File size: 4,516 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))

import time

import numpy as np
import pytorch_lightning as pl
import torch.nn as nn
import torchmetrics as tm
from torch import optim

from utils import configs

from .backbone_model import CLIPModel, TorchModel


class ImageClassificationLightningModule(pl.LightningModule):
    def __init__(

        self,

        num_classes: int = len(configs.CLASS_CHARACTERS) - 1,

        learning_rate: float = 3e-4,

        weight_decay: float = 0.0,

        name_model: str = "resnet50",

        freeze_model: bool = True,

        pretrained_model: bool = True,

    ):
        super().__init__()
        self.num_classes = num_classes
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.freeze_model = freeze_model
        self.pretrained_model = pretrained_model
        self.name_model = name_model
        self.criterion = (
            nn.BCEWithLogitsLoss()
            if self.num_classes in (1, 2)
            else nn.CrossEntropyLoss()
        )

        self.create_models()
        self.create_metrics_models()

    def create_models(self):
        if self.name_model != "clip":
            self.model = TorchModel(
                self.name_model,
                self.freeze_model,
                self.pretrained_model,
                self.num_classes,
            )
        else:
            self.model = CLIPModel(
                configs.CLIP_NAME_MODEL,
                self.freeze_model,
                self.pretrained_model,
                self.num_classes,
            )

    def create_metrics_models(self):
        self.metrics_accuracy = tm.Accuracy(
            num_classes=1 if self.num_classes in (1, 2) else self.num_classes,
            average="macro",
            task="multiclass",
        )

        self.metrics_precision = tm.Precision(
            num_classes=1 if self.num_classes in (1, 2) else self.num_classes,
            average="macro",
            task="multiclass",
        )

        self.metrics_recall = tm.Recall(
            num_classes=1 if self.num_classes in (1, 2) else self.num_classes,
            average="macro",
            task="multiclass",
        )

        self.metrics_f1 = tm.F1Score(
            num_classes=1 if self.num_classes in (1, 2) else self.num_classes,
            average="macro",
            task="multiclass",
        )

    def configure_optimizers(self):
        optimizer = optim.Adam(
            self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay
        )
        lr_scheduler = optim.lr_scheduler.LambdaLR(
            optimizer,
            lr_lambda=lambda x: (((1 + np.cos(x * np.pi / 20)) / 2) ** 1.0) * 0.9 + 0.1,
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": lr_scheduler,
            "monitor": "metrics_f1_score",
        }

    def forward(self, x):
        output = self.model(x)
        return output

    def training_step(self, batch, batch_idx):
        x, y = batch
        y = y.unsqueeze(1).float() if self.num_classes in (1, 2) else y
        start_time = time.perf_counter()
        preds_y = self(x)
        inference_time = time.perf_counter() - start_time

        loss = self.criterion(preds_y, y)

        self.metrics_accuracy(preds_y, y)
        self.metrics_precision(preds_y, y)
        self.metrics_recall(preds_y, y)
        self.metrics_f1(preds_y, y)

        self.log(
            "metrics_accuracy",
            self.metrics_accuracy,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )
        self.log(
            "metrics_precision",
            self.metrics_precision,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )
        self.log(
            "metrics_recall",
            self.metrics_recall,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )
        self.log(
            "metrics_f1_score",
            self.metrics_f1,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )
        self.log(
            "metrics_inference_time",
            inference_time,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )

        return loss