Spaces:
Running
Running
File size: 11,695 Bytes
5e4b316 eb83dcd 411819d eb83dcd 5e4b316 eb83dcd 0d7b9d9 eb83dcd 5e4b316 eb83dcd 9b186d7 eb83dcd e1adc1c eb83dcd 411819d eb83dcd e1adc1c eb83dcd 7ba9b1d eb83dcd 7ba9b1d eb83dcd 7ba9b1d 411819d eb83dcd f8c4838 eb83dcd 7ba9b1d eb83dcd 411819d eb83dcd 2a8e1b5 eb83dcd 41c7b36 eb83dcd 41c7b36 eb83dcd 41c7b36 eb83dcd 41c7b36 eb83dcd 7ba9b1d 4d93770 f8c4838 5e4b316 10c5815 5e4b316 7f2ec5e 5e4b316 b7df447 5e4b316 eb83dcd 5e4b316 41c7b36 5e4b316 10cc30a 3811d15 10cc30a 3811d15 10cc30a 3811d15 10cc30a 3811d15 10cc30a 5e4b316 b7df447 3811d15 fdfd286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
"""A simple web interactive chat demo based on gradio."""
import os
import time
import gradio as gr
import numpy as np
import spaces
import torch
import os
import lightning as L
import torch
import time
from snac import SNAC
from litgpt import Tokenizer
from litgpt.utils import (
num_parameters,
)
from litgpt.generate.base import (
generate_AA,
generate_ASR,
generate_TA,
generate_TT,
generate_AT,
generate_TA_BATCH,
)
from typing import Any, Literal, Optional
import soundfile as sf
from litgpt.model import GPT, Config
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac
import whisper
from tqdm import tqdm
from huggingface_hub import snapshot_download
from litgpt.generate.base import sample
device = "cuda" if torch.cuda.is_available() else "cpu"
ckpt_dir = "./checkpoint"
streaming_output = True
OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1
# TODO
text_vocabsize = 151936
text_specialtokens = 64
audio_vocabsize = 4096
audio_specialtokens = 64
padded_text_vocabsize = text_vocabsize + text_specialtokens
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
_eot = text_vocabsize
_pad_t = text_vocabsize + 1
_input_t = text_vocabsize + 2
_answer_t = text_vocabsize + 3
_asr = text_vocabsize + 4
_eoa = audio_vocabsize
_pad_a = audio_vocabsize + 1
_input_a = audio_vocabsize + 2
_answer_a = audio_vocabsize + 3
_split = audio_vocabsize + 4
def download_model(ckpt_dir):
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")
if not os.path.exists(ckpt_dir):
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
download_model(ckpt_dir)
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
whispermodel = whisper.load_model("small").to(device)
whispermodel.eval()
text_tokenizer = Tokenizer(ckpt_dir)
# fabric = L.Fabric(devices=1, strategy="auto")
config = Config.from_file(ckpt_dir + "/model_config.yaml")
config.post_adapter = False
model = GPT(config, device=device)
state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
# with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
T = audio_feature.size(0)
input_ids_AA = []
for i in range(7):
input_ids_item = []
input_ids_item.append(layershift(_input_a, i))
input_ids_item += [layershift(_pad_a, i)] * T
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
input_ids_AA.append(torch.tensor(input_ids_item))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
input_ids_AA.append(input_id_T)
input_ids_AT = []
for i in range(7):
input_ids_item = []
input_ids_item.append(layershift(_input_a, i))
input_ids_item += [layershift(_pad_a, i)] * T
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
input_ids_AT.append(torch.tensor(input_ids_item))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
input_ids_AT.append(input_id_T)
input_ids = [input_ids_AA, input_ids_AT]
stacked_inputids = [[] for _ in range(8)]
for i in range(2):
for j in range(8):
stacked_inputids[j].append(input_ids[i][j])
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
return torch.stack([audio_feature, audio_feature]), stacked_inputids
def next_token_batch(
model: GPT,
audio_features: torch.tensor,
input_ids: list,
whisper_lens: int,
task: list,
input_pos: torch.Tensor,
**kwargs: Any,
) -> torch.Tensor:
input_pos = input_pos.to(model.device)
input_ids = [input_id.to(model.device) for input_id in input_ids]
logits_a, logit_t = model(
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
)
for i in range(7):
logits_a[i] = logits_a[i][0].unsqueeze(0)
logit_t = logit_t[1].unsqueeze(0)
next_audio_tokens = []
for logit_a in logits_a:
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
next_audio_tokens.append(next_a)
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
return next_audio_tokens, next_t
def load_audio(path):
audio = whisper.load_audio(path)
duration_ms = (len(audio) / 16000) * 1000
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio)
return mel, int(duration_ms / 20) + 1
def generate_audio_data(snac_tokens, snacmodel, device=None):
audio = reconstruct_tensors(snac_tokens, device)
with torch.inference_mode():
audio_hat = snacmodel.decode(audio)
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
audio_data = audio_data.astype(np.int16)
audio_data = audio_data.tobytes()
return audio_data
@torch.inference_mode()
def run_AT_batch_stream(
audio_path,
stream_stride=4,
max_returned_tokens=2048,
temperature=0.9,
top_k=1,
top_p=1.0,
eos_id_a=_eoa,
eos_id_t=_eot,
):
assert os.path.exists(audio_path), f"audio file {audio_path} not found"
model.set_kv_cache(batch_size=2, device=device)
mel, leng = load_audio(audio_path)
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
T = input_ids[0].size(1)
# device = input_ids[0].device
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
if model.max_seq_length < max_returned_tokens - 1:
raise NotImplementedError(
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
)
input_pos = torch.tensor([T], device=device)
list_output = [[] for i in range(8)]
tokens_A, token_T = next_token_batch(
model,
audio_feature.to(torch.float32).to(model.device),
input_ids,
[T - 3, T - 3],
["A1T2", "A1T2"],
input_pos=torch.arange(0, T, device=device),
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
for i in range(7):
list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
text_end = False
index = 1
nums_generate = stream_stride
begin_generate = False
current_index = 0
total_num = 0
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
tokens_A, token_T = next_token_batch(
model,
None,
model_input_ids,
None,
None,
input_pos=input_pos,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
if text_end:
token_T = torch.tensor([_pad_t], device=device)
if tokens_A[-1] == eos_id_a:
break
if token_T == eos_id_t:
text_end = True
for i in range(7):
list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
model_input_ids[i].append(
torch.tensor([layershift(4097, i)], device=device)
)
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
if index == 7:
begin_generate = True
if begin_generate and streaming_output:
current_index += 1
if current_index == nums_generate:
current_index = 0
snac = get_snac(list_output, index, nums_generate)
audio_stream = generate_audio_data(snac, snacmodel, device)
yield audio_stream
input_pos = input_pos.add_(1)
index += 1
total_num += 1
text = text_tokenizer.decode(torch.tensor(list_output[-1]))
print(f"text output: {text}")
model.clear_kv_cache()
if not streaming_output:
snac = get_snac(list_output, 7, total_num-7)
audio_stream = generate_audio_data(snac, snacmodel, device)
return audio_stream
# return list_output
# for chunk in run_AT_batch_stream('./data/samples/output1.wav'):
# audio_data = np.frombuffer(chunk, dtype=np.int16)
@spaces.GPU
def process_audio(audio):
filepath = audio
print(f"filepath: {filepath}")
if filepath is None:
return OUT_RATE, np.zeros((100, OUT_CHANNELS), dtype=np.int16)
if not streaming_output:
chunk = run_AT_batch_stream(filepath)
audio_data = np.frombuffer(chunk, dtype=np.int16)
audio_data = audio_data.reshape(-1, OUT_CHANNELS)
return OUT_RATE, audio_data.astype(np.int16)
cnt = 0
tik = time.time()
for chunk in run_AT_batch_stream(filepath):
# Convert chunk to numpy array
if cnt == 0:
print(f"first chunk time cost: {time.time() - tik:.3f}")
cnt += 1
audio_data = np.frombuffer(chunk, dtype=np.int16)
audio_data = audio_data.reshape(-1, OUT_CHANNELS)
if streaming_output:
yield OUT_RATE, audio_data.astype(np.int16)
else:
return OUT_RATE, audio_data.astype(np.int16)
# # Create the Gradio interface
# with gr.Blocks() as demo:
# # Input component: allows users to record or upload audio
# audio_input = gr.Audio(type="filepath", label="Record or Upload Audio")
# # Output component: audio output that will automatically play
# audio_output = gr.Audio(label="Processed Audio", streaming=streaming_output, autoplay=True)
# # Button to trigger processing after recording/uploading
# submit_btn = gr.Button("Submit")
# # Functionality: When the button is clicked, process the audio and output it
# submit_btn.click(fn=process_audio, inputs=audio_input, outputs=audio_output)
if __name__ == '__main__':
demo = gr.Interface(
process_audio,
inputs=gr.Audio(type="filepath", label="Microphone"),
outputs=[gr.Audio(label="Response", streaming=streaming_output, autoplay=True)],
title="Chat Mini-Omni Demo",
live=True,
)
demo.queue()
demo.launch()
|