.0)

        masked_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
        masked_label = masked_label.scatter_(
            1, (label_map * (1 - clothes_mask)).data.long().cuda(), 1.0)

        c_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
        c_label = c_label.scatter_(
            1, all_clothes_label.data.long().cuda(), 1.0)

        input_label = Variable(input_label)

        return input_label, masked_label, c_label

    def encode_input_test(self, label_map, label_map_ref, real_image_ref, infer=False):

        if self.opt.label_nc == 0:
            input_label = label_map.data.cuda()
            input_label_ref = label_map_ref.data.cuda()
        else:
            # create one-hot vector for label map
            size = label_map.size()
            oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
            input_label = torch.cuda.FloatTensor(
                torch.Size(oneHot_size)).zero_()
            input_label = input_label.scatter_(
                1, label_map.data.long().cuda(), 1.0)
            input_label_ref = torch.cuda.FloatTensor(
                torch.Size(oneHot_size)).zero_()
            input_label_ref = input_label_ref.scatter_(
                1, label_map_ref.data.long().cuda(), 1.0)
            if self.opt.data_type == 16:
                input_label = input_label.half()
                input_label_ref = input_label_ref.half()

        input_label = Variable(input_label, volatile=infer)
        input_label_ref = Variable(input_label_ref, volatile=infer)
        real_image_ref = Variable(real_image_ref.data.cuda())

        return input_label, input_label_ref, real_image_ref

    def discriminate(self, netD, input_label, test_image, use_pool=False):
        input_concat = torch.cat((input_label, test_image.detach()), dim=1)
        if use_pool:
            fake_query = self.fake_pool.query(input_concat)
            return netD.forward(fake_query)
        else:
            return netD.forward(input_concat)

    def gen_noise(self, shape):
        noise = np.zeros(shape, dtype=np.uint8)
        # noise
        noise = cv2.randn(noise, 0, 255)
        noise = np.asarray(noise / 255, dtype=np.uint8)
        noise = torch.tensor(noise, dtype=torch.float32)
        return noise.cuda()

    def multi_scale_blend(self, fake_img, fake_c, mask, number=4):
        alpha = [0, 0.1, 0.3, 0.6, 0.9]
        smaller = mask
        out = 0
        for i in range(1, number+1):
            bigger = smaller
            smaller = morpho(smaller, 2, False)
            mid = bigger-smaller
            out += mid*(alpha[i]*fake_c+(1-alpha[i])*fake_img)
        out += smaller*fake_c
        out += (1-mask)*fake_img
        return out

    def forward(self, label, pre_clothes_mask, img_fore, clothes_mask, clothes, all_clothes_label, real_image, pose, grid, mask_fore):
        # Encode Inputs
        input_label, masked_label, all_clothes_label = self.encode_input(
            label, clothes_mask, all_clothes_label)
        arm1_mask = torch.FloatTensor(
            (label.cpu().numpy() == 11).astype(np.float)).cuda()
        arm2_mask = torch.FloatTensor(
            (label.cpu().numpy() == 13).astype(np.float)).cuda()
        pre_clothes_mask = torch.FloatTensor(
            (pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        clothes = clothes * pre_clothes_mask

        shape = pre_clothes_mask.shape

        G1_in = torch.cat([pre_clothes_mask, clothes,
                           all_clothes_label, pose, self.gen_noise(shape)], dim=1)
        arm_label = self.G1.refine(G1_in)

        arm_label = self.sigmoid(arm_label)
        CE_loss = self.cross_entropy2d(
            arm_label, (label * (1 - clothes_mask)).transpose(0, 1)[0].long()) * 10

        armlabel_map = generate_discrete_label(arm_label.detach(), 14, False)
        dis_label = generate_discrete_label(arm_label.detach(), 14)
        G2_in = torch.cat([pre_clothes_mask, clothes,
                           dis_label, pose, self.gen_noise(shape)], 1)
        fake_cl = self.G2.refine(G2_in)
        fake_cl = self.sigmoid(fake_cl)
        CE_loss += self.BCE(fake_cl, clothes_mask) * 10

        fake_cl_dis = torch.FloatTensor(
            (fake_cl.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        fake_cl_dis = morpho(fake_cl_dis, 1, True)

        new_arm1_mask = torch.FloatTensor(
            (armlabel_map.cpu().numpy() == 11).astype(np.float)).cuda()
        new_arm2_mask = torch.FloatTensor(
            (armlabel_map.cpu().numpy() == 13).astype(np.float)).cuda()
        fake_cl_dis = fake_cl_dis*(1 - new_arm1_mask)*(1-new_arm2_mask)
        fake_cl_dis *= mask_fore

        arm1_occ = clothes_mask * new_arm1_mask
        arm2_occ = clothes_mask * new_arm2_mask
        bigger_arm1_occ = morpho(arm1_occ, 10)
        bigger_arm2_occ = morpho(arm2_occ, 10)
        arm1_full = arm1_occ + (1 - clothes_mask) * arm1_mask
        arm2_full = arm2_occ + (1 - clothes_mask) * arm2_mask
        armlabel_map *= (1 - new_arm1_mask)
        armlabel_map *= (1 - new_arm2_mask)
        armlabel_map = armlabel_map * (1 - arm1_full) + arm1_full * 11
        armlabel_map = armlabel_map * (1 - arm2_full) + arm2_full * 13
        armlabel_map *= (1-fake_cl_dis)
        dis_label = encode(armlabel_map, armlabel_map.shape)

        fake_c, warped, warped_mask, warped_grid = self.Unet(
            clothes, fake_cl_dis, pre_clothes_mask, grid)
        mask = fake_c[:, 3, :, :]
        mask = self.sigmoid(mask)*fake_cl_dis
        fake_c = self.tanh(fake_c[:, 0:3, :, :])
        fake_c = fake_c*(1-mask)+mask*warped
        skin_color = self.ger_average_color((arm1_mask + arm2_mask - arm2_mask * arm1_mask),
                                            (arm1_mask + arm2_mask - arm2_mask * arm1_mask) * real_image)
        occlude = (1 - bigger_arm1_occ * (arm2_mask + arm1_mask+clothes_mask)) * \
            (1 - bigger_arm2_occ * (arm2_mask + arm1_mask+clothes_mask))
        img_hole_hand = img_fore * \
            (1 - clothes_mask) * occlude * (1 - fake_cl_dis)

        G_in = torch.cat([img_hole_hand, dis_label, fake_c,
                          skin_color, self.gen_noise(shape)], 1)
        fake_image = self.G.refine(G_in.detach())
        fake_image = self.tanh(fake_image)

        loss_D_fake = 0
        loss_D_real = 0
        loss_G_GAN = 0
        loss_G_VGG = 0

        L1_loss = 0

        style_loss = L1_loss

        return [self.loss_filter(loss_G_GAN, 0, loss_G_VGG, loss_D_real, loss_D_fake), fake_image,
                clothes, arm_label, L1_loss, style_loss, fake_cl, CE_loss, real_image, warped_grid]

    def inference(self, label, pre_clothes_mask, img_fore, clothes_mask, clothes, all_clothes_label, real_image, pose, grid, mask_fore):
        # Encode Inputs
        input_label, masked_label, all_clothes_label = self.encode_input(
            label, clothes_mask, all_clothes_label)
        arm1_mask = torch.FloatTensor(
            (label.cpu().numpy() == 11).astype(np.float)).cuda()
        arm2_mask = torch.FloatTensor(
            (label.cpu().numpy() == 13).astype(np.float)).cuda()
        pre_clothes_mask = torch.FloatTensor(
            (pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        clothes = clothes * pre_clothes_mask

        shape = pre_clothes_mask.shape

        G1_in = torch.cat([pre_clothes_mask, clothes,
                           all_clothes_label, pose, self.gen_noise(shape)], dim=1)
        arm_label = self.G1.refine(G1_in)

        arm_label = self.sigmoid(arm_label)

        armlabel_map = generate_discrete_label(arm_label.detach(), 14, False)
        dis_label = generate_discrete_label(arm_label.detach(), 14)
        G2_in = torch.cat([pre_clothes_mask, clothes,
                           dis_label, pose, self.gen_noise(shape)], 1)
        fake_cl = self.G2.refine(G2_in)
        fake_cl = self.sigmoid(fake_cl)

        fake_cl_dis = torch.FloatTensor(
            (fake_cl.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        fake_cl_dis = morpho(fake_cl_dis, 1, True)

        new_arm1_mask = torch.FloatTensor(
            (armlabel_map.cpu().numpy() == 11).astype(np.float)).cuda()
        new_arm2_mask = torch.FloatTensor(
            (armlabel_map.cpu().numpy() == 13).astype(np.float)).cuda()
        fake_cl_dis = fake_cl_dis*(1 - new_arm1_mask)*(1-new_arm2_mask)
        fake_cl_dis *= mask_fore

        arm1_occ = clothes_mask * new_arm1_mask
        arm2_occ = clothes_mask * new_arm2_mask
        bigger_arm1_occ = morpho(arm1_occ, 10)
        bigger_arm2_occ = morpho(arm2_occ, 10)
        arm1_full = arm1_occ + (1 - clothes_mask) * arm1_mask
        arm2_full = arm2_occ + (1 - clothes_mask) * arm2_mask
        armlabel_map *= (1 - new_arm1_mask)
        armlabel_map *= (1 - new_arm2_mask)
        armlabel_map = armlabel_map * (1 - arm1_full) + arm1_full * 11
        armlabel_map = armlabel_map * (1 - arm2_full) + arm2_full * 13
        armlabel_map *= (1-fake_cl_dis)
        dis_label = encode(armlabel_map, armlabel_map.shape)

        fake_c, warped, warped_mask, warped_grid = self.Unet(
            clothes, fake_cl_dis, pre_clothes_mask, grid)
        mask = fake_c[:, 3, :, :]
        mask = self.sigmoid(mask)*fake_cl_dis
        fake_c = self.tanh(fake_c[:, 0:3, :, :])
        fake_c = fake_c*(1-mask)+mask*warped
        skin_color = self.ger_average_color((arm1_mask + arm2_mask - arm2_mask * arm1_mask),
                                            (arm1_mask + arm2_mask - arm2_mask * arm1_mask) * real_image)
        occlude = (1 - bigger_arm1_occ * (arm2_mask + arm1_mask+clothes_mask)) * \
            (1 - bigger_arm2_occ * (arm2_mask + arm1_mask+clothes_mask))
        img_hole_hand = img_fore * \
            (1 - clothes_mask) * occlude * (1 - fake_cl_dis)

        G_in = torch.cat([img_hole_hand, dis_label, fake_c,
                          skin_color, self.gen_noise(shape)], 1)
        fake_image = self.G.refine(G_in.detach())
        fake_image = self.tanh(fake_image)

        return [fake_image, warped, fake_c]

    def save(self, which_epoch):
        # self.save_network(self.Unet, 'U', which_epoch, self.gpu_ids)
        # self.save_network(self.G, 'G', which_epoch, self.gpu_ids)
        # self.save_network(self.G1, 'G1', which_epoch, self.gpu_ids)
        # self.save_network(self.G2, 'G2', which_epoch, self.gpu_ids)
        # # self.save_network(self.G3, 'G3', which_epoch, self.gpu_ids)
        # self.save_network(self.D, 'D', which_epoch, self.gpu_ids)
        # self.save_network(self.D1, 'D1', which_epoch, self.gpu_ids)
        # self.save_network(self.D2, 'D2', which_epoch, self.gpu_ids)
        # self.save_network(self.D3, 'D3', which_epoch, self.gpu_ids)

        pass

        # self.save_network(self.netB, 'B', which_epoch, self.gpu_ids)

    def update_fixed_params(self):
        # after fixing the global generator for a number of iterations, also start finetuning it
        params = list(self.netG.parameters())
        if self.gen_features:
            params += list(self.netE.parameters())
        self.optimizer_G = torch.optim.Adam(
            params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
        if self.opt.verbose:
            print('------------ Now also finetuning global generator -----------')

    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd
        for param_group in self.optimizer_D.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr
        if self.opt.verbose:
            print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr


class InferenceModel(Pix2PixHDModel):
    def forward(self, label, pre_clothes_mask, img_fore, clothes_mask, clothes, all_clothes_label, real_image, pose, grid, mask_fore):
        return self.inference(label, pre_clothes_mask, img_fore, clothes_mask, clothes, all_clothes_label, real_image, pose, grid, mask_fore)