Spaces:
Running
Running
gpt-omni
commited on
Commit
·
eb83dcd
1
Parent(s):
69a5822
update
Browse files
app.py
CHANGED
@@ -7,18 +7,283 @@ import numpy as np
|
|
7 |
import spaces
|
8 |
import torch
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
|
16 |
-
|
17 |
|
18 |
OUT_CHUNK = 4096
|
19 |
OUT_RATE = 24000
|
20 |
OUT_CHANNELS = 1
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def process_audio(audio):
|
24 |
filepath = audio
|
@@ -28,7 +293,7 @@ def process_audio(audio):
|
|
28 |
|
29 |
cnt = 0
|
30 |
tik = time.time()
|
31 |
-
for chunk in
|
32 |
# Convert chunk to numpy array
|
33 |
if cnt == 0:
|
34 |
print(f"first chunk time cost: {time.time() - tik:.3f}")
|
|
|
7 |
import spaces
|
8 |
import torch
|
9 |
|
10 |
+
import os
|
11 |
+
import lightning as L
|
12 |
+
import torch
|
13 |
+
import time
|
14 |
+
import spaces
|
15 |
+
from snac import SNAC
|
16 |
+
from litgpt import Tokenizer
|
17 |
+
from litgpt.utils import (
|
18 |
+
num_parameters,
|
19 |
+
)
|
20 |
+
from litgpt.generate.base import (
|
21 |
+
generate_AA,
|
22 |
+
generate_ASR,
|
23 |
+
generate_TA,
|
24 |
+
generate_TT,
|
25 |
+
generate_AT,
|
26 |
+
generate_TA_BATCH,
|
27 |
+
)
|
28 |
+
from typing import Any, Literal, Optional
|
29 |
+
import soundfile as sf
|
30 |
+
from litgpt.model import GPT, Config
|
31 |
+
from lightning.fabric.utilities.load import _lazy_load as lazy_load
|
32 |
+
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
|
33 |
+
from utils.snac_utils import get_snac, generate_audio_data
|
34 |
+
import whisper
|
35 |
+
from tqdm import tqdm
|
36 |
+
from huggingface_hub import snapshot_download
|
37 |
+
from litgpt.generate.base import sample
|
38 |
|
39 |
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
ckpt_dir = "./checkpoint"
|
42 |
+
|
43 |
|
44 |
OUT_CHUNK = 4096
|
45 |
OUT_RATE = 24000
|
46 |
OUT_CHANNELS = 1
|
47 |
|
48 |
+
# TODO
|
49 |
+
text_vocabsize = 151936
|
50 |
+
text_specialtokens = 64
|
51 |
+
audio_vocabsize = 4096
|
52 |
+
audio_specialtokens = 64
|
53 |
+
|
54 |
+
padded_text_vocabsize = text_vocabsize + text_specialtokens
|
55 |
+
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
|
56 |
+
|
57 |
+
_eot = text_vocabsize
|
58 |
+
_pad_t = text_vocabsize + 1
|
59 |
+
_input_t = text_vocabsize + 2
|
60 |
+
_answer_t = text_vocabsize + 3
|
61 |
+
_asr = text_vocabsize + 4
|
62 |
+
|
63 |
+
_eoa = audio_vocabsize
|
64 |
+
_pad_a = audio_vocabsize + 1
|
65 |
+
_input_a = audio_vocabsize + 2
|
66 |
+
_answer_a = audio_vocabsize + 3
|
67 |
+
_split = audio_vocabsize + 4
|
68 |
+
|
69 |
+
|
70 |
+
if not os.path.exists(ckpt_dir):
|
71 |
+
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
|
72 |
+
download_model(ckpt_dir)
|
73 |
+
|
74 |
+
|
75 |
+
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
|
76 |
+
whispermodel = whisper.load_model("small").to(device)
|
77 |
+
text_tokenizer = Tokenizer(ckpt_dir)
|
78 |
+
fabric = L.Fabric(devices=1, strategy="auto")
|
79 |
+
config = Config.from_file(ckpt_dir + "/model_config.yaml")
|
80 |
+
config.post_adapter = False
|
81 |
+
|
82 |
+
model = GPT(config, device=device)
|
83 |
+
|
84 |
+
# model = fabric.setup(model)
|
85 |
+
state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
|
86 |
+
model.load_state_dict(state_dict, strict=True)
|
87 |
+
model = model.to(device)
|
88 |
+
model.eval()
|
89 |
+
|
90 |
+
|
91 |
+
def download_model(ckpt_dir):
|
92 |
+
repo_id = "gpt-omni/mini-omni"
|
93 |
+
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")
|
94 |
+
|
95 |
+
|
96 |
+
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
|
97 |
+
with torch.no_grad():
|
98 |
+
mel = mel.unsqueeze(0).to(device)
|
99 |
+
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features
|
100 |
+
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
|
101 |
+
T = audio_feature.size(0)
|
102 |
+
input_ids_AA = []
|
103 |
+
for i in range(7):
|
104 |
+
input_ids_item = []
|
105 |
+
input_ids_item.append(layershift(_input_a, i))
|
106 |
+
input_ids_item += [layershift(_pad_a, i)] * T
|
107 |
+
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
|
108 |
+
input_ids_AA.append(torch.tensor(input_ids_item))
|
109 |
+
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
110 |
+
input_ids_AA.append(input_id_T)
|
111 |
+
|
112 |
+
input_ids_AT = []
|
113 |
+
for i in range(7):
|
114 |
+
input_ids_item = []
|
115 |
+
input_ids_item.append(layershift(_input_a, i))
|
116 |
+
input_ids_item += [layershift(_pad_a, i)] * T
|
117 |
+
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
|
118 |
+
input_ids_AT.append(torch.tensor(input_ids_item))
|
119 |
+
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
120 |
+
input_ids_AT.append(input_id_T)
|
121 |
+
|
122 |
+
input_ids = [input_ids_AA, input_ids_AT]
|
123 |
+
stacked_inputids = [[] for _ in range(8)]
|
124 |
+
for i in range(2):
|
125 |
+
for j in range(8):
|
126 |
+
stacked_inputids[j].append(input_ids[i][j])
|
127 |
+
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
|
128 |
+
return torch.stack([audio_feature, audio_feature]), stacked_inputids
|
129 |
+
|
130 |
+
|
131 |
+
def next_token_batch(
|
132 |
+
model: GPT,
|
133 |
+
audio_features: torch.tensor,
|
134 |
+
input_ids: list,
|
135 |
+
whisper_lens: int,
|
136 |
+
task: list,
|
137 |
+
input_pos: torch.Tensor,
|
138 |
+
**kwargs: Any,
|
139 |
+
) -> torch.Tensor:
|
140 |
+
input_pos = input_pos.to(model.device)
|
141 |
+
input_ids = [input_id.to(model.device) for input_id in input_ids]
|
142 |
+
logits_a, logit_t = model(
|
143 |
+
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
|
144 |
+
)
|
145 |
+
|
146 |
+
for i in range(7):
|
147 |
+
logits_a[i] = logits_a[i][0].unsqueeze(0)
|
148 |
+
logit_t = logit_t[1].unsqueeze(0)
|
149 |
+
|
150 |
+
next_audio_tokens = []
|
151 |
+
for logit_a in logits_a:
|
152 |
+
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
|
153 |
+
next_audio_tokens.append(next_a)
|
154 |
+
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
|
155 |
+
return next_audio_tokens, next_t
|
156 |
+
|
157 |
+
|
158 |
+
def load_audio(path):
|
159 |
+
audio = whisper.load_audio(path)
|
160 |
+
duration_ms = (len(audio) / 16000) * 1000
|
161 |
+
audio = whisper.pad_or_trim(audio)
|
162 |
+
mel = whisper.log_mel_spectrogram(audio)
|
163 |
+
return mel, int(duration_ms / 20) + 1
|
164 |
+
|
165 |
+
|
166 |
+
# @torch.inference_mode()
|
167 |
+
@spaces.GPU
|
168 |
+
def run_AT_batch_stream(
|
169 |
+
audio_path,
|
170 |
+
stream_stride=4,
|
171 |
+
max_returned_tokens=2048,
|
172 |
+
temperature=0.9,
|
173 |
+
top_k=1,
|
174 |
+
top_p=1.0,
|
175 |
+
eos_id_a=_eoa,
|
176 |
+
eos_id_t=_eot,
|
177 |
+
):
|
178 |
+
|
179 |
+
assert os.path.exists(audio_path), f"audio file {audio_path} not found"
|
180 |
+
|
181 |
+
# with self.fabric.init_tensor():
|
182 |
+
model.set_kv_cache(batch_size=2)
|
183 |
+
|
184 |
+
mel, leng = load_audio(audio_path)
|
185 |
+
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device)
|
186 |
+
T = input_ids[0].size(1)
|
187 |
+
device = input_ids[0].device
|
188 |
+
|
189 |
+
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
|
190 |
+
|
191 |
+
if model.max_seq_length < max_returned_tokens - 1:
|
192 |
+
raise NotImplementedError(
|
193 |
+
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
|
194 |
+
)
|
195 |
+
|
196 |
+
input_pos = torch.tensor([T], device=device)
|
197 |
+
list_output = [[] for i in range(8)]
|
198 |
+
tokens_A, token_T = next_token_batch(
|
199 |
+
model,
|
200 |
+
audio_feature.to(torch.float32).to(model.device),
|
201 |
+
input_ids,
|
202 |
+
[T - 3, T - 3],
|
203 |
+
["A1T2", "A1T2"],
|
204 |
+
input_pos=torch.arange(0, T, device=device),
|
205 |
+
temperature=temperature,
|
206 |
+
top_k=top_k,
|
207 |
+
top_p=top_p,
|
208 |
+
)
|
209 |
+
|
210 |
+
for i in range(7):
|
211 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
212 |
+
list_output[7].append(token_T.tolist()[0])
|
213 |
+
|
214 |
+
model_input_ids = [[] for i in range(8)]
|
215 |
+
for i in range(7):
|
216 |
+
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
|
217 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
218 |
+
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
|
219 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
220 |
+
|
221 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
222 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
223 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
224 |
+
|
225 |
+
text_end = False
|
226 |
+
index = 1
|
227 |
+
nums_generate = stream_stride
|
228 |
+
begin_generate = False
|
229 |
+
current_index = 0
|
230 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
231 |
+
tokens_A, token_T = next_token_batch(
|
232 |
+
model,
|
233 |
+
None,
|
234 |
+
model_input_ids,
|
235 |
+
None,
|
236 |
+
None,
|
237 |
+
input_pos=input_pos,
|
238 |
+
temperature=temperature,
|
239 |
+
top_k=top_k,
|
240 |
+
top_p=top_p,
|
241 |
+
)
|
242 |
+
|
243 |
+
if text_end:
|
244 |
+
token_T = torch.tensor([_pad_t], device=device)
|
245 |
+
|
246 |
+
if tokens_A[-1] == eos_id_a:
|
247 |
+
break
|
248 |
+
|
249 |
+
if token_T == eos_id_t:
|
250 |
+
text_end = True
|
251 |
+
|
252 |
+
for i in range(7):
|
253 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
254 |
+
list_output[7].append(token_T.tolist()[0])
|
255 |
+
|
256 |
+
model_input_ids = [[] for i in range(8)]
|
257 |
+
for i in range(7):
|
258 |
+
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
|
259 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
260 |
+
model_input_ids[i].append(
|
261 |
+
torch.tensor([layershift(4097, i)], device=device)
|
262 |
+
)
|
263 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
264 |
+
|
265 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
266 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
267 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
268 |
+
|
269 |
+
if index == 7:
|
270 |
+
begin_generate = True
|
271 |
+
|
272 |
+
if begin_generate:
|
273 |
+
current_index += 1
|
274 |
+
if current_index == nums_generate:
|
275 |
+
current_index = 0
|
276 |
+
snac = get_snac(list_output, index, nums_generate)
|
277 |
+
audio_stream = generate_audio_data(snac, snacmodel, device)
|
278 |
+
yield audio_stream
|
279 |
+
|
280 |
+
input_pos = input_pos.add_(1)
|
281 |
+
index += 1
|
282 |
+
text = text_tokenizer.decode(torch.tensor(list_output[-1]))
|
283 |
+
print(f"text output: {text}")
|
284 |
+
model.clear_kv_cache()
|
285 |
+
return list_output
|
286 |
+
|
287 |
|
288 |
def process_audio(audio):
|
289 |
filepath = audio
|
|
|
293 |
|
294 |
cnt = 0
|
295 |
tik = time.time()
|
296 |
+
for chunk in run_AT_batch_stream(filepath):
|
297 |
# Convert chunk to numpy array
|
298 |
if cnt == 0:
|
299 |
print(f"first chunk time cost: {time.time() - tik:.3f}")
|