Spaces:
Building
Building
Update src/main.py
Browse files- src/main.py +69 -59
src/main.py
CHANGED
@@ -2,81 +2,91 @@ import display_gloss as dg
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
5 |
-
import
|
6 |
-
|
|
|
7 |
|
8 |
app = Flask(__name__, static_folder='static')
|
9 |
app.config['TITLE'] = 'Sign Language Translate'
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
12 |
dataset, list_2000_tokens = dg.load_data()
|
13 |
-
translator = Translator(service_urls=['translate.google.com'])
|
14 |
|
15 |
def translate_korean_to_english(text):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
'X-Naver-Client-Id': 'YOUR_CLIENT_ID',
|
29 |
-
'X-Naver-Client-Secret': 'YOUR_CLIENT_SECRET'
|
30 |
-
}
|
31 |
-
data = {
|
32 |
-
'source': 'ko',
|
33 |
-
'target': 'en',
|
34 |
-
'text': text
|
35 |
-
}
|
36 |
-
response = requests.post('https://openapi.naver.com/v1/papago/n2mt', headers=headers, data=data)
|
37 |
-
return response.json()['message']['result']['translatedText']
|
38 |
-
except:
|
39 |
-
return text
|
40 |
|
41 |
@app.route('/')
|
42 |
def index():
|
43 |
-
|
44 |
|
45 |
@app.route('/translate/', methods=['POST'])
|
46 |
def result():
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
@app.route('/video_feed')
|
75 |
def video_feed():
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
-
|
|
|
2 |
import synonyms_preprocess as sp
|
3 |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
|
4 |
from flask import Flask, render_template, Response, request
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqTranslation
|
6 |
+
import torch
|
7 |
+
import os
|
8 |
|
9 |
app = Flask(__name__, static_folder='static')
|
10 |
app.config['TITLE'] = 'Sign Language Translate'
|
11 |
|
12 |
+
# Set cache directory
|
13 |
+
cache_dir = "/tmp/huggingface"
|
14 |
+
if not os.path.exists(cache_dir):
|
15 |
+
os.makedirs(cache_dir, exist_ok=True)
|
16 |
+
os.environ['TRANSFORMERS_CACHE'] = cache_dir
|
17 |
+
os.environ['HF_HOME'] = cache_dir
|
18 |
+
|
19 |
+
# Force CPU usage
|
20 |
+
device = torch.device('cpu')
|
21 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
22 |
+
|
23 |
+
# Load pre-trained Korean-English translation model
|
24 |
+
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
26 |
+
model = AutoModelForSeq2SeqTranslation.from_pretrained(model_name, cache_dir=cache_dir)
|
27 |
+
model = model.to(device)
|
28 |
+
|
29 |
nlp, dict_docs_spacy = sp.load_spacy_values()
|
30 |
dataset, list_2000_tokens = dg.load_data()
|
|
|
31 |
|
32 |
def translate_korean_to_english(text):
|
33 |
+
try:
|
34 |
+
# Check if input is Korean
|
35 |
+
if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text):
|
36 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
37 |
+
outputs = model.generate(**inputs)
|
38 |
+
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
print(f"Translated text: {translation}") # Debug log
|
40 |
+
return translation
|
41 |
+
return text
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Translation error: {e}")
|
44 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@app.route('/')
|
47 |
def index():
|
48 |
+
return render_template('index.html', title=app.config['TITLE'])
|
49 |
|
50 |
@app.route('/translate/', methods=['POST'])
|
51 |
def result():
|
52 |
+
if request.method == 'POST':
|
53 |
+
input_text = request.form['inputSentence']
|
54 |
+
try:
|
55 |
+
# Translate to English
|
56 |
+
english_text = translate_korean_to_english(input_text)
|
57 |
+
|
58 |
+
# Check if translation failed
|
59 |
+
if english_text == input_text and any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in input_text):
|
60 |
+
raise Exception("Translation failed")
|
61 |
+
|
62 |
+
# Convert to ASL gloss
|
63 |
+
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
|
64 |
+
generated_gloss = eng_to_asl_translator.translate_to_gloss()
|
65 |
+
|
66 |
+
# Process gloss
|
67 |
+
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
|
68 |
+
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
|
69 |
+
|
70 |
+
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens)
|
71 |
+
for gloss in gloss_list_lower]
|
72 |
+
gloss_sentence_after_synonym = " ".join(gloss_list)
|
73 |
+
|
74 |
+
return render_template('result.html',
|
75 |
+
title=app.config['TITLE'],
|
76 |
+
original_sentence=input_text,
|
77 |
+
english_translation=english_text,
|
78 |
+
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
|
79 |
+
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error in translation process: {e}")
|
82 |
+
return render_template('error.html', error=str(e))
|
83 |
|
84 |
@app.route('/video_feed')
|
85 |
def video_feed():
|
86 |
+
sentence = request.args.get('gloss_sentence_to_display', '')
|
87 |
+
gloss_list = sentence.split()
|
88 |
+
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
|
89 |
+
mimetype='multipart/x-mixed-replace; boundary=frame')
|
90 |
|
91 |
if __name__ == "__main__":
|
92 |
+
app.run(host="0.0.0.0", port=7860, debug=True)
|