Spaces:
Running
Running
File size: 5,187 Bytes
9e4233f 89d01cf 7f4008b f04482d 89d01cf 9e4233f 7f4008b 9e4233f 7f4008b 9e4233f 7f4008b 9e4233f 7f4008b 9e4233f 7f4008b 9e4233f 7f4008b 9e4233f 7f4008b be473e6 7f4008b be473e6 7f4008b be473e6 7f4008b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import uuid
from io_utils import read_scanners, write_scanners, read_inference_type, write_inference_type, get_logs_file
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
from text_classification_ui_helpers import try_submit, check_dataset_and_get_config, check_dataset_and_get_split, check_model_and_show_prediction, write_column_mapping_to_config, get_logs_file
MAX_LABELS = 20
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
EXAMPLE_DATA_ID = 'tweet_eval'
CONFIG_PATH='./config.yaml'
def get_demo(demo):
with gr.Row():
gr.Markdown(INTRODUCTION_MD)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
with gr.Row():
example_input = gr.Markdown('Example Input', visible=False)
with gr.Row():
example_prediction = gr.Label(label='Model Prediction Sample', visible=False)
with gr.Row():
with gr.Accordion(label='Label and Feature Mapping', visible=False, open=False) as column_mapping_accordion:
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
column_mappings = []
with gr.Row():
with gr.Column():
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label='Model Wrap Advance Config (optional)', open=False):
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Accordion(label='Scanner Advance Config (optional)', open=False):
selected = read_scanners('./config.yaml')
# currently we remove data_leakage from the default scanners
# Reason: data_leakage barely raises any issues and takes too many requests
# when using inference API, causing rate limit error
scan_config = selected + ['data_leakage']
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=True,
size="lg",
)
with gr.Row():
uid = uuid.uuid4()
uid_label = gr.Textbox(label="Evaluation ID:", value=uid, visible=False, interactive=False)
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
demo.load(get_logs_file, uid_label, logs, every=0.5)
gr.on(triggers=[label.change for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[dataset_id_input, dataset_config_input, dataset_split_input, *column_mappings])
gr.on(triggers=[model_id_input.change, dataset_config_input.change, dataset_split_input.change],
fn=check_model_and_show_prediction,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[example_input, example_prediction, column_mapping_accordion, *column_mappings])
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_split_input])
scanners.change(
write_scanners,
inputs=scanners
)
run_inference.change(
write_inference_type,
inputs=[run_inference]
)
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
uid_label],
outputs=[run_btn, logs])
def enable_run_btn():
return (gr.update(interactive=True))
gr.on(
triggers=[
model_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
run_inference.change,
run_local.change,
scanners.change],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn])
gr.on(
triggers=[label.change for label in column_mappings],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn]) |