File size: 7,627 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import cv2
import numpy as np
import streamlit as st
from PIL import Image

from models.anime_face_detection_model import SingleShotDetectorModel
from models.prototypical_networks import (
    PrototypicalNetworksGradCAM,
    PrototypicalNetworksModel,
)
from utils import configs
from utils.functional import (
    generate_empty_space,
    get_default_images,
    get_most_salient_object,
    set_page_config,
    set_seed,
)

# Set seed
set_seed()

# Set page config
set_page_config("HxH Character Anime Detection with Prototypical Networks", "πŸ”Ž")

# Sidebar
name_model = st.sidebar.selectbox("Select Model", tuple(configs.NAME_MODELS.keys()))
support_set_method = st.sidebar.selectbox(
    "Select Support Set Method", configs.SUPPORT_SET_METHODS
)
freeze_model = st.sidebar.checkbox("Freeze Model", value=True)
pretrained_model = st.sidebar.checkbox("Pretrained Model", value=True)


# Load Model
@st.cache_resource
def load_model(

    name_model: str, support_set_method: str, freeze_model: bool, pretrained_model: bool

):
    prototypical_networks = PrototypicalNetworksModel(
        name_model, freeze_model, pretrained_model, support_set_method
    )
    custom_grad_cam = PrototypicalNetworksGradCAM(
        name_model, freeze_model, pretrained_model, support_set_method
    )
    ssd_model = SingleShotDetectorModel()
    return prototypical_networks, custom_grad_cam, ssd_model


prototypical_networks, custom_grad_cam, ssd_model = load_model(
    name_model, support_set_method, freeze_model, pretrained_model
)

# Application Description
st.markdown("# ❓ Application Description")
st.write(
    f"""

    Welcome to our HxH Character Anime Detection with Prototypical Networks application! πŸ•΅οΈβ€β™‚οΈπŸ¦Έβ€β™€οΈπŸ”



This powerful and efficient tool allows you to quickly and accurately identify your favorite anime characters from Hunter x Hunter using state-of-the-art Prototypical Networks. Simply upload an image or select one of our default options, and let our model do the rest! With our user-friendly interface, anyone can easily classify HxH anime characters with just a few clicks.



But that's not all! Our application also features a powerful Grad-CAM visualization tool that lets you see which parts of the image the model is using to make its predictions. Plus, with lightning-fast inference times, you won't have to wait long to get your results.



Whether you're a hardcore anime fan or just looking for a fun way to pass the time, our HxH Character Anime Detection app is sure to entertain and delight. So what are you waiting for? Give it a try and see how many characters you can identify!



DISCLAIMER: The output of this app only {", ".join(configs.CLASS_CHARACTERS)}

    """
)

uploaded_file = st.file_uploader(
    "Upload image file", type=["jpg", "jpeg", "png", "bmp", "tiff"]
)
select_default_images = st.selectbox("Select default images", get_default_images())
st.caption("Default Images will be used if no image is uploaded.")
select_image_button = st.button("Select Image")
if select_image_button:
    st.success("Image selected")

if select_image_button and uploaded_file is not None:
    image = np.array(Image.open(uploaded_file).convert("RGB"))
    st.session_state["image"] = image
elif select_image_button and uploaded_file is None:
    image = np.array(Image.open(select_default_images).convert("RGB"))
    st.session_state["image"] = image

if st.session_state.get("image") is not None:
    image = st.session_state.get("image")
    col1, col2, col3 = st.columns(3)
    col2.write("## πŸ“Έ Preview Image")
    col2.image(image, use_column_width=True)
    predict_image_button = col2.button("Detect Image Character")
    generate_empty_space(2)
    if predict_image_button:
        with st.spinner("Detecting Image Character..."):
            results_face_anime_detection = ssd_model.detect_anime_face(image)
            result_grad_cam = custom_grad_cam.get_grad_cam(image)
            bounding_box_image = image.copy()
            inference_time = results_face_anime_detection["inference_time"]
            results_anime_face = []
            if results_face_anime_detection["anime_face"]:
                for result in results_face_anime_detection["anime_face"]:
                    crop_image = image[
                        int(result[1]) : int(result[3]), int(result[0]) : int(result[2])
                    ]
                    character = prototypical_networks.predict(crop_image)
                    character_grad_cam = custom_grad_cam.get_grad_cam(
                        crop_image,
                    )
                    results_anime_face.append(
                        {
                            "face": crop_image,
                            "face_grad_cam": character_grad_cam,
                            "most_salient_object": get_most_salient_object(crop_image),
                            "character": character["character"],
                            "confidence_detection": result[4],
                            "confidence_classification": character["confidence"],
                        }
                    )
                    inference_time += character["inference_time"]
                    cv2.rectangle(
                        bounding_box_image,
                        (int(result[0]), int(result[1])),
                        (int(result[2]), int(result[3])),
                        (255, 255, 0),
                        4,
                    )
                    cv2.putText(
                        bounding_box_image,
                        character["character"],
                        (int(result[0]), int(result[1]) - 10),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        1,
                        (255, 255, 0),
                        2,
                    )

            col1, col2, col3, col4 = st.columns(4)
            col1.write("### πŸ™‚ Source Image")
            col1.image(image, use_column_width=True)
            col2.write("### πŸ˜‰ Detected Image")
            col2.image(bounding_box_image, use_column_width=True)
            col3.write("### 😎 Grad CAM Image")
            col3.image(result_grad_cam, use_column_width=True)
            col4.write("### πŸ€” Most Salient Object")
            col4.image(get_most_salient_object(image), use_column_width=True)
            st.write("### πŸ“ Result")
            st.write(f"Inference Time: {inference_time:.2f} s")
            for result in results_anime_face:
                col1, col2, col3 = st.columns(3)
                col1.write("#### πŸ™‚ Cropped Face Image")
                col1.image(result["face"], use_column_width=True)
                col2.write("#### 😎 Cropped Face Grad CAM Image")
                col2.image(result["face_grad_cam"], use_column_width=True)
                col3.write("### πŸ€” Most Salient Object")
                col3.image(
                    get_most_salient_object(result["most_salient_object"]),
                    use_column_width=True,
                )
                st.write(f"Character: {result['character'].title()}")
                st.write(
                    f"Confidence Score Detection: {result['confidence_detection']*100:.2f}%"
                )
                st.write(
                    f"Confidence Score Classification: {result['confidence_classification']*100:.2f}%"
                )
                generate_empty_space(2)
            st.session_state["image"] = None