Spaces:
Running
Running
Johnny
commited on
Commit
·
edfcf73
1
Parent(s):
19ea0c5
added config.toml, updated requirements.txt, UI update
Browse files- .streamlit/config.toml +6 -0
- config.py +67 -10
- main.py +15 -6
- requirements.txt +214 -10
- utils.py +86 -42
.streamlit/config.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#F63366"
|
3 |
+
backgroundColor="#FFFFFF"
|
4 |
+
secondaryBackgroundColor="#F0F2F6"
|
5 |
+
textColor="#262730"
|
6 |
+
font="sans serif"
|
config.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
from supabase import create_client
|
|
|
4 |
|
5 |
# Load environment variables from .env file
|
6 |
load_dotenv()
|
@@ -12,18 +13,74 @@ if not SUPABASE_KEY:
|
|
12 |
raise ValueError("SUPABASE_KEY is not set in the environment variables.")
|
13 |
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
# Hugging Face API Config
|
16 |
-
HF_API_URL = "https://router.huggingface.co/hf-inference/models/google/gemma-7b"
|
17 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
18 |
HF_HEADERS = {"Authorization": f"Bearer HF_API_TOKEN"}
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
from supabase import create_client
|
4 |
+
import requests
|
5 |
|
6 |
# Load environment variables from .env file
|
7 |
load_dotenv()
|
|
|
13 |
raise ValueError("SUPABASE_KEY is not set in the environment variables.")
|
14 |
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
|
15 |
|
16 |
+
HF_MODELS = {
|
17 |
+
"gemma": "https://api-inference.huggingface.co/models/google/gemma-7b",
|
18 |
+
"bart": "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
|
19 |
+
}
|
20 |
+
|
21 |
# Hugging Face API Config
|
22 |
+
#HF_API_URL = "https://router.huggingface.co/hf-inference/models/google/gemma-7b"
|
23 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
24 |
HF_HEADERS = {"Authorization": f"Bearer HF_API_TOKEN"}
|
25 |
|
26 |
+
# Ensure the API key is loaded
|
27 |
+
if not HF_API_TOKEN:
|
28 |
+
raise ValueError("Missing Hugging Face API key. Check your .env file.")
|
29 |
+
|
30 |
+
#
|
31 |
+
def query(payload, model="gemma"):
|
32 |
+
"""
|
33 |
+
Sends a request to the selected Hugging Face model API.
|
34 |
+
|
35 |
+
:param payload: The input data for inference.
|
36 |
+
:param model: Choose either 'gemma' (for google/gemma-7b) or 'bart' (for facebook/bart-large-cnn).
|
37 |
+
:return: The model's response in JSON format, or None if the request fails.
|
38 |
+
"""
|
39 |
+
if model not in HF_MODELS:
|
40 |
+
raise ValueError("Invalid model name. Choose 'gemma' or 'bart'.")
|
41 |
+
|
42 |
+
api_url = f"https://api-inference.huggingface.co/models/{HF_MODELS[model]}"
|
43 |
+
|
44 |
+
try:
|
45 |
+
response = requests.post(api_url, headers=HF_HEADERS, json=payload)
|
46 |
+
|
47 |
+
if response.status_code == 401:
|
48 |
+
print(f"Error querying Hugging Face model '{model}': 401 Unauthorized. Check API key.")
|
49 |
+
return None # Handle authentication failure
|
50 |
+
|
51 |
+
response.raise_for_status() # Raise an error for failed requests (e.g., 500 errors)
|
52 |
+
|
53 |
+
return response.json() # Return the parsed JSON response
|
54 |
+
|
55 |
+
except requests.exceptions.RequestException as e:
|
56 |
+
print(f"Error querying Hugging Face model '{model}': {e}")
|
57 |
+
return None # Return None if API call fails
|
58 |
+
|
59 |
+
# Bart query
|
60 |
+
def query(payload, model="bart"):
|
61 |
+
"""
|
62 |
+
Sends a request to the selected Hugging Face model API.
|
63 |
+
|
64 |
+
:param payload: The input data for inference.
|
65 |
+
:param model: Choose either 'gemma' (for google/gemma-7b) or 'bart' (for facebook/bart-large-cnn).
|
66 |
+
:return: The model's response in JSON format, or None if the request fails.
|
67 |
+
"""
|
68 |
+
if model not in HF_MODELS:
|
69 |
+
raise ValueError("Invalid model name. Choose 'gemma' or 'bart'.")
|
70 |
+
|
71 |
+
api_url = f"https://api-inference.huggingface.co/models/{HF_MODELS[model]}"
|
72 |
+
|
73 |
+
try:
|
74 |
+
response = requests.post(api_url, headers=HF_HEADERS, json=payload)
|
75 |
+
|
76 |
+
if response.status_code == 401:
|
77 |
+
print(f"Error querying Hugging Face model '{model}': 401 Unauthorized. Check API key.")
|
78 |
+
return None # Handle authentication failure
|
79 |
+
|
80 |
+
response.raise_for_status() # Raise an error for failed requests (e.g., 500 errors)
|
81 |
+
|
82 |
+
return response.json() # Return the parsed JSON response
|
83 |
|
84 |
+
except requests.exceptions.RequestException as e:
|
85 |
+
print(f"Error querying Hugging Face model '{model}': {e}")
|
86 |
+
return None # Return None if API call fails
|
main.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
from utils import
|
3 |
from config import supabase
|
4 |
-
from config import HF_API_TOKEN,
|
5 |
import fitz # PyMuPDF
|
6 |
from io import BytesIO
|
7 |
from dotenv import load_dotenv
|
@@ -9,12 +9,21 @@ import os
|
|
9 |
import requests
|
10 |
|
11 |
def main():
|
12 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
job_description = st.text_area("Enter Job Description")
|
14 |
-
uploaded_files = st.file_uploader("Upload Resumes (PDF)", accept_multiple_files=True, type=["pdf"])
|
15 |
|
16 |
-
if st.button("
|
17 |
-
shortlisted =
|
18 |
for candidate in shortlisted:
|
19 |
st.write(f"**{candidate['name']}** - Score: {candidate['score']}")
|
20 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from utils import evaluate_resumes, generate_pdf_report, store_in_supabase, score_candidate, extract_email, parse_resume
|
3 |
from config import supabase
|
4 |
+
from config import HF_API_TOKEN, HF_HEADERS, HF_MODELS
|
5 |
import fitz # PyMuPDF
|
6 |
from io import BytesIO
|
7 |
from dotenv import load_dotenv
|
|
|
9 |
import requests
|
10 |
|
11 |
def main():
|
12 |
+
st.set_page_config(page_title="TalentLens.AI", layout="centered")
|
13 |
+
st.markdown(
|
14 |
+
"<h1 style='text-align: center;'>TalentLens.AI</h1>",
|
15 |
+
unsafe_allow_html=True
|
16 |
+
)
|
17 |
+
st.divider()
|
18 |
+
st.markdown(
|
19 |
+
"<h3 style='text-align: center;'>AI-Powered Intelligent Resume Screening</h3>",
|
20 |
+
unsafe_allow_html=True
|
21 |
+
)
|
22 |
+
uploaded_files = st.file_uploader("Upload Resumes (PDF Only)", accept_multiple_files=True, type=["pdf"])
|
23 |
job_description = st.text_area("Enter Job Description")
|
|
|
24 |
|
25 |
+
if st.button("Evaluate Resumes"):
|
26 |
+
shortlisted = evaluate_resumes(uploaded_files, job_description)
|
27 |
for candidate in shortlisted:
|
28 |
st.write(f"**{candidate['name']}** - Score: {candidate['score']}")
|
29 |
|
requirements.txt
CHANGED
@@ -1,10 +1,214 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohappyeyeballs==2.6.1
|
2 |
+
aiohttp==3.11.13
|
3 |
+
aiosignal==1.3.2
|
4 |
+
altair==5.5.0
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.8.0
|
7 |
+
appdirs==1.4.4
|
8 |
+
asgiref==3.8.1
|
9 |
+
asttokens==3.0.0
|
10 |
+
attrs==25.2.0
|
11 |
+
auth0-python==4.8.1
|
12 |
+
backoff==2.2.1
|
13 |
+
bcrypt==4.3.0
|
14 |
+
blinker==1.9.0
|
15 |
+
blis==1.2.0
|
16 |
+
build==1.2.2.post1
|
17 |
+
cachetools==5.5.2
|
18 |
+
catalogue==2.0.10
|
19 |
+
certifi==2025.1.31
|
20 |
+
cffi==1.17.1
|
21 |
+
charset-normalizer==3.4.1
|
22 |
+
chroma-hnswlib==0.7.6
|
23 |
+
chromadb==0.6.3
|
24 |
+
click==8.1.8
|
25 |
+
cloudpathlib==0.21.0
|
26 |
+
coloredlogs==15.0.1
|
27 |
+
confection==0.1.5
|
28 |
+
crewai==0.105.0
|
29 |
+
cryptography==44.0.2
|
30 |
+
cymem==2.0.11
|
31 |
+
decorator==5.2.1
|
32 |
+
Deprecated==1.2.18
|
33 |
+
deprecation==2.1.0
|
34 |
+
distro==1.9.0
|
35 |
+
docstring_parser==0.16
|
36 |
+
docx2txt==0.8
|
37 |
+
durationpy==0.9
|
38 |
+
et_xmlfile==2.0.0
|
39 |
+
executing==2.2.0
|
40 |
+
fastapi==0.115.11
|
41 |
+
filelock==3.17.0
|
42 |
+
flatbuffers==25.2.10
|
43 |
+
frozenlist==1.5.0
|
44 |
+
fsspec==2025.3.0
|
45 |
+
gitdb==4.0.12
|
46 |
+
GitPython==3.1.44
|
47 |
+
google-auth==2.38.0
|
48 |
+
googleapis-common-protos==1.69.1
|
49 |
+
gotrue==2.11.4
|
50 |
+
greenlet==3.1.1
|
51 |
+
grpcio==1.71.0
|
52 |
+
h11==0.14.0
|
53 |
+
h2==4.2.0
|
54 |
+
hpack==4.1.0
|
55 |
+
httpcore==1.0.7
|
56 |
+
httptools==0.6.4
|
57 |
+
httpx==0.27.2
|
58 |
+
huggingface-hub==0.29.3
|
59 |
+
humanfriendly==10.0
|
60 |
+
hyperframe==6.1.0
|
61 |
+
idna==3.10
|
62 |
+
importlib_metadata==8.6.1
|
63 |
+
importlib_resources==6.5.2
|
64 |
+
iniconfig==2.1.0
|
65 |
+
instructor==1.7.4
|
66 |
+
ipython==9.0.2
|
67 |
+
ipython_pygments_lexers==1.1.1
|
68 |
+
jedi==0.19.2
|
69 |
+
Jinja2==3.1.6
|
70 |
+
jiter==0.8.2
|
71 |
+
joblib==1.4.2
|
72 |
+
json5==0.10.0
|
73 |
+
json_repair==0.39.1
|
74 |
+
jsonpatch==1.33
|
75 |
+
jsonpickle==4.0.2
|
76 |
+
jsonpointer==3.0.0
|
77 |
+
jsonref==1.1.0
|
78 |
+
jsonschema==4.23.0
|
79 |
+
jsonschema-specifications==2024.10.1
|
80 |
+
kubernetes==32.0.1
|
81 |
+
langchain==0.3.20
|
82 |
+
langchain-core==0.3.45
|
83 |
+
langchain-text-splitters==0.3.6
|
84 |
+
langcodes==3.5.0
|
85 |
+
langsmith==0.3.15
|
86 |
+
language_data==1.3.0
|
87 |
+
litellm==1.60.2
|
88 |
+
marisa-trie==1.2.1
|
89 |
+
markdown-it-py==3.0.0
|
90 |
+
MarkupSafe==3.0.2
|
91 |
+
matplotlib-inline==0.1.7
|
92 |
+
mdurl==0.1.2
|
93 |
+
mmh3==5.1.0
|
94 |
+
monotonic==1.6
|
95 |
+
mpmath==1.3.0
|
96 |
+
multidict==6.1.0
|
97 |
+
murmurhash==1.0.12
|
98 |
+
narwhals==1.30.0
|
99 |
+
networkx==3.4.2
|
100 |
+
nltk==3.9.1
|
101 |
+
numpy==2.2.3
|
102 |
+
oauthlib==3.2.2
|
103 |
+
onnxruntime==1.16.3
|
104 |
+
openai==1.66.3
|
105 |
+
openpyxl==3.1.5
|
106 |
+
opentelemetry-api==1.31.0
|
107 |
+
opentelemetry-exporter-otlp-proto-common==1.31.0
|
108 |
+
opentelemetry-exporter-otlp-proto-grpc==1.31.0
|
109 |
+
opentelemetry-exporter-otlp-proto-http==1.31.0
|
110 |
+
opentelemetry-instrumentation==0.52b0
|
111 |
+
opentelemetry-instrumentation-asgi==0.52b0
|
112 |
+
opentelemetry-instrumentation-fastapi==0.52b0
|
113 |
+
opentelemetry-proto==1.31.0
|
114 |
+
opentelemetry-sdk==1.31.0
|
115 |
+
opentelemetry-semantic-conventions==0.52b0
|
116 |
+
opentelemetry-util-http==0.52b0
|
117 |
+
orjson==3.10.15
|
118 |
+
overrides==7.7.0
|
119 |
+
packaging==24.2
|
120 |
+
pandas==2.2.3
|
121 |
+
parso==0.8.4
|
122 |
+
pdfminer.six==20231228
|
123 |
+
pdfplumber==0.11.5
|
124 |
+
pexpect==4.9.0
|
125 |
+
phonenumbers==9.0.1
|
126 |
+
pillow==11.1.0
|
127 |
+
pluggy==1.5.0
|
128 |
+
postgrest==0.19.3
|
129 |
+
posthog==3.19.1
|
130 |
+
preshed==3.0.9
|
131 |
+
prompt_toolkit==3.0.50
|
132 |
+
propcache==0.3.0
|
133 |
+
protobuf==5.29.3
|
134 |
+
psycopg2==2.9.10
|
135 |
+
ptyprocess==0.7.0
|
136 |
+
pure_eval==0.2.3
|
137 |
+
pyarrow==14.0.0
|
138 |
+
pyasn1==0.6.1
|
139 |
+
pyasn1_modules==0.4.1
|
140 |
+
pycparser==2.22
|
141 |
+
pydantic==2.10.6
|
142 |
+
pydantic_core==2.27.2
|
143 |
+
pydeck==0.9.1
|
144 |
+
Pygments==2.19.1
|
145 |
+
PyJWT==2.10.1
|
146 |
+
PyMuPDF==1.25.4
|
147 |
+
PyPDF2==3.0.1
|
148 |
+
pypdfium2==4.30.1
|
149 |
+
PyPika==0.48.9
|
150 |
+
pyproject_hooks==1.2.0
|
151 |
+
pytest==8.3.5
|
152 |
+
python-dateutil==2.9.0.post0
|
153 |
+
python-dotenv==1.0.1
|
154 |
+
pytz==2025.1
|
155 |
+
pyvis==0.3.2
|
156 |
+
PyYAML==6.0.2
|
157 |
+
realtime==2.4.1
|
158 |
+
referencing==0.36.2
|
159 |
+
regex==2024.11.6
|
160 |
+
requests==2.32.3
|
161 |
+
requests-oauthlib==2.0.0
|
162 |
+
requests-toolbelt==1.0.0
|
163 |
+
resume-parser==0.8.4
|
164 |
+
rich==13.9.4
|
165 |
+
rpds-py==0.23.1
|
166 |
+
rsa==4.9
|
167 |
+
shellingham==1.5.4
|
168 |
+
six==1.17.0
|
169 |
+
smart-open==7.1.0
|
170 |
+
smmap==5.0.2
|
171 |
+
sniffio==1.3.1
|
172 |
+
spacy==3.8.4
|
173 |
+
spacy-legacy==3.0.12
|
174 |
+
spacy-loggers==1.0.5
|
175 |
+
SQLAlchemy==2.0.39
|
176 |
+
srsly==2.5.1
|
177 |
+
stack-data==0.6.3
|
178 |
+
starlette==0.46.1
|
179 |
+
stemming==1.0.1
|
180 |
+
storage3==0.11.3
|
181 |
+
streamlit==1.43.2
|
182 |
+
StrEnum==0.4.15
|
183 |
+
supabase==2.13.0
|
184 |
+
supafunc==0.9.3
|
185 |
+
sympy==1.13.3
|
186 |
+
tenacity==9.0.0
|
187 |
+
thinc==8.3.4
|
188 |
+
tika==2.6.0
|
189 |
+
tiktoken==0.9.0
|
190 |
+
tokenizers==0.21.0
|
191 |
+
toml==0.10.2
|
192 |
+
tomli==2.2.1
|
193 |
+
tomli_w==1.2.0
|
194 |
+
tornado==6.4.2
|
195 |
+
tqdm==4.67.1
|
196 |
+
traitlets==5.14.3
|
197 |
+
typer==0.15.2
|
198 |
+
typing_extensions==4.12.2
|
199 |
+
tzdata==2025.1
|
200 |
+
urllib3==2.3.0
|
201 |
+
uv==0.6.6
|
202 |
+
uvicorn==0.34.0
|
203 |
+
uvloop==0.21.0
|
204 |
+
wasabi==1.1.3
|
205 |
+
watchdog==6.0.0
|
206 |
+
watchfiles==1.0.4
|
207 |
+
wcwidth==0.2.13
|
208 |
+
weasel==0.4.1
|
209 |
+
websocket-client==1.8.0
|
210 |
+
websockets==14.2
|
211 |
+
wrapt==1.17.2
|
212 |
+
yarl==1.18.3
|
213 |
+
zipp==3.21.0
|
214 |
+
zstandard==0.23.0
|
utils.py
CHANGED
@@ -4,11 +4,34 @@ import json
|
|
4 |
import re
|
5 |
from io import BytesIO
|
6 |
import supabase
|
7 |
-
from config import SUPABASE_URL, SUPABASE_KEY, HF_API_TOKEN,
|
8 |
-
#from config import supabase
|
9 |
|
10 |
# These functions will be called in the main.py file
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def parse_resume(pdf_file):
|
13 |
"""Extracts text from a resume PDF."""
|
14 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
@@ -20,70 +43,91 @@ def extract_email(resume_text):
|
|
20 |
match = re.search(r"[\w\.-]+@[\w\.-]+", resume_text)
|
21 |
return match.group(0) if match else None
|
22 |
|
|
|
|
|
23 |
def score_candidate(resume_text, job_description):
|
24 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
payload = {"inputs": f"Resume: {resume_text}\nJob Description: {job_description}"}
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
print(f"Error: {response.status_code}, {response.text}") # Log any errors
|
31 |
-
return 0 # Return default score if API fails
|
32 |
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return
|
38 |
|
39 |
def store_in_supabase(resume_text, score, candidate_name, email, summary):
|
40 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
data = {
|
42 |
"name": candidate_name,
|
43 |
"resume": resume_text,
|
44 |
"score": score,
|
45 |
"email": email,
|
46 |
-
"summary": summary
|
47 |
}
|
48 |
|
49 |
response = supabase.table("candidates").insert(data).execute()
|
50 |
-
|
51 |
|
|
|
52 |
def generate_pdf_report(shortlisted_candidates):
|
53 |
"""Generates a PDF summary of shortlisted candidates."""
|
54 |
pdf = BytesIO()
|
55 |
doc = fitz.open()
|
|
|
56 |
for candidate in shortlisted_candidates:
|
57 |
page = doc.new_page()
|
58 |
-
|
|
|
|
|
|
|
59 |
page.insert_text(
|
60 |
(50, 50),
|
61 |
-
f"Candidate: {candidate['name']}\
|
|
|
|
|
|
|
62 |
)
|
|
|
63 |
doc.save(pdf)
|
64 |
pdf.seek(0)
|
65 |
-
return pdf
|
66 |
-
|
67 |
-
def process_resumes(uploaded_files, job_description):
|
68 |
-
"""Processes uploaded resumes and returns shortlisted candidates."""
|
69 |
-
candidates = []
|
70 |
-
for pdf_file in uploaded_files:
|
71 |
-
resume_text = parse_resume(pdf_file)
|
72 |
-
score = score_candidate(resume_text, job_description)
|
73 |
-
email = extract_email(resume_text)
|
74 |
-
|
75 |
-
# Generate summary (replace with actual summarization logic later)
|
76 |
-
summary = f"{pdf_file.name} has a score of {score} for this job."
|
77 |
-
|
78 |
-
candidates.append({
|
79 |
-
"name": pdf_file.name,
|
80 |
-
"resume": resume_text,
|
81 |
-
"score": score,
|
82 |
-
"email": email,
|
83 |
-
"summary": summary
|
84 |
-
})
|
85 |
-
|
86 |
-
# Store all details including summary in Supabase
|
87 |
-
store_in_supabase(resume_text, score, pdf_file.name, email, summary)
|
88 |
-
|
89 |
-
return sorted(candidates, key=lambda x: x["score"], reverse=True)[:5] # Return top 5 candidates
|
|
|
4 |
import re
|
5 |
from io import BytesIO
|
6 |
import supabase
|
7 |
+
from config import SUPABASE_URL, SUPABASE_KEY, HF_API_TOKEN, HF_HEADERS, supabase, HF_MODELS, query
|
|
|
8 |
|
9 |
# These functions will be called in the main.py file
|
10 |
|
11 |
+
def evaluate_resumes(uploaded_files, job_description):
|
12 |
+
"""Evaluates uploaded resumes and returns shortlisted candidates."""
|
13 |
+
candidates = []
|
14 |
+
for pdf_file in uploaded_files:
|
15 |
+
resume_text = parse_resume(pdf_file)
|
16 |
+
score = score_candidate(resume_text, job_description)
|
17 |
+
email = extract_email(resume_text)
|
18 |
+
|
19 |
+
# Generate a summary of the resume
|
20 |
+
summary = summarize_resume(resume_text)
|
21 |
+
|
22 |
+
candidates.append({
|
23 |
+
"name": pdf_file.name,
|
24 |
+
"resume": resume_text,
|
25 |
+
"score": score,
|
26 |
+
"email": email,
|
27 |
+
"summary": summary
|
28 |
+
})
|
29 |
+
|
30 |
+
# Store all details including summary in Supabase
|
31 |
+
store_in_supabase(resume_text, score, pdf_file.name, email, summary)
|
32 |
+
|
33 |
+
return sorted(candidates, key=lambda x: x["score"], reverse=True)[:5] # Return top 5 candidates
|
34 |
+
|
35 |
def parse_resume(pdf_file):
|
36 |
"""Extracts text from a resume PDF."""
|
37 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
|
|
43 |
match = re.search(r"[\w\.-]+@[\w\.-]+", resume_text)
|
44 |
return match.group(0) if match else None
|
45 |
|
46 |
+
# Test on why score 0 is returned even though resume matches key words
|
47 |
+
# score_candidate function will use HuggingFace gemini model
|
48 |
def score_candidate(resume_text, job_description):
|
49 |
+
"""
|
50 |
+
Scores the candidate's resume based on the job description using the Hugging Face API.
|
51 |
+
|
52 |
+
:param resume_text: The extracted resume text.
|
53 |
+
:param job_description: The job description for comparison.
|
54 |
+
:return: A numerical score (default 0 if scoring fails).
|
55 |
+
"""
|
56 |
payload = {"inputs": f"Resume: {resume_text}\nJob Description: {job_description}"}
|
57 |
+
response_gemma = query(payload, model="gemma") # Use Google Gemma Model for scoring
|
58 |
+
|
59 |
+
if response_gemma is None:
|
60 |
+
return 0 # Return 0 if API call fails
|
61 |
+
|
62 |
+
try:
|
63 |
+
return float(response_gemma.get("score", 0)) # Ensure score is always a float
|
64 |
+
except (TypeError, ValueError):
|
65 |
+
return 0 # Return 0 if score parsing fails
|
66 |
+
|
67 |
+
# summarize_resume function will use HuggingFace BART model
|
68 |
+
def summarize_resume(resume_text):
|
69 |
+
"""
|
70 |
+
Summarizes the resume using Facebook's BART-Large-CNN model.
|
71 |
+
|
72 |
+
:param resume_text: The extracted resume text.
|
73 |
+
:return: A summarized version of the resume or an error message.
|
74 |
+
"""
|
75 |
+
payload = {"inputs": resume_text}
|
76 |
+
response_bart = query(payload, model="bart")
|
77 |
|
78 |
+
if response_bart is None:
|
79 |
+
return "Summary could not be generated." # Handle API failures gracefully
|
|
|
|
|
80 |
|
81 |
try:
|
82 |
+
summary = response_bart[0].get("summary_text", "Summary not available.")
|
83 |
+
return summary
|
84 |
+
except (IndexError, KeyError):
|
85 |
+
return "Summary not available."
|
86 |
|
87 |
def store_in_supabase(resume_text, score, candidate_name, email, summary):
|
88 |
+
"""
|
89 |
+
Stores resume data in Supabase.
|
90 |
+
|
91 |
+
:param resume_text: The extracted resume text.
|
92 |
+
:param score: The candidate's score (must be a valid number).
|
93 |
+
:param candidate_name: The candidate's name.
|
94 |
+
:param email: Candidate's email address.
|
95 |
+
:param summary: A summarized version of the resume.
|
96 |
+
"""
|
97 |
+
if score is None:
|
98 |
+
score = 0 # Ensure score is never NULL
|
99 |
+
|
100 |
data = {
|
101 |
"name": candidate_name,
|
102 |
"resume": resume_text,
|
103 |
"score": score,
|
104 |
"email": email,
|
105 |
+
"summary": summary
|
106 |
}
|
107 |
|
108 |
response = supabase.table("candidates").insert(data).execute()
|
109 |
+
return response
|
110 |
|
111 |
+
# Test with 10 resumes, if they will be shortlisted
|
112 |
def generate_pdf_report(shortlisted_candidates):
|
113 |
"""Generates a PDF summary of shortlisted candidates."""
|
114 |
pdf = BytesIO()
|
115 |
doc = fitz.open()
|
116 |
+
|
117 |
for candidate in shortlisted_candidates:
|
118 |
page = doc.new_page()
|
119 |
+
|
120 |
+
# Use the stored summary, or provide a fallback
|
121 |
+
summary = candidate.get("summary", "No summary available")
|
122 |
+
|
123 |
page.insert_text(
|
124 |
(50, 50),
|
125 |
+
f"Candidate: {candidate['name']}\n"
|
126 |
+
f"Email: {candidate['email']}\n"
|
127 |
+
f"Score: {candidate['score']}\n"
|
128 |
+
f"Summary: {summary}"
|
129 |
)
|
130 |
+
|
131 |
doc.save(pdf)
|
132 |
pdf.seek(0)
|
133 |
+
return pdf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|