File size: 2,892 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))

import json
import time

import numpy as np
import torch
from PIL import Image

from models.base_model import BaseModelMainModel
from utils import configs
from utils.functional import euclidean_distance_normalized, image_augmentations

from .backbone_model import CLIPModel, TorchModel


class PrototypicalNetworksModel(BaseModelMainModel):
    def __init__(

        self,

        name_model: str,

        freeze_model: bool,

        pretrained_model: bool,

        support_set_method: str,

    ):
        super().__init__(name_model, freeze_model, pretrained_model, support_set_method)
        self.init_model()
        self.load_embedded_value()

    def init_model(self):
        if self.name_model == "clip":
            self.model = CLIPModel(
                configs.CLIP_NAME_MODEL, self.freeze_model, self.pretrained_model
            )
        else:
            self.model = TorchModel(
                self.name_model, self.freeze_model, self.pretrained_model
            )
        self.model.eval()

    def predict(self, image: np.ndarray) -> dict:
        image_input = image_augmentations()(image=image)["image"]
        image_input = image_input.unsqueeze(axis=0)
        with torch.no_grad():
            start_time = time.perf_counter()
            image_input = self.model(image_input)
            end_time = time.perf_counter() - start_time
            image_input = image_input.detach().cpu().numpy()
        results_distance = {}
        for key, value in self.embedded_values.items():
            results_distance[key] = euclidean_distance_normalized(image_input, value)
        results = sorted(results_distance.items(), key=lambda x: x[1], reverse=True)[0]
        result_class = results[0]
        result_distance = results[1]
        return {
            "character": result_class
            if result_distance
            > configs.NAME_MODELS[self.name_model]["image_similarity_threshold"]
            else configs.CLASS_CHARACTERS[-1],
            "confidence": result_distance,
            "inference_time": end_time,
        }

    def load_embedded_value(self):
        with open(
            os.path.join(
                configs.EMBEDDED_VALUES_PATH,
                self.name_model,
                self.support_set_method,
                "embedded_value.json",
            ),
            "r",
        ) as f:
            self.embedded_values = json.load(f)


if __name__ == "__main__":
    model = PrototypicalNetworksModel("mobilenetv3_large_100", True, True, "5_shot")
    image = np.array(
        Image.open(
            "../../assets/example_images/gon/306e5d35-b301-4299-8022-0c89dc0b7690.png"
        ).convert("RGB")
    )
    print(model.predict(image)["character"])