File size: 9,494 Bytes
f12ab4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Custom replacement for `torch.nn.functional.conv2d` that supports
arbitrarily high order gradients with zero performance penalty."""
import contextlib
import torch
# pylint: disable=redefined-builtin
# pylint: disable=arguments-differ
# pylint: disable=protected-access
#----------------------------------------------------------------------------
enabled = False # Enable the custom op by setting this to true.
weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
@contextlib.contextmanager
def no_weight_gradients(disable=True):
global weight_gradients_disabled
old = weight_gradients_disabled
if disable:
weight_gradients_disabled = True
yield
weight_gradients_disabled = old
#----------------------------------------------------------------------------
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
#----------------------------------------------------------------------------
def _should_use_custom_op(input):
assert isinstance(input, torch.Tensor)
if (not enabled) or (not torch.backends.cudnn.enabled):
return False
if input.device.type != 'cuda':
return False
return True
def _tuple_of_ints(xs, ndim):
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
assert len(xs) == ndim
assert all(isinstance(x, int) for x in xs)
return xs
#----------------------------------------------------------------------------
_conv2d_gradfix_cache = dict()
_null_tensor = torch.empty([0])
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
# Parse arguments.
ndim = 2
weight_shape = tuple(weight_shape)
stride = _tuple_of_ints(stride, ndim)
padding = _tuple_of_ints(padding, ndim)
output_padding = _tuple_of_ints(output_padding, ndim)
dilation = _tuple_of_ints(dilation, ndim)
# Lookup from cache.
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
if key in _conv2d_gradfix_cache:
return _conv2d_gradfix_cache[key]
# Validate arguments.
assert groups >= 1
assert len(weight_shape) == ndim + 2
assert all(stride[i] >= 1 for i in range(ndim))
assert all(padding[i] >= 0 for i in range(ndim))
assert all(dilation[i] >= 0 for i in range(ndim))
if not transpose:
assert all(output_padding[i] == 0 for i in range(ndim))
else: # transpose
assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
# Helpers.
common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
def calc_output_padding(input_shape, output_shape):
if transpose:
return [0, 0]
return [
input_shape[i + 2]
- (output_shape[i + 2] - 1) * stride[i]
- (1 - 2 * padding[i])
- dilation[i] * (weight_shape[i + 2] - 1)
for i in range(ndim)
]
# Forward & backward.
class Conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias):
assert weight.shape == weight_shape
ctx.save_for_backward(
input if weight.requires_grad else _null_tensor,
weight if input.requires_grad else _null_tensor,
)
ctx.input_shape = input.shape
# Simple 1x1 convolution => cuBLAS (only on Volta, not on Ampere).
if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0) and torch.cuda.get_device_capability(input.device) < (8, 0):
a = weight.reshape(groups, weight_shape[0] // groups, weight_shape[1])
b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1)
c = (a.transpose(1, 2) if transpose else a) @ b.permute(1, 2, 0, 3).flatten(2)
c = c.reshape(-1, input.shape[0], *input.shape[2:]).transpose(0, 1)
c = c if bias is None else c + bias.unsqueeze(0).unsqueeze(2).unsqueeze(3)
return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
# General case => cuDNN.
if transpose:
return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
input_shape = ctx.input_shape
grad_input = None
grad_weight = None
grad_bias = None
if ctx.needs_input_grad[0]:
p = calc_output_padding(input_shape=input_shape, output_shape=grad_output.shape)
op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
grad_input = op.apply(grad_output, weight, None)
assert grad_input.shape == input_shape
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
grad_weight = Conv2dGradWeight.apply(grad_output, input, weight)
assert grad_weight.shape == weight_shape
if ctx.needs_input_grad[2]:
grad_bias = grad_output.sum([0, 2, 3])
return grad_input, grad_weight, grad_bias
# Gradient with respect to the weights.
class Conv2dGradWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, grad_output, input, weight):
ctx.save_for_backward(
grad_output if input.requires_grad else _null_tensor,
input if grad_output.requires_grad else _null_tensor,
)
ctx.grad_output_shape = grad_output.shape
ctx.input_shape = input.shape
# Simple 1x1 convolution => cuBLAS (on both Volta and Ampere).
if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0):
a = grad_output.reshape(grad_output.shape[0], groups, grad_output.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
c = (b @ a.transpose(1, 2) if transpose else a @ b.transpose(1, 2)).reshape(weight_shape)
return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
# General case => cuDNN.
return torch.ops.aten.convolution_backward(grad_output=grad_output, input=input, weight=weight, bias_sizes=None, stride=stride, padding=padding, dilation=dilation, transposed=transpose, output_padding=output_padding, groups=groups, output_mask=[False, True, False])[1]
@staticmethod
def backward(ctx, grad2_grad_weight):
grad_output, input = ctx.saved_tensors
grad_output_shape = ctx.grad_output_shape
input_shape = ctx.input_shape
grad2_grad_output = None
grad2_input = None
if ctx.needs_input_grad[0]:
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
assert grad2_grad_output.shape == grad_output_shape
if ctx.needs_input_grad[1]:
p = calc_output_padding(input_shape=input_shape, output_shape=grad_output_shape)
op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
grad2_input = op.apply(grad_output, grad2_grad_weight, None)
assert grad2_input.shape == input_shape
return grad2_grad_output, grad2_input
_conv2d_gradfix_cache[key] = Conv2d
return Conv2d
#----------------------------------------------------------------------------
|