File size: 4,814 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))

from abc import ABC, abstractmethod

import numpy as np
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

from utils import configs
from utils.functional import (
    check_data_type_variable,
    get_device,
    image_augmentations,
    normalize_image_to_zero_one,
    reshape_transform,
)


class BaseModelGradCAM(ABC):
    def __init__(

        self,

        name_model: str,

        freeze_model: bool,

        pretrained_model: bool,

        support_set_method: str,

    ):
        self.name_model = name_model
        self.freeze_model = freeze_model
        self.pretrained_model = pretrained_model
        self.support_set_method = support_set_method
        self.model = None
        self.device = get_device()

        self.check_arguments()

    def check_arguments(self):
        check_data_type_variable(self.name_model, str)
        check_data_type_variable(self.freeze_model, bool)
        check_data_type_variable(self.pretrained_model, bool)
        check_data_type_variable(self.support_set_method, str)

        old_name_model = self.name_model
        if self.name_model == configs.CLIP_NAME_MODEL:
            old_name_model = self.name_model
            self.name_model = "clip"
        if self.name_model not in tuple(configs.NAME_MODELS.keys()):
            raise ValueError(f"Model {self.name_model} not supported")
        if self.support_set_method not in configs.SUPPORT_SET_METHODS:
            raise ValueError(
                f"Support set method {self.support_set_method} not supported"
            )
        self.name_model = old_name_model

    @abstractmethod
    def init_model(self):
        pass

    def set_grad_cam(self):
        if self.name_model == "resnet50":
            self.target_layers = (self.model.model.layer4[-1],)
        elif self.name_model == "vgg16":
            self.target_layers = (self.model.model.features[-1],)
        elif self.name_model == "inception_v4":
            self.target_layers = (self.model.model.features[-1],)
        elif self.name_model == "efficientnet_b4":
            self.target_layers = (self.model.model.blocks[-1],)
        elif self.name_model == "mobilenetv3_large_100":
            self.target_layers = (self.model.model.blocks[-1],)
        elif self.name_model == "densenet121":
            self.target_layers = (self.model.model.features[-1],)
        elif self.name_model == "vit_base_patch16_224_dino":
            self.target_layers = (self.model.model.blocks[-1].norm1,)
        elif self.name_model == "clip":
            self.target_layers = (
                self.model.vision_model.encoder.layers[-1].layer_norm1,
            )
        else:
            self.target_layers = (self.model.model.features[-1],)

        if self.name_model in ("vit_base_patch16_224_dino", "clip"):
            self.gradcam = GradCAM(
                model=self.model,
                target_layers=self.target_layers,
                reshape_transform=reshape_transform,
                use_cuda=True if self.device.type == "cuda" else False,
            )
        else:
            self.gradcam = GradCAM(
                model=self.model,
                target_layers=self.target_layers,
                use_cuda=True if self.device.type == "cuda" else False,
            )

    def get_grad_cam(self, image: np.ndarray) -> np.ndarray:
        image = np.array(
            Image.fromarray(image).resize((configs.SIZE_IMAGES, configs.SIZE_IMAGES))
        )
        image_input = image_augmentations()(image=image)["image"]
        image_input = image_input.unsqueeze(axis=0).to(self.device)
        gradcam = self.gradcam(image_input)
        gradcam = gradcam[0, :]
        gradcam = show_cam_on_image(
            normalize_image_to_zero_one(image), gradcam, use_rgb=True
        )
        return gradcam

    def get_grad_cam_with_output_target(

        self, image: np.ndarray, index_class: int

    ) -> np.ndarray:
        image = np.array(
            Image.fromarray(image).resize((configs.SIZE_IMAGES, configs.SIZE_IMAGES))
        )
        image_input = image_augmentations()(image=image)["image"]
        image_input = image_input.unsqueeze(axis=0).to(self.device)
        targets = (ClassifierOutputTarget(index_class),)
        gradcam = self.gradcam(image_input, targets=targets)
        gradcam = gradcam[0, :]
        gradcam = show_cam_on_image(
            normalize_image_to_zero_one(image), gradcam, use_rgb=True
        )
        return gradcam