Spaces:
Running
Running
File size: 7,688 Bytes
8f809e2 58c39e0 53fe897 4045dfc 53fe897 58c39e0 9e4233f 5b8d6d5 9e4233f 3573a39 9e4233f 5b8d6d5 9e4233f be473e6 136af2d 8092547 136af2d 9e4233f 4045dfc 983e75b 4045dfc 3573a39 9e4233f 53fe897 3573a39 5559b52 5b8d6d5 053c12c 53fe897 5b8d6d5 53fe897 5b8d6d5 9e4233f 5704515 9e4233f 3573a39 9e4233f 3573a39 be473e6 5b8d6d5 be473e6 3573a39 5b8d6d5 be473e6 3573a39 08c711a 5b8d6d5 58c39e0 3573a39 58c39e0 8092547 58c39e0 9e4233f 5b8d6d5 9e4233f 3573a39 8f809e2 53fe897 3573a39 136af2d 53fe897 58c39e0 5559b52 136af2d 53fe897 136af2d 5559b52 53fe897 5559b52 136af2d 1c00552 58c39e0 5b8d6d5 58c39e0 1c00552 58c39e0 4045dfc 983e75b 4045dfc 983e75b 4045dfc 3573a39 8f809e2 3573a39 136af2d 3573a39 9e4233f 1c00552 3573a39 136af2d 3573a39 53fe897 5b8d6d5 53fe897 5559b52 53fe897 5b8d6d5 3573a39 5b8d6d5 3573a39 5b8d6d5 3573a39 5b8d6d5 5559b52 3573a39 9e4233f 3573a39 9e4233f 8f809e2 3573a39 8f809e2 5b8d6d5 3573a39 60f78e5 3573a39 8f809e2 3573a39 8f809e2 5b8d6d5 3573a39 8f809e2 3573a39 8f809e2 5b8d6d5 8f809e2 53fe897 3573a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import uuid
import gradio as gr
from io_utils import get_logs_file, read_scanners, write_scanners
from text_classification_ui_helpers import (
get_related_datasets_from_leaderboard,
align_columns_and_show_prediction,
check_dataset,
deselect_run_inference,
precheck_model_ds_enable_example_btn,
select_run_mode,
try_submit,
write_column_mapping_to_config,
)
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
MAX_LABELS = 40
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
CONFIG_PATH = "./config.yaml"
def get_demo():
with gr.Row():
gr.Markdown(INTRODUCTION_MD)
uid_label = gr.Textbox(
label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False
)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
with gr.Column():
dataset_id_input = gr.Dropdown(
choices=[],
value="",
allow_custom_value=True,
label="Hugging Face Dataset id",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True)
with gr.Row():
first_line_ds = gr.DataFrame(label="Dataset preview", visible=False)
with gr.Row():
loading_status = gr.HTML(visible=True)
with gr.Row():
example_btn = gr.Button(
"Validate model & dataset",
visible=True,
variant="primary",
interactive=False,
)
with gr.Row():
example_input = gr.HTML(visible=False)
with gr.Row():
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
with gr.Row():
with gr.Accordion(
label="Label and Feature Mapping", visible=False, open=False
) as column_mapping_accordion:
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
column_mappings = []
with gr.Row():
with gr.Column():
gr.Markdown("# Label Mapping")
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
gr.Markdown("# Feature Mapping")
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
run_local = gr.Checkbox(value=True, label="Run with Local Model Inference (pipeline)")
run_inference = gr.Checkbox(value=False, label="Run with Inference API")
inference_token = gr.Textbox(
value="",
label="HF Token for Inference API",
visible=False,
interactive=True,
)
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
def get_scanners(uid):
selected = read_scanners(uid)
# currently we remove data_leakage from the default scanners
# Reason: data_leakage barely raises any issues and takes too many requests
# when using inference API, causing rate limit error
scan_config = selected + ["data_leakage"]
return gr.update(
choices=scan_config, value=selected, label="Scan Settings", visible=True
)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=False,
size="lg",
)
with gr.Row():
logs = gr.Textbox(
value=get_logs_file,
label="Giskard Bot Evaluation Log:",
visible=False,
every=0.5,
)
dataset_id_input.change(
check_dataset,
inputs=[dataset_id_input],
outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status],
)
dataset_config_input.change(
check_dataset,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status],
)
dataset_split_input.change(
check_dataset,
inputs=[dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[dataset_config_input, dataset_split_input, first_line_ds, loading_status],
)
scanners.change(write_scanners, inputs=[scanners, uid_label])
run_inference.change(
select_run_mode,
inputs=[run_inference],
outputs=[inference_token, run_local],
)
run_local.change(
deselect_run_inference,
inputs=[run_local],
outputs=[inference_token, run_inference],
)
gr.on(
triggers=[model_id_input.change],
fn=get_related_datasets_from_leaderboard,
inputs=[model_id_input],
outputs=[dataset_id_input],
)
gr.on(
triggers=[label.change for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[
uid_label,
*column_mappings,
],
)
# label.change sometimes does not pass the changed value
gr.on(
triggers=[label.input for label in column_mappings],
fn=write_column_mapping_to_config,
inputs=[
uid_label,
*column_mappings,
],
)
gr.on(
triggers=[
model_id_input.change,
dataset_id_input.change,
dataset_config_input.change,
dataset_split_input.change,
],
fn=precheck_model_ds_enable_example_btn,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
],
outputs=[example_btn, loading_status],
)
gr.on(
triggers=[
example_btn.click,
],
fn=align_columns_and_show_prediction,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
uid_label,
],
outputs=[
example_input,
example_prediction,
column_mapping_accordion,
run_btn,
loading_status,
*column_mappings,
],
)
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
run_local,
run_inference,
inference_token,
uid_label,
],
outputs=[run_btn, logs, uid_label],
)
def enable_run_btn():
return gr.update(interactive=True)
gr.on(
triggers=[
run_inference.input,
run_local.input,
inference_token.input,
scanners.input,
],
fn=enable_run_btn,
inputs=None,
outputs=[run_btn],
)
gr.on(
triggers=[label.input for label in column_mappings],
fn=enable_run_btn,
inputs=None, # FIXME
outputs=[run_btn],
)
|