Spaces:
Runtime error
Runtime error
aliabd
commited on
Commit
β’
bca104a
1
Parent(s):
c775144
copied all files from repo
Browse files- LICENSE +21 -0
- dataset.py +167 -0
- distributed.py +126 -0
- gradiodemo.py +84 -0
- inference.ipynb +0 -0
- inference_colab.ipynb +0 -0
- model.py +757 -0
- requirements.txt +10 -0
- teaser.gif +0 -0
- teaser.png +0 -0
- train.py +458 -0
- util.py +161 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Min Jin Chong
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
dataset.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.utils.data as data
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import os
|
6 |
+
import os.path
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
import lmdb
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
class MultiResolutionDataset(Dataset):
|
13 |
+
def __init__(self, path, transform, resolution=256):
|
14 |
+
self.env = lmdb.open(
|
15 |
+
path,
|
16 |
+
max_readers=32,
|
17 |
+
readonly=True,
|
18 |
+
lock=False,
|
19 |
+
readahead=False,
|
20 |
+
meminit=False,
|
21 |
+
)
|
22 |
+
|
23 |
+
if not self.env:
|
24 |
+
raise IOError('Cannot open lmdb dataset', path)
|
25 |
+
|
26 |
+
with self.env.begin(write=False) as txn:
|
27 |
+
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
|
28 |
+
|
29 |
+
self.resolution = resolution
|
30 |
+
self.transform = transform
|
31 |
+
|
32 |
+
def __len__(self):
|
33 |
+
return self.length
|
34 |
+
|
35 |
+
def __getitem__(self, index):
|
36 |
+
with self.env.begin(write=False) as txn:
|
37 |
+
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
|
38 |
+
img_bytes = txn.get(key)
|
39 |
+
|
40 |
+
buffer = BytesIO(img_bytes)
|
41 |
+
img = Image.open(buffer)
|
42 |
+
img = self.transform(img)
|
43 |
+
|
44 |
+
return img
|
45 |
+
|
46 |
+
|
47 |
+
def has_file_allowed_extension(filename, extensions):
|
48 |
+
"""Checks if a file is an allowed extension.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
filename (string): path to a file
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
bool: True if the filename ends with a known image extension
|
55 |
+
"""
|
56 |
+
filename_lower = filename.lower()
|
57 |
+
return any(filename_lower.endswith(ext) for ext in extensions)
|
58 |
+
|
59 |
+
|
60 |
+
def find_classes(dir):
|
61 |
+
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
|
62 |
+
classes.sort()
|
63 |
+
class_to_idx = {classes[i]: i for i in range(len(classes))}
|
64 |
+
return classes, class_to_idx
|
65 |
+
|
66 |
+
|
67 |
+
def make_dataset(dir, extensions):
|
68 |
+
images = []
|
69 |
+
for root, _, fnames in sorted(os.walk(dir)):
|
70 |
+
for fname in sorted(fnames):
|
71 |
+
if has_file_allowed_extension(fname, extensions):
|
72 |
+
path = os.path.join(root, fname)
|
73 |
+
item = (path, 0)
|
74 |
+
images.append(item)
|
75 |
+
|
76 |
+
return images
|
77 |
+
|
78 |
+
|
79 |
+
class DatasetFolder(data.Dataset):
|
80 |
+
def __init__(self, root, loader, extensions, transform=None, target_transform=None):
|
81 |
+
# classes, class_to_idx = find_classes(root)
|
82 |
+
samples = make_dataset(root, extensions)
|
83 |
+
if len(samples) == 0:
|
84 |
+
raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
|
85 |
+
"Supported extensions are: " + ",".join(extensions)))
|
86 |
+
|
87 |
+
self.root = root
|
88 |
+
self.loader = loader
|
89 |
+
self.extensions = extensions
|
90 |
+
self.samples = samples
|
91 |
+
|
92 |
+
self.transform = transform
|
93 |
+
self.target_transform = target_transform
|
94 |
+
|
95 |
+
def __getitem__(self, index):
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
index (int): Index
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
tuple: (sample, target) where target is class_index of the target class.
|
102 |
+
"""
|
103 |
+
path, target = self.samples[index]
|
104 |
+
sample = self.loader(path)
|
105 |
+
if self.transform is not None:
|
106 |
+
sample = self.transform(sample)
|
107 |
+
if self.target_transform is not None:
|
108 |
+
target = self.target_transform(target)
|
109 |
+
|
110 |
+
return sample
|
111 |
+
|
112 |
+
def __len__(self):
|
113 |
+
return len(self.samples)
|
114 |
+
|
115 |
+
def __repr__(self):
|
116 |
+
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
|
117 |
+
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
|
118 |
+
fmt_str += ' Root Location: {}\n'.format(self.root)
|
119 |
+
tmp = ' Transforms (if any): '
|
120 |
+
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
|
121 |
+
tmp = ' Target Transforms (if any): '
|
122 |
+
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
|
123 |
+
return fmt_str
|
124 |
+
|
125 |
+
|
126 |
+
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
|
127 |
+
|
128 |
+
|
129 |
+
def pil_loader(path):
|
130 |
+
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
|
131 |
+
with open(path, 'rb') as f:
|
132 |
+
img = Image.open(f)
|
133 |
+
return img.convert('RGB')
|
134 |
+
|
135 |
+
|
136 |
+
def default_loader(path):
|
137 |
+
return pil_loader(path)
|
138 |
+
|
139 |
+
|
140 |
+
class ImageFolder(DatasetFolder):
|
141 |
+
def __init__(self, root, transform1=None, transform2=None, target_transform=None,
|
142 |
+
loader=default_loader):
|
143 |
+
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
|
144 |
+
transform=transform1,
|
145 |
+
target_transform=target_transform)
|
146 |
+
self.imgs = self.samples
|
147 |
+
self.transform2 = transform2
|
148 |
+
|
149 |
+
def set_stage(self, stage):
|
150 |
+
if stage == 'last':
|
151 |
+
self.transform = self.transform2
|
152 |
+
|
153 |
+
class ListFolder(Dataset):
|
154 |
+
def __init__(self, txt, transform):
|
155 |
+
with open(txt) as f:
|
156 |
+
imgpaths= f.readlines()
|
157 |
+
self.imgpaths = [x.strip() for x in imgpaths]
|
158 |
+
self.transform = transform
|
159 |
+
|
160 |
+
def __getitem__(self, idx):
|
161 |
+
path = self.imgpaths[idx]
|
162 |
+
image = Image.open(path)
|
163 |
+
return self.transform(image)
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.imgpaths)
|
167 |
+
|
distributed.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import distributed as dist
|
6 |
+
from torch.utils.data.sampler import Sampler
|
7 |
+
|
8 |
+
|
9 |
+
def get_rank():
|
10 |
+
if not dist.is_available():
|
11 |
+
return 0
|
12 |
+
|
13 |
+
if not dist.is_initialized():
|
14 |
+
return 0
|
15 |
+
|
16 |
+
return dist.get_rank()
|
17 |
+
|
18 |
+
|
19 |
+
def synchronize():
|
20 |
+
if not dist.is_available():
|
21 |
+
return
|
22 |
+
|
23 |
+
if not dist.is_initialized():
|
24 |
+
return
|
25 |
+
|
26 |
+
world_size = dist.get_world_size()
|
27 |
+
|
28 |
+
if world_size == 1:
|
29 |
+
return
|
30 |
+
|
31 |
+
dist.barrier()
|
32 |
+
|
33 |
+
|
34 |
+
def get_world_size():
|
35 |
+
if not dist.is_available():
|
36 |
+
return 1
|
37 |
+
|
38 |
+
if not dist.is_initialized():
|
39 |
+
return 1
|
40 |
+
|
41 |
+
return dist.get_world_size()
|
42 |
+
|
43 |
+
|
44 |
+
def reduce_sum(tensor):
|
45 |
+
if not dist.is_available():
|
46 |
+
return tensor
|
47 |
+
|
48 |
+
if not dist.is_initialized():
|
49 |
+
return tensor
|
50 |
+
|
51 |
+
tensor = tensor.clone()
|
52 |
+
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
|
53 |
+
|
54 |
+
return tensor
|
55 |
+
|
56 |
+
|
57 |
+
def gather_grad(params):
|
58 |
+
world_size = get_world_size()
|
59 |
+
|
60 |
+
if world_size == 1:
|
61 |
+
return
|
62 |
+
|
63 |
+
for param in params:
|
64 |
+
if param.grad is not None:
|
65 |
+
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
|
66 |
+
param.grad.data.div_(world_size)
|
67 |
+
|
68 |
+
|
69 |
+
def all_gather(data):
|
70 |
+
world_size = get_world_size()
|
71 |
+
|
72 |
+
if world_size == 1:
|
73 |
+
return [data]
|
74 |
+
|
75 |
+
buffer = pickle.dumps(data)
|
76 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
77 |
+
tensor = torch.ByteTensor(storage).to('cuda')
|
78 |
+
|
79 |
+
local_size = torch.IntTensor([tensor.numel()]).to('cuda')
|
80 |
+
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
|
81 |
+
dist.all_gather(size_list, local_size)
|
82 |
+
size_list = [int(size.item()) for size in size_list]
|
83 |
+
max_size = max(size_list)
|
84 |
+
|
85 |
+
tensor_list = []
|
86 |
+
for _ in size_list:
|
87 |
+
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
|
88 |
+
|
89 |
+
if local_size != max_size:
|
90 |
+
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
|
91 |
+
tensor = torch.cat((tensor, padding), 0)
|
92 |
+
|
93 |
+
dist.all_gather(tensor_list, tensor)
|
94 |
+
|
95 |
+
data_list = []
|
96 |
+
|
97 |
+
for size, tensor in zip(size_list, tensor_list):
|
98 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
99 |
+
data_list.append(pickle.loads(buffer))
|
100 |
+
|
101 |
+
return data_list
|
102 |
+
|
103 |
+
|
104 |
+
def reduce_loss_dict(loss_dict):
|
105 |
+
world_size = get_world_size()
|
106 |
+
|
107 |
+
if world_size < 2:
|
108 |
+
return loss_dict
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
keys = []
|
112 |
+
losses = []
|
113 |
+
|
114 |
+
for k in sorted(loss_dict.keys()):
|
115 |
+
keys.append(k)
|
116 |
+
losses.append(loss_dict[k])
|
117 |
+
|
118 |
+
losses = torch.stack(losses, 0)
|
119 |
+
dist.reduce(losses, dst=0)
|
120 |
+
|
121 |
+
if dist.get_rank() == 0:
|
122 |
+
losses /= world_size
|
123 |
+
|
124 |
+
reduced_losses = {k: v for k, v in zip(keys, losses)}
|
125 |
+
|
126 |
+
return reduced_losses
|
gradiodemo.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.utils import data
|
7 |
+
from torchvision import transforms, utils
|
8 |
+
from tqdm import tqdm
|
9 |
+
torch.backends.cudnn.benchmark = True
|
10 |
+
import copy
|
11 |
+
from util import *
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from model import *
|
15 |
+
import moviepy.video.io.ImageSequenceClip
|
16 |
+
import scipy
|
17 |
+
import kornia.augmentation as K
|
18 |
+
|
19 |
+
from base64 import b64encode
|
20 |
+
import gradio as gr
|
21 |
+
from torchvision import transforms
|
22 |
+
|
23 |
+
torch.hub.download_url_to_file('https://i.imgur.com/HiOTPNg.png', 'mona.png')
|
24 |
+
torch.hub.download_url_to_file('https://i.imgur.com/Cw8HcTN.png', 'painting.png')
|
25 |
+
|
26 |
+
device = 'cpu'
|
27 |
+
latent_dim = 8
|
28 |
+
n_mlp = 5
|
29 |
+
num_down = 3
|
30 |
+
|
31 |
+
G_A2B = Generator(256, 4, latent_dim, n_mlp, channel_multiplier=1, lr_mlp=.01,n_res=1).to(device).eval()
|
32 |
+
|
33 |
+
ensure_checkpoint_exists('GNR_checkpoint.pt')
|
34 |
+
ckpt = torch.load('GNR_checkpoint.pt', map_location=device)
|
35 |
+
|
36 |
+
G_A2B.load_state_dict(ckpt['G_A2B_ema'])
|
37 |
+
|
38 |
+
# mean latent
|
39 |
+
truncation = 1
|
40 |
+
with torch.no_grad():
|
41 |
+
mean_style = G_A2B.mapping(torch.randn([1000, latent_dim]).to(device)).mean(0, keepdim=True)
|
42 |
+
|
43 |
+
|
44 |
+
test_transform = transforms.Compose([
|
45 |
+
transforms.Resize((256, 256)),
|
46 |
+
transforms.ToTensor(),
|
47 |
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True)
|
48 |
+
])
|
49 |
+
plt.rcParams['figure.dpi'] = 200
|
50 |
+
|
51 |
+
torch.manual_seed(84986)
|
52 |
+
|
53 |
+
num_styles = 1
|
54 |
+
style = torch.randn([num_styles, latent_dim]).to(device)
|
55 |
+
|
56 |
+
|
57 |
+
def inference(input_im):
|
58 |
+
real_A = test_transform(input_im).unsqueeze(0).to(device)
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
A2B_content, _ = G_A2B.encode(real_A)
|
62 |
+
fake_A2B = G_A2B.decode(A2B_content.repeat(num_styles,1,1,1), style)
|
63 |
+
std=(0.5, 0.5, 0.5)
|
64 |
+
mean=(0.5, 0.5, 0.5)
|
65 |
+
z = fake_A2B * torch.tensor(std).view(3, 1, 1)
|
66 |
+
z = z + torch.tensor(mean).view(3, 1, 1)
|
67 |
+
tensor_to_pil = transforms.ToPILImage(mode='RGB')(z.squeeze())
|
68 |
+
return tensor_to_pil
|
69 |
+
|
70 |
+
title = "GANsNRoses"
|
71 |
+
description = "demo for GANsNRoses. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
72 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2106.06561'>GANs N' Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)</a> | <a href='https://github.com/mchong6/GANsNRoses'>Github Repo</a></p>"
|
73 |
+
|
74 |
+
gr.Interface(
|
75 |
+
inference,
|
76 |
+
[gr.inputs.Image(type="pil", label="Input")],
|
77 |
+
gr.outputs.Image(type="pil", label="Output"),
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
article=article,
|
81 |
+
examples=[
|
82 |
+
["mona.png"],
|
83 |
+
["painting.png"]
|
84 |
+
]).launch()
|
inference.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
inference_colab.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.py
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import functools
|
5 |
+
import operator
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.autograd import Function
|
11 |
+
|
12 |
+
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
13 |
+
n_latent = 11
|
14 |
+
|
15 |
+
|
16 |
+
channels = {
|
17 |
+
4: 512,
|
18 |
+
8: 512,
|
19 |
+
16: 512,
|
20 |
+
32: 512,
|
21 |
+
64: 256,
|
22 |
+
128: 128,
|
23 |
+
256: 64,
|
24 |
+
512: 32,
|
25 |
+
1024: 16,
|
26 |
+
}
|
27 |
+
|
28 |
+
class LambdaLR():
|
29 |
+
def __init__(self, n_epochs, offset, decay_start_epoch):
|
30 |
+
assert ((n_epochs - decay_start_epoch) > 0), "Decay must start before the training session ends!"
|
31 |
+
self.n_epochs = n_epochs
|
32 |
+
self.offset = offset
|
33 |
+
self.decay_start_epoch = decay_start_epoch
|
34 |
+
|
35 |
+
def step(self, epoch):
|
36 |
+
return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch)/(self.n_epochs - self.decay_start_epoch)
|
37 |
+
|
38 |
+
|
39 |
+
class PixelNorm(nn.Module):
|
40 |
+
def __init__(self):
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
def forward(self, input):
|
44 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
45 |
+
|
46 |
+
def make_kernel(k):
|
47 |
+
k = torch.tensor(k, dtype=torch.float32)
|
48 |
+
|
49 |
+
if k.ndim == 1:
|
50 |
+
k = k[None, :] * k[:, None]
|
51 |
+
|
52 |
+
k /= k.sum()
|
53 |
+
|
54 |
+
return k
|
55 |
+
|
56 |
+
class Upsample(nn.Module):
|
57 |
+
def __init__(self, kernel, factor=2):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
self.factor = factor
|
61 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
62 |
+
self.register_buffer('kernel', kernel)
|
63 |
+
|
64 |
+
p = kernel.shape[0] - factor
|
65 |
+
|
66 |
+
pad0 = (p + 1) // 2 + factor - 1
|
67 |
+
pad1 = p // 2
|
68 |
+
|
69 |
+
self.pad = (pad0, pad1)
|
70 |
+
|
71 |
+
def forward(self, input):
|
72 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
73 |
+
|
74 |
+
return out
|
75 |
+
|
76 |
+
|
77 |
+
class Downsample(nn.Module):
|
78 |
+
def __init__(self, kernel, factor=2):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.factor = factor
|
82 |
+
kernel = make_kernel(kernel)
|
83 |
+
self.register_buffer('kernel', kernel)
|
84 |
+
|
85 |
+
p = kernel.shape[0] - factor
|
86 |
+
|
87 |
+
pad0 = (p + 1) // 2
|
88 |
+
pad1 = p // 2
|
89 |
+
|
90 |
+
self.pad = (pad0, pad1)
|
91 |
+
|
92 |
+
def forward(self, input):
|
93 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
94 |
+
|
95 |
+
return out
|
96 |
+
|
97 |
+
|
98 |
+
class Blur(nn.Module):
|
99 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
kernel = make_kernel(kernel)
|
103 |
+
|
104 |
+
if upsample_factor > 1:
|
105 |
+
kernel = kernel * (upsample_factor ** 2)
|
106 |
+
|
107 |
+
self.register_buffer('kernel', kernel)
|
108 |
+
|
109 |
+
self.pad = pad
|
110 |
+
|
111 |
+
def forward(self, input):
|
112 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
113 |
+
|
114 |
+
return out
|
115 |
+
|
116 |
+
|
117 |
+
class EqualConv2d(nn.Module):
|
118 |
+
def __init__(
|
119 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.weight = nn.Parameter(
|
124 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
125 |
+
)
|
126 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
127 |
+
|
128 |
+
self.stride = stride
|
129 |
+
self.padding = padding
|
130 |
+
|
131 |
+
if bias:
|
132 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
133 |
+
|
134 |
+
else:
|
135 |
+
self.bias = None
|
136 |
+
|
137 |
+
def forward(self, input):
|
138 |
+
out = F.conv2d(
|
139 |
+
input,
|
140 |
+
self.weight * self.scale,
|
141 |
+
bias=self.bias,
|
142 |
+
stride=self.stride,
|
143 |
+
padding=self.padding,
|
144 |
+
)
|
145 |
+
|
146 |
+
return out
|
147 |
+
|
148 |
+
def __repr__(self):
|
149 |
+
return (
|
150 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
151 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
class EqualLinear(nn.Module):
|
156 |
+
def __init__(
|
157 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
158 |
+
):
|
159 |
+
super().__init__()
|
160 |
+
|
161 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
162 |
+
|
163 |
+
if bias:
|
164 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
165 |
+
|
166 |
+
else:
|
167 |
+
self.bias = None
|
168 |
+
|
169 |
+
self.activation = activation
|
170 |
+
|
171 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
172 |
+
self.lr_mul = lr_mul
|
173 |
+
|
174 |
+
def forward(self, input):
|
175 |
+
bias = self.bias*self.lr_mul if self.bias is not None else None
|
176 |
+
if self.activation:
|
177 |
+
out = F.linear(input, self.weight * self.scale)
|
178 |
+
out = fused_leaky_relu(out, bias)
|
179 |
+
|
180 |
+
else:
|
181 |
+
out = F.linear(
|
182 |
+
input, self.weight * self.scale, bias=bias
|
183 |
+
)
|
184 |
+
|
185 |
+
return out
|
186 |
+
|
187 |
+
def __repr__(self):
|
188 |
+
return (
|
189 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
class ScaledLeakyReLU(nn.Module):
|
194 |
+
def __init__(self, negative_slope=0.2):
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
self.negative_slope = negative_slope
|
198 |
+
|
199 |
+
def forward(self, input):
|
200 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
201 |
+
|
202 |
+
return out * math.sqrt(2)
|
203 |
+
|
204 |
+
|
205 |
+
class ModulatedConv2d(nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
in_channel,
|
209 |
+
out_channel,
|
210 |
+
kernel_size,
|
211 |
+
style_dim,
|
212 |
+
use_style=True,
|
213 |
+
demodulate=True,
|
214 |
+
upsample=False,
|
215 |
+
downsample=False,
|
216 |
+
blur_kernel=[1, 3, 3, 1],
|
217 |
+
):
|
218 |
+
super().__init__()
|
219 |
+
|
220 |
+
self.eps = 1e-8
|
221 |
+
self.kernel_size = kernel_size
|
222 |
+
self.in_channel = in_channel
|
223 |
+
self.out_channel = out_channel
|
224 |
+
self.upsample = upsample
|
225 |
+
self.downsample = downsample
|
226 |
+
self.use_style = use_style
|
227 |
+
|
228 |
+
if upsample:
|
229 |
+
factor = 2
|
230 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
231 |
+
pad0 = (p + 1) // 2 + factor - 1
|
232 |
+
pad1 = p // 2 + 1
|
233 |
+
|
234 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
235 |
+
|
236 |
+
if downsample:
|
237 |
+
factor = 2
|
238 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
239 |
+
pad0 = (p + 1) // 2
|
240 |
+
pad1 = p // 2
|
241 |
+
|
242 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
243 |
+
|
244 |
+
fan_in = in_channel * kernel_size ** 2
|
245 |
+
self.scale = 1 / math.sqrt(fan_in)
|
246 |
+
self.padding = kernel_size // 2
|
247 |
+
|
248 |
+
self.weight = nn.Parameter(
|
249 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
250 |
+
)
|
251 |
+
|
252 |
+
if use_style:
|
253 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
254 |
+
else:
|
255 |
+
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1, 1).fill_(1))
|
256 |
+
|
257 |
+
self.demodulate = demodulate
|
258 |
+
|
259 |
+
def __repr__(self):
|
260 |
+
return (
|
261 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
262 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
263 |
+
)
|
264 |
+
|
265 |
+
def forward(self, input, style):
|
266 |
+
batch, in_channel, height, width = input.shape
|
267 |
+
|
268 |
+
if self.use_style:
|
269 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
270 |
+
weight = self.scale * self.weight * style
|
271 |
+
else:
|
272 |
+
weight = self.scale * self.weight.expand(batch,-1,-1,-1,-1) * self.modulation
|
273 |
+
|
274 |
+
if self.demodulate:
|
275 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
276 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
277 |
+
|
278 |
+
weight = weight.view(
|
279 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
280 |
+
)
|
281 |
+
|
282 |
+
if self.upsample:
|
283 |
+
input = input.view(1, batch * in_channel, height, width)
|
284 |
+
weight = weight.view(
|
285 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
286 |
+
)
|
287 |
+
weight = weight.transpose(1, 2).reshape(
|
288 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
289 |
+
)
|
290 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
291 |
+
_, _, height, width = out.shape
|
292 |
+
out = out.view(batch, self.out_channel, height, width)
|
293 |
+
out = self.blur(out)
|
294 |
+
|
295 |
+
elif self.downsample:
|
296 |
+
input = self.blur(input)
|
297 |
+
_, _, height, width = input.shape
|
298 |
+
input = input.view(1, batch * in_channel, height, width)
|
299 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
300 |
+
_, _, height, width = out.shape
|
301 |
+
out = out.view(batch, self.out_channel, height, width)
|
302 |
+
|
303 |
+
else:
|
304 |
+
input = input.view(1, batch * in_channel, height, width)
|
305 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
306 |
+
_, _, height, width = out.shape
|
307 |
+
out = out.view(batch, self.out_channel, height, width)
|
308 |
+
|
309 |
+
return out
|
310 |
+
|
311 |
+
|
312 |
+
class NoiseInjection(nn.Module):
|
313 |
+
def __init__(self):
|
314 |
+
super().__init__()
|
315 |
+
|
316 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
317 |
+
|
318 |
+
def forward(self, image, noise=None):
|
319 |
+
if noise is None:
|
320 |
+
batch, _, height, width = image.shape
|
321 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
322 |
+
|
323 |
+
return image + self.weight * noise
|
324 |
+
|
325 |
+
|
326 |
+
class ConstantInput(nn.Module):
|
327 |
+
def __init__(self, style_dim):
|
328 |
+
super().__init__()
|
329 |
+
|
330 |
+
self.input = nn.Parameter(torch.randn(1, style_dim))
|
331 |
+
|
332 |
+
def forward(self, input):
|
333 |
+
batch = input.shape[0]
|
334 |
+
out = self.input.repeat(batch, n_latent)
|
335 |
+
|
336 |
+
return out
|
337 |
+
|
338 |
+
|
339 |
+
class StyledConv(nn.Module):
|
340 |
+
def __init__(
|
341 |
+
self,
|
342 |
+
in_channel,
|
343 |
+
out_channel,
|
344 |
+
kernel_size,
|
345 |
+
style_dim,
|
346 |
+
use_style=True,
|
347 |
+
upsample=False,
|
348 |
+
downsample=False,
|
349 |
+
blur_kernel=[1, 3, 3, 1],
|
350 |
+
demodulate=True,
|
351 |
+
):
|
352 |
+
super().__init__()
|
353 |
+
self.use_style = use_style
|
354 |
+
|
355 |
+
self.conv = ModulatedConv2d(
|
356 |
+
in_channel,
|
357 |
+
out_channel,
|
358 |
+
kernel_size,
|
359 |
+
style_dim,
|
360 |
+
use_style=use_style,
|
361 |
+
upsample=upsample,
|
362 |
+
downsample=downsample,
|
363 |
+
blur_kernel=blur_kernel,
|
364 |
+
demodulate=demodulate,
|
365 |
+
)
|
366 |
+
|
367 |
+
#if use_style:
|
368 |
+
# self.noise = NoiseInjection()
|
369 |
+
#else:
|
370 |
+
# self.noise = None
|
371 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
372 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
373 |
+
self.activate = FusedLeakyReLU(out_channel)
|
374 |
+
|
375 |
+
def forward(self, input, style=None, noise=None):
|
376 |
+
out = self.conv(input, style)
|
377 |
+
#if self.use_style:
|
378 |
+
# out = self.noise(out, noise=noise)
|
379 |
+
# out = out + self.bias
|
380 |
+
out = self.activate(out)
|
381 |
+
|
382 |
+
return out
|
383 |
+
|
384 |
+
|
385 |
+
class StyledResBlock(nn.Module):
|
386 |
+
def __init__(self, in_channel, style_dim, blur_kernel=[1, 3, 3, 1], demodulate=True):
|
387 |
+
super().__init__()
|
388 |
+
|
389 |
+
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
|
390 |
+
self.conv2 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
|
391 |
+
|
392 |
+
def forward(self, input, style):
|
393 |
+
out = self.conv1(input, style)
|
394 |
+
out = self.conv2(out, style)
|
395 |
+
out = (out + input) / math.sqrt(2)
|
396 |
+
|
397 |
+
return out
|
398 |
+
|
399 |
+
class ToRGB(nn.Module):
|
400 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
401 |
+
super().__init__()
|
402 |
+
|
403 |
+
if upsample:
|
404 |
+
self.upsample = Upsample(blur_kernel)
|
405 |
+
|
406 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
407 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
408 |
+
|
409 |
+
def forward(self, input, style, skip=None):
|
410 |
+
out = self.conv(input, style)
|
411 |
+
out = out + self.bias
|
412 |
+
|
413 |
+
if skip is not None:
|
414 |
+
skip = self.upsample(skip)
|
415 |
+
|
416 |
+
out = out + skip
|
417 |
+
|
418 |
+
return out
|
419 |
+
|
420 |
+
|
421 |
+
class Generator(nn.Module):
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
size,
|
425 |
+
num_down,
|
426 |
+
latent_dim,
|
427 |
+
n_mlp,
|
428 |
+
n_res,
|
429 |
+
channel_multiplier=1,
|
430 |
+
blur_kernel=[1, 3, 3, 1],
|
431 |
+
lr_mlp=0.01,
|
432 |
+
):
|
433 |
+
super().__init__()
|
434 |
+
self.size = size
|
435 |
+
|
436 |
+
style_dim = 512
|
437 |
+
|
438 |
+
mapping = [EqualLinear(latent_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu')]
|
439 |
+
for i in range(n_mlp-1):
|
440 |
+
mapping.append(EqualLinear(style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'))
|
441 |
+
|
442 |
+
self.mapping = nn.Sequential(*mapping)
|
443 |
+
|
444 |
+
self.encoder = Encoder(size, latent_dim, num_down, n_res, channel_multiplier)
|
445 |
+
|
446 |
+
self.log_size = int(math.log(size, 2)) #7
|
447 |
+
in_log_size = self.log_size - num_down #7-2 or 7-3
|
448 |
+
in_size = 2 ** in_log_size
|
449 |
+
|
450 |
+
in_channel = channels[in_size]
|
451 |
+
self.adain_bottleneck = nn.ModuleList()
|
452 |
+
for i in range(n_res):
|
453 |
+
self.adain_bottleneck.append(StyledResBlock(in_channel, style_dim))
|
454 |
+
|
455 |
+
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, blur_kernel=blur_kernel)
|
456 |
+
self.to_rgb1 = ToRGB(in_channel, style_dim, upsample=False)
|
457 |
+
|
458 |
+
self.num_layers = (self.log_size - in_log_size) * 2 + 1 #7
|
459 |
+
|
460 |
+
self.convs = nn.ModuleList()
|
461 |
+
self.upsamples = nn.ModuleList()
|
462 |
+
self.to_rgbs = nn.ModuleList()
|
463 |
+
#self.noises = nn.Module()
|
464 |
+
|
465 |
+
|
466 |
+
#for layer_idx in range(self.num_layers):
|
467 |
+
# res = (layer_idx + (in_log_size*2+1)) // 2 #2,3,3,5 ... -> 4,5,5,6 ...
|
468 |
+
# shape = [1, 1, 2 ** res, 2 ** res]
|
469 |
+
# self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
470 |
+
|
471 |
+
for i in range(in_log_size+1, self.log_size + 1):
|
472 |
+
out_channel = channels[2 ** i]
|
473 |
+
|
474 |
+
self.convs.append(
|
475 |
+
StyledConv(
|
476 |
+
in_channel,
|
477 |
+
out_channel,
|
478 |
+
3,
|
479 |
+
style_dim,
|
480 |
+
upsample=True,
|
481 |
+
blur_kernel=blur_kernel,
|
482 |
+
)
|
483 |
+
)
|
484 |
+
|
485 |
+
self.convs.append(
|
486 |
+
StyledConv(
|
487 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
488 |
+
)
|
489 |
+
)
|
490 |
+
|
491 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
492 |
+
|
493 |
+
in_channel = out_channel
|
494 |
+
|
495 |
+
def style_encode(self, input):
|
496 |
+
return self.encoder(input)[1]
|
497 |
+
|
498 |
+
def encode(self, input):
|
499 |
+
return self.encoder(input)
|
500 |
+
|
501 |
+
def forward(self, input, z=None):
|
502 |
+
content, style = self.encode(input)
|
503 |
+
if z is None:
|
504 |
+
out = self.decode(content, style)
|
505 |
+
else:
|
506 |
+
out = self.decode(content, z)
|
507 |
+
|
508 |
+
return out, content, style
|
509 |
+
|
510 |
+
def decode(self, input, styles, use_mapping=True):
|
511 |
+
if use_mapping:
|
512 |
+
styles = self.mapping(styles)
|
513 |
+
#styles = styles.repeat(1, n_latent).view(styles.size(0), n_latent, -1)
|
514 |
+
out = input
|
515 |
+
i = 0
|
516 |
+
for conv in self.adain_bottleneck:
|
517 |
+
out = conv(out, styles)
|
518 |
+
i += 1
|
519 |
+
|
520 |
+
out = self.conv1(out, styles, noise=None)
|
521 |
+
skip = self.to_rgb1(out, styles)
|
522 |
+
i += 2
|
523 |
+
|
524 |
+
for conv1, conv2, to_rgb in zip(
|
525 |
+
self.convs[::2], self.convs[1::2], self.to_rgbs
|
526 |
+
):
|
527 |
+
out = conv1(out, styles, noise=None)
|
528 |
+
out = conv2(out, styles, noise=None)
|
529 |
+
skip = to_rgb(out, styles, skip)
|
530 |
+
|
531 |
+
i += 3
|
532 |
+
|
533 |
+
image = skip
|
534 |
+
return image
|
535 |
+
|
536 |
+
class ConvLayer(nn.Sequential):
|
537 |
+
def __init__(
|
538 |
+
self,
|
539 |
+
in_channel,
|
540 |
+
out_channel,
|
541 |
+
kernel_size,
|
542 |
+
downsample=False,
|
543 |
+
blur_kernel=[1, 3, 3, 1],
|
544 |
+
bias=True,
|
545 |
+
activate=True,
|
546 |
+
):
|
547 |
+
layers = []
|
548 |
+
|
549 |
+
if downsample:
|
550 |
+
factor = 2
|
551 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
552 |
+
pad0 = (p + 1) // 2
|
553 |
+
pad1 = p // 2
|
554 |
+
|
555 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
556 |
+
|
557 |
+
stride = 2
|
558 |
+
self.padding = 0
|
559 |
+
|
560 |
+
else:
|
561 |
+
stride = 1
|
562 |
+
self.padding = kernel_size // 2
|
563 |
+
|
564 |
+
layers.append(
|
565 |
+
EqualConv2d(
|
566 |
+
in_channel,
|
567 |
+
out_channel,
|
568 |
+
kernel_size,
|
569 |
+
padding=self.padding,
|
570 |
+
stride=stride,
|
571 |
+
bias=bias and not activate,
|
572 |
+
)
|
573 |
+
)
|
574 |
+
|
575 |
+
if activate:
|
576 |
+
if bias:
|
577 |
+
layers.append(FusedLeakyReLU(out_channel))
|
578 |
+
|
579 |
+
else:
|
580 |
+
layers.append(ScaledLeakyReLU(0.2))
|
581 |
+
|
582 |
+
super().__init__(*layers)
|
583 |
+
|
584 |
+
class InResBlock(nn.Module):
|
585 |
+
def __init__(self, in_channel, blur_kernel=[1, 3, 3, 1]):
|
586 |
+
super().__init__()
|
587 |
+
|
588 |
+
self.conv1 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False)
|
589 |
+
self.conv2 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False)
|
590 |
+
|
591 |
+
def forward(self, input):
|
592 |
+
out = self.conv1(input, None)
|
593 |
+
out = self.conv2(out, None)
|
594 |
+
out = (out + input) / math.sqrt(2)
|
595 |
+
|
596 |
+
return out
|
597 |
+
|
598 |
+
class ResBlock(nn.Module):
|
599 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True):
|
600 |
+
super().__init__()
|
601 |
+
|
602 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
603 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample)
|
604 |
+
|
605 |
+
if downsample or in_channel != out_channel:
|
606 |
+
self.skip = ConvLayer(
|
607 |
+
in_channel, out_channel, 1, downsample=downsample, activate=False, bias=False
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
self.skip = None
|
611 |
+
|
612 |
+
def forward(self, input):
|
613 |
+
out = self.conv1(input)
|
614 |
+
out = self.conv2(out)
|
615 |
+
|
616 |
+
if self.skip is None:
|
617 |
+
skip = input
|
618 |
+
else:
|
619 |
+
skip = self.skip(input)
|
620 |
+
out = (out + skip) / math.sqrt(2)
|
621 |
+
|
622 |
+
return out
|
623 |
+
|
624 |
+
class Discriminator(nn.Module):
|
625 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
626 |
+
super().__init__()
|
627 |
+
self.size = size
|
628 |
+
l_branch = self.make_net_(32)
|
629 |
+
l_branch += [ConvLayer(channels[32], 1, 1, activate=False)]
|
630 |
+
self.l_branch = nn.Sequential(*l_branch)
|
631 |
+
|
632 |
+
|
633 |
+
g_branch = self.make_net_(8)
|
634 |
+
self.g_branch = nn.Sequential(*g_branch)
|
635 |
+
self.g_adv = ConvLayer(channels[8], 1, 1, activate=False)
|
636 |
+
|
637 |
+
self.g_std = nn.Sequential(ConvLayer(channels[8], channels[4], 3, downsample=True),
|
638 |
+
nn.Flatten(),
|
639 |
+
EqualLinear(channels[4] * 4 * 4, 128, activation='fused_lrelu'),
|
640 |
+
)
|
641 |
+
self.g_final = EqualLinear(128, 1, activation=False)
|
642 |
+
|
643 |
+
|
644 |
+
def make_net_(self, out_size):
|
645 |
+
size = self.size
|
646 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
647 |
+
log_size = int(math.log(size, 2))
|
648 |
+
out_log_size = int(math.log(out_size, 2))
|
649 |
+
in_channel = channels[size]
|
650 |
+
|
651 |
+
for i in range(log_size, out_log_size, -1):
|
652 |
+
out_channel = channels[2 ** (i - 1)]
|
653 |
+
convs.append(ResBlock(in_channel, out_channel))
|
654 |
+
in_channel = out_channel
|
655 |
+
|
656 |
+
return convs
|
657 |
+
|
658 |
+
def forward(self, x):
|
659 |
+
l_adv = self.l_branch(x)
|
660 |
+
|
661 |
+
g_act = self.g_branch(x)
|
662 |
+
g_adv = self.g_adv(g_act)
|
663 |
+
|
664 |
+
output = self.g_std(g_act)
|
665 |
+
g_stddev = torch.sqrt(output.var(0, keepdim=True, unbiased=False) + 1e-8).repeat(x.size(0),1)
|
666 |
+
g_std = self.g_final(g_stddev)
|
667 |
+
return [l_adv, g_adv, g_std]
|
668 |
+
|
669 |
+
|
670 |
+
|
671 |
+
class Encoder(nn.Module):
|
672 |
+
def __init__(self, size, latent_dim, num_down, n_res, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
673 |
+
super().__init__()
|
674 |
+
stem = [ConvLayer(3, channels[size], 1)]
|
675 |
+
log_size = int(math.log(size, 2))
|
676 |
+
in_channel = channels[size]
|
677 |
+
|
678 |
+
for i in range(log_size, log_size-num_down, -1):
|
679 |
+
out_channel = channels[2 ** (i - 1)]
|
680 |
+
stem.append(ResBlock(in_channel, out_channel, downsample=True))
|
681 |
+
in_channel = out_channel
|
682 |
+
stem += [ResBlock(in_channel, in_channel, downsample=False) for i in range(n_res)]
|
683 |
+
self.stem = nn.Sequential(*stem)
|
684 |
+
|
685 |
+
self.content = nn.Sequential(
|
686 |
+
ConvLayer(in_channel, in_channel, 1),
|
687 |
+
ConvLayer(in_channel, in_channel, 1)
|
688 |
+
)
|
689 |
+
style = []
|
690 |
+
for i in range(log_size-num_down, 2, -1):
|
691 |
+
out_channel = channels[2 ** (i - 1)]
|
692 |
+
style.append(ConvLayer(in_channel, out_channel, 3, downsample=True))
|
693 |
+
in_channel = out_channel
|
694 |
+
style += [
|
695 |
+
nn.Flatten(),
|
696 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
697 |
+
EqualLinear(channels[4], latent_dim),
|
698 |
+
]
|
699 |
+
self.style = nn.Sequential(*style)
|
700 |
+
|
701 |
+
|
702 |
+
def forward(self, input):
|
703 |
+
act = self.stem(input)
|
704 |
+
content = self.content(act)
|
705 |
+
style = self.style(act)
|
706 |
+
return content, style
|
707 |
+
|
708 |
+
class StyleEncoder(nn.Module):
|
709 |
+
def __init__(self, size, style_dim, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
710 |
+
super().__init__()
|
711 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
712 |
+
|
713 |
+
log_size = int(math.log(size, 2))
|
714 |
+
|
715 |
+
in_channel = channels[size]
|
716 |
+
num_down = 6
|
717 |
+
|
718 |
+
for i in range(log_size, log_size-num_down, -1):
|
719 |
+
w = 2 ** (i - 1)
|
720 |
+
out_channel = channels[w]
|
721 |
+
convs.append(ConvLayer(in_channel, out_channel, 3, downsample=True))
|
722 |
+
in_channel = out_channel
|
723 |
+
|
724 |
+
convs += [
|
725 |
+
nn.Flatten(),
|
726 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), EqualLinear(channels[4], style_dim),
|
727 |
+
]
|
728 |
+
self.convs = nn.Sequential(*convs)
|
729 |
+
|
730 |
+
def forward(self, input):
|
731 |
+
style = self.convs(input)
|
732 |
+
return style.view(input.size(0), -1)
|
733 |
+
|
734 |
+
class LatDiscriminator(nn.Module):
|
735 |
+
def __init__(self, style_dim):
|
736 |
+
super().__init__()
|
737 |
+
|
738 |
+
fc = [EqualLinear(style_dim, 256, activation='fused_lrelu')]
|
739 |
+
for i in range(3):
|
740 |
+
fc += [EqualLinear(256, 256, activation='fused_lrelu')]
|
741 |
+
fc += [FCMinibatchStd(256, 256)]
|
742 |
+
fc += [EqualLinear(256, 1)]
|
743 |
+
self.fc = nn.Sequential(*fc)
|
744 |
+
|
745 |
+
def forward(self, input):
|
746 |
+
return [self.fc(input), ]
|
747 |
+
|
748 |
+
class FCMinibatchStd(nn.Module):
|
749 |
+
def __init__(self, in_channel, out_channel):
|
750 |
+
super().__init__()
|
751 |
+
self.fc = EqualLinear(in_channel+1, out_channel, activation='fused_lrelu')
|
752 |
+
|
753 |
+
def forward(self, out):
|
754 |
+
stddev = torch.sqrt(out.var(0, unbiased=False) + 1e-8).mean().view(1,1).repeat(out.size(0), 1)
|
755 |
+
out = torch.cat([out, stddev], 1)
|
756 |
+
out = self.fc(out)
|
757 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
gdown
|
3 |
+
kornia
|
4 |
+
scipy
|
5 |
+
opencv-python
|
6 |
+
moviepy
|
7 |
+
lpips
|
8 |
+
ninja
|
9 |
+
gradio
|
10 |
+
torchvision
|
teaser.gif
ADDED
teaser.png
ADDED
train.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
from util import *
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
torch.backends.cudnn.benchmark = True
|
9 |
+
from torch import nn, autograd
|
10 |
+
from torch import optim
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from torch.utils import data
|
13 |
+
import torch.distributed as dist
|
14 |
+
|
15 |
+
from torchvision import transforms, utils
|
16 |
+
from tqdm import tqdm
|
17 |
+
from torch.optim import lr_scheduler
|
18 |
+
import copy
|
19 |
+
import kornia.augmentation as K
|
20 |
+
import kornia
|
21 |
+
import lpips
|
22 |
+
|
23 |
+
from model import *
|
24 |
+
from dataset import ImageFolder
|
25 |
+
from distributed import (
|
26 |
+
get_rank,
|
27 |
+
synchronize,
|
28 |
+
reduce_loss_dict,
|
29 |
+
reduce_sum,
|
30 |
+
get_world_size,
|
31 |
+
)
|
32 |
+
|
33 |
+
mse_criterion = nn.MSELoss()
|
34 |
+
|
35 |
+
|
36 |
+
def test(args, genA2B, genB2A, testA_loader, testB_loader, name, step):
|
37 |
+
testA_loader = iter(testA_loader)
|
38 |
+
testB_loader = iter(testB_loader)
|
39 |
+
with torch.no_grad():
|
40 |
+
test_sample_num = 16
|
41 |
+
|
42 |
+
genA2B.eval(), genB2A.eval()
|
43 |
+
A2B = []
|
44 |
+
B2A = []
|
45 |
+
for i in range(test_sample_num):
|
46 |
+
real_A = testA_loader.next()
|
47 |
+
real_B = testB_loader.next()
|
48 |
+
|
49 |
+
real_A, real_B = real_A.cuda(), real_B.cuda()
|
50 |
+
|
51 |
+
A2B_content, A2B_style = genA2B.encode(real_A)
|
52 |
+
B2A_content, B2A_style = genB2A.encode(real_B)
|
53 |
+
|
54 |
+
if i % 2 == 0:
|
55 |
+
A2B_mod1 = torch.randn([1, args.latent_dim]).cuda()
|
56 |
+
B2A_mod1 = torch.randn([1, args.latent_dim]).cuda()
|
57 |
+
A2B_mod2 = torch.randn([1, args.latent_dim]).cuda()
|
58 |
+
B2A_mod2 = torch.randn([1, args.latent_dim]).cuda()
|
59 |
+
|
60 |
+
fake_B2B, _, _ = genA2B(real_B)
|
61 |
+
fake_A2A, _, _ = genB2A(real_A)
|
62 |
+
|
63 |
+
colsA = [real_A, fake_A2A]
|
64 |
+
colsB = [real_B, fake_B2B]
|
65 |
+
|
66 |
+
fake_A2B_1 = genA2B.decode(A2B_content, A2B_mod1)
|
67 |
+
fake_B2A_1 = genB2A.decode(B2A_content, B2A_mod1)
|
68 |
+
|
69 |
+
fake_A2B_2 = genA2B.decode(A2B_content, A2B_mod2)
|
70 |
+
fake_B2A_2 = genB2A.decode(B2A_content, B2A_mod2)
|
71 |
+
|
72 |
+
fake_A2B_3 = genA2B.decode(A2B_content, B2A_style)
|
73 |
+
fake_B2A_3 = genB2A.decode(B2A_content, A2B_style)
|
74 |
+
|
75 |
+
colsA += [fake_A2B_3, fake_A2B_1, fake_A2B_2]
|
76 |
+
colsB += [fake_B2A_3, fake_B2A_1, fake_B2A_2]
|
77 |
+
|
78 |
+
fake_A2B2A, _, _ = genB2A(fake_A2B_3, A2B_style)
|
79 |
+
fake_B2A2B, _, _ = genA2B(fake_B2A_3, B2A_style)
|
80 |
+
colsA.append(fake_A2B2A)
|
81 |
+
colsB.append(fake_B2A2B)
|
82 |
+
|
83 |
+
fake_A2B2A, _, _ = genB2A(fake_A2B_1, A2B_style)
|
84 |
+
fake_B2A2B, _, _ = genA2B(fake_B2A_1, B2A_style)
|
85 |
+
colsA.append(fake_A2B2A)
|
86 |
+
colsB.append(fake_B2A2B)
|
87 |
+
|
88 |
+
fake_A2B2A, _, _ = genB2A(fake_A2B_2, A2B_style)
|
89 |
+
fake_B2A2B, _, _ = genA2B(fake_B2A_2, B2A_style)
|
90 |
+
colsA.append(fake_A2B2A)
|
91 |
+
colsB.append(fake_B2A2B)
|
92 |
+
|
93 |
+
fake_A2B2A, _, _ = genB2A(fake_A2B_1)
|
94 |
+
fake_B2A2B, _, _ = genA2B(fake_B2A_1)
|
95 |
+
colsA.append(fake_A2B2A)
|
96 |
+
colsB.append(fake_B2A2B)
|
97 |
+
|
98 |
+
colsA = torch.cat(colsA, 2).detach().cpu()
|
99 |
+
colsB = torch.cat(colsB, 2).detach().cpu()
|
100 |
+
|
101 |
+
A2B.append(colsA)
|
102 |
+
B2A.append(colsB)
|
103 |
+
A2B = torch.cat(A2B, 0)
|
104 |
+
B2A = torch.cat(B2A, 0)
|
105 |
+
|
106 |
+
utils.save_image(A2B, f'{im_path}/{name}_A2B_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16)
|
107 |
+
utils.save_image(B2A, f'{im_path}/{name}_B2A_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16)
|
108 |
+
|
109 |
+
genA2B.train(), genB2A.train()
|
110 |
+
|
111 |
+
|
112 |
+
def train(args, trainA_loader, trainB_loader, testA_loader, testB_loader, G_A2B, G_B2A, D_A, D_B, G_optim, D_optim, device):
|
113 |
+
G_A2B.train(), G_B2A.train(), D_A.train(), D_B.train()
|
114 |
+
trainA_loader = sample_data(trainA_loader)
|
115 |
+
trainB_loader = sample_data(trainB_loader)
|
116 |
+
G_scheduler = lr_scheduler.StepLR(G_optim, step_size=100000, gamma=0.5)
|
117 |
+
D_scheduler = lr_scheduler.StepLR(D_optim, step_size=100000, gamma=0.5)
|
118 |
+
|
119 |
+
pbar = range(args.iter)
|
120 |
+
|
121 |
+
if get_rank() == 0:
|
122 |
+
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.1)
|
123 |
+
|
124 |
+
loss_dict = {}
|
125 |
+
mean_path_length_A2B = 0
|
126 |
+
mean_path_length_B2A = 0
|
127 |
+
|
128 |
+
if args.distributed:
|
129 |
+
G_A2B_module = G_A2B.module
|
130 |
+
G_B2A_module = G_B2A.module
|
131 |
+
D_A_module = D_A.module
|
132 |
+
D_B_module = D_B.module
|
133 |
+
D_L_module = D_L.module
|
134 |
+
|
135 |
+
else:
|
136 |
+
G_A2B_module = G_A2B
|
137 |
+
G_B2A_module = G_B2A
|
138 |
+
D_A_module = D_A
|
139 |
+
D_B_module = D_B
|
140 |
+
D_L_module = D_L
|
141 |
+
|
142 |
+
for idx in pbar:
|
143 |
+
i = idx + args.start_iter
|
144 |
+
|
145 |
+
if i > args.iter:
|
146 |
+
print('Done!')
|
147 |
+
break
|
148 |
+
|
149 |
+
ori_A = next(trainA_loader)
|
150 |
+
ori_B = next(trainB_loader)
|
151 |
+
if isinstance(ori_A, list):
|
152 |
+
ori_A = ori_A[0]
|
153 |
+
if isinstance(ori_B, list):
|
154 |
+
ori_B = ori_B[0]
|
155 |
+
|
156 |
+
ori_A = ori_A.to(device)
|
157 |
+
ori_B = ori_B.to(device)
|
158 |
+
aug_A = aug(ori_A)
|
159 |
+
aug_B = aug(ori_B)
|
160 |
+
A = aug(ori_A[[np.random.randint(args.batch)]].expand_as(ori_A))
|
161 |
+
B = aug(ori_B[[np.random.randint(args.batch)]].expand_as(ori_B))
|
162 |
+
|
163 |
+
if i % args.d_reg_every == 0:
|
164 |
+
aug_A.requires_grad = True
|
165 |
+
aug_B.requires_grad = True
|
166 |
+
|
167 |
+
A2B_content, A2B_style = G_A2B.encode(A)
|
168 |
+
B2A_content, B2A_style = G_B2A.encode(B)
|
169 |
+
|
170 |
+
# get new style
|
171 |
+
aug_A2B_style = G_B2A.style_encode(aug_B)
|
172 |
+
aug_B2A_style = G_A2B.style_encode(aug_A)
|
173 |
+
rand_A2B_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_()
|
174 |
+
rand_B2A_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_()
|
175 |
+
|
176 |
+
# styles
|
177 |
+
idx = torch.randperm(2*args.batch)
|
178 |
+
input_A2B_style = torch.cat([rand_A2B_style, aug_A2B_style], 0)[idx][:args.batch]
|
179 |
+
|
180 |
+
idx = torch.randperm(2*args.batch)
|
181 |
+
input_B2A_style = torch.cat([rand_B2A_style, aug_B2A_style], 0)[idx][:args.batch]
|
182 |
+
|
183 |
+
fake_A2B = G_A2B.decode(A2B_content, input_A2B_style)
|
184 |
+
fake_B2A = G_B2A.decode(B2A_content, input_B2A_style)
|
185 |
+
|
186 |
+
|
187 |
+
# train disc
|
188 |
+
real_A_logit = D_A(aug_A)
|
189 |
+
real_B_logit = D_B(aug_B)
|
190 |
+
real_L_logit1 = D_L(rand_A2B_style)
|
191 |
+
real_L_logit2 = D_L(rand_B2A_style)
|
192 |
+
|
193 |
+
fake_B_logit = D_B(fake_A2B.detach())
|
194 |
+
fake_A_logit = D_A(fake_B2A.detach())
|
195 |
+
fake_L_logit1 = D_L(aug_A2B_style.detach())
|
196 |
+
fake_L_logit2 = D_L(aug_B2A_style.detach())
|
197 |
+
|
198 |
+
# global loss
|
199 |
+
D_loss = d_logistic_loss(real_A_logit, fake_A_logit) +\
|
200 |
+
d_logistic_loss(real_B_logit, fake_B_logit) +\
|
201 |
+
d_logistic_loss(real_L_logit1, fake_L_logit1) +\
|
202 |
+
d_logistic_loss(real_L_logit2, fake_L_logit2)
|
203 |
+
|
204 |
+
loss_dict['D_adv'] = D_loss
|
205 |
+
|
206 |
+
if i % args.d_reg_every == 0:
|
207 |
+
r1_A_loss = d_r1_loss(real_A_logit, aug_A)
|
208 |
+
r1_B_loss = d_r1_loss(real_B_logit, aug_B)
|
209 |
+
r1_L_loss = d_r1_loss(real_L_logit1, rand_A2B_style) + d_r1_loss(real_L_logit2, rand_B2A_style)
|
210 |
+
r1_loss = r1_A_loss + r1_B_loss + r1_L_loss
|
211 |
+
D_r1_loss = (args.r1 / 2 * r1_loss * args.d_reg_every)
|
212 |
+
D_loss += D_r1_loss
|
213 |
+
|
214 |
+
D_optim.zero_grad()
|
215 |
+
D_loss.backward()
|
216 |
+
D_optim.step()
|
217 |
+
|
218 |
+
#Generator
|
219 |
+
# adv loss
|
220 |
+
fake_B_logit = D_B(fake_A2B)
|
221 |
+
fake_A_logit = D_A(fake_B2A)
|
222 |
+
fake_L_logit1 = D_L(aug_A2B_style)
|
223 |
+
fake_L_logit2 = D_L(aug_B2A_style)
|
224 |
+
|
225 |
+
lambda_adv = (1, 1, 1)
|
226 |
+
G_adv_loss = 1 * (g_nonsaturating_loss(fake_A_logit, lambda_adv) +\
|
227 |
+
g_nonsaturating_loss(fake_B_logit, lambda_adv) +\
|
228 |
+
2*g_nonsaturating_loss(fake_L_logit1, (1,)) +\
|
229 |
+
2*g_nonsaturating_loss(fake_L_logit2, (1,)))
|
230 |
+
|
231 |
+
# style consis loss
|
232 |
+
G_con_loss = 50 * (A2B_style.var(0, unbiased=False).sum() + B2A_style.var(0, unbiased=False).sum())
|
233 |
+
|
234 |
+
# cycle recon
|
235 |
+
A2B2A_content, A2B2A_style = G_B2A.encode(fake_A2B)
|
236 |
+
B2A2B_content, B2A2B_style = G_A2B.encode(fake_B2A)
|
237 |
+
fake_A2B2A = G_B2A.decode(A2B2A_content, shuffle_batch(A2B_style))
|
238 |
+
fake_B2A2B = G_A2B.decode(B2A2B_content, shuffle_batch(B2A_style))
|
239 |
+
|
240 |
+
G_cycle_loss = 20 * (F.mse_loss(fake_A2B2A, A) + F.mse_loss(fake_B2A2B, B))
|
241 |
+
lpips_loss = 10 * (lpips_fn(fake_A2B2A, A).mean() + lpips_fn(fake_B2A2B, B).mean()) #10 for anime
|
242 |
+
|
243 |
+
# style reconstruction
|
244 |
+
G_style_loss = 5 * (mse_criterion(A2B2A_style, input_A2B_style) +\
|
245 |
+
mse_criterion(B2A2B_style, input_B2A_style))
|
246 |
+
|
247 |
+
|
248 |
+
G_loss = G_adv_loss + G_cycle_loss + G_con_loss + lpips_loss + G_style_loss
|
249 |
+
|
250 |
+
loss_dict['G_adv'] = G_adv_loss
|
251 |
+
loss_dict['G_con'] = G_con_loss
|
252 |
+
loss_dict['G_cycle'] = G_cycle_loss
|
253 |
+
loss_dict['lpips'] = lpips_loss
|
254 |
+
|
255 |
+
G_optim.zero_grad()
|
256 |
+
G_loss.backward()
|
257 |
+
G_optim.step()
|
258 |
+
|
259 |
+
G_scheduler.step()
|
260 |
+
D_scheduler.step()
|
261 |
+
|
262 |
+
accumulate(G_A2B_ema, G_A2B_module)
|
263 |
+
accumulate(G_B2A_ema, G_B2A_module)
|
264 |
+
|
265 |
+
loss_reduced = reduce_loss_dict(loss_dict)
|
266 |
+
D_adv_loss_val = loss_reduced['D_adv'].mean().item()
|
267 |
+
|
268 |
+
G_adv_loss_val = loss_reduced['G_adv'].mean().item()
|
269 |
+
G_cycle_loss_val = loss_reduced['G_cycle'].mean().item()
|
270 |
+
G_con_loss_val = loss_reduced['G_con'].mean().item()
|
271 |
+
lpips_val = loss_reduced['lpips'].mean().item()
|
272 |
+
|
273 |
+
if get_rank() == 0:
|
274 |
+
pbar.set_description(
|
275 |
+
(
|
276 |
+
f'Dadv: {D_adv_loss_val:.2f}; lpips: {lpips_val:.2f} '
|
277 |
+
f'Gadv: {G_adv_loss_val:.2f}; Gcycle: {G_cycle_loss_val:.2f}; GMS: {G_con_loss_val:.2f} {G_style_loss.item():.2f}'
|
278 |
+
)
|
279 |
+
)
|
280 |
+
|
281 |
+
if i % 1000 == 0:
|
282 |
+
with torch.no_grad():
|
283 |
+
test(args, G_A2B, G_B2A, testA_loader, testB_loader, 'normal', i)
|
284 |
+
test(args, G_A2B_ema, G_B2A_ema, testA_loader, testB_loader, 'ema', i)
|
285 |
+
|
286 |
+
if (i+1) % 2000 == 0:
|
287 |
+
torch.save(
|
288 |
+
{
|
289 |
+
'G_A2B': G_A2B_module.state_dict(),
|
290 |
+
'G_B2A': G_B2A_module.state_dict(),
|
291 |
+
'G_A2B_ema': G_A2B_ema.state_dict(),
|
292 |
+
'G_B2A_ema': G_B2A_ema.state_dict(),
|
293 |
+
'D_A': D_A_module.state_dict(),
|
294 |
+
'D_B': D_B_module.state_dict(),
|
295 |
+
'D_L': D_L_module.state_dict(),
|
296 |
+
'G_optim': G_optim.state_dict(),
|
297 |
+
'D_optim': D_optim.state_dict(),
|
298 |
+
'iter': i,
|
299 |
+
},
|
300 |
+
os.path.join(model_path, 'ck.pt'),
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == '__main__':
|
305 |
+
device = 'cuda'
|
306 |
+
|
307 |
+
parser = argparse.ArgumentParser()
|
308 |
+
|
309 |
+
parser.add_argument('--iter', type=int, default=300000)
|
310 |
+
parser.add_argument('--batch', type=int, default=4)
|
311 |
+
parser.add_argument('--n_sample', type=int, default=64)
|
312 |
+
parser.add_argument('--size', type=int, default=256)
|
313 |
+
parser.add_argument('--r1', type=float, default=10)
|
314 |
+
parser.add_argument('--lambda_cycle', type=int, default=1)
|
315 |
+
parser.add_argument('--path_regularize', type=float, default=2)
|
316 |
+
parser.add_argument('--path_batch_shrink', type=int, default=2)
|
317 |
+
parser.add_argument('--d_reg_every', type=int, default=16)
|
318 |
+
parser.add_argument('--g_reg_every', type=int, default=4)
|
319 |
+
parser.add_argument('--mixing', type=float, default=0.9)
|
320 |
+
parser.add_argument('--ckpt', type=str, default=None)
|
321 |
+
parser.add_argument('--lr', type=float, default=2e-3)
|
322 |
+
parser.add_argument('--local_rank', type=int, default=0)
|
323 |
+
parser.add_argument('--num_down', type=int, default=3)
|
324 |
+
parser.add_argument('--name', type=str, required=True)
|
325 |
+
parser.add_argument('--d_path', type=str, required=True)
|
326 |
+
parser.add_argument('--latent_dim', type=int, default=8)
|
327 |
+
parser.add_argument('--lr_mlp', type=float, default=0.01)
|
328 |
+
parser.add_argument('--n_res', type=int, default=1)
|
329 |
+
|
330 |
+
args = parser.parse_args()
|
331 |
+
|
332 |
+
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
333 |
+
args.distributed = False
|
334 |
+
|
335 |
+
if args.distributed:
|
336 |
+
torch.cuda.set_device(args.local_rank)
|
337 |
+
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
338 |
+
synchronize()
|
339 |
+
|
340 |
+
save_path = f'./{args.name}'
|
341 |
+
im_path = os.path.join(save_path, 'sample')
|
342 |
+
model_path = os.path.join(save_path, 'checkpoint')
|
343 |
+
os.makedirs(im_path, exist_ok=True)
|
344 |
+
os.makedirs(model_path, exist_ok=True)
|
345 |
+
|
346 |
+
args.n_mlp = 5
|
347 |
+
|
348 |
+
args.start_iter = 0
|
349 |
+
|
350 |
+
G_A2B = Generator( args.size, args.num_down, args.latent_dim, args.n_mlp, lr_mlp=args.lr_mlp, n_res=args.n_res).to(device)
|
351 |
+
D_A = Discriminator(args.size).to(device)
|
352 |
+
G_B2A = Generator( args.size, args.num_down, args.latent_dim, args.n_mlp, lr_mlp=args.lr_mlp, n_res=args.n_res).to(device)
|
353 |
+
D_B = Discriminator(args.size).to(device)
|
354 |
+
D_L = LatDiscriminator(args.latent_dim).to(device)
|
355 |
+
lpips_fn = lpips.LPIPS(net='vgg').to(device)
|
356 |
+
|
357 |
+
G_A2B_ema = copy.deepcopy(G_A2B).to(device).eval()
|
358 |
+
G_B2A_ema = copy.deepcopy(G_B2A).to(device).eval()
|
359 |
+
|
360 |
+
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
|
361 |
+
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
|
362 |
+
|
363 |
+
G_optim = optim.Adam( list(G_A2B.parameters()) + list(G_B2A.parameters()), lr=args.lr, betas=(0, 0.99))
|
364 |
+
D_optim = optim.Adam(
|
365 |
+
list(D_L.parameters()) + list(D_A.parameters()) + list(D_B.parameters()),
|
366 |
+
lr=args.lr, betas=(0**d_reg_ratio, 0.99**d_reg_ratio))
|
367 |
+
|
368 |
+
if args.ckpt is not None:
|
369 |
+
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
|
370 |
+
|
371 |
+
try:
|
372 |
+
ckpt_name = os.path.basename(args.ckpt)
|
373 |
+
args.start_iter = int(os.path.splitext(ckpt_name)[0])
|
374 |
+
|
375 |
+
except ValueError:
|
376 |
+
pass
|
377 |
+
|
378 |
+
G_A2B.load_state_dict(ckpt['G_A2B'])
|
379 |
+
G_B2A.load_state_dict(ckpt['G_B2A'])
|
380 |
+
G_A2B_ema.load_state_dict(ckpt['G_A2B_ema'])
|
381 |
+
G_B2A_ema.load_state_dict(ckpt['G_B2A_ema'])
|
382 |
+
D_A.load_state_dict(ckpt['D_A'])
|
383 |
+
D_B.load_state_dict(ckpt['D_B'])
|
384 |
+
D_L.load_state_dict(ckpt['D_L'])
|
385 |
+
|
386 |
+
G_optim.load_state_dict(ckpt['G_optim'])
|
387 |
+
D_optim.load_state_dict(ckpt['D_optim'])
|
388 |
+
args.start_iter = ckpt['iter']
|
389 |
+
|
390 |
+
if args.distributed:
|
391 |
+
G_A2B = nn.parallel.DistributedDataParallel(
|
392 |
+
G_A2B,
|
393 |
+
device_ids=[args.local_rank],
|
394 |
+
output_device=args.local_rank,
|
395 |
+
broadcast_buffers=False,
|
396 |
+
)
|
397 |
+
|
398 |
+
D_A = nn.parallel.DistributedDataParallel(
|
399 |
+
D_A,
|
400 |
+
device_ids=[args.local_rank],
|
401 |
+
output_device=args.local_rank,
|
402 |
+
broadcast_buffers=False,
|
403 |
+
)
|
404 |
+
|
405 |
+
G_B2A = nn.parallel.DistributedDataParallel(
|
406 |
+
G_B2A,
|
407 |
+
device_ids=[args.local_rank],
|
408 |
+
output_device=args.local_rank,
|
409 |
+
broadcast_buffers=False,
|
410 |
+
)
|
411 |
+
|
412 |
+
D_B = nn.parallel.DistributedDataParallel(
|
413 |
+
D_B,
|
414 |
+
device_ids=[args.local_rank],
|
415 |
+
output_device=args.local_rank,
|
416 |
+
broadcast_buffers=False,
|
417 |
+
)
|
418 |
+
D_L = nn.parallel.DistributedDataParallel(
|
419 |
+
D_L,
|
420 |
+
device_ids=[args.local_rank],
|
421 |
+
output_device=args.local_rank,
|
422 |
+
broadcast_buffers=False,
|
423 |
+
)
|
424 |
+
train_transform = transforms.Compose([
|
425 |
+
transforms.ToTensor(),
|
426 |
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True)
|
427 |
+
])
|
428 |
+
|
429 |
+
test_transform = transforms.Compose([
|
430 |
+
transforms.Resize((args.size, args.size)),
|
431 |
+
transforms.ToTensor(),
|
432 |
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True)
|
433 |
+
])
|
434 |
+
|
435 |
+
aug = nn.Sequential(
|
436 |
+
K.RandomAffine(degrees=(-20,20), scale=(0.8, 1.2), translate=(0.1, 0.1), shear=0.15),
|
437 |
+
kornia.geometry.transform.Resize(256+30),
|
438 |
+
K.RandomCrop((256,256)),
|
439 |
+
K.RandomHorizontalFlip(),
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
d_path = args.d_path
|
444 |
+
trainA = ImageFolder(os.path.join(d_path, 'trainA'), train_transform)
|
445 |
+
trainB = ImageFolder(os.path.join(d_path, 'trainB'), train_transform)
|
446 |
+
testA = ImageFolder(os.path.join(d_path, 'testA'), test_transform)
|
447 |
+
testB = ImageFolder(os.path.join(d_path, 'testB'), test_transform)
|
448 |
+
|
449 |
+
trainA_loader = data.DataLoader(trainA, batch_size=args.batch,
|
450 |
+
sampler=data_sampler(trainA, shuffle=True, distributed=args.distributed), drop_last=True, pin_memory=True, num_workers=5)
|
451 |
+
trainB_loader = data.DataLoader(trainB, batch_size=args.batch,
|
452 |
+
sampler=data_sampler(trainB, shuffle=True, distributed=args.distributed), drop_last=True, pin_memory=True, num_workers=5)
|
453 |
+
|
454 |
+
testA_loader = data.DataLoader(testA, batch_size=1, shuffle=False)
|
455 |
+
testB_loader = data.DataLoader(testB, batch_size=1, shuffle=False)
|
456 |
+
|
457 |
+
|
458 |
+
train(args, trainA_loader, trainB_loader, testA_loader, testB_loader, G_A2B, G_B2A, D_A, D_B, G_optim, D_optim, device)
|
util.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch.utils import data
|
4 |
+
from torch import nn, autograd
|
5 |
+
import os
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
google_drive_paths = {
|
10 |
+
"GNR_checkpoint.pt": "https://drive.google.com/uc?id=1IMIVke4WDaGayUa7vk_xVw1uqIHikGtC",
|
11 |
+
}
|
12 |
+
|
13 |
+
def ensure_checkpoint_exists(model_weights_filename):
|
14 |
+
if not os.path.isfile(model_weights_filename) and (
|
15 |
+
model_weights_filename in google_drive_paths
|
16 |
+
):
|
17 |
+
gdrive_url = google_drive_paths[model_weights_filename]
|
18 |
+
try:
|
19 |
+
from gdown import download as drive_download
|
20 |
+
|
21 |
+
drive_download(gdrive_url, model_weights_filename, quiet=False)
|
22 |
+
except ModuleNotFoundError:
|
23 |
+
print(
|
24 |
+
"gdown module not found.",
|
25 |
+
"pip3 install gdown or, manually download the checkpoint file:",
|
26 |
+
gdrive_url
|
27 |
+
)
|
28 |
+
|
29 |
+
if not os.path.isfile(model_weights_filename) and (
|
30 |
+
model_weights_filename not in google_drive_paths
|
31 |
+
):
|
32 |
+
print(
|
33 |
+
model_weights_filename,
|
34 |
+
" not found, you may need to manually download the model weights."
|
35 |
+
)
|
36 |
+
|
37 |
+
def shuffle_batch(x):
|
38 |
+
return x[torch.randperm(x.size(0))]
|
39 |
+
|
40 |
+
def data_sampler(dataset, shuffle, distributed):
|
41 |
+
if distributed:
|
42 |
+
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
|
43 |
+
|
44 |
+
if shuffle:
|
45 |
+
return data.RandomSampler(dataset)
|
46 |
+
|
47 |
+
else:
|
48 |
+
return data.SequentialSampler(dataset)
|
49 |
+
|
50 |
+
|
51 |
+
def accumulate(model1, model2, decay=0.999):
|
52 |
+
par1 = dict(model1.named_parameters())
|
53 |
+
par2 = dict(model2.named_parameters())
|
54 |
+
|
55 |
+
for k in par1.keys():
|
56 |
+
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
|
57 |
+
|
58 |
+
|
59 |
+
def sample_data(loader):
|
60 |
+
while True:
|
61 |
+
for batch in loader:
|
62 |
+
yield batch
|
63 |
+
|
64 |
+
|
65 |
+
def d_logistic_loss(real_pred, fake_pred):
|
66 |
+
loss = 0
|
67 |
+
for real, fake in zip(real_pred, fake_pred):
|
68 |
+
real_loss = F.softplus(-real)
|
69 |
+
fake_loss = F.softplus(fake)
|
70 |
+
loss += real_loss.mean() + fake_loss.mean()
|
71 |
+
|
72 |
+
return loss
|
73 |
+
|
74 |
+
|
75 |
+
def d_r1_loss(real_pred, real_img):
|
76 |
+
grad_penalty = 0
|
77 |
+
for real in real_pred:
|
78 |
+
grad_real, = autograd.grad(
|
79 |
+
outputs=real.mean(), inputs=real_img, create_graph=True, only_inputs=True
|
80 |
+
)
|
81 |
+
grad_penalty += grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
|
82 |
+
|
83 |
+
return grad_penalty
|
84 |
+
|
85 |
+
|
86 |
+
def g_nonsaturating_loss(fake_pred, weights):
|
87 |
+
loss = 0
|
88 |
+
for fake, weight in zip(fake_pred, weights):
|
89 |
+
loss += weight*F.softplus(-fake).mean()
|
90 |
+
|
91 |
+
return loss / len(fake_pred)
|
92 |
+
|
93 |
+
def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
|
94 |
+
# image is [3,h,w] or [1,3,h,w] tensor [0,1]
|
95 |
+
if image.is_cuda:
|
96 |
+
image = image.cpu()
|
97 |
+
if size is not None and image.size(-1) != size:
|
98 |
+
image = F.interpolate(image, size=(size,size), mode=mode)
|
99 |
+
if image.dim() == 4:
|
100 |
+
image = image[0]
|
101 |
+
image = image.permute(1, 2, 0).detach().numpy()
|
102 |
+
plt.figure()
|
103 |
+
plt.title(title)
|
104 |
+
plt.axis('off')
|
105 |
+
plt.imshow(image)
|
106 |
+
|
107 |
+
def normalize(x):
|
108 |
+
return ((x+1)/2).clamp(0,1)
|
109 |
+
|
110 |
+
def get_boundingbox(face, width, height, scale=1.3, minsize=None):
|
111 |
+
"""
|
112 |
+
Expects a dlib face to generate a quadratic bounding box.
|
113 |
+
:param face: dlib face class
|
114 |
+
:param width: frame width
|
115 |
+
:param height: frame height
|
116 |
+
:param scale: bounding box size multiplier to get a bigger face region
|
117 |
+
:param minsize: set minimum bounding box size
|
118 |
+
:return: x, y, bounding_box_size in opencv form
|
119 |
+
"""
|
120 |
+
x1 = face.left()
|
121 |
+
y1 = face.top()
|
122 |
+
x2 = face.right()
|
123 |
+
y2 = face.bottom()
|
124 |
+
size_bb = int(max(x2 - x1, y2 - y1) * scale)
|
125 |
+
if minsize:
|
126 |
+
if size_bb < minsize:
|
127 |
+
size_bb = minsize
|
128 |
+
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
|
129 |
+
|
130 |
+
# Check for out of bounds, x-y top left corner
|
131 |
+
x1 = max(int(center_x - size_bb // 2), 0)
|
132 |
+
y1 = max(int(center_y - size_bb // 2), 0)
|
133 |
+
# Check for too big bb size for given x, y
|
134 |
+
size_bb = min(width - x1, size_bb)
|
135 |
+
size_bb = min(height - y1, size_bb)
|
136 |
+
|
137 |
+
return x1, y1, size_bb
|
138 |
+
|
139 |
+
|
140 |
+
def preprocess_image(image, cuda=True):
|
141 |
+
"""
|
142 |
+
Preprocesses the image such that it can be fed into our network.
|
143 |
+
During this process we envoke PIL to cast it into a PIL image.
|
144 |
+
:param image: numpy image in opencv form (i.e., BGR and of shape
|
145 |
+
:return: pytorch tensor of shape [1, 3, image_size, image_size], not
|
146 |
+
necessarily casted to cuda
|
147 |
+
"""
|
148 |
+
# Revert from BGR
|
149 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
150 |
+
# Preprocess using the preprocessing function used during training and
|
151 |
+
# casting it to PIL image
|
152 |
+
preprocess = xception_default_data_transforms['test']
|
153 |
+
preprocessed_image = preprocess(pil_image.fromarray(image))
|
154 |
+
# Add first dimension as the network expects a batch
|
155 |
+
preprocessed_image = preprocessed_image.unsqueeze(0)
|
156 |
+
if cuda:
|
157 |
+
preprocessed_image = preprocessed_image.cuda()
|
158 |
+
return preprocessed_image
|
159 |
+
|
160 |
+
def truncate(x, truncation, mean_style):
|
161 |
+
return truncation*x + (1-truncation)*mean_style
|