Update app.py
Browse files
app.py
CHANGED
|
@@ -1,161 +1,162 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import requests
|
| 3 |
-
import streamlit as st
|
| 4 |
-
import streamlit.components.v1 as components
|
| 5 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 6 |
-
from bs4 import BeautifulSoup
|
| 7 |
-
from dotenv import load_dotenv
|
| 8 |
-
from warnings import filterwarnings
|
| 9 |
-
filterwarnings('ignore')
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def streamlit_config():
|
| 13 |
-
|
| 14 |
-
# page configuration
|
| 15 |
-
st.set_page_config(page_title='Document Classification', layout='centered')
|
| 16 |
-
|
| 17 |
-
# page header transparent color
|
| 18 |
-
page_background_color = """
|
| 19 |
-
<style>
|
| 20 |
-
|
| 21 |
-
[data-testid="stHeader"]
|
| 22 |
-
{
|
| 23 |
-
background: rgba(0,0,0,0);
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
</style>
|
| 27 |
-
"""
|
| 28 |
-
st.markdown(page_background_color, unsafe_allow_html=True)
|
| 29 |
-
|
| 30 |
-
# title and position
|
| 31 |
-
st.markdown(f'<h1 style="text-align: center;">Financial Document Classification</h1>',
|
| 32 |
-
unsafe_allow_html=True)
|
| 33 |
-
add_vertical_space(2)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def display_html_document(input_file):
|
| 37 |
-
|
| 38 |
-
# Read the file content
|
| 39 |
-
html_content = input_file.getvalue().decode("utf-8")
|
| 40 |
-
|
| 41 |
-
# Define CSS to control the container size and center content
|
| 42 |
-
styled_html = f"""
|
| 43 |
-
<div style="width: 610px; height: 300px;
|
| 44 |
-
overflow: auto; border: 1px solid #ddd;
|
| 45 |
-
padding: 10px; background-color: white;
|
| 46 |
-
color: black; white-space: normal;
|
| 47 |
-
display: block;">
|
| 48 |
-
{html_content}
|
| 49 |
-
</div>
|
| 50 |
-
"""
|
| 51 |
-
|
| 52 |
-
# Display the HTML content inside a fixed-size container
|
| 53 |
-
components.html(styled_html, height=320, width=650, scrolling=False)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def text_extract_from_html(html_file):
|
| 57 |
-
|
| 58 |
-
# Read the uploaded HTML file
|
| 59 |
-
html_content = html_file.read().decode('utf-8')
|
| 60 |
-
|
| 61 |
-
# Parse the HTML Content
|
| 62 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
| 63 |
-
|
| 64 |
-
# Extract the Text
|
| 65 |
-
text = soup.get_text()
|
| 66 |
-
|
| 67 |
-
# Split the Text and Remove Unwanted Space
|
| 68 |
-
result = [i.strip() for i in text.split()]
|
| 69 |
-
result = ' '.join(result)
|
| 70 |
-
|
| 71 |
-
return result
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def classify_text_with_huggingface_api(extracted_text):
|
| 75 |
-
|
| 76 |
-
# Load environment variables from .env file
|
| 77 |
-
load_dotenv()
|
| 78 |
-
|
| 79 |
-
# Retrieve the Hugging Face API token from environment variables
|
| 80 |
-
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 81 |
-
|
| 82 |
-
# Define the Hugging Face API URL for the model
|
| 83 |
-
API_URL = "https://api-inference.huggingface.co/models/gopiashokan/Financial-Document-Classification-using-Deep-Learning"
|
| 84 |
-
|
| 85 |
-
# Set the authorization headers with the Hugging Face token
|
| 86 |
-
HEADERS = {"Authorization": f"Bearer {hf_token}"}
|
| 87 |
-
|
| 88 |
-
# Send a POST request to the Hugging Face API with the extracted text
|
| 89 |
-
response = requests.post(API_URL, headers=HEADERS, json={"inputs": extracted_text})
|
| 90 |
-
|
| 91 |
-
# Parse and return the JSON response
|
| 92 |
-
if response.status_code == 200:
|
| 93 |
-
result = response.json()
|
| 94 |
-
return result[0]
|
| 95 |
-
|
| 96 |
-
else:
|
| 97 |
-
return None
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def prediction(input_file):
|
| 101 |
-
|
| 102 |
-
# Extract text from the uploaded HTML file
|
| 103 |
-
extracted_text = text_extract_from_html(input_file)
|
| 104 |
-
|
| 105 |
-
# Limit the extracted text to the first 512 characters to avoid API input limits
|
| 106 |
-
extracted_text = extracted_text[0:512]
|
| 107 |
-
|
| 108 |
-
# Classify the extracted text using the Hugging Face API
|
| 109 |
-
result = classify_text_with_huggingface_api(extracted_text)
|
| 110 |
-
|
| 111 |
-
if result is not None:
|
| 112 |
-
# Select the prediction with the highest confidence score
|
| 113 |
-
prediction = max(result, key=lambda x: x['score'])
|
| 114 |
-
|
| 115 |
-
# Map model labels to human-readable class names
|
| 116 |
-
label_mapping = {'LABEL_0':'Others', 'LABEL_1':'Balance Sheets', 'LABEL_2':'Notes', 'LABEL_3':'Cash Flow', 'LABEL_4':'Income Statement'}
|
| 117 |
-
|
| 118 |
-
# Get the predicted class name based on the model output
|
| 119 |
-
predicted_class = label_mapping[prediction['label']]
|
| 120 |
-
|
| 121 |
-
# Convert the confidence score to a percentage
|
| 122 |
-
confidence = prediction['score'] * 100
|
| 123 |
-
|
| 124 |
-
# Display the prediction results
|
| 125 |
-
add_vertical_space(1)
|
| 126 |
-
st.markdown(f"""
|
| 127 |
-
<div style="text-align: center; line-height: 1; padding: 0px;">
|
| 128 |
-
<h4 style="color: orange; margin: 0px; padding: 0px;">{confidence:.2f}% Match Found</h4>
|
| 129 |
-
<h3 style="color: green; margin-top: 10px; padding: 0px;">Predicted Class = {predicted_class}</h3>
|
| 130 |
-
</div>
|
| 131 |
-
""", unsafe_allow_html=True)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
else:
|
| 135 |
-
add_vertical_space(1)
|
| 136 |
-
st.markdown(f'<h4 style="text-align: center; color: orange; margin-top: 10px;">Refresh the Page and Try Again</h4>',
|
| 137 |
-
unsafe_allow_html=True)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
# Streamlit Configuration Setup
|
| 142 |
-
streamlit_config()
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
try:
|
| 146 |
-
|
| 147 |
-
# File uploader to upload the HTML file
|
| 148 |
-
input_file = st.file_uploader('Upload an HTML file', type='html')
|
| 149 |
-
|
| 150 |
-
if input_file is not None:
|
| 151 |
-
|
| 152 |
-
# Display the HTML Document to User Interface
|
| 153 |
-
display_html_document(input_file)
|
| 154 |
-
|
| 155 |
-
# Predict the Class and Confidence Score
|
| 156 |
-
with st.spinner('Processing'):
|
| 157 |
-
prediction(input_file)
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import streamlit.components.v1 as components
|
| 5 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 6 |
+
from bs4 import BeautifulSoup
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from warnings import filterwarnings
|
| 9 |
+
filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def streamlit_config():
|
| 13 |
+
|
| 14 |
+
# page configuration
|
| 15 |
+
st.set_page_config(page_title='Document Classification', layout='centered')
|
| 16 |
+
|
| 17 |
+
# page header transparent color
|
| 18 |
+
page_background_color = """
|
| 19 |
+
<style>
|
| 20 |
+
|
| 21 |
+
[data-testid="stHeader"]
|
| 22 |
+
{
|
| 23 |
+
background: rgba(0,0,0,0);
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
</style>
|
| 27 |
+
"""
|
| 28 |
+
st.markdown(page_background_color, unsafe_allow_html=True)
|
| 29 |
+
|
| 30 |
+
# title and position
|
| 31 |
+
st.markdown(f'<h1 style="text-align: center;">Financial Document Classification</h1>',
|
| 32 |
+
unsafe_allow_html=True)
|
| 33 |
+
add_vertical_space(2)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def display_html_document(input_file):
|
| 37 |
+
|
| 38 |
+
# Read the file content
|
| 39 |
+
html_content = input_file.getvalue().decode("utf-8")
|
| 40 |
+
|
| 41 |
+
# Define CSS to control the container size and center content
|
| 42 |
+
styled_html = f"""
|
| 43 |
+
<div style="width: 610px; height: 300px;
|
| 44 |
+
overflow: auto; border: 1px solid #ddd;
|
| 45 |
+
padding: 10px; background-color: white;
|
| 46 |
+
color: black; white-space: normal;
|
| 47 |
+
display: block;">
|
| 48 |
+
{html_content}
|
| 49 |
+
</div>
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
# Display the HTML content inside a fixed-size container
|
| 53 |
+
components.html(styled_html, height=320, width=650, scrolling=False)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def text_extract_from_html(html_file):
|
| 57 |
+
|
| 58 |
+
# Read the uploaded HTML file
|
| 59 |
+
html_content = html_file.read().decode('utf-8')
|
| 60 |
+
|
| 61 |
+
# Parse the HTML Content
|
| 62 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
| 63 |
+
|
| 64 |
+
# Extract the Text
|
| 65 |
+
text = soup.get_text()
|
| 66 |
+
|
| 67 |
+
# Split the Text and Remove Unwanted Space
|
| 68 |
+
result = [i.strip() for i in text.split()]
|
| 69 |
+
result = ' '.join(result)
|
| 70 |
+
|
| 71 |
+
return result
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def classify_text_with_huggingface_api(extracted_text):
|
| 75 |
+
|
| 76 |
+
# Load environment variables from .env file
|
| 77 |
+
load_dotenv()
|
| 78 |
+
|
| 79 |
+
# Retrieve the Hugging Face API token from environment variables
|
| 80 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 81 |
+
|
| 82 |
+
# Define the Hugging Face API URL for the model
|
| 83 |
+
API_URL = "https://api-inference.huggingface.co/models/gopiashokan/Financial-Document-Classification-using-Deep-Learning"
|
| 84 |
+
|
| 85 |
+
# Set the authorization headers with the Hugging Face token
|
| 86 |
+
HEADERS = {"Authorization": f"Bearer {hf_token}"}
|
| 87 |
+
|
| 88 |
+
# Send a POST request to the Hugging Face API with the extracted text
|
| 89 |
+
response = requests.post(API_URL, headers=HEADERS, json={"inputs": extracted_text})
|
| 90 |
+
|
| 91 |
+
# Parse and return the JSON response
|
| 92 |
+
if response.status_code == 200:
|
| 93 |
+
result = response.json()
|
| 94 |
+
return result[0]
|
| 95 |
+
|
| 96 |
+
else:
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def prediction(input_file):
|
| 101 |
+
|
| 102 |
+
# Extract text from the uploaded HTML file
|
| 103 |
+
extracted_text = text_extract_from_html(input_file)
|
| 104 |
+
|
| 105 |
+
# Limit the extracted text to the first 512 characters to avoid API input limits
|
| 106 |
+
extracted_text = extracted_text[0:512]
|
| 107 |
+
|
| 108 |
+
# Classify the extracted text using the Hugging Face API
|
| 109 |
+
result = classify_text_with_huggingface_api(extracted_text)
|
| 110 |
+
|
| 111 |
+
if result is not None:
|
| 112 |
+
# Select the prediction with the highest confidence score
|
| 113 |
+
prediction = max(result, key=lambda x: x['score'])
|
| 114 |
+
|
| 115 |
+
# Map model labels to human-readable class names
|
| 116 |
+
label_mapping = {'LABEL_0':'Others', 'LABEL_1':'Balance Sheets', 'LABEL_2':'Notes', 'LABEL_3':'Cash Flow', 'LABEL_4':'Income Statement'}
|
| 117 |
+
|
| 118 |
+
# Get the predicted class name based on the model output
|
| 119 |
+
predicted_class = label_mapping[prediction['label']]
|
| 120 |
+
|
| 121 |
+
# Convert the confidence score to a percentage
|
| 122 |
+
confidence = prediction['score'] * 100
|
| 123 |
+
|
| 124 |
+
# Display the prediction results
|
| 125 |
+
add_vertical_space(1)
|
| 126 |
+
st.markdown(f"""
|
| 127 |
+
<div style="text-align: center; line-height: 1; padding: 0px;">
|
| 128 |
+
<h4 style="color: orange; margin: 0px; padding: 0px;">{confidence:.2f}% Match Found</h4>
|
| 129 |
+
<h3 style="color: green; margin-top: 10px; padding: 0px;">Predicted Class = {predicted_class}</h3>
|
| 130 |
+
</div>
|
| 131 |
+
""", unsafe_allow_html=True)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
else:
|
| 135 |
+
add_vertical_space(1)
|
| 136 |
+
st.markdown(f'<h4 style="text-align: center; color: orange; margin-top: 10px;">Refresh the Page and Try Again</h4>',
|
| 137 |
+
unsafe_allow_html=True)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# Streamlit Configuration Setup
|
| 142 |
+
streamlit_config()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
|
| 147 |
+
# File uploader to upload the HTML file
|
| 148 |
+
input_file = st.file_uploader('Upload an HTML file', type='html')
|
| 149 |
+
|
| 150 |
+
if input_file is not None:
|
| 151 |
+
|
| 152 |
+
# Display the HTML Document to User Interface
|
| 153 |
+
display_html_document(input_file)
|
| 154 |
+
|
| 155 |
+
# Predict the Class and Confidence Score
|
| 156 |
+
with st.spinner('Processing'):
|
| 157 |
+
prediction(input_file)
|
| 158 |
+
add_vertical_space(1)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
except Exception as e:
|
| 162 |
+
st.markdown(f'<h3 style="text-align: center;">{e}</h3>', unsafe_allow_html=True)
|