File size: 3,740 Bytes
c9f9492
7fda6bb
c9f9492
3b3890c
 
 
 
e4aee44
e565e5a
08bac12
 
 
 
f5477de
 
08bac12
8ed001f
e4aee44
3b3890c
 
 
 
 
 
 
 
 
 
e4aee44
 
 
8ed001f
3b3890c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f9492
 
e4aee44
c9f9492
 
 
e4aee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974d749
c9f9492
 
e4aee44
 
 
 
c9f9492
3b3890c
 
 
 
 
 
 
 
 
 
 
c9f9492
e4aee44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests  # 상단에 추가

app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'

nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

def translate_korean_to_english(text):
   try:
       url = "https://translate.googleapis.com/translate_a/single"
       params = {
           "client": "gtx",
           "sl": "ko",
           "tl": "en",
           "dt": "t",
           "q": text
       }
       response = requests.get(url, params=params)
       return response.json()[0][0][0]
   except Exception as e:
       print(f"Translation error: {e}")
       return text

def generate_complete_video(gloss_list, dataset, list_2000_tokens):
   frames = []
   for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens):
       frame_data = frame.split(b'\r\n\r\n')[1]
       nparr = np.frombuffer(frame_data, np.uint8)
       img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
       frames.append(img)
   
   height, width = frames[0].shape[:2]
   fourcc = cv2.VideoWriter_fourcc(*'mp4v')
   temp_path = os.path.join('/tmp', 'temp.mp4')
   out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
   
   for frame in frames:
       out.write(frame)
   out.release()
   
   with open(temp_path, 'rb') as f:
       video_bytes = f.read()
   
   os.remove(temp_path)
   return video_bytes

@app.route('/')
def index():
   return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
   if request.method == 'POST':
       input_text = request.form['inputSentence']
       try:
           english_text = translate_korean_to_english(input_text)
           eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
           generated_gloss = eng_to_asl_translator.translate_to_gloss()
           
           gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
           gloss_sentence_before_synonym = " ".join(gloss_list_lower)
           
           gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) 
                        for gloss in gloss_list_lower]
           gloss_sentence_after_synonym = " ".join(gloss_list)
           
           return render_template('result.html',
                               title=app.config['TITLE'],
                               original_sentence=input_text,
                               english_translation=english_text,
                               gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                               gloss_sentence_after_synonym=gloss_sentence_after_synonym)
       except Exception as e:
           return render_template('error.html', error=str(e))

@app.route('/video_feed')
def video_feed():
   sentence = request.args.get('gloss_sentence_to_display', '')
   gloss_list = sentence.split()
   return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                  mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/download_video/<gloss_sentence>')
def download_video(gloss_sentence):
   gloss_list = gloss_sentence.split()
   video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
   return send_file(
       io.BytesIO(video_bytes),
       mimetype='video/mp4',
       as_attachment=True,
       download_name='sign_language.mp4'
   )

if __name__ == "__main__":
   app.run(host="0.0.0.0", port=7860, debug=True)