File size: 12,147 Bytes
f8f62f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import json
import logging
import math
import os
import time

import numpy as np
import torch
import torch.nn.functional as F

try:
    import wandb
except ImportError:
    wandb = None

from open_clip import ClipLoss, get_cast_dtype
from .distributed import is_master
from .zero_shot import zero_shot_eval
from .precision import get_autocast


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def unwrap_model(model):
    if hasattr(model, 'module'):
        return model.module
    else:
        return model


def backward(total_loss, scaler):
    if scaler is not None:
        scaler.scale(total_loss).backward()
    else:
        total_loss.backward()


def train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None):
    device = torch.device(args.device)
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    model.train()
    loss = ClipLoss(
        local_loss=args.local_loss,
        gather_with_grad=args.gather_with_grad,
        cache_labels=True,
        rank=args.rank,
        world_size=args.world_size,
        use_horovod=args.horovod)

    data['train'].set_epoch(epoch)  # set epoch in process safe manner via sampler or shared_epoch
    dataloader = data['train'].dataloader
    num_batches_per_epoch = dataloader.num_batches // args.accum_freq
    sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))

    if args.accum_freq > 1:
        accum_images, accum_texts, accum_image_features, accum_text_features = [], [], [], []

    loss_m = AverageMeter()
    batch_time_m = AverageMeter()
    data_time_m = AverageMeter()
    end = time.time()
    for i, batch in enumerate(dataloader):
        i_accum = i // args.accum_freq
        step = num_batches_per_epoch * epoch + i_accum

        if not args.skip_scheduler:
            scheduler(step)

        images, texts = batch
        images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
        texts = texts.to(device=device, non_blocking=True)

        data_time_m.update(time.time() - end)
        optimizer.zero_grad()

        if args.accum_freq == 1:
            with autocast():
                image_features, text_features, logit_scale = model(images, texts)
                total_loss = loss(image_features, text_features, logit_scale)

            backward(total_loss, scaler)
        else:
            # First, cache the features without any gradient tracking.
            with torch.no_grad():
                with autocast():
                    chunk_image_features, chunk_text_features, _ = model(images, texts)
                accum_image_features.append(chunk_image_features)
                accum_text_features.append(chunk_text_features)

                accum_images.append(images)
                accum_texts.append(texts)

            # If (i + 1) % accum_freq is not zero, move on to the next batch.
            if ((i + 1) % args.accum_freq) > 0:
                # FIXME this makes data time logging unreliable when accumulating
                continue

            # Now, ready to take gradients for the last accum_freq batches.
            # Re-do the forward pass for those batches, and use the cached features from the other batches as negatives.
            # Call backwards each time, but only step optimizer at the end.
            optimizer.zero_grad()
            for j in range(args.accum_freq):
                images = accum_images[j]
                texts = accum_texts[j]
                with autocast():
                    chunk_image_features, chunk_text_features, logit_scale = model(images, texts)
                    image_features = torch.cat(
                        accum_image_features[:j] + [chunk_image_features] + accum_image_features[j + 1:])
                    text_features = torch.cat(
                        accum_text_features[:j] + [chunk_text_features] + accum_text_features[j + 1:])
                    total_loss = loss(image_features, text_features, logit_scale)
                backward(total_loss, scaler)

        if scaler is not None:
            if args.horovod:
                optimizer.synchronize()
                scaler.unscale_(optimizer)
                if args.grad_clip_norm is not None:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
                with optimizer.skip_synchronize():
                    scaler.step(optimizer)
            else:
                if args.grad_clip_norm is not None:
                    scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
                scaler.step(optimizer)
            scaler.update()
        else:
            if args.grad_clip_norm is not None:
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
            optimizer.step()

        # reset gradient accum, if enabled
        if args.accum_freq > 1:
            accum_images, accum_texts, accum_image_features, accum_text_features = [], [], [], []

        # Note: we clamp to 4.6052 = ln(100), as in the original paper.
        with torch.no_grad():
            unwrap_model(model).logit_scale.clamp_(0, math.log(100))

        batch_time_m.update(time.time() - end)
        end = time.time()
        batch_count = i_accum + 1
        if is_master(args) and (i_accum % args.log_every_n_steps == 0 or batch_count == num_batches_per_epoch):
            batch_size = len(images)
            num_samples = batch_count * batch_size * args.accum_freq * args.world_size
            samples_per_epoch = dataloader.num_samples
            percent_complete = 100.0 * batch_count / num_batches_per_epoch

            # NOTE loss is coarsely sampled, just master node and per log update
            loss_m.update(total_loss.item(), batch_size)
            logit_scale_scalar = logit_scale.item()
            logging.info(
                f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
                f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
                f"Data (t): {data_time_m.avg:.3f} "
                f"Batch (t): {batch_time_m.avg:.3f}, {args.accum_freq * args.batch_size * args.world_size / batch_time_m.val:#g}/s "
                f"LR: {optimizer.param_groups[0]['lr']:5f} "
                f"Logit Scale: {logit_scale_scalar:.3f}"
            )

            # Save train loss / etc. Using non avg meter values as loggers have their own smoothing
            log_data = {
                "loss": loss_m.val,
                "data_time": data_time_m.val,
                "batch_time": batch_time_m.val,
                "samples_per_second": args.accum_freq * args.batch_size * args.world_size / batch_time_m.val,
                "scale": logit_scale_scalar,
                "lr": optimizer.param_groups[0]["lr"]
            }
            for name, val in log_data.items():
                name = "train/" + name
                if tb_writer is not None:
                    tb_writer.add_scalar(name, val, step)
                if args.wandb:
                    assert wandb is not None, 'Please install wandb.'
                    wandb.log({name: val, 'step': step})

            # resetting batch / data time meters per log window
            batch_time_m.reset()
            data_time_m.reset()
    # end for


def evaluate(model, data, epoch, args, tb_writer=None):
    metrics = {}
    if not is_master(args):
        return metrics
    device = torch.device(args.device)
    model.eval()

    zero_shot_metrics = zero_shot_eval(model, data, epoch, args)
    metrics.update(zero_shot_metrics)

    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    if 'val' in data and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)):
        dataloader = data['val'].dataloader
        num_samples = 0
        samples_per_val = dataloader.num_samples

        # FIXME this does not scale past small eval datasets
        # all_image_features @ all_text_features will blow up memory and compute very quickly
        cumulative_loss = 0.0
        all_image_features, all_text_features = [], []
        with torch.no_grad():
            for i, batch in enumerate(dataloader):
                images, texts = batch
                images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
                texts = texts.to(device=device, non_blocking=True)

                with autocast():
                    image_features, text_features, logit_scale = model(images, texts)
                    # features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly
                    # however, system RAM is easily exceeded and compute time becomes problematic
                    all_image_features.append(image_features.cpu())
                    all_text_features.append(text_features.cpu())
                    logit_scale = logit_scale.mean()
                    logits_per_image = logit_scale * image_features @ text_features.t()
                    logits_per_text = logits_per_image.t()

                    batch_size = images.shape[0]
                    labels = torch.arange(batch_size, device=device).long()
                    total_loss = (
                        F.cross_entropy(logits_per_image, labels) +
                        F.cross_entropy(logits_per_text, labels)
                    ) / 2

                cumulative_loss += total_loss * batch_size
                num_samples += batch_size
                if is_master(args) and (i % 100) == 0:
                    logging.info(
                        f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]\t"
                        f"Loss: {cumulative_loss / num_samples:.6f}\t")

            val_metrics = get_metrics(
                image_features=torch.cat(all_image_features),
                text_features=torch.cat(all_text_features),
                logit_scale=logit_scale.cpu(),
            )
            loss = cumulative_loss / num_samples
            metrics.update(
                {**val_metrics, "val_loss": loss.item(), "epoch": epoch, "num_samples": num_samples}
            )

    if not metrics:
        return metrics

    logging.info(
        f"Eval Epoch: {epoch} "
        + "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
    )

    if args.save_logs:
        for name, val in metrics.items():
            if tb_writer is not None:
                tb_writer.add_scalar(f"val/{name}", val, epoch)

        with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
            f.write(json.dumps(metrics))
            f.write("\n")

    if args.wandb:
        assert wandb is not None, 'Please install wandb.'
        for name, val in metrics.items():
            wandb.log({f"val/{name}": val, 'epoch': epoch})

    return metrics


def get_metrics(image_features, text_features, logit_scale):
    metrics = {}
    logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
    logits_per_text = logits_per_image.t().detach().cpu()

    logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
    ground_truth = torch.arange(len(text_features)).view(-1, 1)

    for name, logit in logits.items():
        ranking = torch.argsort(logit, descending=True)
        preds = torch.where(ranking == ground_truth)[1]
        preds = preds.detach().cpu().numpy()
        metrics[f"{name}_mean_rank"] = preds.mean() + 1
        metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
        for k in [1, 5, 10]:
            metrics[f"{name}_R@{k}"] = np.mean(preds < k)

    return metrics