File size: 2,062 Bytes
4a285f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
###############################################################################
import torch.utils.data as data
from PIL import Image
import os

IMG_EXTENSIONS = [
    '.jpg', '.JPG', '.jpeg', '.JPEG',
    '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tiff'
]


def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)


def make_dataset(dir):
    images = []
    assert os.path.isdir(dir), '%s is not a valid directory' % dir

    f = dir.split('/')[-1].split('_')[-1]
    print(dir, f)
    dirs = os.listdir(dir)
    for img in dirs:

        path = os.path.join(dir, img)
        # print(path)
        images.append(path)
    return images


def make_dataset_test(dir):
    images = []
    assert os.path.isdir(dir), '%s is not a valid directory' % dir

    f = dir.split('/')[-1].split('_')[-1]
    names = os.listdir(dir)
    for i in range(len([name for name in os.listdir(dir) if os.path.isfile(os.path.join(dir, name))])):
        img = names[i]
        path = os.path.join(dir, img)
        # print(path)
        images.append(path)
    return images


def default_loader(path):
    return Image.open(path).convert('RGB')


class ImageFolder(data.Dataset):

    def __init__(self, root, transform=None, return_paths=False,
                 loader=default_loader):
        imgs = make_dataset(root)
        if len(imgs) == 0:
            raise(RuntimeError("Found 0 images in: " + root + "\n"
                               "Supported image extensions are: " +
                               ",".join(IMG_EXTENSIONS)))

        self.root = root
        self.imgs = imgs
        self.transform = transform
        self.return_paths = return_paths
        self.loader = loader

    def __getitem__(self, index):
        path = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img = self.transform(img)
        if self.return_paths:
            return img, path
        else:
            return img

    def __len__(self):
        return len(self.imgs)