Spaces:
Running
Running
File size: 11,022 Bytes
56325dc 8f8f414 4f034fb 8f8f414 7cf7e72 949011b 19ea0c5 4f034fb 56325dc 8f8f414 7cf7e72 8f8f414 edfcf73 949011b 8f8f414 edfcf73 8f8f414 edfcf73 949011b 8f8f414 949011b 8f8f414 949011b 8f8f414 edfcf73 8f8f414 edfcf73 56325dc edfcf73 4f034fb 8f771eb edfcf73 4f034fb edfcf73 4f034fb 8f771eb 4f034fb 8f771eb 4f034fb edfcf73 4f034fb edfcf73 1131989 edfcf73 4f034fb 1131989 4f034fb 8f8f414 1131989 19ea0c5 56325dc 8f8f414 1131989 8f8f414 1131989 56325dc 19ea0c5 edfcf73 56325dc 19ea0c5 edfcf73 56325dc 19ea0c5 edfcf73 56325dc 1131989 56325dc edfcf73 56325dc edfcf73 1131989 edfcf73 949011b edfcf73 1131989 edfcf73 1131989 949011b 19ea0c5 edfcf73 1131989 56325dc 949011b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import fitz # PyMuPDF for PDF processing
import requests
import json
import re
from io import BytesIO
import supabase
from config import (
SUPABASE_URL, SUPABASE_KEY, HF_API_TOKEN, HF_HEADERS,
supabase, HF_MODELS, query, embedding_model
)
from sentence_transformers import SentenceTransformer, util
import spacy
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
import streamlit as st
from fuzzywuzzy import fuzz
import subprocess
import random
from huggingface_hub import InferenceClient
import os
# Initialize the client
client = InferenceClient(
model="google/gemma-1.1-7b-it",
token=HF_API_TOKEN
)
# These functions will be called in the app.py file
# Load spaCy NLP model
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
def evaluate_resumes(uploaded_files, job_description, min_keyword_match=2):
"""Evaluates uploaded resumes, filters by keywords and score, and returns shortlisted candidates."""
candidates = []
removed_candidates = []
for pdf_file in uploaded_files:
resume_text = parse_resume(pdf_file)
score = score_candidate(resume_text, job_description)
email = extract_email(resume_text)
summary = summarize_resume(resume_text)
if score < 0.20:
removed_candidates.append({"name": pdf_file.name, "reason": "Low confidence score (< 0.20)"})
continue # Skip adding to candidates list
candidates.append({
"name": pdf_file.name,
"resume": resume_text,
"score": score,
"email": email,
"summary": summary
})
# 🔹 Step 2: Filter candidates based on keyword matches
filtered_candidates, keyword_removed = filter_resumes_by_keywords(candidates, job_description, min_keyword_match)
# 🔹 Step 3: Log removed candidates
for name in keyword_removed:
removed_candidates.append({"name": name, "reason": "Insufficient keyword matches"})
# 🔹 Step 4: Ensure the final list is sorted by score and limit to top 5 candidates
shortlisted_candidates = sorted(filtered_candidates, key=lambda x: x["score"], reverse=True)[:5]
# 🔹 Step 5: Ensure return value is always a list
if not isinstance(shortlisted_candidates, list):
print("⚠️ ERROR: shortlisted_candidates is not a list! Returning empty list.")
return [], removed_candidates
return shortlisted_candidates, removed_candidates
def extract_keywords(text, top_n=10):
"""Extracts key terms from the job description using TF-IDF and spaCy."""
if not text.strip(): # Handle empty job descriptions
return []
doc = nlp(text.lower())
# Extract meaningful words (nouns, proper nouns, verbs, adjectives)
keywords = [token.text for token in doc if token.pos_ in {"NOUN", "PROPN", "VERB", "ADJ"} and not token.is_stop]
if not keywords: # If no valid keywords were found, return an empty list
return []
# Use TF-IDF to rank keywords
vectorizer = TfidfVectorizer(stop_words="english", ngram_range=(1, 2))
try:
tfidf_matrix = vectorizer.fit_transform([" ".join(keywords)])
feature_array = vectorizer.get_feature_names_out()
tfidf_scores = tfidf_matrix.toarray()[0]
# Sort by highest TF-IDF scores
keyword_scores = sorted(zip(feature_array, tfidf_scores), key=lambda x: x[1], reverse=True)
return [kw for kw, score in keyword_scores[:top_n]]
except ValueError: # Catch empty vocabulary error
return []
def filter_resumes_by_keywords(resumes, job_description, min_keyword_match=2):
"""Filters resumes based on keyword presence and similarity."""
job_keywords = extract_keywords(job_description)
filtered_resumes = []
removed_resumes = []
if len(job_keywords) < min_keyword_match:
st.warning("⚠️ Job description is either too short or absent for keyword filtering.")
return resumes, [] # Skip keyword filtering if job description lacks enough keywords
for resume in resumes:
resume_text = resume["resume"].lower()
matched_keywords = []
# Apply fuzzy matching to allow flexible keyword detection
for keyword in job_keywords:
for word in resume_text.split():
if fuzz.partial_ratio(keyword, word) > 80: # 80% similarity threshold
matched_keywords.append(keyword)
# Enforce minimum keyword matches
if len(set(matched_keywords)) >= min_keyword_match:
filtered_resumes.append(resume)
else:
removed_resumes.append(resume["name"])
return filtered_resumes, removed_resumes
def parse_resume(pdf_file):
"""Extracts text from a resume PDF."""
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = "\n".join([page.get_text("text") for page in doc])
return text
def extract_email(resume_text):
"""Extracts an email address from resume text."""
match = re.search(r"[\w\.-]+@[\w\.-]+", resume_text)
return match.group(0) if match else None
def score_candidate(resume_text, job_description):
"""
Scores the candidate's resume based on the job description using sentence-transformers.
:param resume_text: The extracted resume text.
:param job_description: The job description for comparison.
:return: A numerical score (cosine similarity between 0 and 1).
"""
try:
# Generate embeddings
resume_embedding = embedding_model.encode(resume_text, convert_to_tensor=True)
job_embedding = embedding_model.encode(job_description, convert_to_tensor=True)
# Compute cosine similarity
score = util.pytorch_cos_sim(resume_embedding, job_embedding).item()
return round(score, 4) # Return similarity score rounded to 4 decimal places
except Exception as e:
print(f"Error computing similarity score: {e}")
return 0 # Return 0 if scoring fails
def summarize_resume(resume_text):
"""
Summarizes a resume using the Hugging Face BART model with improved error handling.
"""
payload = {"inputs": f"Summarize this resume: {resume_text}"}
response = query(payload, model="bart")
if not response:
print("⚠️ Error: API response is None. Returning fallback summary.")
return "Summary unavailable due to API issues."
try:
if isinstance(response, list) and len(response) > 0:
response = response[0]
if isinstance(response, dict):
summary = response.get("generated_text") or response.get("summary_text")
if summary:
return summary.strip()
else:
print("⚠️ Unexpected API response format:", response)
return "Summary unavailable."
except Exception as e:
print(f"⚠️ Error parsing summary: {e}")
return "Summary unavailable."
return "Summary unavailable."
def store_in_supabase(resume_text, score, candidate_name, email, summary):
"""
Stores resume data in Supabase.
:param resume_text: The extracted resume text.
:param score: The candidate's score (must be a valid number).
:param candidate_name: The candidate's name.
:param email: Candidate's email address.
:param summary: A summarized version of the resume.
"""
if score is None:
score = 0 # Ensure score is never NULL
data = {
"name": candidate_name,
"resume": resume_text,
"score": score,
"email": email,
"summary": summary
}
response = supabase.table("candidates").insert(data).execute()
return response
def generate_pdf_report(shortlisted_candidates):
"""Generates a PDF summary of shortlisted candidates with proper text wrapping."""
pdf = BytesIO()
doc = fitz.open()
for candidate in shortlisted_candidates:
page = doc.new_page()
# Use stored summary, or provide a fallback
summary = candidate.get("summary", "No summary available")
# Generate interview questions
#questions = generate_interview_questions_from_summaries(summary)
#questions_text = "\n".join([f"- {q}" for q in questions])
# Define text area properties
text_box_x = 50 # Left margin
text_box_y = 50 # Top margin
text_box_width = 500 # Max width before wrapping
text_box_height = 700 # Max height before splitting to a new page
font_size = 11 # Font size for better readability
# Format candidate details
candidate_info = (
f"Candidate: {candidate['name']}\n"
f"Email: {candidate['email']}\n"
f"Score: {candidate['score']}\n\n"
f"Summary:\n{summary}"
#f"Suggested Interview Questions:\n{questions_text}"
)
# Check if the text fits in the allowed area
text_rect = fitz.Rect(text_box_x, text_box_y, text_box_x + text_box_width, text_box_y + text_box_height)
text_length = page.insert_textbox(text_rect, candidate_info, fontsize=font_size, fontname="helv", align=0)
# If text overflows, split across multiple pages
while text_length == 0: # 0 means text didn't fit
page = doc.new_page() # Create new page
text_rect = fitz.Rect(text_box_x, text_box_y, text_box_x + text_box_width, text_box_y + text_box_height)
text_length = page.insert_textbox(text_rect, candidate_info, fontsize=font_size, fontname="helv", align=0)
doc.save(pdf)
pdf.seek(0)
return pdf
def generate_interview_questions_from_summaries(candidates):
"""
Generates common interview questions based on the combined summaries of shortlisted candidates.
Uses the Hugging Face Gemma model to generate questions.
"""
if not isinstance(candidates, list):
raise TypeError("Expected a list of candidate dictionaries.")
summaries = [c.get("summary", "") for c in candidates if "summary" in c]
combined_summary = " ".join(summaries)
prompt = (
"Based on the following summary of this top candidate for a job role, generate 5 thoughtful, general interview questions that would help a recruiter assess their fit:\n"
f"{combined_summary}"
)
try:
response = client.chat_completion(
messages=[
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=500
)
result_text = response.choices[0].message.content
questions = [q.strip() for q in result_text.split("\n") if q.strip()]
return questions[:5] if questions else ["⚠️ No questions generated."]
except Exception as e:
print(f"❌ Error generating interview questions: {e}")
return ["⚠️ Error generating questions."]
|