File size: 2,003 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/bin/bash

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

function print_help {
    echo "Usage: `basename $0` [--build-container] <python_file>"
    echo ""
    echo "Option --build-container will build the Docker container based on"
    echo "docker/Dockerfile and tag the image with gltorch:latest."
    echo ""
    echo "Example: `basename $0` samples/torch/envphong.py"
}

build_container=0
sample=""
while [[ "$#" -gt 0 ]]; do
    case $1 in
        --build-container) build_container=1;;
        -h|--help) print_help; exit 0 ;;
        --*) echo "Unknown parameter passed: $1"; exit 1 ;;
        *) sample="$1"; shift; break;
    esac
    shift
done

rest=$@

# Build the docker container
if [ "$build_container" = "1" ]; then
    docker build --tag gltorch:latest -f docker/Dockerfile .
    docker build --tag gltensorflow:latest --build-arg BASE_IMAGE=tensorflow/tensorflow:1.15.0-gpu-py3 -f docker/Dockerfile .
fi

if [ ! -f "$sample" ]; then
    echo
    echo "No python sample given or file '$sample' not found.  Exiting."
    exit 1
fi

image="gltorch:latest"
TENSORFLOW_CUDA_CACHE=""
# Magically choose the tensorflow container if running a sample from the samples/tensorflow/ directory
if [[ $sample == *"/tensorflow/"* ]]; then
    image="gltensorflow:latest"
    TENSORFLOW_CUDA_CACHE="-e NVDIFFRAST_CACHE_DIR=/app/tmp"
fi

echo "Using container image: $image"
echo "Running command: $sample $rest"

# Run a sample with docker
docker run --rm -it --gpus all --user $(id -u):$(id -g) \
    -v `pwd`:/app --workdir /app -e TORCH_EXTENSIONS_DIR=/app/tmp $TENSORFLOW_CUDA_CACHE $image python3 $sample $rest