File size: 18,016 Bytes
f8f62f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Tuple

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import ImageList
from detectron2.utils.memory import _ignore_torch_cuda_oom

import numpy as np
from einops import rearrange
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator

@META_ARCH_REGISTRY.register()
class CATSeg(nn.Module):
    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        size_divisibility: int,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        clip_pixel_mean: Tuple[float],
        clip_pixel_std: Tuple[float],
        train_class_json: str,
        test_class_json: str,
        sliding_window: bool,
        clip_finetune: str,
        backbone_multiplier: float,
        clip_pretrained: str,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        if size_divisibility < 0:
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility

        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
        self.register_buffer("clip_pixel_mean", torch.Tensor(clip_pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("clip_pixel_std", torch.Tensor(clip_pixel_std).view(-1, 1, 1), False)
        
        self.train_class_json = train_class_json
        self.test_class_json = test_class_json

        self.clip_finetune = clip_finetune
        for name, params in self.sem_seg_head.predictor.clip_model.named_parameters():
            if "visual" in name:
                if clip_finetune == "prompt":
                    params.requires_grad = True if "prompt" in name else False
                elif clip_finetune == "attention":
                    params.requires_grad = True if "attn" in name or "position" in name else False
                elif clip_finetune == "full":
                    params.requires_grad = True
                else:
                    params.requires_grad = False
            else:
                params.requires_grad = False

        finetune_backbone = backbone_multiplier > 0.
        for name, params in self.backbone.named_parameters():
            if "norm0" in name:
                params.requires_grad = False
            else:
                params.requires_grad = finetune_backbone

        self.sliding_window = sliding_window
        self.clip_resolution = (384, 384) if clip_pretrained == "ViT-B/16" else (336, 336)
        self.sequential = False

        self.use_sam = False
        self.sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth").to(self.device)

        amg_kwargs = {
            "points_per_side": 32,
            "points_per_batch": None,
            #"pred_iou_thresh": 0.0,
            #"stability_score_thresh": 0.0,
            "stability_score_offset": None,
            "box_nms_thresh": None,
            "crop_n_layers": None,
            "crop_nms_thresh": None,
            "crop_overlap_ratio": None,
            "crop_n_points_downscale_factor": None,
            "min_mask_region_area": None,
        }
        amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
        self.mask = SamAutomaticMaskGenerator(self.sam, output_mode="binary_mask", **amg_kwargs)
        self.overlap_threshold = 0.8
        self.panoptic_on = False

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
        
        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            "clip_pixel_mean": cfg.MODEL.CLIP_PIXEL_MEAN,
            "clip_pixel_std": cfg.MODEL.CLIP_PIXEL_STD,
            "train_class_json": cfg.MODEL.SEM_SEG_HEAD.TRAIN_CLASS_JSON,
            "test_class_json": cfg.MODEL.SEM_SEG_HEAD.TEST_CLASS_JSON,
            "sliding_window": cfg.TEST.SLIDING_WINDOW,
            "clip_finetune": cfg.MODEL.SEM_SEG_HEAD.CLIP_FINETUNE,
            "backbone_multiplier": cfg.SOLVER.BACKBONE_MULTIPLIER,
            "clip_pretrained": cfg.MODEL.SEM_SEG_HEAD.CLIP_PRETRAINED,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        sam_images = images
        if not self.training and self.sliding_window:
            if not self.sequential:
                with _ignore_torch_cuda_oom():
                    return self.inference_sliding_window(batched_inputs)
                self.sequential = True
            return self.inference_sliding_window(batched_inputs)

        clip_images = [(x - self.clip_pixel_mean) / self.clip_pixel_std for x in images]
        clip_images = ImageList.from_tensors(clip_images, self.size_divisibility)
        
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        clip_images = F.interpolate(clip_images.tensor, size=self.clip_resolution, mode='bilinear', align_corners=False, )
        clip_features = self.sem_seg_head.predictor.clip_model.encode_image(clip_images, dense=True)

        images_resized = F.interpolate(images.tensor, size=(384, 384), mode='bilinear', align_corners=False,)
        features = self.backbone(images_resized)

        outputs = self.sem_seg_head(clip_features, features)

        if self.training:
            targets = torch.stack([x["sem_seg"].to(self.device) for x in batched_inputs], dim=0)
            outputs = F.interpolate(outputs, size=(targets.shape[-2], targets.shape[-1]), mode="bilinear", align_corners=False)
            
            num_classes = outputs.shape[1]
            mask = targets != self.sem_seg_head.ignore_value

            outputs = outputs.permute(0,2,3,1)
            _targets = torch.zeros(outputs.shape, device=self.device)
            _onehot = F.one_hot(targets[mask], num_classes=num_classes).float()
            _targets[mask] = _onehot
            
            loss = F.binary_cross_entropy_with_logits(outputs, _targets)
            losses = {"loss_sem_seg" : loss}
            return losses
        else:
            #outputs = outputs.sigmoid()
            image_size = images.image_sizes[0]
            if self.use_sam:
                masks = self.mask.generate(np.uint8(sam_images[0].permute(1, 2, 0).cpu().numpy()))
                outputs, sam_cls = self.discrete_semantic_inference(outputs, masks, image_size)
                #outputs, sam_cls = self.continuous_semantic_inference(outputs, masks, image_size)
                #outputs, sam_cls = self.continuous_semantic_inference2(outputs, masks, image_size, img=img, text=text)
            height = batched_inputs[0].get("height", image_size[0])
            width = batched_inputs[0].get("width", image_size[1])

            output = sem_seg_postprocess(outputs[0], image_size, height, width)
            processed_results = [{'sem_seg': output}]
            return processed_results


    @torch.no_grad()
    def inference_sliding_window(self, batched_inputs, kernel=384, overlap=0.333, out_res=[640, 640]):
        
        images = [x["image"].to(self.device, dtype=torch.float32) for x in batched_inputs]
        stride = int(kernel * (1 - overlap))
        unfold = nn.Unfold(kernel_size=kernel, stride=stride)
        fold = nn.Fold(out_res, kernel_size=kernel, stride=stride)

        image = F.interpolate(images[0].unsqueeze(0), size=out_res, mode='bilinear', align_corners=False).squeeze()
        sam_images = [image]
        image = rearrange(unfold(image), "(C H W) L-> L C H W", C=3, H=kernel)
        global_image = F.interpolate(images[0].unsqueeze(0), size=(kernel, kernel), mode='bilinear', align_corners=False)
        image = torch.cat((image, global_image), dim=0)

        images = (image - self.pixel_mean) / self.pixel_std
        clip_images = (image - self.clip_pixel_mean) / self.clip_pixel_std
        clip_images = F.interpolate(clip_images, size=self.clip_resolution, mode='bilinear', align_corners=False, )
        clip_features = self.sem_seg_head.predictor.clip_model.encode_image(clip_images, dense=True)
        
        if self.sequential:
            outputs = []
            for clip_feat, image in zip(clip_features, images):
                feature = self.backbone(image.unsqueeze(0))
                output = self.sem_seg_head(clip_feat.unsqueeze(0), feature)
                outputs.append(output[0])
            outputs = torch.stack(outputs, dim=0)
        else:
            features = self.backbone(images)
            outputs = self.sem_seg_head(clip_features, features)

        outputs = F.interpolate(outputs, size=kernel, mode="bilinear", align_corners=False)
        outputs = outputs.sigmoid()
        
        global_output = outputs[-1:]
        global_output = F.interpolate(global_output, size=out_res, mode='bilinear', align_corners=False,)
        outputs = outputs[:-1]
        outputs = fold(outputs.flatten(1).T) / fold(unfold(torch.ones([1] + out_res, device=self.device)))
        outputs = (outputs + global_output) / 2.

        height = batched_inputs[0].get("height", out_res[0])
        width = batched_inputs[0].get("width", out_res[1])
        catseg_outputs = sem_seg_postprocess(outputs[0], out_res, height, width)
        #catseg_outputs = catseg_outputs.argmax(dim=1)[0].cpu()

        masks = self.mask.generate(np.uint8(sam_images[0].permute(1, 2, 0).cpu().numpy()))
        if self.use_sam:
            outputs, sam_cls = self.discrete_semantic_inference(outputs, masks, out_res)
            #outputs, sam_cls = self.continuous_semantic_inference(outputs, masks, out_res)

        output = sem_seg_postprocess(outputs[0], out_res, height, width)
        
        ret = [{'sem_seg': output}]
        if self.panoptic_on:
            panoptic_r = self.panoptic_inference(catseg_outputs, masks, sam_cls, size=output.shape[-2:])
            ret[0]['panoptic_seg'] = panoptic_r

        return ret
    
    def discrete_semantic_inference(self, outputs, masks, image_size):
        catseg_outputs = F.interpolate(outputs, size=image_size, mode="bilinear", align_corners=True) #.argmax(dim=1)[0].cpu()
        sam_outputs = torch.zeros_like(catseg_outputs).cpu()
        catseg_outputs = catseg_outputs.argmax(dim=1)[0].cpu()
        sam_classes = torch.zeros(len(masks))
        for i in range(len(masks)):
            m = masks[i]['segmentation']
            s = masks[i]['stability_score']
            idx = catseg_outputs[m].bincount().argmax()
            sam_outputs[0, idx][m] = s
            sam_classes[i] = idx

        return sam_outputs, sam_classes
    
    def continuous_semantic_inference(self, outputs, masks, image_size, scale=100/7.):
        #import pdb; pdb.set_trace()
        catseg_outputs = F.interpolate(outputs, size=image_size, mode="bilinear", align_corners=True)[0].cpu()
        sam_outputs = torch.zeros_like(catseg_outputs)
        #catseg_outputs = catseg_outputs.argmax(dim=1)[0].cpu()
        sam_classes = torch.zeros(len(masks))
        #import pdb; pdb.set_trace()
        mask_pred = torch.tensor(np.asarray([x['segmentation'] for x in masks]), dtype=torch.float32) # N H W
        mask_score = torch.tensor(np.asarray([x['predicted_iou'] for x in masks]), dtype=torch.float32) # N

        mask_cls = torch.einsum("nhw, chw -> nc", mask_pred, catseg_outputs)
        mask_norm = mask_pred.sum(-1).sum(-1)
        mask_cls = mask_cls / mask_norm[:, None]
        mask_cls = mask_cls / mask_cls.norm(p=1, dim=1)[:, None]

        mask_logits = mask_pred * mask_score[:, None, None]
        output = torch.einsum("nhw, nc -> chw", mask_logits, mask_cls)

        return output.unsqueeze(0), mask_cls
    
    def continuous_semantic_inference2(self, outputs, masks, image_size, scale=100/7., img=None, text=None):
        assert img is not None and text is not None
        import pdb; pdb.set_trace()
        #catseg_outputs = F.interpolate(outputs, size=image_size, mode="bilinear", align_corners=True)[0].cpu()
        img = F.interpolate(img, size=image_size, mode="bilinear", align_corners=True)[0].cpu()
        img = img.permute(1, 2, 0)
        
        #sam_outputs = torch.zeros_like(catseg_outputs)
        #catseg_outputs = catseg_outputs.argmax(dim=1)[0].cpu()
        sam_classes = torch.zeros(len(masks))
        #import pdb; pdb.set_trace()
        mask_pred = torch.tensor(np.asarray([x['segmentation'] for x in masks]), dtype=torch.float32) # N H W
        mask_score = torch.tensor(np.asarray([x['predicted_iou'] for x in masks]), dtype=torch.float32) # N

        mask_pool = torch.einsum("nhw, hwd -> nd ", mask_pred, img)
        mask_pool = mask_pool / mask_pool.norm(dim=1, keepdim=True)
        mask_cls = torch.einsum("nd, cd -> nc", 100 * mask_pool, text.cpu())
        mask_cls = mask_cls.softmax(dim=1)

        #mask_cls = torch.einsum("nhw, chw -> nc", mask_pred, catseg_outputs)
        mask_norm = mask_pred.sum(-1).sum(-1)
        mask_cls = mask_cls / mask_norm[:, None]
        mask_cls = mask_cls / mask_cls.norm(p=1, dim=1)[:, None]

        mask_logits = mask_pred * mask_score[:, None, None]
        output = torch.einsum("nhw, nc -> chw", mask_logits, mask_cls)

        return output.unsqueeze(0), sam_classes
    
    def panoptic_inference(self, outputs, masks, sam_classes, size=None):
        #import pdb; pdb.set_trace()
        scores = np.asarray([x['predicted_iou'] for x in masks])
        mask_pred = np.asarray([x['segmentation'] for x in masks])
        
        #keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
        cur_scores = torch.tensor(scores)
        cur_masks = torch.tensor(mask_pred)
        cur_masks = F.interpolate(cur_masks.unsqueeze(0).float(), size=outputs.shape[-2:], mode="nearest")[0]
        cur_classes = sam_classes.argmax(dim=-1)
        #cur_mask_cls = mask_cls#[keep]
        #cur_mask_cls = cur_mask_cls[:, :-1]

        #import pdb; pdb.set_trace()
        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks

        h, w = cur_masks.shape[-2:]
        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
        segments_info = []

        current_segment_id = 0
        if cur_masks.shape[0] == 0:
            # We didn't detect any mask :(
            return panoptic_seg, segments_info
        else:
            # take argmax
            cur_mask_ids = cur_prob_masks.argmax(0)
            stuff_memory_list = {}
            for k in range(cur_classes.shape[0]):
                pred_class = cur_classes[k].item()
                #isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
                isthing = pred_class in [3, 6] #[i for i in range(10)]#self.metadata.thing_dataset_id_to_contiguous_id.values()
                mask = cur_mask_ids == k
                mask_area = mask.sum().item()
                original_area = (cur_masks[k] >= 0.5).sum().item()

                if mask_area > 0 and original_area > 0:
                    if mask_area / original_area < self.overlap_threshold:
                        continue

                    # merge stuff regions
                    if not isthing:
                        if int(pred_class) in stuff_memory_list.keys():
                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
                            continue
                        else:
                            stuff_memory_list[int(pred_class)] = current_segment_id + 1

                    current_segment_id += 1
                    panoptic_seg[mask] = current_segment_id

                    segments_info.append(
                        {
                            "id": current_segment_id,
                            "isthing": bool(isthing),
                            "category_id": int(pred_class),
                        }
                    )

            return panoptic_seg, segments_info