Spaces:
Running
Running
File size: 2,622 Bytes
07f408f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, nms
import comfy.model_management as model_management
import cv2
class Scribble_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def execute(self, image, resolution=512, **kwargs):
from custom_controlnet_aux.scribble import ScribbleDetector
model = ScribbleDetector()
return (common_annotator_call(model, image, resolution=resolution), )
class Scribble_XDoG_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
threshold=INPUT.INT(default=32, min=1, max=64),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def execute(self, image, threshold=32, resolution=512, **kwargs):
from custom_controlnet_aux.scribble import ScribbleXDog_Detector
model = ScribbleXDog_Detector()
return (common_annotator_call(model, image, resolution=resolution, thr_a=threshold), )
class Scribble_PiDiNet_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
safe=(["enable", "disable"],),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def execute(self, image, safe="enable", resolution=512):
def model(img, **kwargs):
from custom_controlnet_aux.pidi import PidiNetDetector
pidinet = PidiNetDetector.from_pretrained().to(model_management.get_torch_device())
result = pidinet(img, scribble=True, **kwargs)
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result
return (common_annotator_call(model, image, resolution=resolution, safe=safe=="enable"),)
NODE_CLASS_MAPPINGS = {
"ScribblePreprocessor": Scribble_Preprocessor,
"Scribble_XDoG_Preprocessor": Scribble_XDoG_Preprocessor,
"Scribble_PiDiNet_Preprocessor": Scribble_PiDiNet_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"ScribblePreprocessor": "Scribble Lines",
"Scribble_XDoG_Preprocessor": "Scribble XDoG Lines",
"Scribble_PiDiNet_Preprocessor": "Scribble PiDiNet Lines"
}
|