Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,204 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from typing import *
import torch
import numpy as np
from tqdm import tqdm
from easydict import EasyDict as edict
from .base import Sampler
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
class FlowEulerSampler(Sampler):
"""
Generate samples from a flow-matching model using Euler sampling.
Args:
sigma_min: The minimum scale of noise in flow.
"""
def __init__(
self,
sigma_min: float,
):
self.sigma_min = sigma_min
def _eps_to_xstart(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
def _xstart_to_eps(self, x_t, t, x_0):
assert x_t.shape == x_0.shape
return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
def _v_to_xstart_eps(self, x_t, t, v):
assert x_t.shape == v.shape
eps = (1 - t) * v + x_t
x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
return x_0, eps
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
return model(x_t, t, cond, **kwargs)
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
return pred_x_0, pred_eps, pred_v
@torch.no_grad()
def sample_once(
self,
model,
x_t,
t: float,
t_prev: float,
cond: Optional[Any] = None,
**kwargs
):
"""
Sample x_{t-1} from the model using Euler method.
Args:
model: The model to sample from.
x_t: The [N x C x ...] tensor of noisy inputs at time t.
t: The current timestep.
t_prev: The previous timestep.
cond: conditional information.
**kwargs: Additional arguments for model inference.
Returns:
a dict containing the following
- 'pred_x_prev': x_{t-1}.
- 'pred_x_0': a prediction of x_0.
"""
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
pred_x_prev = x_t - (t - t_prev) * pred_v
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
@torch.no_grad()
def sample(
self,
model,
noise,
cond: Optional[Any] = None,
steps: int = 50,
rescale_t: float = 1.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
sample = noise
t_seq = np.linspace(1, 0, steps + 1)
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
sample = out.pred_x_prev
ret.pred_x_t.append(out.pred_x_prev)
ret.pred_x_0.append(out.pred_x_0)
ret.samples = sample
return ret
class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
"""
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
"""
@torch.no_grad()
def sample(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
"""
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
"""
@torch.no_grad()
def sample(
self,
model,
noise,
cond,
neg_cond,
steps: int = 50,
rescale_t: float = 1.0,
cfg_strength: float = 3.0,
cfg_interval: Tuple[float, float] = (0.0, 1.0),
verbose: bool = True,
**kwargs
):
"""
Generate samples from the model using Euler method.
Args:
model: The model to sample from.
noise: The initial noise tensor.
cond: conditional information.
neg_cond: negative conditional information.
steps: The number of steps to sample.
rescale_t: The rescale factor for t.
cfg_strength: The strength of classifier-free guidance.
cfg_interval: The interval for classifier-free guidance.
verbose: If True, show a progress bar.
**kwargs: Additional arguments for model_inference.
Returns:
a dict containing the following
- 'samples': the model samples.
- 'pred_x_t': a list of prediction of x_t.
- 'pred_x_0': a list of prediction of x_0.
"""
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
|