File size: 7,955 Bytes
2854e2c
 
 
 
56325dc
2854e2c
 
 
56325dc
8f8f414
2854e2c
 
 
 
 
8f8f414
 
2854e2c
 
949011b
 
2854e2c
 
 
 
 
 
 
 
 
949011b
 
 
 
19ea0c5
2854e2c
7cf7e72
 
 
 
 
8f8f414
2854e2c
 
 
8f8f414
2854e2c
 
 
 
8f8f414
edfcf73
 
 
 
 
 
8f8f414
 
2854e2c
8f8f414
edfcf73
 
 
 
 
 
 
 
2854e2c
 
 
8f8f414
 
 
 
2854e2c
 
 
949011b
 
2854e2c
8f8f414
 
2854e2c
 
 
 
8f8f414
 
 
2854e2c
8f8f414
2854e2c
8f8f414
 
 
2854e2c
 
 
 
 
8f8f414
2854e2c
edfcf73
2854e2c
8f8f414
 
2854e2c
8f8f414
2854e2c
 
 
8f8f414
 
2854e2c
 
 
 
8f8f414
 
2854e2c
 
 
 
8f8f414
2854e2c
 
 
 
edfcf73
2854e2c
56325dc
 
 
edfcf73
2854e2c
edfcf73
4f034fb
2854e2c
 
 
 
 
 
 
8f771eb
 
2854e2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edfcf73
 
 
 
2854e2c
edfcf73
4f034fb
1131989
4f034fb
8f8f414
1131989
19ea0c5
56325dc
2854e2c
 
1131989
2854e2c
1131989
2854e2c
1131989
8f8f414
2854e2c
 
56325dc
19ea0c5
edfcf73
2854e2c
edfcf73
56325dc
19ea0c5
 
2854e2c
19ea0c5
edfcf73
56325dc
19ea0c5
2854e2c
56325dc
2854e2c
 
 
 
 
56325dc
 
edfcf73
56325dc
 
2854e2c
edfcf73
 
1131989
2854e2c
19ea0c5
2854e2c
edfcf73
2854e2c
 
 
 
1131989
56325dc
 
949011b
 
2854e2c
949011b
 
2854e2c
949011b
 
 
 
2854e2c
949011b
 
2854e2c
 
 
949011b
 
 
 
2854e2c
949011b
 
 
2854e2c
 
 
 
 
 
949011b
 
2854e2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# === Imports ===

# Standard Library
import os
import re
import json
import random
import subprocess
from io import BytesIO
from collections import Counter

# Third-Party Libraries
import fitz  # PyMuPDF
import requests
import spacy
import streamlit as st
from fuzzywuzzy import fuzz
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import TfidfVectorizer
from huggingface_hub import InferenceClient

# Local Configuration
from config import (
    SUPABASE_URL, SUPABASE_KEY, HF_API_TOKEN, HF_HEADERS,
    supabase, HF_MODELS, query, embedding_model
)

# === Initialization ===

# Hugging Face inference client for Gemma model
client = InferenceClient(
    model="google/gemma-1.1-7b-it",
    token=HF_API_TOKEN
)

# Load or download spaCy model
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")


# === Core Resume Evaluation ===

def evaluate_resumes(uploaded_files, job_description, min_keyword_match=2):
    """
    Evaluate uploaded resumes and return shortlisted candidates with scores and summaries.
    """
    candidates, removed_candidates = [], []

    for pdf_file in uploaded_files:
        resume_text = parse_resume(pdf_file)
        score = score_candidate(resume_text, job_description)
        email = extract_email(resume_text)
        summary = summarize_resume(resume_text)

        if score < 0.20:
            removed_candidates.append({"name": pdf_file.name, "reason": "Low confidence score (< 0.20)"})
            continue

        candidates.append({
            "name": pdf_file.name,
            "resume": resume_text,
            "score": score,
            "email": email,
            "summary": summary
        })

    filtered_candidates, keyword_removed = filter_resumes_by_keywords(
        candidates, job_description, min_keyword_match
    )

    for name in keyword_removed:
        removed_candidates.append({"name": name, "reason": "Insufficient keyword matches"})

    shortlisted = sorted(filtered_candidates, key=lambda x: x["score"], reverse=True)[:5]

    return shortlisted if isinstance(shortlisted, list) else [], removed_candidates


# === Keyword & Scoring Functions ===

def extract_keywords(text, top_n=10):
    """
    Extracts top keywords from the job description using spaCy and TF-IDF.
    """
    if not text.strip():
        return []

    doc = nlp(text.lower())
    keywords = [t.text for t in doc if t.pos_ in {"NOUN", "PROPN", "VERB", "ADJ"} and not t.is_stop]

    if not keywords:
        return []

    try:
        tfidf = TfidfVectorizer(stop_words="english", ngram_range=(1, 2))
        matrix = tfidf.fit_transform([" ".join(keywords)])
        scores = matrix.toarray()[0]
        features = tfidf.get_feature_names_out()
        ranked = sorted(zip(features, scores), key=lambda x: x[1], reverse=True)

        return [kw for kw, _ in ranked[:top_n]]

    except ValueError:
        return []


def filter_resumes_by_keywords(resumes, job_description, min_keyword_match=2):
    """
    Filters resumes by keyword match using fuzzy logic.
    """
    job_keywords = extract_keywords(job_description)
    if len(job_keywords) < min_keyword_match:
        st.warning("⚠️ Job description too short or missing for keyword filtering.")
        return resumes, []

    filtered, removed = [], []

    for resume in resumes:
        matched = {
            keyword for keyword in job_keywords
            if any(fuzz.partial_ratio(keyword, word) > 80 for word in resume["resume"].lower().split())
        }

        if len(matched) >= min_keyword_match:
            filtered.append(resume)
        else:
            removed.append(resume["name"])

    return filtered, removed


def score_candidate(resume_text, job_description):
    """
    Computes cosine similarity between resume and job description using embeddings.
    """
    try:
        resume_vec = embedding_model.encode(resume_text, convert_to_tensor=True)
        job_vec = embedding_model.encode(job_description, convert_to_tensor=True)
        score = util.pytorch_cos_sim(resume_vec, job_vec).item()
        return round(score, 4)
    except Exception as e:
        print(f"Error computing similarity: {e}")
        return 0


# === Text Extraction & Summarization ===

def parse_resume(pdf_file):
    """
    Extracts raw text from a PDF file.
    """
    doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
    return "\n".join([page.get_text("text") for page in doc])


def extract_email(resume_text):
    """
    Extracts the first valid email found in text.
    """
    match = re.search(r"[\w\.-]+@[\w\.-]+", resume_text)
    return match.group(0) if match else None


def summarize_resume(resume_text):
    """
    Generates a summary of the resume using Hugging Face BART.
    """
    payload = {"inputs": f"Summarize this resume: {resume_text}"}
    response = query(payload, model="bart")

    if not response:
        return "Summary unavailable due to API issues."

    try:
        response = response[0] if isinstance(response, list) else response
        summary = response.get("generated_text") or response.get("summary_text")

        return summary.strip() if summary else "Summary unavailable."
    except Exception as e:
        print(f"Error parsing summary: {e}")
        return "Summary unavailable."


# === Data Storage & Reporting ===

def store_in_supabase(resume_text, score, candidate_name, email, summary):
    """
    Saves candidate data to the Supabase table.
    """
    data = {
        "name": candidate_name,
        "resume": resume_text,
        "score": score or 0,
        "email": email,
        "summary": summary
    }

    return supabase.table("candidates").insert(data).execute()


def generate_pdf_report(shortlisted_candidates, questions=None):
    """
    Creates a PDF report summarizing top candidates and interview questions.
    """
    pdf = BytesIO()
    doc = fitz.open()

    for candidate in shortlisted_candidates:
        page = doc.new_page()
        info = (
            f"Candidate: {candidate['name']}\n"
            f"Email: {candidate['email']}\n"
            f"Score: {candidate['score']}\n\n"
            f"Summary:\n{candidate.get('summary', 'No summary available')}"
        )
        page.insert_textbox(fitz.Rect(50, 50, 550, 750), info, fontsize=11, fontname="helv", align=0)

    if questions:
        q_page = doc.new_page()
        q_text = "Suggested Interview Questions:\n\n" + "\n".join(questions)
        q_page.insert_textbox(fitz.Rect(50, 50, 550, 750), q_text, fontsize=11, fontname="helv", align=0)

    doc.save(pdf)
    pdf.seek(0)
    return pdf


def generate_interview_questions_from_summaries(candidates):
    """
    Generates 5 interview questions based on combined summaries using Gemma model.
    """
    if not isinstance(candidates, list):
        raise TypeError("Expected a list of candidate dictionaries.")

    summaries = " ".join(c.get("summary", "") for c in candidates)

    prompt = (
        "Based on the following summary of this top candidate for a job role, "
        "generate 5 thoughtful, general interview questions that would help a recruiter assess their fit:\n"
        f"{summaries}"
    )

    try:
        response = client.chat_completion(
            messages=[{"role": "user", "content": prompt}],
            temperature=0.7,
            max_tokens=500
        )
        result = response.choices[0].message.content

        questions = [re.sub(r"^(?:\*\*)?(Q?\d+[\.\)\-]?\s*)+(?:\*\*)?", "", q.strip())
                     for q in result.split("\n") if q.strip()]

        return [f"Q{i+1}. {q}" for i, q in enumerate(questions[:5])] or ["⚠️ No questions generated."]
    except Exception as e:
        print(f"❌ Error generating interview questions: {e}")
        return ["⚠️ Error generating questions."]