File size: 7,204 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import *
import torch
import numpy as np
from tqdm import tqdm
from easydict import EasyDict as edict
from .base import Sampler
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin


class FlowEulerSampler(Sampler):
    """

    Generate samples from a flow-matching model using Euler sampling.



    Args:

        sigma_min: The minimum scale of noise in flow.

    """
    def __init__(

        self,

        sigma_min: float,

    ):
        self.sigma_min = sigma_min

    def _eps_to_xstart(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)

    def _xstart_to_eps(self, x_t, t, x_0):
        assert x_t.shape == x_0.shape
        return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)

    def _v_to_xstart_eps(self, x_t, t, v):
        assert x_t.shape == v.shape
        eps = (1 - t) * v + x_t
        x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
        return x_0, eps

    def _inference_model(self, model, x_t, t, cond=None, **kwargs):
        t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
        return model(x_t, t, cond, **kwargs)

    def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
        pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
        pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
        return pred_x_0, pred_eps, pred_v

    @torch.no_grad()
    def sample_once(

        self,

        model,

        x_t,

        t: float,

        t_prev: float,

        cond: Optional[Any] = None,

        **kwargs

    ):
        """

        Sample x_{t-1} from the model using Euler method.

        

        Args:

            model: The model to sample from.

            x_t: The [N x C x ...] tensor of noisy inputs at time t.

            t: The current timestep.

            t_prev: The previous timestep.

            cond: conditional information.

            **kwargs: Additional arguments for model inference.



        Returns:

            a dict containing the following

            - 'pred_x_prev': x_{t-1}.

            - 'pred_x_0': a prediction of x_0.

        """
        pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
        pred_x_prev = x_t - (t - t_prev) * pred_v
        return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})

    @torch.no_grad()
    def sample(

        self,

        model,

        noise,

        cond: Optional[Any] = None,

        steps: int = 50,

        rescale_t: float = 1.0,

        verbose: bool = True,

        **kwargs

    ):
        """

        Generate samples from the model using Euler method.

        

        Args:

            model: The model to sample from.

            noise: The initial noise tensor.

            cond: conditional information.

            steps: The number of steps to sample.

            rescale_t: The rescale factor for t.

            verbose: If True, show a progress bar.

            **kwargs: Additional arguments for model_inference.



        Returns:

            a dict containing the following

            - 'samples': the model samples.

            - 'pred_x_t': a list of prediction of x_t.

            - 'pred_x_0': a list of prediction of x_0.

        """
        sample = noise
        t_seq = np.linspace(1, 0, steps + 1)
        t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
        t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
        ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
        for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
            out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
            sample = out.pred_x_prev
            ret.pred_x_t.append(out.pred_x_prev)
            ret.pred_x_0.append(out.pred_x_0)
        ret.samples = sample
        return ret


class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
    """

    Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.

    """
    @torch.no_grad()
    def sample(

        self,

        model,

        noise,

        cond,

        neg_cond,

        steps: int = 50,

        rescale_t: float = 1.0,

        cfg_strength: float = 3.0,

        verbose: bool = True,

        **kwargs

    ):
        """

        Generate samples from the model using Euler method.

        

        Args:

            model: The model to sample from.

            noise: The initial noise tensor.

            cond: conditional information.

            neg_cond: negative conditional information.

            steps: The number of steps to sample.

            rescale_t: The rescale factor for t.

            cfg_strength: The strength of classifier-free guidance.

            verbose: If True, show a progress bar.

            **kwargs: Additional arguments for model_inference.



        Returns:

            a dict containing the following

            - 'samples': the model samples.

            - 'pred_x_t': a list of prediction of x_t.

            - 'pred_x_0': a list of prediction of x_0.

        """
        return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)


class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
    """

    Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.

    """
    @torch.no_grad()
    def sample(

        self,

        model,

        noise,

        cond,

        neg_cond,

        steps: int = 50,

        rescale_t: float = 1.0,

        cfg_strength: float = 3.0,

        cfg_interval: Tuple[float, float] = (0.0, 1.0),

        verbose: bool = True,

        **kwargs

    ):
        """

        Generate samples from the model using Euler method.

        

        Args:

            model: The model to sample from.

            noise: The initial noise tensor.

            cond: conditional information.

            neg_cond: negative conditional information.

            steps: The number of steps to sample.

            rescale_t: The rescale factor for t.

            cfg_strength: The strength of classifier-free guidance.

            cfg_interval: The interval for classifier-free guidance.

            verbose: If True, show a progress bar.

            **kwargs: Additional arguments for model_inference.



        Returns:

            a dict containing the following

            - 'samples': the model samples.

            - 'pred_x_t': a list of prediction of x_t.

            - 'pred_x_0': a list of prediction of x_0.

        """
        return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)