File size: 5,078 Bytes
bca104a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch.utils.data as data

from PIL import Image

import os
import os.path
from io import BytesIO

import lmdb
from torch.utils.data import Dataset

class MultiResolutionDataset(Dataset):
    def __init__(self, path, transform, resolution=256):
        self.env = lmdb.open(
            path,
            max_readers=32,
            readonly=True,
            lock=False,
            readahead=False,
            meminit=False,
        )

        if not self.env:
            raise IOError('Cannot open lmdb dataset', path)

        with self.env.begin(write=False) as txn:
            self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))

        self.resolution = resolution
        self.transform = transform

    def __len__(self):
        return self.length

    def __getitem__(self, index):
        with self.env.begin(write=False) as txn:
            key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
            img_bytes = txn.get(key)

        buffer = BytesIO(img_bytes)
        img = Image.open(buffer)
        img = self.transform(img)

        return img


def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in extensions)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, extensions):
    images = []
    for root, _, fnames in sorted(os.walk(dir)):
        for fname in sorted(fnames):
            if has_file_allowed_extension(fname, extensions):
                path = os.path.join(root, fname)
                item = (path, 0)
                images.append(item)

    return images


class DatasetFolder(data.Dataset):
    def __init__(self, root, loader, extensions, transform=None, target_transform=None):
        # classes, class_to_idx = find_classes(root)
        samples = make_dataset(root, extensions)
        if len(samples) == 0:
            raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
                               "Supported extensions are: " + ",".join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions
        self.samples = samples

        self.transform = transform
        self.target_transform = target_transform

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        img = Image.open(f)
        return img.convert('RGB')


def default_loader(path):
    return pil_loader(path)


class ImageFolder(DatasetFolder):
    def __init__(self, root, transform1=None, transform2=None, target_transform=None,
                 loader=default_loader):
        super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                          transform=transform1,
                                          target_transform=target_transform)
        self.imgs = self.samples
        self.transform2 = transform2

    def set_stage(self, stage):
        if stage == 'last':
            self.transform = self.transform2

class ListFolder(Dataset):
    def __init__(self, txt, transform):
        with open(txt) as f:
            imgpaths= f.readlines()
        self.imgpaths = [x.strip() for x in imgpaths] 
        self.transform = transform

    def __getitem__(self, idx):
        path = self.imgpaths[idx]
        image = Image.open(path)
        return self.transform(image)

    def __len__(self):
        return len(self.imgpaths)