File size: 5,017 Bytes
ab4fb4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a145b29
ab4fb4c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import requests
import streamlit as st
import streamlit.components.v1 as components
from streamlit_extras.add_vertical_space import add_vertical_space
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from warnings import filterwarnings
filterwarnings('ignore')


def streamlit_config():

    # page configuration
    st.set_page_config(page_title='Document Classification', layout='centered')

    # page header transparent color
    page_background_color = """
    <style>

    [data-testid="stHeader"] 
    {
    background: rgba(0,0,0,0);
    }

    </style>
    """
    st.markdown(page_background_color, unsafe_allow_html=True)

    # title and position
    st.markdown(f'<h1 style="text-align: center;">Financial Document Classification</h1>',
                unsafe_allow_html=True)
    add_vertical_space(2)


def display_html_document(input_file):

    # Read the file content
    html_content = input_file.getvalue().decode("utf-8")

    # Define CSS to control the container size and center content
    styled_html = f"""
    <div style="width: 610px; height: 300px; 
                overflow: auto; border: 1px solid #ddd; 
                padding: 10px; background-color: white; 
                color: black; white-space: normal; 
                display: block;">
        {html_content}
    </div>
    """

    # Display the HTML content inside a fixed-size container
    components.html(styled_html, height=320, width=650, scrolling=False)


def text_extract_from_html(html_file):

    # Read the uploaded HTML file
    html_content = html_file.read().decode('utf-8')

    # Parse the HTML Content
    soup = BeautifulSoup(html_content, 'html.parser')

    # Extract the Text
    text = soup.get_text()

    # Split the Text and Remove Unwanted Space
    result = [i.strip() for i in text.split()]
    result = ' '.join(result)

    return result


def classify_text_with_huggingface_api(extracted_text):
     
    # Load environment variables from .env file
    load_dotenv()

    # Retrieve the Hugging Face API token from environment variables
    hf_token = os.getenv("HUGGINGFACE_TOKEN")

    # Define the Hugging Face API URL for the model
    API_URL = "https://api-inference.huggingface.co/models/gopiashokan/Financial-Document-Classification-using-Deep-Learning"

    # Set the authorization headers with the Hugging Face token
    HEADERS = {"Authorization": f"Bearer {hf_token}"}

    # Send a POST request to the Hugging Face API with the extracted text
    response = requests.post(API_URL, headers=HEADERS, json={"inputs": extracted_text})
    
    # Parse and return the JSON response
    if response.status_code == 200:
        result = response.json()
        return result[0]
    
    else:
        return None

    
def prediction(input_file):

    # Extract text from the uploaded HTML file  
    extracted_text = text_extract_from_html(input_file)

    # Limit the extracted text to the first 512 characters to avoid API input limits  
    extracted_text = extracted_text[0:512]

    # Classify the extracted text using the Hugging Face API  
    result = classify_text_with_huggingface_api(extracted_text)

    if result is not None:
        # Select the prediction with the highest confidence score  
        prediction = max(result, key=lambda x: x['score'])

        # Map model labels to human-readable class names 
        label_mapping = {'LABEL_0':'Others', 'LABEL_1':'Balance Sheets', 'LABEL_2':'Notes', 'LABEL_3':'Cash Flow', 'LABEL_4':'Income Statement'}

        # Get the predicted class name based on the model output  
        predicted_class = label_mapping[prediction['label']]

        # Convert the confidence score to a percentage  
        confidence = prediction['score'] * 100

        # Display the prediction results
        add_vertical_space(1)
        st.markdown(f"""
            <div style="text-align: center; line-height: 1; padding: 0px;">
                <h4 style="color: orange; margin: 0px; padding: 0px;">{confidence:.2f}% Match Found</h4>
                <h3 style="color: green; margin-top: 10px; padding: 0px;">Predicted Class = {predicted_class}</h3>
            </div>
        """, unsafe_allow_html=True)


    else:
        add_vertical_space(1)
        st.markdown(f'<h4 style="text-align: center; color: orange; margin-top: 10px;">Refresh the Page and Try Again</h4>', 
                        unsafe_allow_html=True)



# Streamlit Configuration Setup
streamlit_config()
    

try:

    # File uploader to upload the HTML file
    input_file = st.file_uploader('Upload an HTML file', type='html')

    if input_file is not None:
        
        # Display the HTML Document to User Interface
        display_html_document(input_file)
        
        # Predict the Class and Confidence Score
        with st.spinner('Processing'):
            prediction(input_file)
            add_vertical_space(2)


except Exception as e:
    st.markdown(f'<h3 style="text-align: center;">{e}</h3>', unsafe_allow_html=True)