Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,565 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
from typing import *
import numpy as np
import torch
import utils3d
import nvdiffrast.torch as dr
from tqdm import tqdm
import trimesh
import trimesh.visual
import xatlas
import pyvista as pv
from pymeshfix import _meshfix
import igraph
import cv2
from PIL import Image
from .random_utils import sphere_hammersley_sequence
from .render_utils import render_multiview
from ..renderers import GaussianRenderer
from ..representations import Strivec, Gaussian, MeshExtractResult
@torch.no_grad()
def _fill_holes(
verts,
faces,
max_hole_size=0.04,
max_hole_nbe=32,
resolution=128,
num_views=500,
debug=False,
verbose=False
):
"""
Rasterize a mesh from multiple views and remove invisible faces.
Also includes postprocessing to:
1. Remove connected components that are have low visibility.
2. Mincut to remove faces at the inner side of the mesh connected to the outer side with a small hole.
Args:
verts (torch.Tensor): Vertices of the mesh. Shape (V, 3).
faces (torch.Tensor): Faces of the mesh. Shape (F, 3).
max_hole_size (float): Maximum area of a hole to fill.
resolution (int): Resolution of the rasterization.
num_views (int): Number of views to rasterize the mesh.
verbose (bool): Whether to print progress.
"""
# Construct cameras
yaws = []
pitchs = []
for i in range(num_views):
y, p = sphere_hammersley_sequence(i, num_views)
yaws.append(y)
pitchs.append(p)
yaws = torch.tensor(yaws).cuda()
pitchs = torch.tensor(pitchs).cuda()
radius = 2.0
fov = torch.deg2rad(torch.tensor(40)).cuda()
projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)
views = []
for (yaw, pitch) in zip(yaws, pitchs):
orig = torch.tensor([
torch.sin(yaw) * torch.cos(pitch),
torch.cos(yaw) * torch.cos(pitch),
torch.sin(pitch),
]).cuda().float() * radius
view = utils3d.torch.view_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
views.append(view)
views = torch.stack(views, dim=0)
# Rasterize
visblity = torch.zeros(faces.shape[0], dtype=torch.int32, device=verts.device)
rastctx = utils3d.torch.RastContext(backend='cuda')
for i in tqdm(range(views.shape[0]), total=views.shape[0], disable=not verbose, desc='Rasterizing'):
view = views[i]
buffers = utils3d.torch.rasterize_triangle_faces(
rastctx, verts[None], faces, resolution, resolution, view=view, projection=projection
)
face_id = buffers['face_id'][0][buffers['mask'][0] > 0.95] - 1
face_id = torch.unique(face_id).long()
visblity[face_id] += 1
visblity = visblity.float() / num_views
# Mincut
## construct outer faces
edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
connected_components = utils3d.torch.compute_connected_components(faces, edges, face2edge)
outer_face_indices = torch.zeros(faces.shape[0], dtype=torch.bool, device=faces.device)
for i in range(len(connected_components)):
outer_face_indices[connected_components[i]] = visblity[connected_components[i]] > min(max(visblity[connected_components[i]].quantile(0.75).item(), 0.25), 0.5)
outer_face_indices = outer_face_indices.nonzero().reshape(-1)
## construct inner faces
inner_face_indices = torch.nonzero(visblity == 0).reshape(-1)
if verbose:
tqdm.write(f'Found {inner_face_indices.shape[0]} invisible faces')
if inner_face_indices.shape[0] == 0:
return verts, faces
## Construct dual graph (faces as nodes, edges as edges)
dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(face2edge)
dual_edge2edge = edges[dual_edge2edge]
dual_edges_weights = torch.norm(verts[dual_edge2edge[:, 0]] - verts[dual_edge2edge[:, 1]], dim=1)
if verbose:
tqdm.write(f'Dual graph: {dual_edges.shape[0]} edges')
## solve mincut problem
### construct main graph
g = igraph.Graph()
g.add_vertices(faces.shape[0])
g.add_edges(dual_edges.cpu().numpy())
g.es['weight'] = dual_edges_weights.cpu().numpy()
### source and target
g.add_vertex('s')
g.add_vertex('t')
### connect invisible faces to source
g.add_edges([(f, 's') for f in inner_face_indices], attributes={'weight': torch.ones(inner_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
### connect outer faces to target
g.add_edges([(f, 't') for f in outer_face_indices], attributes={'weight': torch.ones(outer_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
### solve mincut
cut = g.mincut('s', 't', (np.array(g.es['weight']) * 1000).tolist())
remove_face_indices = torch.tensor([v for v in cut.partition[0] if v < faces.shape[0]], dtype=torch.long, device=faces.device)
if verbose:
tqdm.write(f'Mincut solved, start checking the cut')
### check if the cut is valid with each connected component
to_remove_cc = utils3d.torch.compute_connected_components(faces[remove_face_indices])
if debug:
tqdm.write(f'Number of connected components of the cut: {len(to_remove_cc)}')
valid_remove_cc = []
cutting_edges = []
for cc in to_remove_cc:
#### check if the connected component has low visibility
visblity_median = visblity[remove_face_indices[cc]].median()
if debug:
tqdm.write(f'visblity_median: {visblity_median}')
if visblity_median > 0.25:
continue
#### check if the cuting loop is small enough
cc_edge_indices, cc_edges_degree = torch.unique(face2edge[remove_face_indices[cc]], return_counts=True)
cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
cc_new_boundary_edge_indices = cc_boundary_edge_indices[~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)]
if len(cc_new_boundary_edge_indices) > 0:
cc_new_boundary_edge_cc = utils3d.torch.compute_edge_connected_components(edges[cc_new_boundary_edge_indices])
cc_new_boundary_edges_cc_center = [verts[edges[cc_new_boundary_edge_indices[edge_cc]]].mean(dim=1).mean(dim=0) for edge_cc in cc_new_boundary_edge_cc]
cc_new_boundary_edges_cc_area = []
for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
_e1 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]] - cc_new_boundary_edges_cc_center[i]
_e2 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]] - cc_new_boundary_edges_cc_center[i]
cc_new_boundary_edges_cc_area.append(torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() * 0.5)
if debug:
cutting_edges.append(cc_new_boundary_edge_indices)
tqdm.write(f'Area of the cutting loop: {cc_new_boundary_edges_cc_area}')
if any([l > max_hole_size for l in cc_new_boundary_edges_cc_area]):
continue
valid_remove_cc.append(cc)
if debug:
face_v = verts[faces].mean(dim=1).cpu().numpy()
vis_dual_edges = dual_edges.cpu().numpy()
vis_colors = np.zeros((faces.shape[0], 3), dtype=np.uint8)
vis_colors[inner_face_indices.cpu().numpy()] = [0, 0, 255]
vis_colors[outer_face_indices.cpu().numpy()] = [0, 255, 0]
vis_colors[remove_face_indices.cpu().numpy()] = [255, 0, 255]
if len(valid_remove_cc) > 0:
vis_colors[remove_face_indices[torch.cat(valid_remove_cc)].cpu().numpy()] = [255, 0, 0]
utils3d.io.write_ply('dbg_dual.ply', face_v, edges=vis_dual_edges, vertex_colors=vis_colors)
vis_verts = verts.cpu().numpy()
vis_edges = edges[torch.cat(cutting_edges)].cpu().numpy()
utils3d.io.write_ply('dbg_cut.ply', vis_verts, edges=vis_edges)
if len(valid_remove_cc) > 0:
remove_face_indices = remove_face_indices[torch.cat(valid_remove_cc)]
mask = torch.ones(faces.shape[0], dtype=torch.bool, device=faces.device)
mask[remove_face_indices] = 0
faces = faces[mask]
faces, verts = utils3d.torch.remove_unreferenced_vertices(faces, verts)
if verbose:
tqdm.write(f'Removed {(~mask).sum()} faces by mincut')
else:
if verbose:
tqdm.write(f'Removed 0 faces by mincut')
mesh = _meshfix.PyTMesh()
mesh.load_array(verts.cpu().numpy(), faces.cpu().numpy())
mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)
verts, faces = mesh.return_arrays()
verts, faces = torch.tensor(verts, device='cuda', dtype=torch.float32), torch.tensor(faces, device='cuda', dtype=torch.int32)
return verts, faces
def postprocess_mesh(
vertices: np.array,
faces: np.array,
simplify: bool = True,
simplify_ratio: float = 0.9,
fill_holes: bool = True,
fill_holes_max_hole_size: float = 0.04,
fill_holes_max_hole_nbe: int = 32,
fill_holes_resolution: int = 1024,
fill_holes_num_views: int = 1000,
debug: bool = False,
verbose: bool = False,
):
"""
Postprocess a mesh by simplifying, removing invisible faces, and removing isolated pieces.
Args:
vertices (np.array): Vertices of the mesh. Shape (V, 3).
faces (np.array): Faces of the mesh. Shape (F, 3).
simplify (bool): Whether to simplify the mesh, using quadric edge collapse.
simplify_ratio (float): Ratio of faces to keep after simplification.
fill_holes (bool): Whether to fill holes in the mesh.
fill_holes_max_hole_size (float): Maximum area of a hole to fill.
fill_holes_max_hole_nbe (int): Maximum number of boundary edges of a hole to fill.
fill_holes_resolution (int): Resolution of the rasterization.
fill_holes_num_views (int): Number of views to rasterize the mesh.
verbose (bool): Whether to print progress.
"""
if verbose:
tqdm.write(f'Before postprocess: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
# Simplify
if simplify and simplify_ratio > 0:
mesh = pv.PolyData(vertices, np.concatenate([np.full((faces.shape[0], 1), 3), faces], axis=1))
mesh = mesh.decimate(simplify_ratio, progress_bar=verbose)
vertices, faces = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:]
if verbose:
tqdm.write(f'After decimate: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
# Remove invisible faces
if fill_holes:
vertices, faces = torch.tensor(vertices).cuda(), torch.tensor(faces.astype(np.int32)).cuda()
vertices, faces = _fill_holes(
vertices, faces,
max_hole_size=fill_holes_max_hole_size,
max_hole_nbe=fill_holes_max_hole_nbe,
resolution=fill_holes_resolution,
num_views=fill_holes_num_views,
debug=debug,
verbose=verbose,
)
vertices, faces = vertices.cpu().numpy(), faces.cpu().numpy()
if verbose:
tqdm.write(f'After remove invisible faces: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
return vertices, faces
def parametrize_mesh(vertices: np.array, faces: np.array):
"""
Parametrize a mesh to a texture space, using xatlas.
Args:
vertices (np.array): Vertices of the mesh. Shape (V, 3).
faces (np.array): Faces of the mesh. Shape (F, 3).
"""
vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
vertices = vertices[vmapping]
faces = indices
return vertices, faces, uvs
def bake_texture(
vertices: np.array,
faces: np.array,
uvs: np.array,
observations: List[np.array],
masks: List[np.array],
extrinsics: List[np.array],
intrinsics: List[np.array],
texture_size: int = 2048,
near: float = 0.1,
far: float = 10.0,
mode: Literal['fast', 'opt'] = 'opt',
lambda_tv: float = 1e-2,
verbose: bool = False,
):
"""
Bake texture to a mesh from multiple observations.
Args:
vertices (np.array): Vertices of the mesh. Shape (V, 3).
faces (np.array): Faces of the mesh. Shape (F, 3).
uvs (np.array): UV coordinates of the mesh. Shape (V, 2).
observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3).
masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W).
extrinsics (List[np.array]): List of extrinsics. Shape (4, 4).
intrinsics (List[np.array]): List of intrinsics. Shape (3, 3).
texture_size (int): Size of the texture.
near (float): Near plane of the camera.
far (float): Far plane of the camera.
mode (Literal['fast', 'opt']): Mode of texture baking.
lambda_tv (float): Weight of total variation loss in optimization.
verbose (bool): Whether to print progress.
"""
vertices = torch.tensor(vertices).cuda()
faces = torch.tensor(faces.astype(np.int32)).cuda()
uvs = torch.tensor(uvs).cuda()
observations = [torch.tensor(obs / 255.0).float().cuda() for obs in observations]
masks = [torch.tensor(m>0).bool().cuda() for m in masks]
views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).cuda()) for extr in extrinsics]
projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).cuda(), near, far) for intr in intrinsics]
if mode == 'fast':
texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda()
texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda()
rastctx = utils3d.torch.RastContext(backend='cuda')
for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'):
with torch.no_grad():
rast = utils3d.torch.rasterize_triangle_faces(
rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
)
uv_map = rast['uv'][0].detach().flip(0)
mask = rast['mask'][0].detach().bool() & masks[0]
# nearest neighbor interpolation
uv_map = (uv_map * texture_size).floor().long()
obs = observation[mask]
uv_map = uv_map[mask]
idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size
texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs)
texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device))
mask = texture_weights > 0
texture[mask] /= texture_weights[mask][:, None]
texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8)
# inpaint
mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size)
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
elif mode == 'opt':
rastctx = utils3d.torch.RastContext(backend='cuda')
observations = [observations.flip(0) for observations in observations]
masks = [m.flip(0) for m in masks]
_uv = []
_uv_dr = []
for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'):
with torch.no_grad():
rast = utils3d.torch.rasterize_triangle_faces(
rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
)
_uv.append(rast['uv'].detach())
_uv_dr.append(rast['uv_dr'].detach())
texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda())
optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2)
def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
return start_lr * (end_lr / start_lr) ** (step / total_steps)
def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
def tv_loss(texture):
return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \
torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :])
total_steps = 2500
with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar:
for step in range(total_steps):
optimizer.zero_grad()
selected = np.random.randint(0, len(views))
uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected]
render = dr.texture(texture, uv, uv_dr)[0]
loss = torch.nn.functional.l1_loss(render[mask], observation[mask])
if lambda_tv > 0:
loss += lambda_tv * tv_loss(texture)
loss.backward()
optimizer.step()
# annealing
optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5)
pbar.set_postfix({'loss': loss.item()})
pbar.update()
texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
mask = 1 - utils3d.torch.rasterize_triangle_faces(
rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size
)['mask'][0].detach().cpu().numpy().astype(np.uint8)
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
else:
raise ValueError(f'Unknown mode: {mode}')
return texture
def to_glb(
app_rep: Union[Strivec, Gaussian],
mesh: MeshExtractResult,
simplify: float = 0.95,
fill_holes: bool = True,
fill_holes_max_size: float = 0.04,
texture_size: int = 1024,
debug: bool = False,
verbose: bool = True,
) -> trimesh.Trimesh:
"""
Convert a generated asset to a glb file.
Args:
app_rep (Union[Strivec, Gaussian]): Appearance representation.
mesh (MeshExtractResult): Extracted mesh.
simplify (float): Ratio of faces to remove in simplification.
fill_holes (bool): Whether to fill holes in the mesh.
fill_holes_max_size (float): Maximum area of a hole to fill.
texture_size (int): Size of the texture.
debug (bool): Whether to print debug information.
verbose (bool): Whether to print progress.
"""
vertices = mesh.vertices.cpu().numpy()
faces = mesh.faces.cpu().numpy()
# mesh postprocess
vertices, faces = postprocess_mesh(
vertices, faces,
simplify=simplify > 0,
simplify_ratio=simplify,
fill_holes=fill_holes,
fill_holes_max_hole_size=fill_holes_max_size,
fill_holes_max_hole_nbe=int(250 * np.sqrt(1-simplify)),
fill_holes_resolution=1024,
fill_holes_num_views=1000,
debug=debug,
verbose=verbose,
)
# parametrize mesh
vertices, faces, uvs = parametrize_mesh(vertices, faces)
# bake texture
observations, extrinsics, intrinsics = render_multiview(app_rep, resolution=1024, nviews=100)
masks = [np.any(observation > 0, axis=-1) for observation in observations]
extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))]
intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))]
texture = bake_texture(
vertices, faces, uvs,
observations, masks, extrinsics, intrinsics,
texture_size=texture_size, mode='opt',
lambda_tv=0.01,
verbose=verbose
)
texture = Image.fromarray(texture)
# rotate mesh (from z-up to y-up)
vertices = vertices @ np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
material = trimesh.visual.material.PBRMaterial(
roughnessFactor=1.0,
baseColorTexture=texture,
baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
)
mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, material=material))
return mesh
def simplify_gs(
gs: Gaussian,
simplify: float = 0.95,
verbose: bool = True,
):
"""
Simplify 3D Gaussians
NOTE: this function is not used in the current implementation for the unsatisfactory performance.
Args:
gs (Gaussian): 3D Gaussian.
simplify (float): Ratio of Gaussians to remove in simplification.
"""
if simplify <= 0:
return gs
# simplify
observations, extrinsics, intrinsics = render_multiview(gs, resolution=1024, nviews=100)
observations = [torch.tensor(obs / 255.0).float().cuda().permute(2, 0, 1) for obs in observations]
# Following https://arxiv.org/pdf/2411.06019
renderer = GaussianRenderer({
"resolution": 1024,
"near": 0.8,
"far": 1.6,
"ssaa": 1,
"bg_color": (0,0,0),
})
new_gs = Gaussian(**gs.init_params)
new_gs._features_dc = gs._features_dc.clone()
new_gs._features_rest = gs._features_rest.clone() if gs._features_rest is not None else None
new_gs._opacity = torch.nn.Parameter(gs._opacity.clone())
new_gs._rotation = torch.nn.Parameter(gs._rotation.clone())
new_gs._scaling = torch.nn.Parameter(gs._scaling.clone())
new_gs._xyz = torch.nn.Parameter(gs._xyz.clone())
start_lr = [1e-4, 1e-3, 5e-3, 0.025]
end_lr = [1e-6, 1e-5, 5e-5, 0.00025]
optimizer = torch.optim.Adam([
{"params": new_gs._xyz, "lr": start_lr[0]},
{"params": new_gs._rotation, "lr": start_lr[1]},
{"params": new_gs._scaling, "lr": start_lr[2]},
{"params": new_gs._opacity, "lr": start_lr[3]},
], lr=start_lr[0])
def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
return start_lr * (end_lr / start_lr) ** (step / total_steps)
def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
_zeta = new_gs.get_opacity.clone().detach().squeeze()
_lambda = torch.zeros_like(_zeta)
_delta = 1e-7
_interval = 10
num_target = int((1 - simplify) * _zeta.shape[0])
with tqdm(total=2500, disable=not verbose, desc='Simplifying Gaussian') as pbar:
for i in range(2500):
# prune
if i % 100 == 0:
mask = new_gs.get_opacity.squeeze() > 0.05
mask = torch.nonzero(mask).squeeze()
new_gs._xyz = torch.nn.Parameter(new_gs._xyz[mask])
new_gs._rotation = torch.nn.Parameter(new_gs._rotation[mask])
new_gs._scaling = torch.nn.Parameter(new_gs._scaling[mask])
new_gs._opacity = torch.nn.Parameter(new_gs._opacity[mask])
new_gs._features_dc = new_gs._features_dc[mask]
new_gs._features_rest = new_gs._features_rest[mask] if new_gs._features_rest is not None else None
_zeta = _zeta[mask]
_lambda = _lambda[mask]
# update optimizer state
for param_group, new_param in zip(optimizer.param_groups, [new_gs._xyz, new_gs._rotation, new_gs._scaling, new_gs._opacity]):
stored_state = optimizer.state[param_group['params'][0]]
if 'exp_avg' in stored_state:
stored_state['exp_avg'] = stored_state['exp_avg'][mask]
stored_state['exp_avg_sq'] = stored_state['exp_avg_sq'][mask]
del optimizer.state[param_group['params'][0]]
param_group['params'][0] = new_param
optimizer.state[param_group['params'][0]] = stored_state
opacity = new_gs.get_opacity.squeeze()
# sparisfy
if i % _interval == 0:
_zeta = _lambda + opacity.detach()
if opacity.shape[0] > num_target:
index = _zeta.topk(num_target)[1]
_m = torch.ones_like(_zeta, dtype=torch.bool)
_m[index] = 0
_zeta[_m] = 0
_lambda = _lambda + opacity.detach() - _zeta
# sample a random view
view_idx = np.random.randint(len(observations))
observation = observations[view_idx]
extrinsic = extrinsics[view_idx]
intrinsic = intrinsics[view_idx]
color = renderer.render(new_gs, extrinsic, intrinsic)['color']
rgb_loss = torch.nn.functional.l1_loss(color, observation)
loss = rgb_loss + \
_delta * torch.sum(torch.pow(_lambda + opacity - _zeta, 2))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update lr
for j in range(len(optimizer.param_groups)):
optimizer.param_groups[j]['lr'] = cosine_anealing(optimizer, i, 2500, start_lr[j], end_lr[j])
pbar.set_postfix({'loss': rgb_loss.item(), 'num': opacity.shape[0], 'lambda': _lambda.mean().item()})
pbar.update()
new_gs._xyz = new_gs._xyz.data
new_gs._rotation = new_gs._rotation.data
new_gs._scaling = new_gs._scaling.data
new_gs._opacity = new_gs._opacity.data
return new_gs
|