File size: 2,577 Bytes
f8f62f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import os

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets import load_sem_seg
import copy

def _get_ade20k_150_meta():
    ade20k_150_classes = ["wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"]

    ret = {
        "stuff_classes" : ade20k_150_classes,
    }
    return ret

def register_ade20k_150(root):
    root = os.path.join(root, "ADEChallengeData2016")
    meta = _get_ade20k_150_meta()
    for name, image_dirname, sem_seg_dirname in [
        ("test", "images/validation", "annotations_detectron2/validation"),
    ]:
        image_dir = os.path.join(root, image_dirname)
        gt_dir = os.path.join(root, sem_seg_dirname)
        name = f"ade20k_150_{name}_sem_seg"
        DatasetCatalog.register(name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext='png', image_ext='jpg'))
        MetadataCatalog.get(name).set(image_root=image_dir, seg_seg_root=gt_dir, evaluator_type="sem_seg", ignore_label=255, **meta,)

_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_ade20k_150(_root)