gartajackhats1985 commited on
Commit
07f408f
1 Parent(s): 583c1c7

Upload 1830 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ComfyUI-Advanced-ControlNet/.github/workflows/publish.yml +19 -19
  2. ComfyUI-Advanced-ControlNet/.gitignore +160 -160
  3. ComfyUI-Advanced-ControlNet/LICENSE +674 -674
  4. ComfyUI-Advanced-ControlNet/README.md +202 -202
  5. ComfyUI-Advanced-ControlNet/__init__.py +6 -6
  6. ComfyUI-Advanced-ControlNet/__pycache__/__init__.cpython-310.pyc +0 -0
  7. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control.cpython-310.pyc +0 -0
  8. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_lllite.cpython-310.pyc +0 -0
  9. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_plusplus.cpython-310.pyc +0 -0
  10. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_reference.cpython-310.pyc +0 -0
  11. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_sparsectrl.cpython-310.pyc +0 -0
  12. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_svd.cpython-310.pyc +0 -0
  13. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/documentation.cpython-310.pyc +0 -0
  14. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/logger.cpython-310.pyc +0 -0
  15. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes.cpython-310.pyc +0 -0
  16. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_deprecated.cpython-310.pyc +0 -0
  17. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_keyframes.cpython-310.pyc +0 -0
  18. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_loosecontrol.cpython-310.pyc +0 -0
  19. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_plusplus.cpython-310.pyc +0 -0
  20. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_reference.cpython-310.pyc +0 -0
  21. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_sparsectrl.cpython-310.pyc +0 -0
  22. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_weight.cpython-310.pyc +0 -0
  23. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/sampling.cpython-310.pyc +0 -0
  24. ComfyUI-Advanced-ControlNet/adv_control/__pycache__/utils.cpython-310.pyc +0 -0
  25. ComfyUI-Advanced-ControlNet/adv_control/control.py +918 -918
  26. ComfyUI-Advanced-ControlNet/adv_control/control_lllite.py +462 -462
  27. ComfyUI-Advanced-ControlNet/adv_control/control_plusplus.py +485 -485
  28. ComfyUI-Advanced-ControlNet/adv_control/control_reference.py +0 -0
  29. ComfyUI-Advanced-ControlNet/adv_control/control_sparsectrl.py +1078 -1078
  30. ComfyUI-Advanced-ControlNet/adv_control/control_svd.py +518 -518
  31. ComfyUI-Advanced-ControlNet/adv_control/documentation.py +47 -47
  32. ComfyUI-Advanced-ControlNet/adv_control/logger.py +36 -36
  33. ComfyUI-Advanced-ControlNet/adv_control/nodes.py +331 -331
  34. ComfyUI-Advanced-ControlNet/adv_control/nodes_deprecated.py +251 -251
  35. ComfyUI-Advanced-ControlNet/adv_control/nodes_keyframes.py +468 -468
  36. ComfyUI-Advanced-ControlNet/adv_control/nodes_loosecontrol.py +67 -67
  37. ComfyUI-Advanced-ControlNet/adv_control/nodes_plusplus.py +85 -85
  38. ComfyUI-Advanced-ControlNet/adv_control/nodes_reference.py +90 -90
  39. ComfyUI-Advanced-ControlNet/adv_control/nodes_sparsectrl.py +186 -186
  40. ComfyUI-Advanced-ControlNet/adv_control/nodes_weight.py +285 -285
  41. ComfyUI-Advanced-ControlNet/adv_control/sampling.py +216 -216
  42. ComfyUI-Advanced-ControlNet/adv_control/utils.py +981 -981
  43. ComfyUI-Advanced-ControlNet/pyproject.toml +15 -15
  44. ComfyUI-Advanced-ControlNet/web/js/autosize.js +53 -53
  45. ComfyUI-Advanced-ControlNet/web/js/documentation.js +293 -293
  46. ComfyUI-Manager/.cache/.cache_directory +0 -0
  47. ComfyUI-Manager/.cache/1514988643_custom-node-list.json +0 -0
  48. ComfyUI-Manager/.cache/1742899825_extension-node-map.json +0 -0
  49. ComfyUI-Manager/.cache/2259715867_alter-list.json +224 -0
  50. ComfyUI-Manager/.cache/4245046894_model-list.json +0 -0
ComfyUI-Advanced-ControlNet/.github/workflows/publish.yml CHANGED
@@ -1,20 +1,20 @@
1
- name: Publish to Comfy registry
2
- on:
3
- workflow_dispatch:
4
- push:
5
- branches:
6
- - main
7
- paths:
8
- - "pyproject.toml"
9
-
10
- jobs:
11
- publish-node:
12
- name: Publish Custom Node to registry
13
- runs-on: ubuntu-latest
14
- steps:
15
- - name: Check out code
16
- uses: actions/checkout@v4
17
- - name: Publish Custom Node
18
- uses: Comfy-Org/publish-node-action@main
19
- with:
20
  personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }} ## Add your own personal access token to your Github Repository secrets and reference it here.
 
1
+ name: Publish to Comfy registry
2
+ on:
3
+ workflow_dispatch:
4
+ push:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "pyproject.toml"
9
+
10
+ jobs:
11
+ publish-node:
12
+ name: Publish Custom Node to registry
13
+ runs-on: ubuntu-latest
14
+ steps:
15
+ - name: Check out code
16
+ uses: actions/checkout@v4
17
+ - name: Publish Custom Node
18
+ uses: Comfy-Org/publish-node-action@main
19
+ with:
20
  personal_access_token: ${{ secrets.REGISTRY_ACCESS_TOKEN }} ## Add your own personal access token to your Github Repository secrets and reference it here.
ComfyUI-Advanced-ControlNet/.gitignore CHANGED
@@ -1,160 +1,160 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- share/python-wheels/
24
- *.egg-info/
25
- .installed.cfg
26
- *.egg
27
- MANIFEST
28
-
29
- # PyInstaller
30
- # Usually these files are written by a python script from a template
31
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
- *.manifest
33
- *.spec
34
-
35
- # Installer logs
36
- pip-log.txt
37
- pip-delete-this-directory.txt
38
-
39
- # Unit test / coverage reports
40
- htmlcov/
41
- .tox/
42
- .nox/
43
- .coverage
44
- .coverage.*
45
- .cache
46
- nosetests.xml
47
- coverage.xml
48
- *.cover
49
- *.py,cover
50
- .hypothesis/
51
- .pytest_cache/
52
- cover/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- .pybuilder/
76
- target/
77
-
78
- # Jupyter Notebook
79
- .ipynb_checkpoints
80
-
81
- # IPython
82
- profile_default/
83
- ipython_config.py
84
-
85
- # pyenv
86
- # For a library or package, you might want to ignore these files since the code is
87
- # intended to run in multiple environments; otherwise, check them in:
88
- # .python-version
89
-
90
- # pipenv
91
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
- # install all needed dependencies.
95
- #Pipfile.lock
96
-
97
- # poetry
98
- # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
- # This is especially recommended for binary packages to ensure reproducibility, and is more
100
- # commonly ignored for libraries.
101
- # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
- #poetry.lock
103
-
104
- # pdm
105
- # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
- #pdm.lock
107
- # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
- # in version control.
109
- # https://pdm.fming.dev/#use-with-ide
110
- .pdm.toml
111
-
112
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
- __pypackages__/
114
-
115
- # Celery stuff
116
- celerybeat-schedule
117
- celerybeat.pid
118
-
119
- # SageMath parsed files
120
- *.sage.py
121
-
122
- # Environments
123
- .env
124
- .venv
125
- env/
126
- venv/
127
- ENV/
128
- env.bak/
129
- venv.bak/
130
-
131
- # Spyder project settings
132
- .spyderproject
133
- .spyproject
134
-
135
- # Rope project settings
136
- .ropeproject
137
-
138
- # mkdocs documentation
139
- /site
140
-
141
- # mypy
142
- .mypy_cache/
143
- .dmypy.json
144
- dmypy.json
145
-
146
- # Pyre type checker
147
- .pyre/
148
-
149
- # pytype static type analyzer
150
- .pytype/
151
-
152
- # Cython debug symbols
153
- cython_debug/
154
-
155
- # PyCharm
156
- # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
- # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
- # and can be added to the global gitignore or merged into this file. For a more nuclear
159
- # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
- #.idea/
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
ComfyUI-Advanced-ControlNet/LICENSE CHANGED
@@ -1,674 +1,674 @@
1
- GNU GENERAL PUBLIC LICENSE
2
- Version 3, 29 June 2007
3
-
4
- Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
- Everyone is permitted to copy and distribute verbatim copies
6
- of this license document, but changing it is not allowed.
7
-
8
- Preamble
9
-
10
- The GNU General Public License is a free, copyleft license for
11
- software and other kinds of works.
12
-
13
- The licenses for most software and other practical works are designed
14
- to take away your freedom to share and change the works. By contrast,
15
- the GNU General Public License is intended to guarantee your freedom to
16
- share and change all versions of a program--to make sure it remains free
17
- software for all its users. We, the Free Software Foundation, use the
18
- GNU General Public License for most of our software; it applies also to
19
- any other work released this way by its authors. You can apply it to
20
- your programs, too.
21
-
22
- When we speak of free software, we are referring to freedom, not
23
- price. Our General Public Licenses are designed to make sure that you
24
- have the freedom to distribute copies of free software (and charge for
25
- them if you wish), that you receive source code or can get it if you
26
- want it, that you can change the software or use pieces of it in new
27
- free programs, and that you know you can do these things.
28
-
29
- To protect your rights, we need to prevent others from denying you
30
- these rights or asking you to surrender the rights. Therefore, you have
31
- certain responsibilities if you distribute copies of the software, or if
32
- you modify it: responsibilities to respect the freedom of others.
33
-
34
- For example, if you distribute copies of such a program, whether
35
- gratis or for a fee, you must pass on to the recipients the same
36
- freedoms that you received. You must make sure that they, too, receive
37
- or can get the source code. And you must show them these terms so they
38
- know their rights.
39
-
40
- Developers that use the GNU GPL protect your rights with two steps:
41
- (1) assert copyright on the software, and (2) offer you this License
42
- giving you legal permission to copy, distribute and/or modify it.
43
-
44
- For the developers' and authors' protection, the GPL clearly explains
45
- that there is no warranty for this free software. For both users' and
46
- authors' sake, the GPL requires that modified versions be marked as
47
- changed, so that their problems will not be attributed erroneously to
48
- authors of previous versions.
49
-
50
- Some devices are designed to deny users access to install or run
51
- modified versions of the software inside them, although the manufacturer
52
- can do so. This is fundamentally incompatible with the aim of
53
- protecting users' freedom to change the software. The systematic
54
- pattern of such abuse occurs in the area of products for individuals to
55
- use, which is precisely where it is most unacceptable. Therefore, we
56
- have designed this version of the GPL to prohibit the practice for those
57
- products. If such problems arise substantially in other domains, we
58
- stand ready to extend this provision to those domains in future versions
59
- of the GPL, as needed to protect the freedom of users.
60
-
61
- Finally, every program is threatened constantly by software patents.
62
- States should not allow patents to restrict development and use of
63
- software on general-purpose computers, but in those that do, we wish to
64
- avoid the special danger that patents applied to a free program could
65
- make it effectively proprietary. To prevent this, the GPL assures that
66
- patents cannot be used to render the program non-free.
67
-
68
- The precise terms and conditions for copying, distribution and
69
- modification follow.
70
-
71
- TERMS AND CONDITIONS
72
-
73
- 0. Definitions.
74
-
75
- "This License" refers to version 3 of the GNU General Public License.
76
-
77
- "Copyright" also means copyright-like laws that apply to other kinds of
78
- works, such as semiconductor masks.
79
-
80
- "The Program" refers to any copyrightable work licensed under this
81
- License. Each licensee is addressed as "you". "Licensees" and
82
- "recipients" may be individuals or organizations.
83
-
84
- To "modify" a work means to copy from or adapt all or part of the work
85
- in a fashion requiring copyright permission, other than the making of an
86
- exact copy. The resulting work is called a "modified version" of the
87
- earlier work or a work "based on" the earlier work.
88
-
89
- A "covered work" means either the unmodified Program or a work based
90
- on the Program.
91
-
92
- To "propagate" a work means to do anything with it that, without
93
- permission, would make you directly or secondarily liable for
94
- infringement under applicable copyright law, except executing it on a
95
- computer or modifying a private copy. Propagation includes copying,
96
- distribution (with or without modification), making available to the
97
- public, and in some countries other activities as well.
98
-
99
- To "convey" a work means any kind of propagation that enables other
100
- parties to make or receive copies. Mere interaction with a user through
101
- a computer network, with no transfer of a copy, is not conveying.
102
-
103
- An interactive user interface displays "Appropriate Legal Notices"
104
- to the extent that it includes a convenient and prominently visible
105
- feature that (1) displays an appropriate copyright notice, and (2)
106
- tells the user that there is no warranty for the work (except to the
107
- extent that warranties are provided), that licensees may convey the
108
- work under this License, and how to view a copy of this License. If
109
- the interface presents a list of user commands or options, such as a
110
- menu, a prominent item in the list meets this criterion.
111
-
112
- 1. Source Code.
113
-
114
- The "source code" for a work means the preferred form of the work
115
- for making modifications to it. "Object code" means any non-source
116
- form of a work.
117
-
118
- A "Standard Interface" means an interface that either is an official
119
- standard defined by a recognized standards body, or, in the case of
120
- interfaces specified for a particular programming language, one that
121
- is widely used among developers working in that language.
122
-
123
- The "System Libraries" of an executable work include anything, other
124
- than the work as a whole, that (a) is included in the normal form of
125
- packaging a Major Component, but which is not part of that Major
126
- Component, and (b) serves only to enable use of the work with that
127
- Major Component, or to implement a Standard Interface for which an
128
- implementation is available to the public in source code form. A
129
- "Major Component", in this context, means a major essential component
130
- (kernel, window system, and so on) of the specific operating system
131
- (if any) on which the executable work runs, or a compiler used to
132
- produce the work, or an object code interpreter used to run it.
133
-
134
- The "Corresponding Source" for a work in object code form means all
135
- the source code needed to generate, install, and (for an executable
136
- work) run the object code and to modify the work, including scripts to
137
- control those activities. However, it does not include the work's
138
- System Libraries, or general-purpose tools or generally available free
139
- programs which are used unmodified in performing those activities but
140
- which are not part of the work. For example, Corresponding Source
141
- includes interface definition files associated with source files for
142
- the work, and the source code for shared libraries and dynamically
143
- linked subprograms that the work is specifically designed to require,
144
- such as by intimate data communication or control flow between those
145
- subprograms and other parts of the work.
146
-
147
- The Corresponding Source need not include anything that users
148
- can regenerate automatically from other parts of the Corresponding
149
- Source.
150
-
151
- The Corresponding Source for a work in source code form is that
152
- same work.
153
-
154
- 2. Basic Permissions.
155
-
156
- All rights granted under this License are granted for the term of
157
- copyright on the Program, and are irrevocable provided the stated
158
- conditions are met. This License explicitly affirms your unlimited
159
- permission to run the unmodified Program. The output from running a
160
- covered work is covered by this License only if the output, given its
161
- content, constitutes a covered work. This License acknowledges your
162
- rights of fair use or other equivalent, as provided by copyright law.
163
-
164
- You may make, run and propagate covered works that you do not
165
- convey, without conditions so long as your license otherwise remains
166
- in force. You may convey covered works to others for the sole purpose
167
- of having them make modifications exclusively for you, or provide you
168
- with facilities for running those works, provided that you comply with
169
- the terms of this License in conveying all material for which you do
170
- not control copyright. Those thus making or running the covered works
171
- for you must do so exclusively on your behalf, under your direction
172
- and control, on terms that prohibit them from making any copies of
173
- your copyrighted material outside their relationship with you.
174
-
175
- Conveying under any other circumstances is permitted solely under
176
- the conditions stated below. Sublicensing is not allowed; section 10
177
- makes it unnecessary.
178
-
179
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
-
181
- No covered work shall be deemed part of an effective technological
182
- measure under any applicable law fulfilling obligations under article
183
- 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
- similar laws prohibiting or restricting circumvention of such
185
- measures.
186
-
187
- When you convey a covered work, you waive any legal power to forbid
188
- circumvention of technological measures to the extent such circumvention
189
- is effected by exercising rights under this License with respect to
190
- the covered work, and you disclaim any intention to limit operation or
191
- modification of the work as a means of enforcing, against the work's
192
- users, your or third parties' legal rights to forbid circumvention of
193
- technological measures.
194
-
195
- 4. Conveying Verbatim Copies.
196
-
197
- You may convey verbatim copies of the Program's source code as you
198
- receive it, in any medium, provided that you conspicuously and
199
- appropriately publish on each copy an appropriate copyright notice;
200
- keep intact all notices stating that this License and any
201
- non-permissive terms added in accord with section 7 apply to the code;
202
- keep intact all notices of the absence of any warranty; and give all
203
- recipients a copy of this License along with the Program.
204
-
205
- You may charge any price or no price for each copy that you convey,
206
- and you may offer support or warranty protection for a fee.
207
-
208
- 5. Conveying Modified Source Versions.
209
-
210
- You may convey a work based on the Program, or the modifications to
211
- produce it from the Program, in the form of source code under the
212
- terms of section 4, provided that you also meet all of these conditions:
213
-
214
- a) The work must carry prominent notices stating that you modified
215
- it, and giving a relevant date.
216
-
217
- b) The work must carry prominent notices stating that it is
218
- released under this License and any conditions added under section
219
- 7. This requirement modifies the requirement in section 4 to
220
- "keep intact all notices".
221
-
222
- c) You must license the entire work, as a whole, under this
223
- License to anyone who comes into possession of a copy. This
224
- License will therefore apply, along with any applicable section 7
225
- additional terms, to the whole of the work, and all its parts,
226
- regardless of how they are packaged. This License gives no
227
- permission to license the work in any other way, but it does not
228
- invalidate such permission if you have separately received it.
229
-
230
- d) If the work has interactive user interfaces, each must display
231
- Appropriate Legal Notices; however, if the Program has interactive
232
- interfaces that do not display Appropriate Legal Notices, your
233
- work need not make them do so.
234
-
235
- A compilation of a covered work with other separate and independent
236
- works, which are not by their nature extensions of the covered work,
237
- and which are not combined with it such as to form a larger program,
238
- in or on a volume of a storage or distribution medium, is called an
239
- "aggregate" if the compilation and its resulting copyright are not
240
- used to limit the access or legal rights of the compilation's users
241
- beyond what the individual works permit. Inclusion of a covered work
242
- in an aggregate does not cause this License to apply to the other
243
- parts of the aggregate.
244
-
245
- 6. Conveying Non-Source Forms.
246
-
247
- You may convey a covered work in object code form under the terms
248
- of sections 4 and 5, provided that you also convey the
249
- machine-readable Corresponding Source under the terms of this License,
250
- in one of these ways:
251
-
252
- a) Convey the object code in, or embodied in, a physical product
253
- (including a physical distribution medium), accompanied by the
254
- Corresponding Source fixed on a durable physical medium
255
- customarily used for software interchange.
256
-
257
- b) Convey the object code in, or embodied in, a physical product
258
- (including a physical distribution medium), accompanied by a
259
- written offer, valid for at least three years and valid for as
260
- long as you offer spare parts or customer support for that product
261
- model, to give anyone who possesses the object code either (1) a
262
- copy of the Corresponding Source for all the software in the
263
- product that is covered by this License, on a durable physical
264
- medium customarily used for software interchange, for a price no
265
- more than your reasonable cost of physically performing this
266
- conveying of source, or (2) access to copy the
267
- Corresponding Source from a network server at no charge.
268
-
269
- c) Convey individual copies of the object code with a copy of the
270
- written offer to provide the Corresponding Source. This
271
- alternative is allowed only occasionally and noncommercially, and
272
- only if you received the object code with such an offer, in accord
273
- with subsection 6b.
274
-
275
- d) Convey the object code by offering access from a designated
276
- place (gratis or for a charge), and offer equivalent access to the
277
- Corresponding Source in the same way through the same place at no
278
- further charge. You need not require recipients to copy the
279
- Corresponding Source along with the object code. If the place to
280
- copy the object code is a network server, the Corresponding Source
281
- may be on a different server (operated by you or a third party)
282
- that supports equivalent copying facilities, provided you maintain
283
- clear directions next to the object code saying where to find the
284
- Corresponding Source. Regardless of what server hosts the
285
- Corresponding Source, you remain obligated to ensure that it is
286
- available for as long as needed to satisfy these requirements.
287
-
288
- e) Convey the object code using peer-to-peer transmission, provided
289
- you inform other peers where the object code and Corresponding
290
- Source of the work are being offered to the general public at no
291
- charge under subsection 6d.
292
-
293
- A separable portion of the object code, whose source code is excluded
294
- from the Corresponding Source as a System Library, need not be
295
- included in conveying the object code work.
296
-
297
- A "User Product" is either (1) a "consumer product", which means any
298
- tangible personal property which is normally used for personal, family,
299
- or household purposes, or (2) anything designed or sold for incorporation
300
- into a dwelling. In determining whether a product is a consumer product,
301
- doubtful cases shall be resolved in favor of coverage. For a particular
302
- product received by a particular user, "normally used" refers to a
303
- typical or common use of that class of product, regardless of the status
304
- of the particular user or of the way in which the particular user
305
- actually uses, or expects or is expected to use, the product. A product
306
- is a consumer product regardless of whether the product has substantial
307
- commercial, industrial or non-consumer uses, unless such uses represent
308
- the only significant mode of use of the product.
309
-
310
- "Installation Information" for a User Product means any methods,
311
- procedures, authorization keys, or other information required to install
312
- and execute modified versions of a covered work in that User Product from
313
- a modified version of its Corresponding Source. The information must
314
- suffice to ensure that the continued functioning of the modified object
315
- code is in no case prevented or interfered with solely because
316
- modification has been made.
317
-
318
- If you convey an object code work under this section in, or with, or
319
- specifically for use in, a User Product, and the conveying occurs as
320
- part of a transaction in which the right of possession and use of the
321
- User Product is transferred to the recipient in perpetuity or for a
322
- fixed term (regardless of how the transaction is characterized), the
323
- Corresponding Source conveyed under this section must be accompanied
324
- by the Installation Information. But this requirement does not apply
325
- if neither you nor any third party retains the ability to install
326
- modified object code on the User Product (for example, the work has
327
- been installed in ROM).
328
-
329
- The requirement to provide Installation Information does not include a
330
- requirement to continue to provide support service, warranty, or updates
331
- for a work that has been modified or installed by the recipient, or for
332
- the User Product in which it has been modified or installed. Access to a
333
- network may be denied when the modification itself materially and
334
- adversely affects the operation of the network or violates the rules and
335
- protocols for communication across the network.
336
-
337
- Corresponding Source conveyed, and Installation Information provided,
338
- in accord with this section must be in a format that is publicly
339
- documented (and with an implementation available to the public in
340
- source code form), and must require no special password or key for
341
- unpacking, reading or copying.
342
-
343
- 7. Additional Terms.
344
-
345
- "Additional permissions" are terms that supplement the terms of this
346
- License by making exceptions from one or more of its conditions.
347
- Additional permissions that are applicable to the entire Program shall
348
- be treated as though they were included in this License, to the extent
349
- that they are valid under applicable law. If additional permissions
350
- apply only to part of the Program, that part may be used separately
351
- under those permissions, but the entire Program remains governed by
352
- this License without regard to the additional permissions.
353
-
354
- When you convey a copy of a covered work, you may at your option
355
- remove any additional permissions from that copy, or from any part of
356
- it. (Additional permissions may be written to require their own
357
- removal in certain cases when you modify the work.) You may place
358
- additional permissions on material, added by you to a covered work,
359
- for which you have or can give appropriate copyright permission.
360
-
361
- Notwithstanding any other provision of this License, for material you
362
- add to a covered work, you may (if authorized by the copyright holders of
363
- that material) supplement the terms of this License with terms:
364
-
365
- a) Disclaiming warranty or limiting liability differently from the
366
- terms of sections 15 and 16 of this License; or
367
-
368
- b) Requiring preservation of specified reasonable legal notices or
369
- author attributions in that material or in the Appropriate Legal
370
- Notices displayed by works containing it; or
371
-
372
- c) Prohibiting misrepresentation of the origin of that material, or
373
- requiring that modified versions of such material be marked in
374
- reasonable ways as different from the original version; or
375
-
376
- d) Limiting the use for publicity purposes of names of licensors or
377
- authors of the material; or
378
-
379
- e) Declining to grant rights under trademark law for use of some
380
- trade names, trademarks, or service marks; or
381
-
382
- f) Requiring indemnification of licensors and authors of that
383
- material by anyone who conveys the material (or modified versions of
384
- it) with contractual assumptions of liability to the recipient, for
385
- any liability that these contractual assumptions directly impose on
386
- those licensors and authors.
387
-
388
- All other non-permissive additional terms are considered "further
389
- restrictions" within the meaning of section 10. If the Program as you
390
- received it, or any part of it, contains a notice stating that it is
391
- governed by this License along with a term that is a further
392
- restriction, you may remove that term. If a license document contains
393
- a further restriction but permits relicensing or conveying under this
394
- License, you may add to a covered work material governed by the terms
395
- of that license document, provided that the further restriction does
396
- not survive such relicensing or conveying.
397
-
398
- If you add terms to a covered work in accord with this section, you
399
- must place, in the relevant source files, a statement of the
400
- additional terms that apply to those files, or a notice indicating
401
- where to find the applicable terms.
402
-
403
- Additional terms, permissive or non-permissive, may be stated in the
404
- form of a separately written license, or stated as exceptions;
405
- the above requirements apply either way.
406
-
407
- 8. Termination.
408
-
409
- You may not propagate or modify a covered work except as expressly
410
- provided under this License. Any attempt otherwise to propagate or
411
- modify it is void, and will automatically terminate your rights under
412
- this License (including any patent licenses granted under the third
413
- paragraph of section 11).
414
-
415
- However, if you cease all violation of this License, then your
416
- license from a particular copyright holder is reinstated (a)
417
- provisionally, unless and until the copyright holder explicitly and
418
- finally terminates your license, and (b) permanently, if the copyright
419
- holder fails to notify you of the violation by some reasonable means
420
- prior to 60 days after the cessation.
421
-
422
- Moreover, your license from a particular copyright holder is
423
- reinstated permanently if the copyright holder notifies you of the
424
- violation by some reasonable means, this is the first time you have
425
- received notice of violation of this License (for any work) from that
426
- copyright holder, and you cure the violation prior to 30 days after
427
- your receipt of the notice.
428
-
429
- Termination of your rights under this section does not terminate the
430
- licenses of parties who have received copies or rights from you under
431
- this License. If your rights have been terminated and not permanently
432
- reinstated, you do not qualify to receive new licenses for the same
433
- material under section 10.
434
-
435
- 9. Acceptance Not Required for Having Copies.
436
-
437
- You are not required to accept this License in order to receive or
438
- run a copy of the Program. Ancillary propagation of a covered work
439
- occurring solely as a consequence of using peer-to-peer transmission
440
- to receive a copy likewise does not require acceptance. However,
441
- nothing other than this License grants you permission to propagate or
442
- modify any covered work. These actions infringe copyright if you do
443
- not accept this License. Therefore, by modifying or propagating a
444
- covered work, you indicate your acceptance of this License to do so.
445
-
446
- 10. Automatic Licensing of Downstream Recipients.
447
-
448
- Each time you convey a covered work, the recipient automatically
449
- receives a license from the original licensors, to run, modify and
450
- propagate that work, subject to this License. You are not responsible
451
- for enforcing compliance by third parties with this License.
452
-
453
- An "entity transaction" is a transaction transferring control of an
454
- organization, or substantially all assets of one, or subdividing an
455
- organization, or merging organizations. If propagation of a covered
456
- work results from an entity transaction, each party to that
457
- transaction who receives a copy of the work also receives whatever
458
- licenses to the work the party's predecessor in interest had or could
459
- give under the previous paragraph, plus a right to possession of the
460
- Corresponding Source of the work from the predecessor in interest, if
461
- the predecessor has it or can get it with reasonable efforts.
462
-
463
- You may not impose any further restrictions on the exercise of the
464
- rights granted or affirmed under this License. For example, you may
465
- not impose a license fee, royalty, or other charge for exercise of
466
- rights granted under this License, and you may not initiate litigation
467
- (including a cross-claim or counterclaim in a lawsuit) alleging that
468
- any patent claim is infringed by making, using, selling, offering for
469
- sale, or importing the Program or any portion of it.
470
-
471
- 11. Patents.
472
-
473
- A "contributor" is a copyright holder who authorizes use under this
474
- License of the Program or a work on which the Program is based. The
475
- work thus licensed is called the contributor's "contributor version".
476
-
477
- A contributor's "essential patent claims" are all patent claims
478
- owned or controlled by the contributor, whether already acquired or
479
- hereafter acquired, that would be infringed by some manner, permitted
480
- by this License, of making, using, or selling its contributor version,
481
- but do not include claims that would be infringed only as a
482
- consequence of further modification of the contributor version. For
483
- purposes of this definition, "control" includes the right to grant
484
- patent sublicenses in a manner consistent with the requirements of
485
- this License.
486
-
487
- Each contributor grants you a non-exclusive, worldwide, royalty-free
488
- patent license under the contributor's essential patent claims, to
489
- make, use, sell, offer for sale, import and otherwise run, modify and
490
- propagate the contents of its contributor version.
491
-
492
- In the following three paragraphs, a "patent license" is any express
493
- agreement or commitment, however denominated, not to enforce a patent
494
- (such as an express permission to practice a patent or covenant not to
495
- sue for patent infringement). To "grant" such a patent license to a
496
- party means to make such an agreement or commitment not to enforce a
497
- patent against the party.
498
-
499
- If you convey a covered work, knowingly relying on a patent license,
500
- and the Corresponding Source of the work is not available for anyone
501
- to copy, free of charge and under the terms of this License, through a
502
- publicly available network server or other readily accessible means,
503
- then you must either (1) cause the Corresponding Source to be so
504
- available, or (2) arrange to deprive yourself of the benefit of the
505
- patent license for this particular work, or (3) arrange, in a manner
506
- consistent with the requirements of this License, to extend the patent
507
- license to downstream recipients. "Knowingly relying" means you have
508
- actual knowledge that, but for the patent license, your conveying the
509
- covered work in a country, or your recipient's use of the covered work
510
- in a country, would infringe one or more identifiable patents in that
511
- country that you have reason to believe are valid.
512
-
513
- If, pursuant to or in connection with a single transaction or
514
- arrangement, you convey, or propagate by procuring conveyance of, a
515
- covered work, and grant a patent license to some of the parties
516
- receiving the covered work authorizing them to use, propagate, modify
517
- or convey a specific copy of the covered work, then the patent license
518
- you grant is automatically extended to all recipients of the covered
519
- work and works based on it.
520
-
521
- A patent license is "discriminatory" if it does not include within
522
- the scope of its coverage, prohibits the exercise of, or is
523
- conditioned on the non-exercise of one or more of the rights that are
524
- specifically granted under this License. You may not convey a covered
525
- work if you are a party to an arrangement with a third party that is
526
- in the business of distributing software, under which you make payment
527
- to the third party based on the extent of your activity of conveying
528
- the work, and under which the third party grants, to any of the
529
- parties who would receive the covered work from you, a discriminatory
530
- patent license (a) in connection with copies of the covered work
531
- conveyed by you (or copies made from those copies), or (b) primarily
532
- for and in connection with specific products or compilations that
533
- contain the covered work, unless you entered into that arrangement,
534
- or that patent license was granted, prior to 28 March 2007.
535
-
536
- Nothing in this License shall be construed as excluding or limiting
537
- any implied license or other defenses to infringement that may
538
- otherwise be available to you under applicable patent law.
539
-
540
- 12. No Surrender of Others' Freedom.
541
-
542
- If conditions are imposed on you (whether by court order, agreement or
543
- otherwise) that contradict the conditions of this License, they do not
544
- excuse you from the conditions of this License. If you cannot convey a
545
- covered work so as to satisfy simultaneously your obligations under this
546
- License and any other pertinent obligations, then as a consequence you may
547
- not convey it at all. For example, if you agree to terms that obligate you
548
- to collect a royalty for further conveying from those to whom you convey
549
- the Program, the only way you could satisfy both those terms and this
550
- License would be to refrain entirely from conveying the Program.
551
-
552
- 13. Use with the GNU Affero General Public License.
553
-
554
- Notwithstanding any other provision of this License, you have
555
- permission to link or combine any covered work with a work licensed
556
- under version 3 of the GNU Affero General Public License into a single
557
- combined work, and to convey the resulting work. The terms of this
558
- License will continue to apply to the part which is the covered work,
559
- but the special requirements of the GNU Affero General Public License,
560
- section 13, concerning interaction through a network will apply to the
561
- combination as such.
562
-
563
- 14. Revised Versions of this License.
564
-
565
- The Free Software Foundation may publish revised and/or new versions of
566
- the GNU General Public License from time to time. Such new versions will
567
- be similar in spirit to the present version, but may differ in detail to
568
- address new problems or concerns.
569
-
570
- Each version is given a distinguishing version number. If the
571
- Program specifies that a certain numbered version of the GNU General
572
- Public License "or any later version" applies to it, you have the
573
- option of following the terms and conditions either of that numbered
574
- version or of any later version published by the Free Software
575
- Foundation. If the Program does not specify a version number of the
576
- GNU General Public License, you may choose any version ever published
577
- by the Free Software Foundation.
578
-
579
- If the Program specifies that a proxy can decide which future
580
- versions of the GNU General Public License can be used, that proxy's
581
- public statement of acceptance of a version permanently authorizes you
582
- to choose that version for the Program.
583
-
584
- Later license versions may give you additional or different
585
- permissions. However, no additional obligations are imposed on any
586
- author or copyright holder as a result of your choosing to follow a
587
- later version.
588
-
589
- 15. Disclaimer of Warranty.
590
-
591
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
- HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
- OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
- PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
- IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
- ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
-
600
- 16. Limitation of Liability.
601
-
602
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
- WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
- THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
- GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
- USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
- DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
- EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
- SUCH DAMAGES.
611
-
612
- 17. Interpretation of Sections 15 and 16.
613
-
614
- If the disclaimer of warranty and limitation of liability provided
615
- above cannot be given local legal effect according to their terms,
616
- reviewing courts shall apply local law that most closely approximates
617
- an absolute waiver of all civil liability in connection with the
618
- Program, unless a warranty or assumption of liability accompanies a
619
- copy of the Program in return for a fee.
620
-
621
- END OF TERMS AND CONDITIONS
622
-
623
- How to Apply These Terms to Your New Programs
624
-
625
- If you develop a new program, and you want it to be of the greatest
626
- possible use to the public, the best way to achieve this is to make it
627
- free software which everyone can redistribute and change under these terms.
628
-
629
- To do so, attach the following notices to the program. It is safest
630
- to attach them to the start of each source file to most effectively
631
- state the exclusion of warranty; and each file should have at least
632
- the "copyright" line and a pointer to where the full notice is found.
633
-
634
- <one line to give the program's name and a brief idea of what it does.>
635
- Copyright (C) <year> <name of author>
636
-
637
- This program is free software: you can redistribute it and/or modify
638
- it under the terms of the GNU General Public License as published by
639
- the Free Software Foundation, either version 3 of the License, or
640
- (at your option) any later version.
641
-
642
- This program is distributed in the hope that it will be useful,
643
- but WITHOUT ANY WARRANTY; without even the implied warranty of
644
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
- GNU General Public License for more details.
646
-
647
- You should have received a copy of the GNU General Public License
648
- along with this program. If not, see <https://www.gnu.org/licenses/>.
649
-
650
- Also add information on how to contact you by electronic and paper mail.
651
-
652
- If the program does terminal interaction, make it output a short
653
- notice like this when it starts in an interactive mode:
654
-
655
- <program> Copyright (C) <year> <name of author>
656
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
- This is free software, and you are welcome to redistribute it
658
- under certain conditions; type `show c' for details.
659
-
660
- The hypothetical commands `show w' and `show c' should show the appropriate
661
- parts of the General Public License. Of course, your program's commands
662
- might be different; for a GUI interface, you would use an "about box".
663
-
664
- You should also get your employer (if you work as a programmer) or school,
665
- if any, to sign a "copyright disclaimer" for the program, if necessary.
666
- For more information on this, and how to apply and follow the GNU GPL, see
667
- <https://www.gnu.org/licenses/>.
668
-
669
- The GNU General Public License does not permit incorporating your program
670
- into proprietary programs. If your program is a subroutine library, you
671
- may consider it more useful to permit linking proprietary applications with
672
- the library. If this is what you want to do, use the GNU Lesser General
673
- Public License instead of this License. But first, please read
674
- <https://www.gnu.org/licenses/why-not-lgpl.html>.
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
ComfyUI-Advanced-ControlNet/README.md CHANGED
@@ -1,202 +1,202 @@
1
- # ComfyUI-Advanced-ControlNet
2
- Nodes for scheduling ControlNet strength across timesteps and batched latents, as well as applying custom weights and attention masks. The ControlNet nodes here fully support sliding context sampling, like the one used in the [ComfyUI-AnimateDiff-Evolved](https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved) nodes. Currently supports ControlNets, T2IAdapters, ControlLoRAs, ControlLLLite, SparseCtrls, SVD-ControlNets, and Reference.
3
-
4
- Custom weights allow replication of the "My prompt is more important" feature of Auto1111's sd-webui ControlNet extension via Soft Weights, and the "ControlNet is more important" feature can be granularly controlled by changing the uncond_multiplier on the same Soft Weights.
5
-
6
- ControlNet preprocessors are available through [comfyui_controlnet_aux](https://github.com/Fannovel16/comfyui_controlnet_aux) nodes.
7
-
8
- ## Features
9
- - Timestep and latent strength scheduling
10
- - Attention masks
11
- - Replicate ***"My prompt is more important"*** feature from sd-webui-controlnet extension via ***Soft Weights***, and allow softness to be tweaked via ***base_multiplier***
12
- - Replicate ***"ControlNet is more important"*** feature from sd-webui-controlnet extension via ***uncond_multiplier*** on ***Soft Weights***
13
- - uncond_multiplier=0.0 gives identical results of auto1111's feature, but values between 0.0 and 1.0 can be used without issue to granularly control the setting.
14
- - ControlNet, T2IAdapter, and ControlLoRA support for sliding context windows
15
- - ControlLLLite support
16
- - SparseCtrl support
17
- - SVD-ControlNet support
18
- - Stable Video Diffusion ControlNets trained by **CiaraRowles**: [Depth](https://huggingface.co/CiaraRowles/temporal-controlnet-depth-svd-v1/tree/main/controlnet), [Lineart](https://huggingface.co/CiaraRowles/temporal-controlnet-lineart-svd-v1/tree/main/controlnet)
19
- - Reference support
20
- - Supports ```reference_attn```, ```reference_adain```, and ```refrence_adain+attn``` modes. ```style_fidelity``` and ```ref_weight``` are equivalent to style_fidelity and control_weight in Auto1111, respectively, and strength of the Apply ControlNet is the balance between ref-influenced result and no-ref result. There is also a Reference ControlNet (Finetune) node that allows adjust the style_fidelity, weight, and strength of attn and adain separately.
21
-
22
- ## Table of Contents:
23
- - [Scheduling Explanation](#scheduling-explanation)
24
- - [Nodes](#nodes)
25
- - [Usage](#usage) (will fill this out soon)
26
-
27
-
28
- # Scheduling Explanation
29
-
30
- The two core concepts for scheduling are ***Timestep Keyframes*** and ***Latent Keyframes***.
31
-
32
- ***Timestep Keyframes*** hold the values that guide the settings for a controlnet, and begin to take effect based on their start_percent, which corresponds to the percentage of the sampling process. They can contain masks for the strengths of each latent, control_net_weights, and latent_keyframes (specific strengths for each latent), all optional.
33
-
34
- ***Latent Keyframes*** determine the strength of the controlnet for specific latents - all they contain is the batch_index of the latent, and the strength the controlnet should apply for that latent. As a concept, latent keyframes achieve the same affect as a uniform mask with the chosen strength value.
35
-
36
- ![advcn_image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/e6275264-6c3f-4246-a319-111ee48f4cd9)
37
-
38
- # Nodes
39
-
40
- The ControlNet nodes provided here are the ***Apply Advanced ControlNet*** and ***Load Advanced ControlNet Model*** (or diff) nodes. The vanilla ControlNet nodes are also compatible, and can be used almost interchangeably - the only difference is that **at least one of these nodes must be used** for Advanced versions of ControlNets to be used (important for sliding context sampling, like with AnimateDiff-Evolved).
41
-
42
- Key:
43
- - 🟩 - required inputs
44
- - 🟨 - optional inputs
45
- - 🟦 - start as widgets, can be converted to inputs
46
- - 🟥 - optional input/output, but not recommended to use unless needed
47
- - 🟪 - output
48
-
49
- ## Apply Advanced ControlNet
50
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/dc541d41-70df-4a71-b832-efa65af98f06)
51
-
52
- Same functionality as the vanilla Apply Advanced ControlNet (Advanced) node, except with Advanced ControlNet features added to it. Automatically converts any ControlNet from ControlNet loaders into Advanced versions.
53
-
54
- ### Inputs
55
- - 🟩***positive***: conditioning (positive).
56
- - 🟩***negative***: conditioning (negative).
57
- - 🟩***control_net***: loaded controlnet; will be converted to Advanced version automatically by this node, if it's a supported type.
58
- - 🟩***image***: images to guide controlnets - if the loaded controlnet requires it, they must preprocessed images. If one image provided, will be used for all latents. If more images provided, will use each image separately for each latent. If not enough images to meet latent count, will repeat the images from the beginning to match vanilla ControlNet functionality.
59
- - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as image input, if you provide more than one mask, each can apply to a different latent.
60
- - 🟨***timestep_kf***: timestep keyframes to guide controlnet effect throughout sampling steps.
61
- - 🟨***latent_kf_override***: override for latent keyframes, useful if no other features from timestep keyframes is needed. *NOTE: this latent keyframe will be applied to ALL timesteps, regardless if there are other latent keyframes attached to connected timestep keyframes.*
62
- - 🟨***weights_override***: override for weights, useful if no other features from timestep keyframes is needed. *NOTE: this weight will be applied to ALL timesteps, regardless if there are other weights attached to connected timestep keyframes.*
63
- - 🟦***strength***: strength of controlnet; 1.0 is full strength, 0.0 is no effect at all.
64
- - 🟦***start_percent***: sampling step percentage at which controlnet should start to be applied - no matter what start_percent is set on timestep keyframes, they won't take effect until this start_percent is reached.
65
- - 🟦***stop_percent***: sampling step percentage at which controlnet should stop being applied - no matter what start_percent is set on timestep keyframes, they won't take effect once this end_percent is reached.
66
-
67
- ### Outputs
68
- - 🟪***positive***: conditioning (positive) with applied controlnets
69
- - 🟪***negative***: conditioning (negative) with applied controlnets
70
-
71
- ## Load Advanced ControlNet Model
72
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/4a7f58a9-783d-4da4-bf82-bc9c167e4722)
73
-
74
- Loads a ControlNet model and converts it into an Advanced version that supports all the features in this repo. When used with **Apply Advanced ControlNet** node, there is no reason to use the timestep_keyframe input on this node - use timestep_kf on the Apply node instead.
75
-
76
- ### Inputs
77
- - 🟥***timestep_keyframe***: optional and likely unnecessary input to have ControlNet use selected timestep_keyframes - should not be used unless you need to. Useful if this node is not attached to **Apply Advanced ControlNet** node, but still want to use Timestep Keyframe, or to use TK_SHORTCUT outputs from ControlWeights in the same scenario. Will be overriden by the timestep_kf input on **Apply Advanced ControlNet** node, if one is provided there.
78
- - 🟨***model***: model to plug into the diff version of the node. Some controlnets are designed for receive the model; if you don't know what this does, you probably don't want tot use the diff version of the node.
79
-
80
- ### Outputs
81
- - 🟪***CONTROL_NET***: loaded Advanced ControlNet
82
-
83
- ## Timestep Keyframe
84
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/404f3cfe-5852-4eed-935b-37e32493d1b5)
85
-
86
- Scheduling node across timesteps (sampling steps) based on the set start_percent. Chaining Timestep Keyframes allows ControlNet scheduling across sampling steps (percentage-wise), through a timestep keyframe schedule.
87
-
88
- ### Inputs
89
- - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
90
- - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
91
- - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
92
- - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
93
- - 🟦***start_percent***: sampling step percentage at which this Timestep Keyframe qualifies to be used. Acts as the 'key' for the Timestep Keyframe in the timestep keyframe schedule.
94
- - 🟦***strength***: strength of the controlnet; multiplies the controlnet by this value, basically, applied alongside the strength on the Apply ControlNet node. If set to 0.0 will not have any effect during the duration of this Timestep Keyframe's effect, and will increase sampling speed by not doing any work.
95
- - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
96
- - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
97
- - 🟦***guarantee_steps***: when 1 or greater, even if a Timestep Keyframe's start_percent ahead of this one in the schedule is closer to current sampling percentage, this Timestep Keyframe will still be used for the specified amount of steps before moving on to the next selected Timestep Keyframe in the following step. Whether the Timestep Keyframe is used or not, its inputs will still be accounted for inherit_missing purposes.
98
-
99
- ### Outputs
100
- - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
101
-
102
- ## Timestep Keyframe Interpolation
103
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/9789617c-202c-4271-92a2-0909bcf9b108)
104
-
105
- Allows to create Timestep Keyframe with interpolated strength values in a given percent range. (The first generated keyframe will have guarantee_steps=1, rest that follow will have guarantee_steps=0).
106
-
107
- ### Inputs
108
- - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
109
- - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
110
- - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
111
- - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
112
- - 🟦***start_percent***: sampling step percentage at which the first generated Timestep Keyframe qualifies to be used.
113
- - 🟦***end_percent***: sampling step percentage at which the last generated Timestep Keyframe qualifies to be used.
114
- - 🟦***strength_start***: strength of the Timestep Keyframe at start of range.
115
- - 🟦***strength_end***: strength of the Timestep Keyframe at end of range.
116
- - 🟦***interpolation***: the method of interpolation.
117
- - 🟦***intervals***: the amount of keyframes to generate in total - the first will have its start_percent equal to start_percent, the last will have its start_percent equal to end_percent.
118
- - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
119
- - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
120
- - 🟦***print_keyframes***: if True, will print the Timestep Keyframes generated by this node for debugging purposes.
121
-
122
- ### Outputs
123
- - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
124
-
125
- ## Timestep Keyframe From List
126
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/9e9c23bf-6f82-4ce7-b4d1-3016fd14707d)
127
-
128
- Allows to create Timestep Keyframe via a list of floats, such as with Batch Value Schedule from [ComfyUI_FizzNodes](https://github.com/FizzleDorf/ComfyUI_FizzNodes) nodes. (The first generated keyframe will have guarantee_steps=1, rest that follow will have guarantee_steps=0).
129
-
130
- ### Inputs
131
- - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
132
- - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
133
- - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
134
- - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
135
- - 🟩***float_strengths***: a list of floats, that will correspond to the strength of each Timestep Keyframe; first will be assigned to start_percent, last will be assigned to end_percent, and the rest spread linearly between.
136
- - 🟦***start_percent***: sampling step percentage at which the first generated Timestep Keyframe qualifies to be used.
137
- - 🟦***end_percent***: sampling step percentage at which the last generated Timestep Keyframe qualifies to be used.
138
- - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
139
- - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
140
- - 🟦***print_keyframes***: if True, will print the Timestep Keyframes generated by this node for debugging purposes.
141
-
142
- ### Outputs
143
- - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
144
-
145
- ## Latent Keyframe
146
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/7eb2cc4c-255c-4f32-b09b-699f713fada3)
147
-
148
- A singular Latent Keyframe, selects the strength for a specific batch_index. If batch_index is not present during sampling, will simply have no effect. Can be chained with any other Latent Keyframe-type node to create a latent keyframe schedule.
149
-
150
- ### Inputs
151
- - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If a Latent Keyframe contained in prev_latent_keyframes have the same batch_index as this Latent Keyframe, they will take priority over this node's value.*
152
- - 🟦***batch_index***: index of latent in batch to apply controlnet strength to. Acts as the 'key' for the Latent Keyframe in the latent keyframe schedule.
153
- - 🟦***strength***: strength of controlnet to apply to the corresponding latent.
154
-
155
- ### Outputs
156
- - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
157
-
158
- ## Latent Keyframe Group
159
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/5ce3b795-f5fc-4dc3-ae30-a4c7f87e278c)
160
-
161
- Allows to create Latent Keyframes via individual indeces or python-style ranges.
162
-
163
- ### Inputs
164
- - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
165
- - 🟨***latent_optional***: the latents expected to be passed in for sampling; only required if you wish to use negative indeces (will be automatically converted to real values).
166
- - 🟦***index_strengths***: string list of indeces or python-style ranges of indeces to assign strengths to. If latent_optional is passed in, can contain negative indeces or ranges that contain negative numbers, python-style. The different indeces must be comma separated. Individual latents can be specified by ```batch_index=strength```, like ```0=0.9```. Ranges can be specified by ```start_index_inclusive:end_index_exclusive=strength```, like ```0:8=strength```. Negative indeces are possible when latents_optional has an input, with a string such as ```0,-4=0.25```.
167
- - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
168
-
169
- ### Outputs
170
- - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
171
-
172
- ## Latent Keyframe Interpolation
173
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/7986c737-83b9-46bc-aab0-ae4c368df446)
174
-
175
- Allows to create Latent Keyframes with interpolated values in a range.
176
-
177
- ### Inputs
178
- - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
179
- - 🟦***batch_index_from***: starting batch_index of range, included.
180
- - 🟦***batch_index_to***: end batch_index of range, excluded (python-style range).
181
- - 🟦***strength_from***: starting strength of interpolation.
182
- - 🟦***strength_to***: end strength of interpolation.
183
- - 🟦***interpolation***: the method of interpolation.
184
- - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
185
-
186
- ### Outputs
187
- - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
188
-
189
- ## Latent Keyframe From List
190
- ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/6cec701f-6183-4aeb-af5c-cac76f5591b7)
191
-
192
- Allows to create Latent Keyframes via a list of floats, such as with Batch Value Schedule from [ComfyUI_FizzNodes](https://github.com/FizzleDorf/ComfyUI_FizzNodes) nodes.
193
-
194
- ### Inputs
195
- - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
196
- - 🟩***float_strengths***: a list of floats, that will correspond to the strength of each Latent Keyframe; the batch_index is the index of each float value in the list.
197
- - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
198
-
199
- ### Outputs
200
- - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
201
-
202
- # There are more nodes to document and show usage - will add this soon! TODO
 
1
+ # ComfyUI-Advanced-ControlNet
2
+ Nodes for scheduling ControlNet strength across timesteps and batched latents, as well as applying custom weights and attention masks. The ControlNet nodes here fully support sliding context sampling, like the one used in the [ComfyUI-AnimateDiff-Evolved](https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved) nodes. Currently supports ControlNets, T2IAdapters, ControlLoRAs, ControlLLLite, SparseCtrls, SVD-ControlNets, and Reference.
3
+
4
+ Custom weights allow replication of the "My prompt is more important" feature of Auto1111's sd-webui ControlNet extension via Soft Weights, and the "ControlNet is more important" feature can be granularly controlled by changing the uncond_multiplier on the same Soft Weights.
5
+
6
+ ControlNet preprocessors are available through [comfyui_controlnet_aux](https://github.com/Fannovel16/comfyui_controlnet_aux) nodes.
7
+
8
+ ## Features
9
+ - Timestep and latent strength scheduling
10
+ - Attention masks
11
+ - Replicate ***"My prompt is more important"*** feature from sd-webui-controlnet extension via ***Soft Weights***, and allow softness to be tweaked via ***base_multiplier***
12
+ - Replicate ***"ControlNet is more important"*** feature from sd-webui-controlnet extension via ***uncond_multiplier*** on ***Soft Weights***
13
+ - uncond_multiplier=0.0 gives identical results of auto1111's feature, but values between 0.0 and 1.0 can be used without issue to granularly control the setting.
14
+ - ControlNet, T2IAdapter, and ControlLoRA support for sliding context windows
15
+ - ControlLLLite support
16
+ - SparseCtrl support
17
+ - SVD-ControlNet support
18
+ - Stable Video Diffusion ControlNets trained by **CiaraRowles**: [Depth](https://huggingface.co/CiaraRowles/temporal-controlnet-depth-svd-v1/tree/main/controlnet), [Lineart](https://huggingface.co/CiaraRowles/temporal-controlnet-lineart-svd-v1/tree/main/controlnet)
19
+ - Reference support
20
+ - Supports ```reference_attn```, ```reference_adain```, and ```refrence_adain+attn``` modes. ```style_fidelity``` and ```ref_weight``` are equivalent to style_fidelity and control_weight in Auto1111, respectively, and strength of the Apply ControlNet is the balance between ref-influenced result and no-ref result. There is also a Reference ControlNet (Finetune) node that allows adjust the style_fidelity, weight, and strength of attn and adain separately.
21
+
22
+ ## Table of Contents:
23
+ - [Scheduling Explanation](#scheduling-explanation)
24
+ - [Nodes](#nodes)
25
+ - [Usage](#usage) (will fill this out soon)
26
+
27
+
28
+ # Scheduling Explanation
29
+
30
+ The two core concepts for scheduling are ***Timestep Keyframes*** and ***Latent Keyframes***.
31
+
32
+ ***Timestep Keyframes*** hold the values that guide the settings for a controlnet, and begin to take effect based on their start_percent, which corresponds to the percentage of the sampling process. They can contain masks for the strengths of each latent, control_net_weights, and latent_keyframes (specific strengths for each latent), all optional.
33
+
34
+ ***Latent Keyframes*** determine the strength of the controlnet for specific latents - all they contain is the batch_index of the latent, and the strength the controlnet should apply for that latent. As a concept, latent keyframes achieve the same affect as a uniform mask with the chosen strength value.
35
+
36
+ ![advcn_image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/e6275264-6c3f-4246-a319-111ee48f4cd9)
37
+
38
+ # Nodes
39
+
40
+ The ControlNet nodes provided here are the ***Apply Advanced ControlNet*** and ***Load Advanced ControlNet Model*** (or diff) nodes. The vanilla ControlNet nodes are also compatible, and can be used almost interchangeably - the only difference is that **at least one of these nodes must be used** for Advanced versions of ControlNets to be used (important for sliding context sampling, like with AnimateDiff-Evolved).
41
+
42
+ Key:
43
+ - 🟩 - required inputs
44
+ - 🟨 - optional inputs
45
+ - 🟦 - start as widgets, can be converted to inputs
46
+ - 🟥 - optional input/output, but not recommended to use unless needed
47
+ - 🟪 - output
48
+
49
+ ## Apply Advanced ControlNet
50
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/dc541d41-70df-4a71-b832-efa65af98f06)
51
+
52
+ Same functionality as the vanilla Apply Advanced ControlNet (Advanced) node, except with Advanced ControlNet features added to it. Automatically converts any ControlNet from ControlNet loaders into Advanced versions.
53
+
54
+ ### Inputs
55
+ - 🟩***positive***: conditioning (positive).
56
+ - 🟩***negative***: conditioning (negative).
57
+ - 🟩***control_net***: loaded controlnet; will be converted to Advanced version automatically by this node, if it's a supported type.
58
+ - 🟩***image***: images to guide controlnets - if the loaded controlnet requires it, they must preprocessed images. If one image provided, will be used for all latents. If more images provided, will use each image separately for each latent. If not enough images to meet latent count, will repeat the images from the beginning to match vanilla ControlNet functionality.
59
+ - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as image input, if you provide more than one mask, each can apply to a different latent.
60
+ - 🟨***timestep_kf***: timestep keyframes to guide controlnet effect throughout sampling steps.
61
+ - 🟨***latent_kf_override***: override for latent keyframes, useful if no other features from timestep keyframes is needed. *NOTE: this latent keyframe will be applied to ALL timesteps, regardless if there are other latent keyframes attached to connected timestep keyframes.*
62
+ - 🟨***weights_override***: override for weights, useful if no other features from timestep keyframes is needed. *NOTE: this weight will be applied to ALL timesteps, regardless if there are other weights attached to connected timestep keyframes.*
63
+ - 🟦***strength***: strength of controlnet; 1.0 is full strength, 0.0 is no effect at all.
64
+ - 🟦***start_percent***: sampling step percentage at which controlnet should start to be applied - no matter what start_percent is set on timestep keyframes, they won't take effect until this start_percent is reached.
65
+ - 🟦***stop_percent***: sampling step percentage at which controlnet should stop being applied - no matter what start_percent is set on timestep keyframes, they won't take effect once this end_percent is reached.
66
+
67
+ ### Outputs
68
+ - 🟪***positive***: conditioning (positive) with applied controlnets
69
+ - 🟪***negative***: conditioning (negative) with applied controlnets
70
+
71
+ ## Load Advanced ControlNet Model
72
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/4a7f58a9-783d-4da4-bf82-bc9c167e4722)
73
+
74
+ Loads a ControlNet model and converts it into an Advanced version that supports all the features in this repo. When used with **Apply Advanced ControlNet** node, there is no reason to use the timestep_keyframe input on this node - use timestep_kf on the Apply node instead.
75
+
76
+ ### Inputs
77
+ - 🟥***timestep_keyframe***: optional and likely unnecessary input to have ControlNet use selected timestep_keyframes - should not be used unless you need to. Useful if this node is not attached to **Apply Advanced ControlNet** node, but still want to use Timestep Keyframe, or to use TK_SHORTCUT outputs from ControlWeights in the same scenario. Will be overriden by the timestep_kf input on **Apply Advanced ControlNet** node, if one is provided there.
78
+ - 🟨***model***: model to plug into the diff version of the node. Some controlnets are designed for receive the model; if you don't know what this does, you probably don't want tot use the diff version of the node.
79
+
80
+ ### Outputs
81
+ - 🟪***CONTROL_NET***: loaded Advanced ControlNet
82
+
83
+ ## Timestep Keyframe
84
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/404f3cfe-5852-4eed-935b-37e32493d1b5)
85
+
86
+ Scheduling node across timesteps (sampling steps) based on the set start_percent. Chaining Timestep Keyframes allows ControlNet scheduling across sampling steps (percentage-wise), through a timestep keyframe schedule.
87
+
88
+ ### Inputs
89
+ - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
90
+ - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
91
+ - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
92
+ - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
93
+ - 🟦***start_percent***: sampling step percentage at which this Timestep Keyframe qualifies to be used. Acts as the 'key' for the Timestep Keyframe in the timestep keyframe schedule.
94
+ - 🟦***strength***: strength of the controlnet; multiplies the controlnet by this value, basically, applied alongside the strength on the Apply ControlNet node. If set to 0.0 will not have any effect during the duration of this Timestep Keyframe's effect, and will increase sampling speed by not doing any work.
95
+ - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
96
+ - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
97
+ - 🟦***guarantee_steps***: when 1 or greater, even if a Timestep Keyframe's start_percent ahead of this one in the schedule is closer to current sampling percentage, this Timestep Keyframe will still be used for the specified amount of steps before moving on to the next selected Timestep Keyframe in the following step. Whether the Timestep Keyframe is used or not, its inputs will still be accounted for inherit_missing purposes.
98
+
99
+ ### Outputs
100
+ - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
101
+
102
+ ## Timestep Keyframe Interpolation
103
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/9789617c-202c-4271-92a2-0909bcf9b108)
104
+
105
+ Allows to create Timestep Keyframe with interpolated strength values in a given percent range. (The first generated keyframe will have guarantee_steps=1, rest that follow will have guarantee_steps=0).
106
+
107
+ ### Inputs
108
+ - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
109
+ - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
110
+ - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
111
+ - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
112
+ - 🟦***start_percent***: sampling step percentage at which the first generated Timestep Keyframe qualifies to be used.
113
+ - 🟦***end_percent***: sampling step percentage at which the last generated Timestep Keyframe qualifies to be used.
114
+ - 🟦***strength_start***: strength of the Timestep Keyframe at start of range.
115
+ - 🟦***strength_end***: strength of the Timestep Keyframe at end of range.
116
+ - 🟦***interpolation***: the method of interpolation.
117
+ - 🟦***intervals***: the amount of keyframes to generate in total - the first will have its start_percent equal to start_percent, the last will have its start_percent equal to end_percent.
118
+ - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
119
+ - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
120
+ - 🟦***print_keyframes***: if True, will print the Timestep Keyframes generated by this node for debugging purposes.
121
+
122
+ ### Outputs
123
+ - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
124
+
125
+ ## Timestep Keyframe From List
126
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/9e9c23bf-6f82-4ce7-b4d1-3016fd14707d)
127
+
128
+ Allows to create Timestep Keyframe via a list of floats, such as with Batch Value Schedule from [ComfyUI_FizzNodes](https://github.com/FizzleDorf/ComfyUI_FizzNodes) nodes. (The first generated keyframe will have guarantee_steps=1, rest that follow will have guarantee_steps=0).
129
+
130
+ ### Inputs
131
+ - 🟨***prev_timestep_kf***: used to chain Timestep Keyframes together to create a schedule. The order does not matter - the Timestep Keyframes sort themselves automatically by their start_percent. *Any Timestep Keyframe contained in the prev_timestep_keyframe that contains the same start_percent as the Timestep Keyframe will be overwritten.*
132
+ - 🟨***cn_weights***: weights to apply to controlnet while this Timestep Keyframe is in effect. Must be compatible with the loaded controlnet, or will throw an error explaining what weight types are compatible. If inherit_missing is True, if no control_net_weight is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a weight_override, the weight_override will be used during sampling instead of control_net_weight.*
133
+ - 🟨***latent_keyframe***: latent keyframes to apply to controlnet while this Timestep Keyframe is in effect. If inherit_missing is True, if no latent_keyframe is passed in, will attempt to reuse the last-used weights in the timestep keyframe schedule. *If Apply Advanced ControlNet node has a latent_kf_override, the latent_lf_override will be used during sampling instead of latent_keyframe.*
134
+ - 🟨***mask_optional***: attention masks to apply to controlnets; basically, decides what part of the image the controlnet to apply to (and the relative strength, if the mask is not binary). Same as mask_optional on the Apply Advanced ControlNet node, can apply either one maks to all latents, or individual masks for each latent. If inherit_missing is True, if no mask_optional is passed in, will attempt to reuse the last-used mask_optional in the timestep keyframe schedule. It is NOT overriden by mask_optional on the Apply Advanced ControlNet node; will be used together.
135
+ - 🟩***float_strengths***: a list of floats, that will correspond to the strength of each Timestep Keyframe; first will be assigned to start_percent, last will be assigned to end_percent, and the rest spread linearly between.
136
+ - 🟦***start_percent***: sampling step percentage at which the first generated Timestep Keyframe qualifies to be used.
137
+ - 🟦***end_percent***: sampling step percentage at which the last generated Timestep Keyframe qualifies to be used.
138
+ - 🟦***null_latent_kf_strength***: strength to assign to latents that are unaccounted for in the passed in latent_keyframes. Has no effect if no latent_keyframes are passed in, or no batch_indeces are unaccounted in the latent_keyframes for during sampling.
139
+ - 🟦***inherit_missing***: determines if should reuse values from previous Timestep Keyframes for optional values (control_net_weights, latent_keyframe, and mask_option) that are not included on this TimestepKeyframe. To inherit only specific inputs, use default inputs.
140
+ - 🟦***print_keyframes***: if True, will print the Timestep Keyframes generated by this node for debugging purposes.
141
+
142
+ ### Outputs
143
+ - 🟪***TIMESTEP_KF***: the created Timestep Keyframe, that can either be linked to another or into a Timestep Keyframe input.
144
+
145
+ ## Latent Keyframe
146
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/7eb2cc4c-255c-4f32-b09b-699f713fada3)
147
+
148
+ A singular Latent Keyframe, selects the strength for a specific batch_index. If batch_index is not present during sampling, will simply have no effect. Can be chained with any other Latent Keyframe-type node to create a latent keyframe schedule.
149
+
150
+ ### Inputs
151
+ - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If a Latent Keyframe contained in prev_latent_keyframes have the same batch_index as this Latent Keyframe, they will take priority over this node's value.*
152
+ - 🟦***batch_index***: index of latent in batch to apply controlnet strength to. Acts as the 'key' for the Latent Keyframe in the latent keyframe schedule.
153
+ - 🟦***strength***: strength of controlnet to apply to the corresponding latent.
154
+
155
+ ### Outputs
156
+ - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
157
+
158
+ ## Latent Keyframe Group
159
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/5ce3b795-f5fc-4dc3-ae30-a4c7f87e278c)
160
+
161
+ Allows to create Latent Keyframes via individual indeces or python-style ranges.
162
+
163
+ ### Inputs
164
+ - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
165
+ - 🟨***latent_optional***: the latents expected to be passed in for sampling; only required if you wish to use negative indeces (will be automatically converted to real values).
166
+ - 🟦***index_strengths***: string list of indeces or python-style ranges of indeces to assign strengths to. If latent_optional is passed in, can contain negative indeces or ranges that contain negative numbers, python-style. The different indeces must be comma separated. Individual latents can be specified by ```batch_index=strength```, like ```0=0.9```. Ranges can be specified by ```start_index_inclusive:end_index_exclusive=strength```, like ```0:8=strength```. Negative indeces are possible when latents_optional has an input, with a string such as ```0,-4=0.25```.
167
+ - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
168
+
169
+ ### Outputs
170
+ - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
171
+
172
+ ## Latent Keyframe Interpolation
173
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/7986c737-83b9-46bc-aab0-ae4c368df446)
174
+
175
+ Allows to create Latent Keyframes with interpolated values in a range.
176
+
177
+ ### Inputs
178
+ - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
179
+ - 🟦***batch_index_from***: starting batch_index of range, included.
180
+ - 🟦***batch_index_to***: end batch_index of range, excluded (python-style range).
181
+ - 🟦***strength_from***: starting strength of interpolation.
182
+ - 🟦***strength_to***: end strength of interpolation.
183
+ - 🟦***interpolation***: the method of interpolation.
184
+ - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
185
+
186
+ ### Outputs
187
+ - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
188
+
189
+ ## Latent Keyframe From List
190
+ ![image](https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet/assets/7365912/6cec701f-6183-4aeb-af5c-cac76f5591b7)
191
+
192
+ Allows to create Latent Keyframes via a list of floats, such as with Batch Value Schedule from [ComfyUI_FizzNodes](https://github.com/FizzleDorf/ComfyUI_FizzNodes) nodes.
193
+
194
+ ### Inputs
195
+ - 🟨***prev_latent_kf***: used to chain Latent Keyframes together to create a schedule. *If any Latent Keyframes contained in prev_latent_keyframes have the same batch_index as a this Latent Keyframe, they will take priority over this node's version.*
196
+ - 🟩***float_strengths***: a list of floats, that will correspond to the strength of each Latent Keyframe; the batch_index is the index of each float value in the list.
197
+ - 🟦***print_keyframes***: if True, will print the Latent Keyframes generated by this node for debugging purposes.
198
+
199
+ ### Outputs
200
+ - 🟪***LATENT_KF***: the created Latent Keyframe, that can either be linked to another or into a Latent Keyframe input.
201
+
202
+ # There are more nodes to document and show usage - will add this soon! TODO
ComfyUI-Advanced-ControlNet/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
- from .adv_control.nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2
- from .adv_control import documentation
3
-
4
- WEB_DIRECTORY = "./web"
5
- __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS', "WEB_DIRECTORY"]
6
- documentation.format_descriptions(NODE_CLASS_MAPPINGS)
 
1
+ from .adv_control.nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2
+ from .adv_control import documentation
3
+
4
+ WEB_DIRECTORY = "./web"
5
+ __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS', "WEB_DIRECTORY"]
6
+ documentation.format_descriptions(NODE_CLASS_MAPPINGS)
ComfyUI-Advanced-ControlNet/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (406 Bytes). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control.cpython-310.pyc ADDED
Binary file (26.9 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_lllite.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_plusplus.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_reference.cpython-310.pyc ADDED
Binary file (31.4 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_sparsectrl.cpython-310.pyc ADDED
Binary file (32 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/control_svd.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/documentation.cpython-310.pyc ADDED
Binary file (1.86 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/logger.cpython-310.pyc ADDED
Binary file (1.12 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_deprecated.cpython-310.pyc ADDED
Binary file (7.15 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_keyframes.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_loosecontrol.cpython-310.pyc ADDED
Binary file (2.24 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_plusplus.cpython-310.pyc ADDED
Binary file (2.89 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_reference.cpython-310.pyc ADDED
Binary file (3.47 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_sparsectrl.cpython-310.pyc ADDED
Binary file (6.7 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/nodes_weight.cpython-310.pyc ADDED
Binary file (8.42 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/sampling.cpython-310.pyc ADDED
Binary file (6.28 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/__pycache__/utils.cpython-310.pyc ADDED
Binary file (33.1 kB). View file
 
ComfyUI-Advanced-ControlNet/adv_control/control.py CHANGED
@@ -1,918 +1,918 @@
1
- from typing import Callable, Union
2
- from torch import Tensor
3
- import torch
4
- import os
5
-
6
- import comfy.ops
7
- import comfy.utils
8
- import comfy.model_management
9
- import comfy.model_detection
10
- import comfy.controlnet as comfy_cn
11
- from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, StrengthType
12
- from comfy.model_patcher import ModelPatcher
13
-
14
- from .control_sparsectrl import SparseModelPatcher, SparseControlNet, SparseCtrlMotionWrapper, SparseSettings, SparseConst
15
- from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite
16
- from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers
17
- from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException,
18
- manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory,
19
- broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN)
20
- from .logger import logger
21
-
22
-
23
- class ControlNetAdvanced(ControlNet, AdvancedControlBase):
24
- def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT):
25
- super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
26
- AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
27
- self.is_flux = False
28
- self.x_noisy_shape = None
29
-
30
- def get_universal_weights(self) -> ControlWeights:
31
- def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
32
- if key == "middle":
33
- return 1.0
34
- c_len = len(control[key])
35
- raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
36
- raw_weights = raw_weights[:-1]
37
- if key == "input":
38
- raw_weights.reverse()
39
- return raw_weights[idx]
40
- return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
41
-
42
- def get_control_advanced(self, x_noisy, t, cond, batched_number):
43
- # perform special version of get_control that supports sliding context and masks
44
- return self.sliding_get_control(x_noisy, t, cond, batched_number)
45
-
46
- def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
47
- control_prev = None
48
- if self.previous_controlnet is not None:
49
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
50
-
51
- if self.timestep_range is not None:
52
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
53
- if control_prev is not None:
54
- return control_prev
55
- else:
56
- return None
57
-
58
- dtype = self.control_model.dtype
59
- if self.manual_cast_dtype is not None:
60
- dtype = self.manual_cast_dtype
61
-
62
- # make cond_hint appropriate dimensions
63
- # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
64
- if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
65
- if self.cond_hint is not None:
66
- del self.cond_hint
67
- self.cond_hint = None
68
- compression_ratio = self.compression_ratio
69
- if self.vae is not None:
70
- compression_ratio *= self.vae.downscale_ratio
71
- # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
72
- if self.sub_idxs is not None:
73
- actual_cond_hint_orig = self.cond_hint_original
74
- if self.cond_hint_original.size(0) < self.full_latent_length:
75
- actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
76
- self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
77
- else:
78
- self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
79
- if self.vae is not None:
80
- loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
81
- self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
82
- comfy.model_management.load_models_gpu(loaded_models)
83
- if self.latent_format is not None:
84
- self.cond_hint = self.latent_format.process_in(self.cond_hint)
85
- self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
86
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
87
- self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
88
-
89
- # prepare mask_cond_hint
90
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
91
-
92
- context = cond.get('crossattn_controlnet', cond['c_crossattn'])
93
- extra = self.extra_args.copy()
94
- for c in self.extra_conds:
95
- temp = cond.get(c, None)
96
- if temp is not None:
97
- extra[c] = temp.to(dtype)
98
-
99
- timestep = self.model_sampling_current.timestep(t)
100
- x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
101
- self.x_noisy_shape = x_noisy.shape
102
- control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
103
- return self.control_merge(control, control_prev, output_dtype=None)
104
-
105
- def pre_run_advanced(self, *args, **kwargs):
106
- self.is_flux = "Flux" in str(type(self.control_model).__name__)
107
- return super().pre_run_advanced(*args, **kwargs)
108
-
109
- def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None):
110
- if self.is_flux:
111
- flux_shape = self.x_noisy_shape
112
- return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape)
113
-
114
- def copy(self):
115
- c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
116
- c.control_model = self.control_model
117
- c.control_model_wrapped = self.control_model_wrapped
118
- self.copy_to(c)
119
- self.copy_to_advanced(c)
120
- return c
121
-
122
- def cleanup_advanced(self):
123
- self.x_noisy_shape = None
124
- return super().cleanup_advanced()
125
-
126
- @staticmethod
127
- def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
128
- to_return = ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
129
- global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device,
130
- manual_cast_dtype=v.manual_cast_dtype)
131
- v.copy_to(to_return)
132
- return to_return
133
-
134
-
135
- class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
136
- def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None):
137
- super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device)
138
- AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())
139
-
140
- def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype):
141
- # match batch_size
142
- # TODO: make this more efficient by modifying the cached self.control_input val instead of doing this every step
143
- for key in control:
144
- control_current = control[key]
145
- for i in range(len(control_current)):
146
- x = control_current[i]
147
- if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size:
148
- control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size]
149
- return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype)
150
-
151
- def get_universal_weights(self) -> ControlWeights:
152
- def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
153
- if key == "middle":
154
- return 1.0
155
- c_len = 8 #len(control[key])
156
- raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)]
157
- raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
158
- raw_weights = get_properly_arranged_t2i_weights(raw_weights)
159
- if key == "input":
160
- raw_weights.reverse()
161
- return raw_weights[idx]
162
- return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func)
163
-
164
- def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
165
- if key == "middle":
166
- return 0
167
- # match how T2IAdapterAdvanced deals with universal weights
168
- c_len = 8 #len(control[key])
169
- indeces = [(c_len-1) - i for i in range(c_len)]
170
- indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]]
171
- indeces = get_properly_arranged_t2i_weights(indeces)
172
- if key == "input":
173
- indeces.reverse() # need to reverse to match recent ComfyUI changes
174
- return indeces[idx]
175
-
176
- def get_control_advanced(self, x_noisy, t, cond, batched_number):
177
- try:
178
- # if sub indexes present, replace original hint with subsection
179
- if self.sub_idxs is not None:
180
- # cond hints
181
- full_cond_hint_original = self.cond_hint_original
182
- actual_cond_hint_orig = full_cond_hint_original
183
- del self.cond_hint
184
- self.cond_hint = None
185
- if full_cond_hint_original.size(0) < self.full_latent_length:
186
- actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0))
187
- self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs]
188
- # mask hints
189
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
190
- return super().get_control(x_noisy, t, cond, batched_number)
191
- finally:
192
- if self.sub_idxs is not None:
193
- # replace original cond hint
194
- self.cond_hint_original = full_cond_hint_original
195
- del full_cond_hint_original
196
-
197
- def copy(self):
198
- c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm)
199
- self.copy_to(c)
200
- self.copy_to_advanced(c)
201
- return c
202
-
203
- def cleanup(self):
204
- super().cleanup()
205
- self.cleanup_advanced()
206
-
207
- @staticmethod
208
- def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
209
- to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in,
210
- compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device)
211
- v.copy_to(to_return)
212
- return to_return
213
-
214
-
215
- class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
216
- def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False):
217
- super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling)
218
- AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
219
- # use some functions from ControlNetAdvanced
220
- self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
221
- self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
222
-
223
- def get_universal_weights(self) -> ControlWeights:
224
- raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
225
- return self.weights.copy_with_new_weights(raw_weights)
226
-
227
- def copy(self):
228
- c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
229
- self.copy_to(c)
230
- self.copy_to_advanced(c)
231
- return c
232
-
233
- def cleanup(self):
234
- super().cleanup()
235
- self.cleanup_advanced()
236
-
237
- @staticmethod
238
- def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
239
- to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
240
- global_average_pooling=v.global_average_pooling)
241
- v.copy_to(to_return)
242
- return to_return
243
-
244
-
245
- class SVDControlNetAdvanced(ControlNetAdvanced):
246
- def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
247
- super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
248
-
249
- def set_cond_hint_inject(self, *args, **kwargs):
250
- to_return = super().set_cond_hint_inject(*args, **kwargs)
251
- # cond hint for SVD-ControlNet needs to be scaled between (-1, 1) instead of (0, 1)
252
- self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
253
- return to_return
254
-
255
- def get_control_advanced(self, x_noisy, t, cond, batched_number):
256
- control_prev = None
257
- if self.previous_controlnet is not None:
258
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
259
-
260
- if self.timestep_range is not None:
261
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
262
- if control_prev is not None:
263
- return control_prev
264
- else:
265
- return None
266
-
267
- dtype = self.control_model.dtype
268
- if self.manual_cast_dtype is not None:
269
- dtype = self.manual_cast_dtype
270
-
271
- output_dtype = x_noisy.dtype
272
- # make cond_hint appropriate dimensions
273
- # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
274
- if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
275
- if self.cond_hint is not None:
276
- del self.cond_hint
277
- self.cond_hint = None
278
- # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
279
- if self.sub_idxs is not None:
280
- actual_cond_hint_orig = self.cond_hint_original
281
- if self.cond_hint_original.size(0) < self.full_latent_length:
282
- actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
283
- self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
284
- else:
285
- self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
286
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
287
- self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
288
-
289
- # prepare mask_cond_hint
290
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
291
-
292
- context = cond.get('crossattn_controlnet', cond['c_crossattn'])
293
- # uses 'y' in new ComfyUI update
294
- y = cond.get('y', None)
295
- if y is not None:
296
- y = y.to(dtype)
297
- timestep = self.model_sampling_current.timestep(t)
298
- x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
299
- # concat c_concat if exists (should exist for SVD), doubling channels to 8
300
- if cond.get('c_concat', None) is not None:
301
- x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1)
302
-
303
- control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond)
304
- return self.control_merge(control, control_prev, output_dtype)
305
-
306
- def copy(self):
307
- c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
308
- self.copy_to(c)
309
- self.copy_to_advanced(c)
310
- return c
311
-
312
-
313
- class SparseCtrlAdvanced(ControlNetAdvanced):
314
- def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
315
- super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
316
- self.control_model_wrapped = SparseModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
317
- self.add_compatible_weight(ControlWeightType.SPARSECTRL)
318
- self.control_model: SparseControlNet = self.control_model # does nothing except help with IDE hints
319
- if self.control_model.use_simplified_conditioning_embedding:
320
- # TODO: allow vae_optional to be used instead of preprocessor
321
- #self.require_vae = True
322
- self.allow_condhint_latents = True
323
- self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default()
324
- self.model_latent_format = None # latent format for active SD model, NOT controlnet
325
- self.preprocessed = False
326
-
327
- def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
328
- # normal ControlNet stuff
329
- control_prev = None
330
- if self.previous_controlnet is not None:
331
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
332
-
333
- if self.timestep_range is not None:
334
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
335
- if control_prev is not None:
336
- return control_prev
337
- else:
338
- return None
339
-
340
- dtype = self.control_model.dtype
341
- if self.manual_cast_dtype is not None:
342
- dtype = self.manual_cast_dtype
343
- output_dtype = x_noisy.dtype
344
- # set actual input length on motion model
345
- actual_length = x_noisy.size(0)//batched_number
346
- full_length = actual_length if self.sub_idxs is None else self.full_latent_length
347
- self.control_model.set_actual_length(actual_length=actual_length, full_length=full_length)
348
- # prepare cond_hint, if needed
349
- dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8
350
- if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]:
351
- # clear out cond_hint and conditioning_mask
352
- if self.cond_hint is not None:
353
- del self.cond_hint
354
- self.cond_hint = None
355
- # first, figure out which cond idxs are relevant, and where they fit in
356
- cond_idxs, hint_order = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length,
357
- sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None)
358
- range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs
359
- hint_idxs = [] # idxs in cond_idxs
360
- local_idxs = [] # idx to put in final cond_hint
361
- for i,cond_idx in enumerate(cond_idxs):
362
- if cond_idx in range_idxs:
363
- hint_idxs.append(i)
364
- local_idxs.append(range_idxs.index(cond_idx))
365
- # log_string = f"cond_idxs: {cond_idxs}, local_idxs: {local_idxs}, hint_idxs: {hint_idxs}, hint_order: {hint_order}"
366
- # if self.sub_idxs is not None:
367
- # log_string += f" sub_idxs: {self.sub_idxs[0]}-{self.sub_idxs[-1]}"
368
- # logger.warn(log_string)
369
- # determine cond/uncond indexes that will get masked
370
- self.local_sparse_idxs = []
371
- self.local_sparse_idxs_inverse = list(range(x_noisy.size(0)))
372
- for batch_idx in range(batched_number):
373
- for i in local_idxs:
374
- actual_i = i+(batch_idx*actual_length)
375
- self.local_sparse_idxs.append(actual_i)
376
- if actual_i in self.local_sparse_idxs_inverse:
377
- self.local_sparse_idxs_inverse.remove(actual_i)
378
- # sub_cond_hint now contains the hints relevant to current x_noisy
379
- if hint_order is None:
380
- sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device)
381
- else:
382
- sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device)
383
- # scale cond_hints to match noisy input
384
- if self.control_model.use_simplified_conditioning_embedding:
385
- # RGB SparseCtrl; the inputs are latents - use bilinear to avoid blocky artifacts
386
- sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint) # multiplies by model scale factor
387
- sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device)
388
- else:
389
- # other SparseCtrl; inputs are typical images
390
- sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
391
- # prepare cond_hint (b, c, h ,w)
392
- cond_shape = list(sub_cond_hint.shape)
393
- cond_shape[0] = len(range_idxs)
394
- self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
395
- self.cond_hint[local_idxs] = sub_cond_hint[:]
396
- # prepare cond_mask (b, 1, h, w)
397
- cond_shape[1] = 1
398
- cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
399
- cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0)
400
- # combine cond_hint and cond_mask into (b, c+1, h, w)
401
- if not self.sparse_settings.merged:
402
- self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1)
403
- del sub_cond_hint
404
- del cond_mask
405
- # make cond_hint match x_noisy batch
406
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
407
- self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
408
-
409
- # prepare mask_cond_hint
410
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
411
-
412
- context = cond['c_crossattn']
413
- y = cond.get('y', None)
414
- if y is not None:
415
- y = y.to(dtype)
416
- timestep = self.model_sampling_current.timestep(t)
417
- x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
418
-
419
- control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
420
- return self.control_merge(control, control_prev, output_dtype)
421
-
422
- def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs):
423
- # apply mults to indexes with and without a direct condhint
424
- x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0)
425
- x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0)
426
- return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs)
427
-
428
- def pre_run_advanced(self, model, percent_to_timestep_function):
429
- super().pre_run_advanced(model, percent_to_timestep_function)
430
- if isinstance(self.cond_hint_original, AbstractPreprocWrapper):
431
- if not self.control_model.use_simplified_conditioning_embedding:
432
- raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.")
433
- self.cond_hint_original = self.cond_hint_original.condhint
434
- self.model_latent_format = model.latent_format # LatentFormat object, used to process_in latent cond hint
435
- if self.control_model.motion_wrapper is not None:
436
- self.control_model.motion_wrapper.reset()
437
- self.control_model.motion_wrapper.set_strength(self.sparse_settings.motion_strength)
438
- self.control_model.motion_wrapper.set_scale_multiplier(self.sparse_settings.motion_scale)
439
-
440
- def cleanup_advanced(self):
441
- super().cleanup_advanced()
442
- if self.model_latent_format is not None:
443
- del self.model_latent_format
444
- self.model_latent_format = None
445
- self.local_sparse_idxs = None
446
- self.local_sparse_idxs_inverse = None
447
-
448
- def copy(self):
449
- c = SparseCtrlAdvanced(self.control_model, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype)
450
- self.copy_to(c)
451
- self.copy_to_advanced(c)
452
- return c
453
-
454
-
455
- def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
456
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
457
- # from pathlib import Path
458
- # log_name = ckpt_path.split('\\')[-1]
459
- # with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
460
- # for key, value in controlnet_data.items():
461
- # afile.write(f"{key}:\t{value.shape}\n")
462
- control = None
463
- # check if a non-vanilla ControlNet
464
- controlnet_type = ControlWeightType.DEFAULT
465
- has_controlnet_key = False
466
- has_motion_modules_key = False
467
- has_temporal_res_block_key = False
468
- for key in controlnet_data:
469
- # LLLite check
470
- if "lllite" in key:
471
- controlnet_type = ControlWeightType.CONTROLLLLITE
472
- break
473
- # SparseCtrl check
474
- elif "motion_modules" in key:
475
- has_motion_modules_key = True
476
- elif "controlnet" in key:
477
- has_controlnet_key = True
478
- # SVD-ControlNet check
479
- elif "temporal_res_block" in key:
480
- has_temporal_res_block_key = True
481
- # ControlNet++ check
482
- elif "task_embedding" in key:
483
- pass
484
-
485
- if has_controlnet_key and has_motion_modules_key:
486
- controlnet_type = ControlWeightType.SPARSECTRL
487
- elif has_controlnet_key and has_temporal_res_block_key:
488
- controlnet_type = ControlWeightType.SVD_CONTROLNET
489
-
490
- if controlnet_type != ControlWeightType.DEFAULT:
491
- if controlnet_type == ControlWeightType.CONTROLLLLITE:
492
- control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
493
- elif controlnet_type == ControlWeightType.SPARSECTRL:
494
- control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model)
495
- elif controlnet_type == ControlWeightType.SVD_CONTROLNET:
496
- control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
497
- # otherwise, load vanilla ControlNet
498
- else:
499
- try:
500
- # hacky way of getting load_torch_file in load_controlnet to use already-present controlnet_data and not redo loading
501
- orig_load_torch_file = comfy.utils.load_torch_file
502
- comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file)
503
- control = comfy_cn.load_controlnet(ckpt_path, model=model)
504
- finally:
505
- comfy.utils.load_torch_file = orig_load_torch_file
506
- return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)
507
-
508
-
509
- def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
510
- # if already advanced, leave it be
511
- if is_advanced_controlnet(control):
512
- return control
513
- # if exactly ControlNet returned, transform it into ControlNetAdvanced
514
- if type(control) == ControlNet:
515
- control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
516
- if is_sd3_advanced_controlnet(control):
517
- control.require_vae = True
518
- return control
519
- # if exactly ControlLora returned, transform it into ControlLoraAdvanced
520
- elif type(control) == ControlLora:
521
- return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
522
- # if T2IAdapter returned, transform it into T2IAdapterAdvanced
523
- elif isinstance(control, T2IAdapter):
524
- return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
525
- # otherwise, leave it be - might be something I am not supporting yet
526
- return control
527
-
528
-
529
- def convert_all_to_advanced(conds: list[list[dict[str]]]) -> tuple[bool, list]:
530
- cache = {}
531
- modified = False
532
- new_conds = []
533
- for cond in conds:
534
- converted_cond = None
535
- if cond is not None:
536
- need_to_convert = False
537
- # first, check if there is even a need to convert
538
- for sub_cond in cond:
539
- actual_cond = sub_cond[1]
540
- if "control" in actual_cond:
541
- if not are_all_advanced_controlnet(actual_cond["control"]):
542
- need_to_convert = True
543
- break
544
- if not need_to_convert:
545
- converted_cond = cond
546
- else:
547
- converted_cond = []
548
- for sub_cond in cond:
549
- new_sub_cond: list = []
550
- for actual_cond in sub_cond:
551
- if not type(actual_cond) == dict:
552
- new_sub_cond.append(actual_cond)
553
- continue
554
- if "control" not in actual_cond:
555
- new_sub_cond.append(actual_cond)
556
- elif are_all_advanced_controlnet(actual_cond["control"]):
557
- new_sub_cond.append(actual_cond)
558
- else:
559
- actual_cond = actual_cond.copy()
560
- actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache)
561
- new_sub_cond.append(actual_cond)
562
- modified = True
563
- converted_cond.append(new_sub_cond)
564
- new_conds.append(converted_cond)
565
- return modified, new_conds
566
-
567
-
568
- def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict):
569
- output_object = input_object
570
- # iteratively convert to advanced, if needed
571
- next_cn = None
572
- curr_cn = input_object
573
- iter = 0
574
- while curr_cn is not None:
575
- if not is_advanced_controlnet(curr_cn):
576
- # if already in cache, then conversion was done before, so just link it and exit
577
- if curr_cn in cache:
578
- new_cn = cache[curr_cn]
579
- if next_cn is not None:
580
- setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
581
- next_cn.previous_controlnet = new_cn
582
- if iter == 0: # if was top-level controlnet, that's the new output
583
- output_object = new_cn
584
- break
585
- try:
586
- # convert to advanced, and assign previous_controlnet (convert doesn't transfer it)
587
- new_cn = convert_to_advanced(curr_cn)
588
- except Exception as e:
589
- raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e)
590
- new_cn.previous_controlnet = curr_cn.previous_controlnet
591
- if iter == 0: # if was top-level controlnet, that's the new output
592
- output_object = new_cn
593
- # if next_cn is present, then it needs to be pointed to new_cn
594
- if next_cn is not None:
595
- setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
596
- next_cn.previous_controlnet = new_cn
597
- # add to cache
598
- cache[curr_cn] = new_cn
599
- curr_cn = new_cn
600
- next_cn = curr_cn
601
- curr_cn = curr_cn.previous_controlnet
602
- iter += 1
603
- return output_object
604
-
605
-
606
- def restore_all_controlnet_conns(conds: list[list[dict[str]]]):
607
- # if a cn has an _orig_previous_controlnet property, restore it and delete
608
- for main_cond in conds:
609
- if main_cond is not None:
610
- for cond in main_cond:
611
- if "control" in cond[1]:
612
- # if ACN is the one to have initialized it, delete it
613
- # TODO: maybe check if someone else did a similar hack, and carefully pluck out our stuff?
614
- if CONTROL_INIT_BY_ACN in cond[1]:
615
- cond[1].pop("control")
616
- cond[1].pop(CONTROL_INIT_BY_ACN)
617
- else:
618
- _restore_all_controlnet_conns(cond[1]["control"])
619
-
620
-
621
- def _restore_all_controlnet_conns(input_object: ControlBase):
622
- # restore original previous_controlnet if needed
623
- curr_cn = input_object
624
- while curr_cn is not None:
625
- if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET):
626
- curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
627
- delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
628
- curr_cn = curr_cn.previous_controlnet
629
-
630
-
631
- def are_all_advanced_controlnet(input_object: ControlBase):
632
- # iteratively check if linked controlnets objects are all advanced
633
- curr_cn = input_object
634
- while curr_cn is not None:
635
- if not is_advanced_controlnet(curr_cn):
636
- return False
637
- curr_cn = curr_cn.previous_controlnet
638
- return True
639
-
640
-
641
- def is_advanced_controlnet(input_object):
642
- return hasattr(input_object, "sub_idxs")
643
-
644
-
645
- def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced):
646
- return type(input_object) == ControlNetAdvanced and input_object.latent_format is not None
647
-
648
-
649
- def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced:
650
- if controlnet_data is None:
651
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
652
- # first, separate out motion part from normal controlnet part and attempt to load that portion
653
- motion_data = {}
654
- for key in list(controlnet_data.keys()):
655
- if "temporal" in key:
656
- motion_data[key] = controlnet_data.pop(key)
657
- if len(motion_data) == 0:
658
- raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!")
659
-
660
- # now, load as if it was a normal controlnet - mostly copied from comfy load_controlnet function
661
- controlnet_config: dict[str] = None
662
- is_diffusers = False
663
- use_simplified_conditioning_embedding = False
664
- if "controlnet_cond_embedding.conv_in.weight" in controlnet_data:
665
- is_diffusers = True
666
- if "controlnet_cond_embedding.weight" in controlnet_data:
667
- is_diffusers = True
668
- use_simplified_conditioning_embedding = True
669
- if is_diffusers: #diffusers format
670
- unet_dtype = comfy.model_management.unet_dtype()
671
- controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
672
- diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
673
- diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
674
- diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
675
-
676
- count = 0
677
- loop = True
678
- while loop:
679
- suffix = [".weight", ".bias"]
680
- for s in suffix:
681
- k_in = "controlnet_down_blocks.{}{}".format(count, s)
682
- k_out = "zero_convs.{}.0{}".format(count, s)
683
- if k_in not in controlnet_data:
684
- loop = False
685
- break
686
- diffusers_keys[k_in] = k_out
687
- count += 1
688
- # normal conditioning embedding
689
- if not use_simplified_conditioning_embedding:
690
- count = 0
691
- loop = True
692
- while loop:
693
- suffix = [".weight", ".bias"]
694
- for s in suffix:
695
- if count == 0:
696
- k_in = "controlnet_cond_embedding.conv_in{}".format(s)
697
- else:
698
- k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
699
- k_out = "input_hint_block.{}{}".format(count * 2, s)
700
- if k_in not in controlnet_data:
701
- k_in = "controlnet_cond_embedding.conv_out{}".format(s)
702
- loop = False
703
- diffusers_keys[k_in] = k_out
704
- count += 1
705
- # simplified conditioning embedding
706
- else:
707
- count = 0
708
- suffix = [".weight", ".bias"]
709
- for s in suffix:
710
- k_in = "controlnet_cond_embedding{}".format(s)
711
- k_out = "input_hint_block.{}{}".format(count, s)
712
- diffusers_keys[k_in] = k_out
713
-
714
- new_sd = {}
715
- for k in diffusers_keys:
716
- if k in controlnet_data:
717
- new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
718
-
719
- leftover_keys = controlnet_data.keys()
720
- if len(leftover_keys) > 0:
721
- logger.info("leftover keys:", leftover_keys)
722
- controlnet_data = new_sd
723
-
724
- pth_key = 'control_model.zero_convs.0.0.weight'
725
- pth = False
726
- key = 'zero_convs.0.0.weight'
727
- if pth_key in controlnet_data:
728
- pth = True
729
- key = pth_key
730
- prefix = "control_model."
731
- elif key in controlnet_data:
732
- prefix = ""
733
- else:
734
- raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]")
735
-
736
- if controlnet_config is None:
737
- unet_dtype = comfy.model_management.unet_dtype()
738
- controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
739
- load_device = comfy.model_management.get_torch_device()
740
- manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
741
- if manual_cast_dtype is not None:
742
- controlnet_config["operations"] = manual_cast_clean_groupnorm
743
- else:
744
- controlnet_config["operations"] = disable_weight_init_clean_groupnorm
745
- controlnet_config.pop("out_channels")
746
- # get proper hint channels
747
- if use_simplified_conditioning_embedding:
748
- controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
749
- controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
750
- else:
751
- controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
752
- controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
753
- control_model = SparseControlNet(**controlnet_config)
754
-
755
- if pth:
756
- if 'difference' in controlnet_data:
757
- if model is not None:
758
- comfy.model_management.load_models_gpu([model])
759
- model_sd = model.model_state_dict()
760
- for x in controlnet_data:
761
- c_m = "control_model."
762
- if x.startswith(c_m):
763
- sd_key = "diffusion_model.{}".format(x[len(c_m):])
764
- if sd_key in model_sd:
765
- cd = controlnet_data[x]
766
- cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
767
- else:
768
- logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.")
769
-
770
- class WeightsLoader(torch.nn.Module):
771
- pass
772
- w = WeightsLoader()
773
- w.control_model = control_model
774
- missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
775
- else:
776
- missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
777
- if len(missing) > 0 or len(unexpected) > 0:
778
- logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}")
779
-
780
- global_average_pooling = False
781
- filename = os.path.splitext(ckpt_path)[0]
782
- if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
783
- global_average_pooling = True
784
-
785
- # actually load motion portion of model now
786
- motion_wrapper: SparseCtrlMotionWrapper = SparseCtrlMotionWrapper(motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype())
787
- missing, unexpected = motion_wrapper.load_state_dict(motion_data)
788
- if len(missing) > 0 or len(unexpected) > 0:
789
- logger.info(f"SparseCtrlMotionWrapper: {missing}, {unexpected}")
790
-
791
- # both motion portion and controlnet portions are loaded; bring them together if using motion model
792
- if sparse_settings.use_motion:
793
- motion_wrapper.inject(control_model)
794
-
795
- control = SparseCtrlAdvanced(control_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
796
- return control
797
-
798
-
799
- def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
800
- if controlnet_data is None:
801
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
802
-
803
- controlnet_config = None
804
- if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
805
- unet_dtype = comfy.model_management.unet_dtype()
806
- controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
807
- diffusers_keys = svd_unet_to_diffusers(controlnet_config)
808
- diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
809
- diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
810
-
811
- count = 0
812
- loop = True
813
- while loop:
814
- suffix = [".weight", ".bias"]
815
- for s in suffix:
816
- k_in = "controlnet_down_blocks.{}{}".format(count, s)
817
- k_out = "zero_convs.{}.0{}".format(count, s)
818
- if k_in not in controlnet_data:
819
- loop = False
820
- break
821
- diffusers_keys[k_in] = k_out
822
- count += 1
823
-
824
- count = 0
825
- loop = True
826
- while loop:
827
- suffix = [".weight", ".bias"]
828
- for s in suffix:
829
- if count == 0:
830
- k_in = "controlnet_cond_embedding.conv_in{}".format(s)
831
- else:
832
- k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
833
- k_out = "input_hint_block.{}{}".format(count * 2, s)
834
- if k_in not in controlnet_data:
835
- k_in = "controlnet_cond_embedding.conv_out{}".format(s)
836
- loop = False
837
- diffusers_keys[k_in] = k_out
838
- count += 1
839
-
840
- new_sd = {}
841
- for k in diffusers_keys:
842
- if k in controlnet_data:
843
- new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
844
-
845
- leftover_keys = controlnet_data.keys()
846
- if len(leftover_keys) > 0:
847
- spatial_leftover_keys = []
848
- temporal_leftover_keys = []
849
- other_leftover_keys = []
850
- for key in leftover_keys:
851
- if "spatial" in key:
852
- spatial_leftover_keys.append(key)
853
- elif "temporal" in key:
854
- temporal_leftover_keys.append(key)
855
- else:
856
- other_leftover_keys.append(key)
857
- logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}")
858
- logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}")
859
- logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}")
860
- #print("leftover keys:", leftover_keys)
861
- controlnet_data = new_sd
862
-
863
- pth_key = 'control_model.zero_convs.0.0.weight'
864
- pth = False
865
- key = 'zero_convs.0.0.weight'
866
- if pth_key in controlnet_data:
867
- pth = True
868
- key = pth_key
869
- prefix = "control_model."
870
- elif key in controlnet_data:
871
- prefix = ""
872
- else:
873
- raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]")
874
-
875
- if controlnet_config is None:
876
- unet_dtype = comfy.model_management.unet_dtype()
877
- controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
878
- load_device = comfy.model_management.get_torch_device()
879
- manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
880
- if manual_cast_dtype is not None:
881
- controlnet_config["operations"] = comfy.ops.manual_cast
882
- controlnet_config.pop("out_channels")
883
- controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
884
- control_model = SVDControlNet(**controlnet_config)
885
-
886
- if pth:
887
- if 'difference' in controlnet_data:
888
- if model is not None:
889
- comfy.model_management.load_models_gpu([model])
890
- model_sd = model.model_state_dict()
891
- for x in controlnet_data:
892
- c_m = "control_model."
893
- if x.startswith(c_m):
894
- sd_key = "diffusion_model.{}".format(x[len(c_m):])
895
- if sd_key in model_sd:
896
- cd = controlnet_data[x]
897
- cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
898
- else:
899
- print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
900
-
901
- class WeightsLoader(torch.nn.Module):
902
- pass
903
- w = WeightsLoader()
904
- w.control_model = control_model
905
- missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
906
- else:
907
- missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
908
- if len(missing) > 0 or len(unexpected) > 0:
909
- logger.info(f"SVD-ControlNet: {missing}, {unexpected}")
910
-
911
- global_average_pooling = False
912
- filename = os.path.splitext(ckpt_path)[0]
913
- if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
914
- global_average_pooling = True
915
-
916
- control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
917
- return control
918
-
 
1
+ from typing import Callable, Union
2
+ from torch import Tensor
3
+ import torch
4
+ import os
5
+
6
+ import comfy.ops
7
+ import comfy.utils
8
+ import comfy.model_management
9
+ import comfy.model_detection
10
+ import comfy.controlnet as comfy_cn
11
+ from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, StrengthType
12
+ from comfy.model_patcher import ModelPatcher
13
+
14
+ from .control_sparsectrl import SparseModelPatcher, SparseControlNet, SparseCtrlMotionWrapper, SparseSettings, SparseConst
15
+ from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite
16
+ from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers
17
+ from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException,
18
+ manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory,
19
+ broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN)
20
+ from .logger import logger
21
+
22
+
23
+ class ControlNetAdvanced(ControlNet, AdvancedControlBase):
24
+ def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT):
25
+ super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
26
+ AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
27
+ self.is_flux = False
28
+ self.x_noisy_shape = None
29
+
30
+ def get_universal_weights(self) -> ControlWeights:
31
+ def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
32
+ if key == "middle":
33
+ return 1.0
34
+ c_len = len(control[key])
35
+ raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
36
+ raw_weights = raw_weights[:-1]
37
+ if key == "input":
38
+ raw_weights.reverse()
39
+ return raw_weights[idx]
40
+ return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
41
+
42
+ def get_control_advanced(self, x_noisy, t, cond, batched_number):
43
+ # perform special version of get_control that supports sliding context and masks
44
+ return self.sliding_get_control(x_noisy, t, cond, batched_number)
45
+
46
+ def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
47
+ control_prev = None
48
+ if self.previous_controlnet is not None:
49
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
50
+
51
+ if self.timestep_range is not None:
52
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
53
+ if control_prev is not None:
54
+ return control_prev
55
+ else:
56
+ return None
57
+
58
+ dtype = self.control_model.dtype
59
+ if self.manual_cast_dtype is not None:
60
+ dtype = self.manual_cast_dtype
61
+
62
+ # make cond_hint appropriate dimensions
63
+ # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
64
+ if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
65
+ if self.cond_hint is not None:
66
+ del self.cond_hint
67
+ self.cond_hint = None
68
+ compression_ratio = self.compression_ratio
69
+ if self.vae is not None:
70
+ compression_ratio *= self.vae.downscale_ratio
71
+ # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
72
+ if self.sub_idxs is not None:
73
+ actual_cond_hint_orig = self.cond_hint_original
74
+ if self.cond_hint_original.size(0) < self.full_latent_length:
75
+ actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
76
+ self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
77
+ else:
78
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
79
+ if self.vae is not None:
80
+ loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
81
+ self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
82
+ comfy.model_management.load_models_gpu(loaded_models)
83
+ if self.latent_format is not None:
84
+ self.cond_hint = self.latent_format.process_in(self.cond_hint)
85
+ self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
86
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
87
+ self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
88
+
89
+ # prepare mask_cond_hint
90
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
91
+
92
+ context = cond.get('crossattn_controlnet', cond['c_crossattn'])
93
+ extra = self.extra_args.copy()
94
+ for c in self.extra_conds:
95
+ temp = cond.get(c, None)
96
+ if temp is not None:
97
+ extra[c] = temp.to(dtype)
98
+
99
+ timestep = self.model_sampling_current.timestep(t)
100
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
101
+ self.x_noisy_shape = x_noisy.shape
102
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
103
+ return self.control_merge(control, control_prev, output_dtype=None)
104
+
105
+ def pre_run_advanced(self, *args, **kwargs):
106
+ self.is_flux = "Flux" in str(type(self.control_model).__name__)
107
+ return super().pre_run_advanced(*args, **kwargs)
108
+
109
+ def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None):
110
+ if self.is_flux:
111
+ flux_shape = self.x_noisy_shape
112
+ return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape)
113
+
114
+ def copy(self):
115
+ c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
116
+ c.control_model = self.control_model
117
+ c.control_model_wrapped = self.control_model_wrapped
118
+ self.copy_to(c)
119
+ self.copy_to_advanced(c)
120
+ return c
121
+
122
+ def cleanup_advanced(self):
123
+ self.x_noisy_shape = None
124
+ return super().cleanup_advanced()
125
+
126
+ @staticmethod
127
+ def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
128
+ to_return = ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
129
+ global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device,
130
+ manual_cast_dtype=v.manual_cast_dtype)
131
+ v.copy_to(to_return)
132
+ return to_return
133
+
134
+
135
+ class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
136
+ def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None):
137
+ super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device)
138
+ AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())
139
+
140
+ def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype):
141
+ # match batch_size
142
+ # TODO: make this more efficient by modifying the cached self.control_input val instead of doing this every step
143
+ for key in control:
144
+ control_current = control[key]
145
+ for i in range(len(control_current)):
146
+ x = control_current[i]
147
+ if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size:
148
+ control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size]
149
+ return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype)
150
+
151
+ def get_universal_weights(self) -> ControlWeights:
152
+ def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
153
+ if key == "middle":
154
+ return 1.0
155
+ c_len = 8 #len(control[key])
156
+ raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)]
157
+ raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
158
+ raw_weights = get_properly_arranged_t2i_weights(raw_weights)
159
+ if key == "input":
160
+ raw_weights.reverse()
161
+ return raw_weights[idx]
162
+ return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func)
163
+
164
+ def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
165
+ if key == "middle":
166
+ return 0
167
+ # match how T2IAdapterAdvanced deals with universal weights
168
+ c_len = 8 #len(control[key])
169
+ indeces = [(c_len-1) - i for i in range(c_len)]
170
+ indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]]
171
+ indeces = get_properly_arranged_t2i_weights(indeces)
172
+ if key == "input":
173
+ indeces.reverse() # need to reverse to match recent ComfyUI changes
174
+ return indeces[idx]
175
+
176
+ def get_control_advanced(self, x_noisy, t, cond, batched_number):
177
+ try:
178
+ # if sub indexes present, replace original hint with subsection
179
+ if self.sub_idxs is not None:
180
+ # cond hints
181
+ full_cond_hint_original = self.cond_hint_original
182
+ actual_cond_hint_orig = full_cond_hint_original
183
+ del self.cond_hint
184
+ self.cond_hint = None
185
+ if full_cond_hint_original.size(0) < self.full_latent_length:
186
+ actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0))
187
+ self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs]
188
+ # mask hints
189
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
190
+ return super().get_control(x_noisy, t, cond, batched_number)
191
+ finally:
192
+ if self.sub_idxs is not None:
193
+ # replace original cond hint
194
+ self.cond_hint_original = full_cond_hint_original
195
+ del full_cond_hint_original
196
+
197
+ def copy(self):
198
+ c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm)
199
+ self.copy_to(c)
200
+ self.copy_to_advanced(c)
201
+ return c
202
+
203
+ def cleanup(self):
204
+ super().cleanup()
205
+ self.cleanup_advanced()
206
+
207
+ @staticmethod
208
+ def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
209
+ to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in,
210
+ compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device)
211
+ v.copy_to(to_return)
212
+ return to_return
213
+
214
+
215
+ class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
216
+ def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False):
217
+ super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling)
218
+ AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
219
+ # use some functions from ControlNetAdvanced
220
+ self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
221
+ self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
222
+
223
+ def get_universal_weights(self) -> ControlWeights:
224
+ raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
225
+ return self.weights.copy_with_new_weights(raw_weights)
226
+
227
+ def copy(self):
228
+ c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
229
+ self.copy_to(c)
230
+ self.copy_to_advanced(c)
231
+ return c
232
+
233
+ def cleanup(self):
234
+ super().cleanup()
235
+ self.cleanup_advanced()
236
+
237
+ @staticmethod
238
+ def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
239
+ to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
240
+ global_average_pooling=v.global_average_pooling)
241
+ v.copy_to(to_return)
242
+ return to_return
243
+
244
+
245
+ class SVDControlNetAdvanced(ControlNetAdvanced):
246
+ def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
247
+ super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
248
+
249
+ def set_cond_hint_inject(self, *args, **kwargs):
250
+ to_return = super().set_cond_hint_inject(*args, **kwargs)
251
+ # cond hint for SVD-ControlNet needs to be scaled between (-1, 1) instead of (0, 1)
252
+ self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
253
+ return to_return
254
+
255
+ def get_control_advanced(self, x_noisy, t, cond, batched_number):
256
+ control_prev = None
257
+ if self.previous_controlnet is not None:
258
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
259
+
260
+ if self.timestep_range is not None:
261
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
262
+ if control_prev is not None:
263
+ return control_prev
264
+ else:
265
+ return None
266
+
267
+ dtype = self.control_model.dtype
268
+ if self.manual_cast_dtype is not None:
269
+ dtype = self.manual_cast_dtype
270
+
271
+ output_dtype = x_noisy.dtype
272
+ # make cond_hint appropriate dimensions
273
+ # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
274
+ if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
275
+ if self.cond_hint is not None:
276
+ del self.cond_hint
277
+ self.cond_hint = None
278
+ # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
279
+ if self.sub_idxs is not None:
280
+ actual_cond_hint_orig = self.cond_hint_original
281
+ if self.cond_hint_original.size(0) < self.full_latent_length:
282
+ actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
283
+ self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
284
+ else:
285
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
286
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
287
+ self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
288
+
289
+ # prepare mask_cond_hint
290
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
291
+
292
+ context = cond.get('crossattn_controlnet', cond['c_crossattn'])
293
+ # uses 'y' in new ComfyUI update
294
+ y = cond.get('y', None)
295
+ if y is not None:
296
+ y = y.to(dtype)
297
+ timestep = self.model_sampling_current.timestep(t)
298
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
299
+ # concat c_concat if exists (should exist for SVD), doubling channels to 8
300
+ if cond.get('c_concat', None) is not None:
301
+ x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1)
302
+
303
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond)
304
+ return self.control_merge(control, control_prev, output_dtype)
305
+
306
+ def copy(self):
307
+ c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
308
+ self.copy_to(c)
309
+ self.copy_to_advanced(c)
310
+ return c
311
+
312
+
313
+ class SparseCtrlAdvanced(ControlNetAdvanced):
314
+ def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
315
+ super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
316
+ self.control_model_wrapped = SparseModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
317
+ self.add_compatible_weight(ControlWeightType.SPARSECTRL)
318
+ self.control_model: SparseControlNet = self.control_model # does nothing except help with IDE hints
319
+ if self.control_model.use_simplified_conditioning_embedding:
320
+ # TODO: allow vae_optional to be used instead of preprocessor
321
+ #self.require_vae = True
322
+ self.allow_condhint_latents = True
323
+ self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default()
324
+ self.model_latent_format = None # latent format for active SD model, NOT controlnet
325
+ self.preprocessed = False
326
+
327
+ def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
328
+ # normal ControlNet stuff
329
+ control_prev = None
330
+ if self.previous_controlnet is not None:
331
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
332
+
333
+ if self.timestep_range is not None:
334
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
335
+ if control_prev is not None:
336
+ return control_prev
337
+ else:
338
+ return None
339
+
340
+ dtype = self.control_model.dtype
341
+ if self.manual_cast_dtype is not None:
342
+ dtype = self.manual_cast_dtype
343
+ output_dtype = x_noisy.dtype
344
+ # set actual input length on motion model
345
+ actual_length = x_noisy.size(0)//batched_number
346
+ full_length = actual_length if self.sub_idxs is None else self.full_latent_length
347
+ self.control_model.set_actual_length(actual_length=actual_length, full_length=full_length)
348
+ # prepare cond_hint, if needed
349
+ dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8
350
+ if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]:
351
+ # clear out cond_hint and conditioning_mask
352
+ if self.cond_hint is not None:
353
+ del self.cond_hint
354
+ self.cond_hint = None
355
+ # first, figure out which cond idxs are relevant, and where they fit in
356
+ cond_idxs, hint_order = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length,
357
+ sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None)
358
+ range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs
359
+ hint_idxs = [] # idxs in cond_idxs
360
+ local_idxs = [] # idx to put in final cond_hint
361
+ for i,cond_idx in enumerate(cond_idxs):
362
+ if cond_idx in range_idxs:
363
+ hint_idxs.append(i)
364
+ local_idxs.append(range_idxs.index(cond_idx))
365
+ # log_string = f"cond_idxs: {cond_idxs}, local_idxs: {local_idxs}, hint_idxs: {hint_idxs}, hint_order: {hint_order}"
366
+ # if self.sub_idxs is not None:
367
+ # log_string += f" sub_idxs: {self.sub_idxs[0]}-{self.sub_idxs[-1]}"
368
+ # logger.warn(log_string)
369
+ # determine cond/uncond indexes that will get masked
370
+ self.local_sparse_idxs = []
371
+ self.local_sparse_idxs_inverse = list(range(x_noisy.size(0)))
372
+ for batch_idx in range(batched_number):
373
+ for i in local_idxs:
374
+ actual_i = i+(batch_idx*actual_length)
375
+ self.local_sparse_idxs.append(actual_i)
376
+ if actual_i in self.local_sparse_idxs_inverse:
377
+ self.local_sparse_idxs_inverse.remove(actual_i)
378
+ # sub_cond_hint now contains the hints relevant to current x_noisy
379
+ if hint_order is None:
380
+ sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device)
381
+ else:
382
+ sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device)
383
+ # scale cond_hints to match noisy input
384
+ if self.control_model.use_simplified_conditioning_embedding:
385
+ # RGB SparseCtrl; the inputs are latents - use bilinear to avoid blocky artifacts
386
+ sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint) # multiplies by model scale factor
387
+ sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device)
388
+ else:
389
+ # other SparseCtrl; inputs are typical images
390
+ sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
391
+ # prepare cond_hint (b, c, h ,w)
392
+ cond_shape = list(sub_cond_hint.shape)
393
+ cond_shape[0] = len(range_idxs)
394
+ self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
395
+ self.cond_hint[local_idxs] = sub_cond_hint[:]
396
+ # prepare cond_mask (b, 1, h, w)
397
+ cond_shape[1] = 1
398
+ cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
399
+ cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0)
400
+ # combine cond_hint and cond_mask into (b, c+1, h, w)
401
+ if not self.sparse_settings.merged:
402
+ self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1)
403
+ del sub_cond_hint
404
+ del cond_mask
405
+ # make cond_hint match x_noisy batch
406
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
407
+ self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
408
+
409
+ # prepare mask_cond_hint
410
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
411
+
412
+ context = cond['c_crossattn']
413
+ y = cond.get('y', None)
414
+ if y is not None:
415
+ y = y.to(dtype)
416
+ timestep = self.model_sampling_current.timestep(t)
417
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
418
+
419
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
420
+ return self.control_merge(control, control_prev, output_dtype)
421
+
422
+ def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs):
423
+ # apply mults to indexes with and without a direct condhint
424
+ x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0)
425
+ x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0)
426
+ return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs)
427
+
428
+ def pre_run_advanced(self, model, percent_to_timestep_function):
429
+ super().pre_run_advanced(model, percent_to_timestep_function)
430
+ if isinstance(self.cond_hint_original, AbstractPreprocWrapper):
431
+ if not self.control_model.use_simplified_conditioning_embedding:
432
+ raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.")
433
+ self.cond_hint_original = self.cond_hint_original.condhint
434
+ self.model_latent_format = model.latent_format # LatentFormat object, used to process_in latent cond hint
435
+ if self.control_model.motion_wrapper is not None:
436
+ self.control_model.motion_wrapper.reset()
437
+ self.control_model.motion_wrapper.set_strength(self.sparse_settings.motion_strength)
438
+ self.control_model.motion_wrapper.set_scale_multiplier(self.sparse_settings.motion_scale)
439
+
440
+ def cleanup_advanced(self):
441
+ super().cleanup_advanced()
442
+ if self.model_latent_format is not None:
443
+ del self.model_latent_format
444
+ self.model_latent_format = None
445
+ self.local_sparse_idxs = None
446
+ self.local_sparse_idxs_inverse = None
447
+
448
+ def copy(self):
449
+ c = SparseCtrlAdvanced(self.control_model, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype)
450
+ self.copy_to(c)
451
+ self.copy_to_advanced(c)
452
+ return c
453
+
454
+
455
+ def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
456
+ controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
457
+ # from pathlib import Path
458
+ # log_name = ckpt_path.split('\\')[-1]
459
+ # with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
460
+ # for key, value in controlnet_data.items():
461
+ # afile.write(f"{key}:\t{value.shape}\n")
462
+ control = None
463
+ # check if a non-vanilla ControlNet
464
+ controlnet_type = ControlWeightType.DEFAULT
465
+ has_controlnet_key = False
466
+ has_motion_modules_key = False
467
+ has_temporal_res_block_key = False
468
+ for key in controlnet_data:
469
+ # LLLite check
470
+ if "lllite" in key:
471
+ controlnet_type = ControlWeightType.CONTROLLLLITE
472
+ break
473
+ # SparseCtrl check
474
+ elif "motion_modules" in key:
475
+ has_motion_modules_key = True
476
+ elif "controlnet" in key:
477
+ has_controlnet_key = True
478
+ # SVD-ControlNet check
479
+ elif "temporal_res_block" in key:
480
+ has_temporal_res_block_key = True
481
+ # ControlNet++ check
482
+ elif "task_embedding" in key:
483
+ pass
484
+
485
+ if has_controlnet_key and has_motion_modules_key:
486
+ controlnet_type = ControlWeightType.SPARSECTRL
487
+ elif has_controlnet_key and has_temporal_res_block_key:
488
+ controlnet_type = ControlWeightType.SVD_CONTROLNET
489
+
490
+ if controlnet_type != ControlWeightType.DEFAULT:
491
+ if controlnet_type == ControlWeightType.CONTROLLLLITE:
492
+ control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
493
+ elif controlnet_type == ControlWeightType.SPARSECTRL:
494
+ control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model)
495
+ elif controlnet_type == ControlWeightType.SVD_CONTROLNET:
496
+ control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
497
+ # otherwise, load vanilla ControlNet
498
+ else:
499
+ try:
500
+ # hacky way of getting load_torch_file in load_controlnet to use already-present controlnet_data and not redo loading
501
+ orig_load_torch_file = comfy.utils.load_torch_file
502
+ comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file)
503
+ control = comfy_cn.load_controlnet(ckpt_path, model=model)
504
+ finally:
505
+ comfy.utils.load_torch_file = orig_load_torch_file
506
+ return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)
507
+
508
+
509
+ def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
510
+ # if already advanced, leave it be
511
+ if is_advanced_controlnet(control):
512
+ return control
513
+ # if exactly ControlNet returned, transform it into ControlNetAdvanced
514
+ if type(control) == ControlNet:
515
+ control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
516
+ if is_sd3_advanced_controlnet(control):
517
+ control.require_vae = True
518
+ return control
519
+ # if exactly ControlLora returned, transform it into ControlLoraAdvanced
520
+ elif type(control) == ControlLora:
521
+ return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
522
+ # if T2IAdapter returned, transform it into T2IAdapterAdvanced
523
+ elif isinstance(control, T2IAdapter):
524
+ return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
525
+ # otherwise, leave it be - might be something I am not supporting yet
526
+ return control
527
+
528
+
529
+ def convert_all_to_advanced(conds: list[list[dict[str]]]) -> tuple[bool, list]:
530
+ cache = {}
531
+ modified = False
532
+ new_conds = []
533
+ for cond in conds:
534
+ converted_cond = None
535
+ if cond is not None:
536
+ need_to_convert = False
537
+ # first, check if there is even a need to convert
538
+ for sub_cond in cond:
539
+ actual_cond = sub_cond[1]
540
+ if "control" in actual_cond:
541
+ if not are_all_advanced_controlnet(actual_cond["control"]):
542
+ need_to_convert = True
543
+ break
544
+ if not need_to_convert:
545
+ converted_cond = cond
546
+ else:
547
+ converted_cond = []
548
+ for sub_cond in cond:
549
+ new_sub_cond: list = []
550
+ for actual_cond in sub_cond:
551
+ if not type(actual_cond) == dict:
552
+ new_sub_cond.append(actual_cond)
553
+ continue
554
+ if "control" not in actual_cond:
555
+ new_sub_cond.append(actual_cond)
556
+ elif are_all_advanced_controlnet(actual_cond["control"]):
557
+ new_sub_cond.append(actual_cond)
558
+ else:
559
+ actual_cond = actual_cond.copy()
560
+ actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache)
561
+ new_sub_cond.append(actual_cond)
562
+ modified = True
563
+ converted_cond.append(new_sub_cond)
564
+ new_conds.append(converted_cond)
565
+ return modified, new_conds
566
+
567
+
568
+ def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict):
569
+ output_object = input_object
570
+ # iteratively convert to advanced, if needed
571
+ next_cn = None
572
+ curr_cn = input_object
573
+ iter = 0
574
+ while curr_cn is not None:
575
+ if not is_advanced_controlnet(curr_cn):
576
+ # if already in cache, then conversion was done before, so just link it and exit
577
+ if curr_cn in cache:
578
+ new_cn = cache[curr_cn]
579
+ if next_cn is not None:
580
+ setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
581
+ next_cn.previous_controlnet = new_cn
582
+ if iter == 0: # if was top-level controlnet, that's the new output
583
+ output_object = new_cn
584
+ break
585
+ try:
586
+ # convert to advanced, and assign previous_controlnet (convert doesn't transfer it)
587
+ new_cn = convert_to_advanced(curr_cn)
588
+ except Exception as e:
589
+ raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e)
590
+ new_cn.previous_controlnet = curr_cn.previous_controlnet
591
+ if iter == 0: # if was top-level controlnet, that's the new output
592
+ output_object = new_cn
593
+ # if next_cn is present, then it needs to be pointed to new_cn
594
+ if next_cn is not None:
595
+ setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
596
+ next_cn.previous_controlnet = new_cn
597
+ # add to cache
598
+ cache[curr_cn] = new_cn
599
+ curr_cn = new_cn
600
+ next_cn = curr_cn
601
+ curr_cn = curr_cn.previous_controlnet
602
+ iter += 1
603
+ return output_object
604
+
605
+
606
+ def restore_all_controlnet_conns(conds: list[list[dict[str]]]):
607
+ # if a cn has an _orig_previous_controlnet property, restore it and delete
608
+ for main_cond in conds:
609
+ if main_cond is not None:
610
+ for cond in main_cond:
611
+ if "control" in cond[1]:
612
+ # if ACN is the one to have initialized it, delete it
613
+ # TODO: maybe check if someone else did a similar hack, and carefully pluck out our stuff?
614
+ if CONTROL_INIT_BY_ACN in cond[1]:
615
+ cond[1].pop("control")
616
+ cond[1].pop(CONTROL_INIT_BY_ACN)
617
+ else:
618
+ _restore_all_controlnet_conns(cond[1]["control"])
619
+
620
+
621
+ def _restore_all_controlnet_conns(input_object: ControlBase):
622
+ # restore original previous_controlnet if needed
623
+ curr_cn = input_object
624
+ while curr_cn is not None:
625
+ if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET):
626
+ curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
627
+ delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
628
+ curr_cn = curr_cn.previous_controlnet
629
+
630
+
631
+ def are_all_advanced_controlnet(input_object: ControlBase):
632
+ # iteratively check if linked controlnets objects are all advanced
633
+ curr_cn = input_object
634
+ while curr_cn is not None:
635
+ if not is_advanced_controlnet(curr_cn):
636
+ return False
637
+ curr_cn = curr_cn.previous_controlnet
638
+ return True
639
+
640
+
641
+ def is_advanced_controlnet(input_object):
642
+ return hasattr(input_object, "sub_idxs")
643
+
644
+
645
+ def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced):
646
+ return type(input_object) == ControlNetAdvanced and input_object.latent_format is not None
647
+
648
+
649
+ def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced:
650
+ if controlnet_data is None:
651
+ controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
652
+ # first, separate out motion part from normal controlnet part and attempt to load that portion
653
+ motion_data = {}
654
+ for key in list(controlnet_data.keys()):
655
+ if "temporal" in key:
656
+ motion_data[key] = controlnet_data.pop(key)
657
+ if len(motion_data) == 0:
658
+ raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!")
659
+
660
+ # now, load as if it was a normal controlnet - mostly copied from comfy load_controlnet function
661
+ controlnet_config: dict[str] = None
662
+ is_diffusers = False
663
+ use_simplified_conditioning_embedding = False
664
+ if "controlnet_cond_embedding.conv_in.weight" in controlnet_data:
665
+ is_diffusers = True
666
+ if "controlnet_cond_embedding.weight" in controlnet_data:
667
+ is_diffusers = True
668
+ use_simplified_conditioning_embedding = True
669
+ if is_diffusers: #diffusers format
670
+ unet_dtype = comfy.model_management.unet_dtype()
671
+ controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
672
+ diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
673
+ diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
674
+ diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
675
+
676
+ count = 0
677
+ loop = True
678
+ while loop:
679
+ suffix = [".weight", ".bias"]
680
+ for s in suffix:
681
+ k_in = "controlnet_down_blocks.{}{}".format(count, s)
682
+ k_out = "zero_convs.{}.0{}".format(count, s)
683
+ if k_in not in controlnet_data:
684
+ loop = False
685
+ break
686
+ diffusers_keys[k_in] = k_out
687
+ count += 1
688
+ # normal conditioning embedding
689
+ if not use_simplified_conditioning_embedding:
690
+ count = 0
691
+ loop = True
692
+ while loop:
693
+ suffix = [".weight", ".bias"]
694
+ for s in suffix:
695
+ if count == 0:
696
+ k_in = "controlnet_cond_embedding.conv_in{}".format(s)
697
+ else:
698
+ k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
699
+ k_out = "input_hint_block.{}{}".format(count * 2, s)
700
+ if k_in not in controlnet_data:
701
+ k_in = "controlnet_cond_embedding.conv_out{}".format(s)
702
+ loop = False
703
+ diffusers_keys[k_in] = k_out
704
+ count += 1
705
+ # simplified conditioning embedding
706
+ else:
707
+ count = 0
708
+ suffix = [".weight", ".bias"]
709
+ for s in suffix:
710
+ k_in = "controlnet_cond_embedding{}".format(s)
711
+ k_out = "input_hint_block.{}{}".format(count, s)
712
+ diffusers_keys[k_in] = k_out
713
+
714
+ new_sd = {}
715
+ for k in diffusers_keys:
716
+ if k in controlnet_data:
717
+ new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
718
+
719
+ leftover_keys = controlnet_data.keys()
720
+ if len(leftover_keys) > 0:
721
+ logger.info("leftover keys:", leftover_keys)
722
+ controlnet_data = new_sd
723
+
724
+ pth_key = 'control_model.zero_convs.0.0.weight'
725
+ pth = False
726
+ key = 'zero_convs.0.0.weight'
727
+ if pth_key in controlnet_data:
728
+ pth = True
729
+ key = pth_key
730
+ prefix = "control_model."
731
+ elif key in controlnet_data:
732
+ prefix = ""
733
+ else:
734
+ raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]")
735
+
736
+ if controlnet_config is None:
737
+ unet_dtype = comfy.model_management.unet_dtype()
738
+ controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
739
+ load_device = comfy.model_management.get_torch_device()
740
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
741
+ if manual_cast_dtype is not None:
742
+ controlnet_config["operations"] = manual_cast_clean_groupnorm
743
+ else:
744
+ controlnet_config["operations"] = disable_weight_init_clean_groupnorm
745
+ controlnet_config.pop("out_channels")
746
+ # get proper hint channels
747
+ if use_simplified_conditioning_embedding:
748
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
749
+ controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
750
+ else:
751
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
752
+ controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
753
+ control_model = SparseControlNet(**controlnet_config)
754
+
755
+ if pth:
756
+ if 'difference' in controlnet_data:
757
+ if model is not None:
758
+ comfy.model_management.load_models_gpu([model])
759
+ model_sd = model.model_state_dict()
760
+ for x in controlnet_data:
761
+ c_m = "control_model."
762
+ if x.startswith(c_m):
763
+ sd_key = "diffusion_model.{}".format(x[len(c_m):])
764
+ if sd_key in model_sd:
765
+ cd = controlnet_data[x]
766
+ cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
767
+ else:
768
+ logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.")
769
+
770
+ class WeightsLoader(torch.nn.Module):
771
+ pass
772
+ w = WeightsLoader()
773
+ w.control_model = control_model
774
+ missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
775
+ else:
776
+ missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
777
+ if len(missing) > 0 or len(unexpected) > 0:
778
+ logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}")
779
+
780
+ global_average_pooling = False
781
+ filename = os.path.splitext(ckpt_path)[0]
782
+ if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
783
+ global_average_pooling = True
784
+
785
+ # actually load motion portion of model now
786
+ motion_wrapper: SparseCtrlMotionWrapper = SparseCtrlMotionWrapper(motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype())
787
+ missing, unexpected = motion_wrapper.load_state_dict(motion_data)
788
+ if len(missing) > 0 or len(unexpected) > 0:
789
+ logger.info(f"SparseCtrlMotionWrapper: {missing}, {unexpected}")
790
+
791
+ # both motion portion and controlnet portions are loaded; bring them together if using motion model
792
+ if sparse_settings.use_motion:
793
+ motion_wrapper.inject(control_model)
794
+
795
+ control = SparseCtrlAdvanced(control_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
796
+ return control
797
+
798
+
799
+ def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
800
+ if controlnet_data is None:
801
+ controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
802
+
803
+ controlnet_config = None
804
+ if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
805
+ unet_dtype = comfy.model_management.unet_dtype()
806
+ controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
807
+ diffusers_keys = svd_unet_to_diffusers(controlnet_config)
808
+ diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
809
+ diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
810
+
811
+ count = 0
812
+ loop = True
813
+ while loop:
814
+ suffix = [".weight", ".bias"]
815
+ for s in suffix:
816
+ k_in = "controlnet_down_blocks.{}{}".format(count, s)
817
+ k_out = "zero_convs.{}.0{}".format(count, s)
818
+ if k_in not in controlnet_data:
819
+ loop = False
820
+ break
821
+ diffusers_keys[k_in] = k_out
822
+ count += 1
823
+
824
+ count = 0
825
+ loop = True
826
+ while loop:
827
+ suffix = [".weight", ".bias"]
828
+ for s in suffix:
829
+ if count == 0:
830
+ k_in = "controlnet_cond_embedding.conv_in{}".format(s)
831
+ else:
832
+ k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
833
+ k_out = "input_hint_block.{}{}".format(count * 2, s)
834
+ if k_in not in controlnet_data:
835
+ k_in = "controlnet_cond_embedding.conv_out{}".format(s)
836
+ loop = False
837
+ diffusers_keys[k_in] = k_out
838
+ count += 1
839
+
840
+ new_sd = {}
841
+ for k in diffusers_keys:
842
+ if k in controlnet_data:
843
+ new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
844
+
845
+ leftover_keys = controlnet_data.keys()
846
+ if len(leftover_keys) > 0:
847
+ spatial_leftover_keys = []
848
+ temporal_leftover_keys = []
849
+ other_leftover_keys = []
850
+ for key in leftover_keys:
851
+ if "spatial" in key:
852
+ spatial_leftover_keys.append(key)
853
+ elif "temporal" in key:
854
+ temporal_leftover_keys.append(key)
855
+ else:
856
+ other_leftover_keys.append(key)
857
+ logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}")
858
+ logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}")
859
+ logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}")
860
+ #print("leftover keys:", leftover_keys)
861
+ controlnet_data = new_sd
862
+
863
+ pth_key = 'control_model.zero_convs.0.0.weight'
864
+ pth = False
865
+ key = 'zero_convs.0.0.weight'
866
+ if pth_key in controlnet_data:
867
+ pth = True
868
+ key = pth_key
869
+ prefix = "control_model."
870
+ elif key in controlnet_data:
871
+ prefix = ""
872
+ else:
873
+ raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]")
874
+
875
+ if controlnet_config is None:
876
+ unet_dtype = comfy.model_management.unet_dtype()
877
+ controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
878
+ load_device = comfy.model_management.get_torch_device()
879
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
880
+ if manual_cast_dtype is not None:
881
+ controlnet_config["operations"] = comfy.ops.manual_cast
882
+ controlnet_config.pop("out_channels")
883
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
884
+ control_model = SVDControlNet(**controlnet_config)
885
+
886
+ if pth:
887
+ if 'difference' in controlnet_data:
888
+ if model is not None:
889
+ comfy.model_management.load_models_gpu([model])
890
+ model_sd = model.model_state_dict()
891
+ for x in controlnet_data:
892
+ c_m = "control_model."
893
+ if x.startswith(c_m):
894
+ sd_key = "diffusion_model.{}".format(x[len(c_m):])
895
+ if sd_key in model_sd:
896
+ cd = controlnet_data[x]
897
+ cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
898
+ else:
899
+ print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
900
+
901
+ class WeightsLoader(torch.nn.Module):
902
+ pass
903
+ w = WeightsLoader()
904
+ w.control_model = control_model
905
+ missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
906
+ else:
907
+ missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
908
+ if len(missing) > 0 or len(unexpected) > 0:
909
+ logger.info(f"SVD-ControlNet: {missing}, {unexpected}")
910
+
911
+ global_average_pooling = False
912
+ filename = os.path.splitext(ckpt_path)[0]
913
+ if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
914
+ global_average_pooling = True
915
+
916
+ control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
917
+ return control
918
+
ComfyUI-Advanced-ControlNet/adv_control/control_lllite.py CHANGED
@@ -1,462 +1,462 @@
1
- # adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
2
- # basically, all the LLLite core code is from there, which I then combined with
3
- # Advanced-ControlNet features and QoL
4
- import math
5
- from typing import Union
6
- from torch import Tensor
7
- import torch
8
- import os
9
-
10
- import comfy.utils
11
- import comfy.ops
12
- import comfy.model_management
13
- from comfy.model_patcher import ModelPatcher
14
- from comfy.controlnet import ControlBase
15
-
16
- from .logger import logger
17
- from .utils import (AdvancedControlBase, TimestepKeyframeGroup, ControlWeights, broadcast_image_to_extend, extend_to_batch_size,
18
- deepcopy_with_sharing, prepare_mask_batch)
19
-
20
-
21
- # based on set_model_patch code in comfy/model_patcher.py
22
- def set_model_patch(model_options, patch, name):
23
- to = model_options["transformer_options"]
24
- # check if patch was already added
25
- if "patches" in to:
26
- current_patches = to["patches"].get(name, [])
27
- if patch in current_patches:
28
- return
29
- if "patches" not in to:
30
- to["patches"] = {}
31
- to["patches"][name] = to["patches"].get(name, []) + [patch]
32
-
33
- def set_model_attn1_patch(model_options, patch):
34
- set_model_patch(model_options, patch, "attn1_patch")
35
-
36
- def set_model_attn2_patch(model_options, patch):
37
- set_model_patch(model_options, patch, "attn2_patch")
38
-
39
-
40
- def extra_options_to_module_prefix(extra_options):
41
- # extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}
42
-
43
- # block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
44
- # ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
45
- # transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
46
- # block_index is: 0-1 or 0-9, depends on the block
47
- # input 7 and 8, middle has 10 blocks
48
-
49
- # make module name from extra_options
50
- block = extra_options["block"]
51
- block_index = extra_options["block_index"]
52
- if block[0] == "input":
53
- module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
54
- elif block[0] == "middle":
55
- module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
56
- elif block[0] == "output":
57
- module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
58
- else:
59
- raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
60
- return module_pfx
61
-
62
-
63
- class LLLitePatch:
64
- ATTN1 = "attn1"
65
- ATTN2 = "attn2"
66
- def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
67
- self.modules = modules
68
- self.control = control
69
- self.patch_type = patch_type
70
- #logger.error(f"create LLLitePatch: {id(self)},{control}")
71
-
72
- def __call__(self, q, k, v, extra_options):
73
- #logger.error(f"in __call__: {id(self)}")
74
- # determine if have anything to run
75
- if self.control.timestep_range is not None:
76
- # it turns out comparing single-value tensors to floats is extremely slow
77
- # a: Tensor = extra_options["sigmas"][0]
78
- if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
79
- return q, k, v
80
-
81
- module_pfx = extra_options_to_module_prefix(extra_options)
82
-
83
- is_attn1 = q.shape[-1] == k.shape[-1] # self attention
84
- if is_attn1:
85
- module_pfx = module_pfx + "_attn1"
86
- else:
87
- module_pfx = module_pfx + "_attn2"
88
-
89
- module_pfx_to_q = module_pfx + "_to_q"
90
- module_pfx_to_k = module_pfx + "_to_k"
91
- module_pfx_to_v = module_pfx + "_to_v"
92
-
93
- if module_pfx_to_q in self.modules:
94
- q = q + self.modules[module_pfx_to_q](q, self.control)
95
- if module_pfx_to_k in self.modules:
96
- k = k + self.modules[module_pfx_to_k](k, self.control)
97
- if module_pfx_to_v in self.modules:
98
- v = v + self.modules[module_pfx_to_v](v, self.control)
99
-
100
- return q, k, v
101
-
102
- def to(self, device):
103
- #logger.info(f"to... has control? {self.control}")
104
- for d in self.modules.keys():
105
- self.modules[d] = self.modules[d].to(device)
106
- return self
107
-
108
- def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
109
- self.control = control
110
- return self
111
- #logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")
112
-
113
- def clone_with_control(self, control: AdvancedControlBase):
114
- #logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
115
- return LLLitePatch(self.modules, self.patch_type, control)
116
-
117
- def cleanup(self):
118
- #total_cleaned = 0
119
- for module in self.modules.values():
120
- module.cleanup()
121
- # total_cleaned += 1
122
- #logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
123
- #logger.error(f"cleanup LLLitePatch: {id(self)}")
124
-
125
- # make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
126
- # def __deepcopy__(self, memo):
127
- # self.cleanup()
128
- # to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
129
- # #logger.warn(f"patch {id(self)} turned into {id(to_return)}")
130
- # try:
131
- # if self.patch_type == self.ATTN1:
132
- # to_return.control.patch_attn1 = to_return
133
- # elif self.patch_type == self.ATTN2:
134
- # to_return.control.patch_attn2 = to_return
135
- # except Exception:
136
- # pass
137
- # return to_return
138
-
139
-
140
- # TODO: use comfy.ops to support fp8 properly
141
- class LLLiteModule(torch.nn.Module):
142
- def __init__(
143
- self,
144
- name: str,
145
- is_conv2d: bool,
146
- in_dim: int,
147
- depth: int,
148
- cond_emb_dim: int,
149
- mlp_dim: int,
150
- ):
151
- super().__init__()
152
- self.name = name
153
- self.is_conv2d = is_conv2d
154
- self.is_first = False
155
-
156
- modules = []
157
- modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
158
- if depth == 1:
159
- modules.append(torch.nn.ReLU(inplace=True))
160
- modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
161
- elif depth == 2:
162
- modules.append(torch.nn.ReLU(inplace=True))
163
- modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
164
- elif depth == 3:
165
- # kernel size 8 is too large, so set it to 4
166
- modules.append(torch.nn.ReLU(inplace=True))
167
- modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
168
- modules.append(torch.nn.ReLU(inplace=True))
169
- modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
170
-
171
- self.conditioning1 = torch.nn.Sequential(*modules)
172
-
173
- if self.is_conv2d:
174
- self.down = torch.nn.Sequential(
175
- torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
176
- torch.nn.ReLU(inplace=True),
177
- )
178
- self.mid = torch.nn.Sequential(
179
- torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
180
- torch.nn.ReLU(inplace=True),
181
- )
182
- self.up = torch.nn.Sequential(
183
- torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
184
- )
185
- else:
186
- self.down = torch.nn.Sequential(
187
- torch.nn.Linear(in_dim, mlp_dim),
188
- torch.nn.ReLU(inplace=True),
189
- )
190
- self.mid = torch.nn.Sequential(
191
- torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
192
- torch.nn.ReLU(inplace=True),
193
- )
194
- self.up = torch.nn.Sequential(
195
- torch.nn.Linear(mlp_dim, in_dim),
196
- )
197
-
198
- self.depth = depth
199
- self.cond_emb = None
200
- self.cx_shape = None
201
- self.prev_batch = 0
202
- self.prev_sub_idxs = None
203
-
204
- def cleanup(self):
205
- del self.cond_emb
206
- self.cond_emb = None
207
- self.cx_shape = None
208
- self.prev_batch = 0
209
- self.prev_sub_idxs = None
210
-
211
- def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
212
- mask = None
213
- mask_tk = None
214
- #logger.info(x.shape)
215
- if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
216
- # print(f"cond_emb is None, {self.name}")
217
- cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
218
- if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
219
- cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
220
- elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
221
- cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
222
- cx = self.conditioning1(cond_hint)
223
- self.cx_shape = cx.shape
224
- if not self.is_conv2d:
225
- # reshape / b,c,h,w -> b,h*w,c
226
- n, c, h, w = cx.shape
227
- cx = cx.view(n, c, h * w).permute(0, 2, 1)
228
- self.cond_emb = cx
229
- # save prev values
230
- self.prev_batch = x.shape[0]
231
- self.prev_sub_idxs = control.sub_idxs
232
-
233
- cx: torch.Tensor = self.cond_emb
234
- # print(f"forward {self.name}, {cx.shape}, {x.shape}")
235
-
236
- # TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
237
- # create masks
238
- if not self.is_conv2d:
239
- n, c, h, w = self.cx_shape
240
- if control.mask_cond_hint is not None:
241
- mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
242
- mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
243
- if control.tk_mask_cond_hint is not None:
244
- mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
245
- mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)
246
-
247
- # x in uncond/cond doubles batch size
248
- if x.shape[0] != cx.shape[0]:
249
- if self.is_conv2d:
250
- cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
251
- else:
252
- # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
253
- cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
254
- if mask is not None:
255
- mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
256
- if mask_tk is not None:
257
- mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)
258
-
259
- if mask is None:
260
- mask = 1.0
261
- elif mask_tk is not None:
262
- mask = mask * mask_tk
263
-
264
- #logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
265
- cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
266
- cx = self.mid(cx)
267
- cx = self.up(cx)
268
- if control.latent_keyframes is not None:
269
- cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
270
- if control.weights is not None and control.weights.has_uncond_multiplier:
271
- cond_or_uncond = control.batched_number.cond_or_uncond
272
- actual_length = cx.size(0) // control.batched_number
273
- for idx, cond_type in enumerate(cond_or_uncond):
274
- # if uncond, set to weight's uncond_multiplier
275
- if cond_type == 1:
276
- cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
277
- return cx * mask * control.strength * control._current_timestep_keyframe.strength
278
-
279
-
280
- class ControlLLLiteModules(torch.nn.Module):
281
- def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch):
282
- super().__init__()
283
- self.patch_attn1_modules = torch.nn.Sequential(*list(patch_attn1.modules.values()))
284
- self.patch_attn2_modules = torch.nn.Sequential(*list(patch_attn2.modules.values()))
285
-
286
-
287
- class ControlLLLiteAdvanced(ControlBase, AdvancedControlBase):
288
- # This ControlNet is more of an attention patch than a traditional controlnet
289
- def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch, timestep_keyframes: TimestepKeyframeGroup, device, ops: comfy.ops.disable_weight_init):
290
- super().__init__()
291
- AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
292
- self.device = device
293
- self.ops = ops
294
- self.patch_attn1 = patch_attn1.clone_with_control(self)
295
- self.patch_attn2 = patch_attn2.clone_with_control(self)
296
- self.control_model = ControlLLLiteModules(self.patch_attn1, self.patch_attn2)
297
- self.control_model_wrapped = ModelPatcher(self.control_model, load_device=device, offload_device=comfy.model_management.unet_offload_device())
298
- self.latent_dims_div2 = None
299
- self.latent_dims_div4 = None
300
-
301
- def live_model_patches(self, model_options):
302
- set_model_attn1_patch(model_options, self.patch_attn1.set_control(self))
303
- set_model_attn2_patch(model_options, self.patch_attn2.set_control(self))
304
-
305
- # def patch_model(self, model: ModelPatcher):
306
- # model.set_model_attn1_patch(self.patch_attn1)
307
- # model.set_model_attn2_patch(self.patch_attn2)
308
-
309
- def set_cond_hint_inject(self, *args, **kwargs):
310
- to_return = super().set_cond_hint_inject(*args, **kwargs)
311
- # cond hint for LLLite needs to be scaled between (-1, 1) instead of (0, 1)
312
- self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
313
- return to_return
314
-
315
- def pre_run_advanced(self, *args, **kwargs):
316
- AdvancedControlBase.pre_run_advanced(self, *args, **kwargs)
317
- #logger.error(f"in cn: {id(self.patch_attn1)},{id(self.patch_attn2)}")
318
- self.patch_attn1.set_control(self)
319
- self.patch_attn2.set_control(self)
320
- #logger.warn(f"in pre_run_advanced: {id(self)}")
321
-
322
- def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
323
- # normal ControlNet stuff
324
- control_prev = None
325
- if self.previous_controlnet is not None:
326
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
327
-
328
- if self.timestep_range is not None:
329
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
330
- return control_prev
331
-
332
- dtype = x_noisy.dtype
333
- # prepare cond_hint
334
- if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
335
- if self.cond_hint is not None:
336
- del self.cond_hint
337
- self.cond_hint = None
338
- # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
339
- if self.sub_idxs is not None:
340
- actual_cond_hint_orig = self.cond_hint_original
341
- if self.cond_hint_original.size(0) < self.full_latent_length:
342
- actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
343
- self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
344
- else:
345
- self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
346
- if x_noisy.shape[0] != self.cond_hint.shape[0]:
347
- self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
348
- # some special logic here compared to other controlnets:
349
- # * The cond_emb in attn patches will divide latent dims by 2 or 4, integer
350
- # * Due to this loss, the cond_emb will become smaller than x input if latent dims are not divisble by 2 or 4
351
- divisible_by_2_h = x_noisy.shape[2]%2==0
352
- divisible_by_2_w = x_noisy.shape[3]%2==0
353
- if not (divisible_by_2_h and divisible_by_2_w):
354
- #logger.warn(f"{x_noisy.shape} not divisible by 2!")
355
- new_h = (x_noisy.shape[2]//2)*2
356
- new_w = (x_noisy.shape[3]//2)*2
357
- if not divisible_by_2_h:
358
- new_h += 2
359
- if not divisible_by_2_w:
360
- new_w += 2
361
- self.latent_dims_div2 = (new_h, new_w)
362
- divisible_by_4_h = x_noisy.shape[2]%4==0
363
- divisible_by_4_w = x_noisy.shape[3]%4==0
364
- if not (divisible_by_4_h and divisible_by_4_w):
365
- #logger.warn(f"{x_noisy.shape} not divisible by 4!")
366
- new_h = (x_noisy.shape[2]//4)*4
367
- new_w = (x_noisy.shape[3]//4)*4
368
- if not divisible_by_4_h:
369
- new_h += 4
370
- if not divisible_by_4_w:
371
- new_w += 4
372
- self.latent_dims_div4 = (new_h, new_w)
373
- # prepare mask
374
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
375
- # done preparing; model patches will take care of everything now.
376
- # return normal controlnet stuff
377
- return control_prev
378
-
379
- def get_models(self):
380
- to_return: list = super().get_models()
381
- to_return.append(self.control_model_wrapped)
382
- return to_return
383
-
384
- def cleanup_advanced(self):
385
- super().cleanup_advanced()
386
- self.patch_attn1.cleanup()
387
- self.patch_attn2.cleanup()
388
- self.latent_dims_div2 = None
389
- self.latent_dims_div4 = None
390
-
391
- def copy(self):
392
- c = ControlLLLiteAdvanced(self.patch_attn1, self.patch_attn2, self.timestep_keyframes, self.device, self.ops)
393
- self.copy_to(c)
394
- self.copy_to_advanced(c)
395
- return c
396
-
397
- # deepcopy needs to properly keep track of objects to work between model.clone calls!
398
- # def __deepcopy__(self, *args, **kwargs):
399
- # self.cleanup_advanced()
400
- # return self
401
-
402
- # def get_models(self):
403
- # # get_models is called once at the start of every KSampler run - use to reset already_patched status
404
- # out = super().get_models()
405
- # logger.error(f"in get_models! {id(self)}")
406
- # return out
407
-
408
-
409
- def load_controllllite(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None):
410
- if controlnet_data is None:
411
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
412
- # adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
413
- # first, split weights for each module
414
- module_weights = {}
415
- for key, value in controlnet_data.items():
416
- fragments = key.split(".")
417
- module_name = fragments[0]
418
- weight_name = ".".join(fragments[1:])
419
-
420
- if module_name not in module_weights:
421
- module_weights[module_name] = {}
422
- module_weights[module_name][weight_name] = value
423
-
424
- unet_dtype = comfy.model_management.unet_dtype()
425
- load_device = comfy.model_management.get_torch_device()
426
- manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
427
- ops = comfy.ops.disable_weight_init
428
- if manual_cast_dtype is not None:
429
- ops = comfy.ops.manual_cast
430
-
431
- # next, load each module
432
- modules = {}
433
- for module_name, weights in module_weights.items():
434
- # kohya planned to do something about how these should be chosen, so I'm not touching this
435
- # since I am not familiar with the logic for this
436
- if "conditioning1.4.weight" in weights:
437
- depth = 3
438
- elif weights["conditioning1.2.weight"].shape[-1] == 4:
439
- depth = 2
440
- else:
441
- depth = 1
442
-
443
- module = LLLiteModule(
444
- name=module_name,
445
- is_conv2d=weights["down.0.weight"].ndim == 4,
446
- in_dim=weights["down.0.weight"].shape[1],
447
- depth=depth,
448
- cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
449
- mlp_dim=weights["down.0.weight"].shape[0],
450
- )
451
- # load weights into module
452
- module.load_state_dict(weights)
453
- modules[module_name] = module.to(dtype=unet_dtype)
454
- if len(modules) == 1:
455
- module.is_first = True
456
-
457
- #logger.info(f"loaded {ckpt_path} successfully, {len(modules)} modules")
458
-
459
- patch_attn1 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN1)
460
- patch_attn2 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN2)
461
- control = ControlLLLiteAdvanced(patch_attn1=patch_attn1, patch_attn2=patch_attn2, timestep_keyframes=timestep_keyframe, device=load_device, ops=ops)
462
- return control
 
1
+ # adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
2
+ # basically, all the LLLite core code is from there, which I then combined with
3
+ # Advanced-ControlNet features and QoL
4
+ import math
5
+ from typing import Union
6
+ from torch import Tensor
7
+ import torch
8
+ import os
9
+
10
+ import comfy.utils
11
+ import comfy.ops
12
+ import comfy.model_management
13
+ from comfy.model_patcher import ModelPatcher
14
+ from comfy.controlnet import ControlBase
15
+
16
+ from .logger import logger
17
+ from .utils import (AdvancedControlBase, TimestepKeyframeGroup, ControlWeights, broadcast_image_to_extend, extend_to_batch_size,
18
+ deepcopy_with_sharing, prepare_mask_batch)
19
+
20
+
21
+ # based on set_model_patch code in comfy/model_patcher.py
22
+ def set_model_patch(model_options, patch, name):
23
+ to = model_options["transformer_options"]
24
+ # check if patch was already added
25
+ if "patches" in to:
26
+ current_patches = to["patches"].get(name, [])
27
+ if patch in current_patches:
28
+ return
29
+ if "patches" not in to:
30
+ to["patches"] = {}
31
+ to["patches"][name] = to["patches"].get(name, []) + [patch]
32
+
33
+ def set_model_attn1_patch(model_options, patch):
34
+ set_model_patch(model_options, patch, "attn1_patch")
35
+
36
+ def set_model_attn2_patch(model_options, patch):
37
+ set_model_patch(model_options, patch, "attn2_patch")
38
+
39
+
40
+ def extra_options_to_module_prefix(extra_options):
41
+ # extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}
42
+
43
+ # block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
44
+ # ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
45
+ # transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
46
+ # block_index is: 0-1 or 0-9, depends on the block
47
+ # input 7 and 8, middle has 10 blocks
48
+
49
+ # make module name from extra_options
50
+ block = extra_options["block"]
51
+ block_index = extra_options["block_index"]
52
+ if block[0] == "input":
53
+ module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
54
+ elif block[0] == "middle":
55
+ module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
56
+ elif block[0] == "output":
57
+ module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
58
+ else:
59
+ raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
60
+ return module_pfx
61
+
62
+
63
+ class LLLitePatch:
64
+ ATTN1 = "attn1"
65
+ ATTN2 = "attn2"
66
+ def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
67
+ self.modules = modules
68
+ self.control = control
69
+ self.patch_type = patch_type
70
+ #logger.error(f"create LLLitePatch: {id(self)},{control}")
71
+
72
+ def __call__(self, q, k, v, extra_options):
73
+ #logger.error(f"in __call__: {id(self)}")
74
+ # determine if have anything to run
75
+ if self.control.timestep_range is not None:
76
+ # it turns out comparing single-value tensors to floats is extremely slow
77
+ # a: Tensor = extra_options["sigmas"][0]
78
+ if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
79
+ return q, k, v
80
+
81
+ module_pfx = extra_options_to_module_prefix(extra_options)
82
+
83
+ is_attn1 = q.shape[-1] == k.shape[-1] # self attention
84
+ if is_attn1:
85
+ module_pfx = module_pfx + "_attn1"
86
+ else:
87
+ module_pfx = module_pfx + "_attn2"
88
+
89
+ module_pfx_to_q = module_pfx + "_to_q"
90
+ module_pfx_to_k = module_pfx + "_to_k"
91
+ module_pfx_to_v = module_pfx + "_to_v"
92
+
93
+ if module_pfx_to_q in self.modules:
94
+ q = q + self.modules[module_pfx_to_q](q, self.control)
95
+ if module_pfx_to_k in self.modules:
96
+ k = k + self.modules[module_pfx_to_k](k, self.control)
97
+ if module_pfx_to_v in self.modules:
98
+ v = v + self.modules[module_pfx_to_v](v, self.control)
99
+
100
+ return q, k, v
101
+
102
+ def to(self, device):
103
+ #logger.info(f"to... has control? {self.control}")
104
+ for d in self.modules.keys():
105
+ self.modules[d] = self.modules[d].to(device)
106
+ return self
107
+
108
+ def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
109
+ self.control = control
110
+ return self
111
+ #logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")
112
+
113
+ def clone_with_control(self, control: AdvancedControlBase):
114
+ #logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
115
+ return LLLitePatch(self.modules, self.patch_type, control)
116
+
117
+ def cleanup(self):
118
+ #total_cleaned = 0
119
+ for module in self.modules.values():
120
+ module.cleanup()
121
+ # total_cleaned += 1
122
+ #logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
123
+ #logger.error(f"cleanup LLLitePatch: {id(self)}")
124
+
125
+ # make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
126
+ # def __deepcopy__(self, memo):
127
+ # self.cleanup()
128
+ # to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
129
+ # #logger.warn(f"patch {id(self)} turned into {id(to_return)}")
130
+ # try:
131
+ # if self.patch_type == self.ATTN1:
132
+ # to_return.control.patch_attn1 = to_return
133
+ # elif self.patch_type == self.ATTN2:
134
+ # to_return.control.patch_attn2 = to_return
135
+ # except Exception:
136
+ # pass
137
+ # return to_return
138
+
139
+
140
+ # TODO: use comfy.ops to support fp8 properly
141
+ class LLLiteModule(torch.nn.Module):
142
+ def __init__(
143
+ self,
144
+ name: str,
145
+ is_conv2d: bool,
146
+ in_dim: int,
147
+ depth: int,
148
+ cond_emb_dim: int,
149
+ mlp_dim: int,
150
+ ):
151
+ super().__init__()
152
+ self.name = name
153
+ self.is_conv2d = is_conv2d
154
+ self.is_first = False
155
+
156
+ modules = []
157
+ modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
158
+ if depth == 1:
159
+ modules.append(torch.nn.ReLU(inplace=True))
160
+ modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
161
+ elif depth == 2:
162
+ modules.append(torch.nn.ReLU(inplace=True))
163
+ modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
164
+ elif depth == 3:
165
+ # kernel size 8 is too large, so set it to 4
166
+ modules.append(torch.nn.ReLU(inplace=True))
167
+ modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
168
+ modules.append(torch.nn.ReLU(inplace=True))
169
+ modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
170
+
171
+ self.conditioning1 = torch.nn.Sequential(*modules)
172
+
173
+ if self.is_conv2d:
174
+ self.down = torch.nn.Sequential(
175
+ torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
176
+ torch.nn.ReLU(inplace=True),
177
+ )
178
+ self.mid = torch.nn.Sequential(
179
+ torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
180
+ torch.nn.ReLU(inplace=True),
181
+ )
182
+ self.up = torch.nn.Sequential(
183
+ torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
184
+ )
185
+ else:
186
+ self.down = torch.nn.Sequential(
187
+ torch.nn.Linear(in_dim, mlp_dim),
188
+ torch.nn.ReLU(inplace=True),
189
+ )
190
+ self.mid = torch.nn.Sequential(
191
+ torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
192
+ torch.nn.ReLU(inplace=True),
193
+ )
194
+ self.up = torch.nn.Sequential(
195
+ torch.nn.Linear(mlp_dim, in_dim),
196
+ )
197
+
198
+ self.depth = depth
199
+ self.cond_emb = None
200
+ self.cx_shape = None
201
+ self.prev_batch = 0
202
+ self.prev_sub_idxs = None
203
+
204
+ def cleanup(self):
205
+ del self.cond_emb
206
+ self.cond_emb = None
207
+ self.cx_shape = None
208
+ self.prev_batch = 0
209
+ self.prev_sub_idxs = None
210
+
211
+ def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
212
+ mask = None
213
+ mask_tk = None
214
+ #logger.info(x.shape)
215
+ if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
216
+ # print(f"cond_emb is None, {self.name}")
217
+ cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
218
+ if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
219
+ cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
220
+ elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
221
+ cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
222
+ cx = self.conditioning1(cond_hint)
223
+ self.cx_shape = cx.shape
224
+ if not self.is_conv2d:
225
+ # reshape / b,c,h,w -> b,h*w,c
226
+ n, c, h, w = cx.shape
227
+ cx = cx.view(n, c, h * w).permute(0, 2, 1)
228
+ self.cond_emb = cx
229
+ # save prev values
230
+ self.prev_batch = x.shape[0]
231
+ self.prev_sub_idxs = control.sub_idxs
232
+
233
+ cx: torch.Tensor = self.cond_emb
234
+ # print(f"forward {self.name}, {cx.shape}, {x.shape}")
235
+
236
+ # TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
237
+ # create masks
238
+ if not self.is_conv2d:
239
+ n, c, h, w = self.cx_shape
240
+ if control.mask_cond_hint is not None:
241
+ mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
242
+ mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
243
+ if control.tk_mask_cond_hint is not None:
244
+ mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
245
+ mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)
246
+
247
+ # x in uncond/cond doubles batch size
248
+ if x.shape[0] != cx.shape[0]:
249
+ if self.is_conv2d:
250
+ cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
251
+ else:
252
+ # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
253
+ cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
254
+ if mask is not None:
255
+ mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
256
+ if mask_tk is not None:
257
+ mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)
258
+
259
+ if mask is None:
260
+ mask = 1.0
261
+ elif mask_tk is not None:
262
+ mask = mask * mask_tk
263
+
264
+ #logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
265
+ cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
266
+ cx = self.mid(cx)
267
+ cx = self.up(cx)
268
+ if control.latent_keyframes is not None:
269
+ cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
270
+ if control.weights is not None and control.weights.has_uncond_multiplier:
271
+ cond_or_uncond = control.batched_number.cond_or_uncond
272
+ actual_length = cx.size(0) // control.batched_number
273
+ for idx, cond_type in enumerate(cond_or_uncond):
274
+ # if uncond, set to weight's uncond_multiplier
275
+ if cond_type == 1:
276
+ cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
277
+ return cx * mask * control.strength * control._current_timestep_keyframe.strength
278
+
279
+
280
+ class ControlLLLiteModules(torch.nn.Module):
281
+ def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch):
282
+ super().__init__()
283
+ self.patch_attn1_modules = torch.nn.Sequential(*list(patch_attn1.modules.values()))
284
+ self.patch_attn2_modules = torch.nn.Sequential(*list(patch_attn2.modules.values()))
285
+
286
+
287
+ class ControlLLLiteAdvanced(ControlBase, AdvancedControlBase):
288
+ # This ControlNet is more of an attention patch than a traditional controlnet
289
+ def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch, timestep_keyframes: TimestepKeyframeGroup, device, ops: comfy.ops.disable_weight_init):
290
+ super().__init__()
291
+ AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
292
+ self.device = device
293
+ self.ops = ops
294
+ self.patch_attn1 = patch_attn1.clone_with_control(self)
295
+ self.patch_attn2 = patch_attn2.clone_with_control(self)
296
+ self.control_model = ControlLLLiteModules(self.patch_attn1, self.patch_attn2)
297
+ self.control_model_wrapped = ModelPatcher(self.control_model, load_device=device, offload_device=comfy.model_management.unet_offload_device())
298
+ self.latent_dims_div2 = None
299
+ self.latent_dims_div4 = None
300
+
301
+ def live_model_patches(self, model_options):
302
+ set_model_attn1_patch(model_options, self.patch_attn1.set_control(self))
303
+ set_model_attn2_patch(model_options, self.patch_attn2.set_control(self))
304
+
305
+ # def patch_model(self, model: ModelPatcher):
306
+ # model.set_model_attn1_patch(self.patch_attn1)
307
+ # model.set_model_attn2_patch(self.patch_attn2)
308
+
309
+ def set_cond_hint_inject(self, *args, **kwargs):
310
+ to_return = super().set_cond_hint_inject(*args, **kwargs)
311
+ # cond hint for LLLite needs to be scaled between (-1, 1) instead of (0, 1)
312
+ self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
313
+ return to_return
314
+
315
+ def pre_run_advanced(self, *args, **kwargs):
316
+ AdvancedControlBase.pre_run_advanced(self, *args, **kwargs)
317
+ #logger.error(f"in cn: {id(self.patch_attn1)},{id(self.patch_attn2)}")
318
+ self.patch_attn1.set_control(self)
319
+ self.patch_attn2.set_control(self)
320
+ #logger.warn(f"in pre_run_advanced: {id(self)}")
321
+
322
+ def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
323
+ # normal ControlNet stuff
324
+ control_prev = None
325
+ if self.previous_controlnet is not None:
326
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
327
+
328
+ if self.timestep_range is not None:
329
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
330
+ return control_prev
331
+
332
+ dtype = x_noisy.dtype
333
+ # prepare cond_hint
334
+ if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
335
+ if self.cond_hint is not None:
336
+ del self.cond_hint
337
+ self.cond_hint = None
338
+ # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
339
+ if self.sub_idxs is not None:
340
+ actual_cond_hint_orig = self.cond_hint_original
341
+ if self.cond_hint_original.size(0) < self.full_latent_length:
342
+ actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
343
+ self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
344
+ else:
345
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
346
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
347
+ self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
348
+ # some special logic here compared to other controlnets:
349
+ # * The cond_emb in attn patches will divide latent dims by 2 or 4, integer
350
+ # * Due to this loss, the cond_emb will become smaller than x input if latent dims are not divisble by 2 or 4
351
+ divisible_by_2_h = x_noisy.shape[2]%2==0
352
+ divisible_by_2_w = x_noisy.shape[3]%2==0
353
+ if not (divisible_by_2_h and divisible_by_2_w):
354
+ #logger.warn(f"{x_noisy.shape} not divisible by 2!")
355
+ new_h = (x_noisy.shape[2]//2)*2
356
+ new_w = (x_noisy.shape[3]//2)*2
357
+ if not divisible_by_2_h:
358
+ new_h += 2
359
+ if not divisible_by_2_w:
360
+ new_w += 2
361
+ self.latent_dims_div2 = (new_h, new_w)
362
+ divisible_by_4_h = x_noisy.shape[2]%4==0
363
+ divisible_by_4_w = x_noisy.shape[3]%4==0
364
+ if not (divisible_by_4_h and divisible_by_4_w):
365
+ #logger.warn(f"{x_noisy.shape} not divisible by 4!")
366
+ new_h = (x_noisy.shape[2]//4)*4
367
+ new_w = (x_noisy.shape[3]//4)*4
368
+ if not divisible_by_4_h:
369
+ new_h += 4
370
+ if not divisible_by_4_w:
371
+ new_w += 4
372
+ self.latent_dims_div4 = (new_h, new_w)
373
+ # prepare mask
374
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
375
+ # done preparing; model patches will take care of everything now.
376
+ # return normal controlnet stuff
377
+ return control_prev
378
+
379
+ def get_models(self):
380
+ to_return: list = super().get_models()
381
+ to_return.append(self.control_model_wrapped)
382
+ return to_return
383
+
384
+ def cleanup_advanced(self):
385
+ super().cleanup_advanced()
386
+ self.patch_attn1.cleanup()
387
+ self.patch_attn2.cleanup()
388
+ self.latent_dims_div2 = None
389
+ self.latent_dims_div4 = None
390
+
391
+ def copy(self):
392
+ c = ControlLLLiteAdvanced(self.patch_attn1, self.patch_attn2, self.timestep_keyframes, self.device, self.ops)
393
+ self.copy_to(c)
394
+ self.copy_to_advanced(c)
395
+ return c
396
+
397
+ # deepcopy needs to properly keep track of objects to work between model.clone calls!
398
+ # def __deepcopy__(self, *args, **kwargs):
399
+ # self.cleanup_advanced()
400
+ # return self
401
+
402
+ # def get_models(self):
403
+ # # get_models is called once at the start of every KSampler run - use to reset already_patched status
404
+ # out = super().get_models()
405
+ # logger.error(f"in get_models! {id(self)}")
406
+ # return out
407
+
408
+
409
+ def load_controllllite(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None):
410
+ if controlnet_data is None:
411
+ controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
412
+ # adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
413
+ # first, split weights for each module
414
+ module_weights = {}
415
+ for key, value in controlnet_data.items():
416
+ fragments = key.split(".")
417
+ module_name = fragments[0]
418
+ weight_name = ".".join(fragments[1:])
419
+
420
+ if module_name not in module_weights:
421
+ module_weights[module_name] = {}
422
+ module_weights[module_name][weight_name] = value
423
+
424
+ unet_dtype = comfy.model_management.unet_dtype()
425
+ load_device = comfy.model_management.get_torch_device()
426
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
427
+ ops = comfy.ops.disable_weight_init
428
+ if manual_cast_dtype is not None:
429
+ ops = comfy.ops.manual_cast
430
+
431
+ # next, load each module
432
+ modules = {}
433
+ for module_name, weights in module_weights.items():
434
+ # kohya planned to do something about how these should be chosen, so I'm not touching this
435
+ # since I am not familiar with the logic for this
436
+ if "conditioning1.4.weight" in weights:
437
+ depth = 3
438
+ elif weights["conditioning1.2.weight"].shape[-1] == 4:
439
+ depth = 2
440
+ else:
441
+ depth = 1
442
+
443
+ module = LLLiteModule(
444
+ name=module_name,
445
+ is_conv2d=weights["down.0.weight"].ndim == 4,
446
+ in_dim=weights["down.0.weight"].shape[1],
447
+ depth=depth,
448
+ cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
449
+ mlp_dim=weights["down.0.weight"].shape[0],
450
+ )
451
+ # load weights into module
452
+ module.load_state_dict(weights)
453
+ modules[module_name] = module.to(dtype=unet_dtype)
454
+ if len(modules) == 1:
455
+ module.is_first = True
456
+
457
+ #logger.info(f"loaded {ckpt_path} successfully, {len(modules)} modules")
458
+
459
+ patch_attn1 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN1)
460
+ patch_attn2 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN2)
461
+ control = ControlLLLiteAdvanced(patch_attn1=patch_attn1, patch_attn2=patch_attn2, timestep_keyframes=timestep_keyframe, device=load_device, ops=ops)
462
+ return control
ComfyUI-Advanced-ControlNet/adv_control/control_plusplus.py CHANGED
@@ -1,485 +1,485 @@
1
- # Code ported and modified from the diffusers ControlNetPlus repo by Qi Xin:
2
- # https://github.com/xinsir6/ControlNetPlus/blob/main/models/controlnet_union.py
3
- from typing import Union
4
-
5
- import os
6
- import torch
7
- import torch as th
8
- import torch.nn as nn
9
- from torch import Tensor
10
- from collections import OrderedDict
11
-
12
-
13
- from comfy.ldm.modules.diffusionmodules.util import (zero_module, timestep_embedding)
14
-
15
- from comfy.cldm.cldm import ControlNet as ControlNetCLDM
16
- import comfy.cldm.cldm
17
- from comfy.controlnet import ControlNet
18
- #from comfy.t2i_adapter.adapter import ResidualAttentionBlock
19
- from comfy.ldm.modules.attention import optimized_attention
20
- import comfy.ops
21
- import comfy.model_management
22
- import comfy.model_detection
23
- import comfy.utils
24
-
25
- from .utils import (AdvancedControlBase, ControlWeights, ControlWeightType, TimestepKeyframeGroup, AbstractPreprocWrapper,
26
- extend_to_batch_size, broadcast_image_to_extend)
27
- from .logger import logger
28
-
29
-
30
- class PlusPlusType:
31
- OPENPOSE = "openpose"
32
- DEPTH = "depth"
33
- THICKLINE = "hed/pidi/scribble/ted"
34
- THINLINE = "canny/lineart/mlsd"
35
- NORMAL = "normal"
36
- SEGMENT = "segment"
37
- TILE = "tile"
38
- REPAINT = "inpaint/outpaint"
39
- NONE = "none"
40
- _LIST_WITH_NONE = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT, NONE]
41
- _LIST = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT]
42
- _DICT = {OPENPOSE: 0, DEPTH: 1, THICKLINE: 2, THINLINE: 3, NORMAL: 4, SEGMENT: 5, TILE: 6, REPAINT: 7, NONE: -1}
43
-
44
- @classmethod
45
- def to_idx(cls, control_type: str):
46
- try:
47
- return cls._DICT[control_type]
48
- except KeyError:
49
- raise Exception(f"Unknown control type '{control_type}'.")
50
-
51
-
52
- class PlusPlusInput:
53
- def __init__(self, image: Tensor, control_type: str, strength: float):
54
- self.image = image
55
- self.control_type = control_type
56
- self.strength = strength
57
-
58
- def clone(self):
59
- return PlusPlusInput(self.image, self.control_type, self.strength)
60
-
61
-
62
- class PlusPlusInputGroup:
63
- def __init__(self):
64
- self.controls: dict[str, PlusPlusInput] = {}
65
-
66
- def add(self, pp_input: PlusPlusInput):
67
- if pp_input.control_type in self.controls:
68
- raise Exception(f"Control type '{pp_input.control_type}' is already present; ControlNet++ does not allow more than 1 of each type.")
69
- self.controls[pp_input.control_type] = pp_input
70
-
71
- def clone(self) -> 'PlusPlusInputGroup':
72
- cloned = PlusPlusInputGroup()
73
- for key, value in self.controls.items():
74
- cloned.controls[key] = value.clone()
75
- return cloned
76
-
77
-
78
- class PlusPlusImageWrapper(AbstractPreprocWrapper):
79
- error_msg = error_msg = "Invalid use of ControlNet++ Image Wrapper. The output of ControlNet++ Image Wrapper is NOT a usual image, but an object holding the images and extra info - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input."
80
- def __init__(self, condhint: PlusPlusInputGroup):
81
- super().__init__(condhint)
82
- # just an IDE type hint
83
- self.condhint: PlusPlusInputGroup
84
-
85
- def movedim(self, source: int, destination: int):
86
- condhint = self.condhint.clone()
87
- for pp_input in condhint.controls.values():
88
- pp_input.image = pp_input.image.movedim(source, destination)
89
- return PlusPlusImageWrapper(condhint)
90
-
91
- # parts taken from comfy/cldm/cldm.py
92
- class OptimizedAttention(nn.Module):
93
- def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
94
- super().__init__()
95
- self.heads = nhead
96
- self.c = c
97
-
98
- self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
99
- self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
100
-
101
- def forward(self, x):
102
- x = self.in_proj(x)
103
- q, k, v = x.split(self.c, dim=2)
104
- out = optimized_attention(q, k, v, self.heads)
105
- return self.out_proj(out)
106
-
107
- class QuickGELU(nn.Module):
108
- def forward(self, x: torch.Tensor):
109
- return x * torch.sigmoid(1.702 * x)
110
-
111
- class ResBlockUnionControlnet(nn.Module):
112
- def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
113
- super().__init__()
114
- self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
115
- self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
116
- self.mlp = nn.Sequential(
117
- OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
118
- ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
119
- self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
120
-
121
- def attention(self, x: torch.Tensor):
122
- return self.attn(x)
123
-
124
- def forward(self, x: torch.Tensor):
125
- x = x + self.attention(self.ln_1(x))
126
- x = x + self.mlp(self.ln_2(x))
127
- return x
128
-
129
-
130
- class ControlAddEmbeddingAdv(nn.Module):
131
- def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations: comfy.ops.disable_weight_init=None):
132
- super().__init__()
133
- self.num_control_type = num_control_type
134
- self.in_dim = in_dim
135
- self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
136
- self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
137
-
138
- def forward(self, control_type, dtype, device):
139
- if control_type is None:
140
- control_type = torch.zeros((self.num_control_type,), device=device)
141
- c_type = timestep_embedding(control_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
142
- return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
143
-
144
-
145
- class ControlNetPlusPlus(ControlNetCLDM):
146
- def __init__(self, *args,**kwargs):
147
- super().__init__(*args, **kwargs)
148
-
149
- operations: comfy.ops.disable_weight_init = kwargs.get("operations", comfy.ops.disable_weight_init)
150
- device = kwargs.get("device", None)
151
-
152
- time_embed_dim = self.model_channels * 4
153
- control_add_embed_dim = 256
154
-
155
- self.control_add_embedding = ControlAddEmbeddingAdv(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
156
-
157
- def union_controlnet_merge(self, hint: list[Tensor], control_type, emb, context):
158
- # Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
159
- indexes = torch.nonzero(control_type[0])
160
- inputs = []
161
- condition_list = []
162
-
163
- for idx in range(indexes.shape[0]):
164
- controlnet_cond = self.input_hint_block(hint[indexes[idx][0]], emb, context)
165
- feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
166
- if idx < indexes.shape[0]:
167
- feat_seq += self.task_embedding[indexes[idx][0]].to(dtype=feat_seq.dtype, device=feat_seq.device)
168
-
169
- inputs.append(feat_seq.unsqueeze(1))
170
- condition_list.append(controlnet_cond)
171
-
172
- x = torch.cat(inputs, dim=1)
173
- x = self.transformer_layes(x)
174
-
175
- controlnet_cond_fuser = None
176
- for idx in range(indexes.shape[0]):
177
- alpha = self.spatial_ch_projs(x[:, idx])
178
- alpha = alpha.unsqueeze(-1).unsqueeze(-1)
179
- o = condition_list[idx] + alpha
180
- if controlnet_cond_fuser is None:
181
- controlnet_cond_fuser = o
182
- else:
183
- controlnet_cond_fuser += o
184
- return controlnet_cond_fuser
185
-
186
- def forward(self, x: Tensor, hint: list[Tensor], timesteps, context, y: Tensor=None, **kwargs):
187
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
188
- emb = self.time_embed(t_emb)
189
-
190
- guided_hint = None
191
- if self.control_add_embedding is not None:
192
- control_type = kwargs.get("control_type", None)
193
-
194
- emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
195
- if control_type is not None:
196
- guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
197
-
198
- if guided_hint is None:
199
- guided_hint = self.input_hint_block(hint[0], emb, context)
200
-
201
- out_output = []
202
- out_middle = []
203
-
204
- hs = []
205
- if self.num_classes is not None:
206
- assert y.shape[0] == x.shape[0]
207
- emb = emb + self.label_emb(y)
208
-
209
- h = x
210
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
211
- if guided_hint is not None:
212
- h = module(h, emb, context)
213
- h += guided_hint
214
- guided_hint = None
215
- else:
216
- h = module(h, emb, context)
217
- out_output.append(zero_conv(h, emb, context))
218
-
219
- h = self.middle_block(h, emb, context)
220
- out_middle.append(self.middle_block_out(h, emb, context))
221
-
222
- return {"middle": out_middle, "output": out_output}
223
-
224
-
225
- class ControlNetPlusPlusAdvanced(ControlNet, AdvancedControlBase):
226
- def __init__(self, control_model: ControlNetPlusPlus, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
227
- super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
228
- AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
229
- self.add_compatible_weight(ControlWeightType.CONTROLNETPLUSPLUS)
230
- # for IDE type hint purposes
231
- self.control_model: ControlNetPlusPlus
232
- self.cond_hint_original: Union[PlusPlusImageWrapper, PlusPlusInputGroup]
233
- self.cond_hint: list[Union[Tensor, None]]
234
- self.cond_hint_shape: Tensor = None
235
- self.cond_hint_types: Tensor = None
236
- # in case it is using the single loader
237
- self.single_control_type: str = None
238
-
239
- def get_universal_weights(self) -> ControlWeights:
240
- def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
241
- if key == "middle":
242
- return 1.0
243
- c_len = len(control[key])
244
- raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
245
- raw_weights = raw_weights[:-1]
246
- if key == "input":
247
- raw_weights.reverse()
248
- return raw_weights[idx]
249
- return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
250
-
251
- def verify_control_type(self, model_name: str, pp_group: PlusPlusInputGroup=None):
252
- if pp_group is not None:
253
- for pp_input in pp_group.controls.values():
254
- if PlusPlusType.to_idx(pp_input.control_type) >= self.control_model.num_control_type:
255
- raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{pp_input.control_type}'.")
256
- if self.single_control_type is not None:
257
- if PlusPlusType.to_idx(self.single_control_type) >= self.control_model.num_control_type:
258
- raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{self.single_control_type}'.")
259
-
260
- def set_cond_hint_inject(self, *args, **kwargs):
261
- to_return = super().set_cond_hint_inject(*args, **kwargs)
262
- # if not single_control_type, expect PlusPlusImageWrapper
263
- if self.single_control_type is None:
264
- # check that cond_hint is wrapped, and unwrap it
265
- if type(self.cond_hint_original) != PlusPlusImageWrapper:
266
- raise Exception("ControlNet++ (Multi) expects image input from the Load ControlNet++ Model node, NOT from anything else. Images are provided to that node via ControlNet++ Input nodes.")
267
- self.cond_hint_original = self.cond_hint_original.condhint.clone()
268
- # otherwise, expect single image input (AKA, usual controlnet input)
269
- else:
270
- # check that cond_hint is not a PlusPlusImageWrapper
271
- if type(self.cond_hint_original) == PlusPlusImageWrapper:
272
- raise Exception("ControlNet++ (Single) expects usual image input, NOT the image input from a Load ControlNet++ Model (Multi) node.")
273
- pp_group = PlusPlusInputGroup()
274
- pp_input = PlusPlusInput(self.cond_hint_original, self.single_control_type, 1.0)
275
- pp_group.add(pp_input)
276
- self.cond_hint_original = pp_group
277
- return to_return
278
-
279
- def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number):
280
- control_prev = None
281
- if self.previous_controlnet is not None:
282
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
283
-
284
- if self.timestep_range is not None:
285
- if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
286
- if control_prev is not None:
287
- return control_prev
288
- else:
289
- return None
290
-
291
- dtype = self.control_model.dtype
292
- if self.manual_cast_dtype is not None:
293
- dtype = self.manual_cast_dtype
294
-
295
- output_dtype = x_noisy.dtype
296
-
297
- # make all cond_hints appropriate dimensions
298
- # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs is present
299
- if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint_shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint_shape[3]:
300
- if self.cond_hint is not None:
301
- del self.cond_hint
302
- self.cond_hint = [None] * self.control_model.num_control_type
303
- self.cond_hint_types = torch.tensor([0.0] * self.control_model.num_control_type)
304
- self.cond_hint_shape = None
305
- compression_ratio = self.compression_ratio
306
- # unlike normal controlnet, need to handle each input image tensor (for each type)
307
- for pp_type, pp_input in self.cond_hint_original.controls.items():
308
- pp_idx = PlusPlusType.to_idx(pp_type)
309
- # if negative, means no type should be selected (single only)
310
- if pp_idx < 0:
311
- pp_idx = 0
312
- else:
313
- self.cond_hint_types[pp_idx] = pp_input.strength
314
- # if self.cond_hint_original lengths greater or equal to latent count, subdivide
315
- if self.sub_idxs is not None:
316
- actual_cond_hint_orig = pp_input.image
317
- if pp_input.image.size(0) < self.full_latent_length:
318
- actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
319
- self.cond_hint[pp_idx] = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
320
- else:
321
- self.cond_hint[pp_idx] = comfy.utils.common_upscale(pp_input.image, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
322
- self.cond_hint[pp_idx] = self.cond_hint[pp_idx].to(device=x_noisy.device, dtype=dtype)
323
- self.cond_hint_shape = self.cond_hint[pp_idx].shape
324
- # prepare cond_hint_controls to match batchsize
325
- if self.cond_hint_types.count_nonzero() == 0:
326
- self.cond_hint_types = None
327
- else:
328
- self.cond_hint_types = self.cond_hint_types.unsqueeze(0).to(device=x_noisy.device, dtype=dtype).repeat(x_noisy.shape[0], 1)
329
- for i in range(len(self.cond_hint)):
330
- if self.cond_hint[i] is not None:
331
- if x_noisy.shape[0] != self.cond_hint[i].shape[0]:
332
- self.cond_hint[i] = broadcast_image_to_extend(self.cond_hint[i], x_noisy.shape[0], batched_number)
333
- if self.cond_hint_types is not None and x_noisy.shape[0] != self.cond_hint_types.shape[0]:
334
- self.cond_hint_types = broadcast_image_to_extend(self.cond_hint_types, x_noisy.shape[0], batched_number, False)
335
-
336
- # prepare mask_cond_hint
337
- self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
338
-
339
- context = cond.get('crossattn_controlnet', cond['c_crossattn'])
340
- y = cond.get('y', None)
341
- if y is not None:
342
- y = y.to(dtype)
343
- timestep = self.model_sampling_current.timestep(t)
344
- x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
345
-
346
- control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, control_type=self.cond_hint_types)
347
- return self.control_merge(control, control_prev, output_dtype)
348
-
349
- def copy(self):
350
- c = ControlNetPlusPlusAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
351
- self.copy_to(c)
352
- self.copy_to_advanced(c)
353
- c.single_control_type = self.single_control_type
354
- return c
355
-
356
-
357
- def load_controlnetplusplus(ckpt_path: str, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
358
- controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
359
- # check that actually is ControlNet++ model
360
- if "task_embedding" not in controlnet_data:
361
- raise Exception(f"'{ckpt_path}' is not a valid ControlNet++ model.")
362
-
363
- controlnet_config = None
364
- supported_inference_dtypes = None
365
-
366
- if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
367
- controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
368
- diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
369
- diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
370
- diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
371
-
372
- count = 0
373
- loop = True
374
- while loop:
375
- suffix = [".weight", ".bias"]
376
- for s in suffix:
377
- k_in = "controlnet_down_blocks.{}{}".format(count, s)
378
- k_out = "zero_convs.{}.0{}".format(count, s)
379
- if k_in not in controlnet_data:
380
- loop = False
381
- break
382
- diffusers_keys[k_in] = k_out
383
- count += 1
384
-
385
- count = 0
386
- loop = True
387
- while loop:
388
- suffix = [".weight", ".bias"]
389
- for s in suffix:
390
- if count == 0:
391
- k_in = "controlnet_cond_embedding.conv_in{}".format(s)
392
- else:
393
- k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
394
- k_out = "input_hint_block.{}{}".format(count * 2, s)
395
- if k_in not in controlnet_data:
396
- k_in = "controlnet_cond_embedding.conv_out{}".format(s)
397
- loop = False
398
- diffusers_keys[k_in] = k_out
399
- count += 1
400
-
401
- new_sd = {}
402
- for k in diffusers_keys:
403
- if k in controlnet_data:
404
- new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
405
-
406
- if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
407
- controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
408
- for k in list(controlnet_data.keys()):
409
- new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
410
- new_sd[new_k] = controlnet_data.pop(k)
411
-
412
- leftover_keys = controlnet_data.keys()
413
- if len(leftover_keys) > 0:
414
- logger.warning("leftover ControlNet++ keys: {}".format(leftover_keys))
415
- controlnet_data = new_sd
416
- elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
417
- raise Exception("Unexpected SD3 diffusers format for ControlNet++ model. Something is very wrong.")
418
-
419
- pth_key = 'control_model.zero_convs.0.0.weight'
420
- pth = False
421
- key = 'zero_convs.0.0.weight'
422
- if pth_key in controlnet_data:
423
- pth = True
424
- key = pth_key
425
- prefix = "control_model."
426
- elif key in controlnet_data:
427
- prefix = ""
428
- else:
429
- raise Exception("Unexpected T2IAdapter format for ControlNet++ model. Something is very wrong.")
430
-
431
- if controlnet_config is None:
432
- model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
433
- supported_inference_dtypes = model_config.supported_inference_dtypes
434
- controlnet_config = model_config.unet_config
435
-
436
- load_device = comfy.model_management.get_torch_device()
437
- if supported_inference_dtypes is None:
438
- unet_dtype = comfy.model_management.unet_dtype()
439
- else:
440
- unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
441
-
442
- manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
443
- if manual_cast_dtype is not None:
444
- controlnet_config["operations"] = comfy.ops.manual_cast
445
- controlnet_config["dtype"] = unet_dtype
446
- controlnet_config.pop("out_channels")
447
- controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
448
- control_model = ControlNetPlusPlus(**controlnet_config)
449
-
450
- if pth:
451
- if 'difference' in controlnet_data:
452
- if model is not None:
453
- comfy.model_management.load_models_gpu([model])
454
- model_sd = model.model_state_dict()
455
- for x in controlnet_data:
456
- c_m = "control_model."
457
- if x.startswith(c_m):
458
- sd_key = "diffusion_model.{}".format(x[len(c_m):])
459
- if sd_key in model_sd:
460
- cd = controlnet_data[x]
461
- cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
462
- else:
463
- logger.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
464
-
465
- class WeightsLoader(torch.nn.Module):
466
- pass
467
- w = WeightsLoader()
468
- w.control_model = control_model
469
- missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
470
- else:
471
- missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
472
-
473
- if len(missing) > 0:
474
- logger.warning("missing ControlNet++ keys: {}".format(missing))
475
-
476
- if len(unexpected) > 0:
477
- logger.debug("unexpected ControlNet++ keys: {}".format(unexpected))
478
-
479
- global_average_pooling = False
480
- filename = os.path.splitext(ckpt_path)[0]
481
- if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
482
- global_average_pooling = True
483
-
484
- control = ControlNetPlusPlusAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
485
- return control
 
1
+ # Code ported and modified from the diffusers ControlNetPlus repo by Qi Xin:
2
+ # https://github.com/xinsir6/ControlNetPlus/blob/main/models/controlnet_union.py
3
+ from typing import Union
4
+
5
+ import os
6
+ import torch
7
+ import torch as th
8
+ import torch.nn as nn
9
+ from torch import Tensor
10
+ from collections import OrderedDict
11
+
12
+
13
+ from comfy.ldm.modules.diffusionmodules.util import (zero_module, timestep_embedding)
14
+
15
+ from comfy.cldm.cldm import ControlNet as ControlNetCLDM
16
+ import comfy.cldm.cldm
17
+ from comfy.controlnet import ControlNet
18
+ #from comfy.t2i_adapter.adapter import ResidualAttentionBlock
19
+ from comfy.ldm.modules.attention import optimized_attention
20
+ import comfy.ops
21
+ import comfy.model_management
22
+ import comfy.model_detection
23
+ import comfy.utils
24
+
25
+ from .utils import (AdvancedControlBase, ControlWeights, ControlWeightType, TimestepKeyframeGroup, AbstractPreprocWrapper,
26
+ extend_to_batch_size, broadcast_image_to_extend)
27
+ from .logger import logger
28
+
29
+
30
+ class PlusPlusType:
31
+ OPENPOSE = "openpose"
32
+ DEPTH = "depth"
33
+ THICKLINE = "hed/pidi/scribble/ted"
34
+ THINLINE = "canny/lineart/mlsd"
35
+ NORMAL = "normal"
36
+ SEGMENT = "segment"
37
+ TILE = "tile"
38
+ REPAINT = "inpaint/outpaint"
39
+ NONE = "none"
40
+ _LIST_WITH_NONE = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT, NONE]
41
+ _LIST = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT]
42
+ _DICT = {OPENPOSE: 0, DEPTH: 1, THICKLINE: 2, THINLINE: 3, NORMAL: 4, SEGMENT: 5, TILE: 6, REPAINT: 7, NONE: -1}
43
+
44
+ @classmethod
45
+ def to_idx(cls, control_type: str):
46
+ try:
47
+ return cls._DICT[control_type]
48
+ except KeyError:
49
+ raise Exception(f"Unknown control type '{control_type}'.")
50
+
51
+
52
+ class PlusPlusInput:
53
+ def __init__(self, image: Tensor, control_type: str, strength: float):
54
+ self.image = image
55
+ self.control_type = control_type
56
+ self.strength = strength
57
+
58
+ def clone(self):
59
+ return PlusPlusInput(self.image, self.control_type, self.strength)
60
+
61
+
62
+ class PlusPlusInputGroup:
63
+ def __init__(self):
64
+ self.controls: dict[str, PlusPlusInput] = {}
65
+
66
+ def add(self, pp_input: PlusPlusInput):
67
+ if pp_input.control_type in self.controls:
68
+ raise Exception(f"Control type '{pp_input.control_type}' is already present; ControlNet++ does not allow more than 1 of each type.")
69
+ self.controls[pp_input.control_type] = pp_input
70
+
71
+ def clone(self) -> 'PlusPlusInputGroup':
72
+ cloned = PlusPlusInputGroup()
73
+ for key, value in self.controls.items():
74
+ cloned.controls[key] = value.clone()
75
+ return cloned
76
+
77
+
78
+ class PlusPlusImageWrapper(AbstractPreprocWrapper):
79
+ error_msg = error_msg = "Invalid use of ControlNet++ Image Wrapper. The output of ControlNet++ Image Wrapper is NOT a usual image, but an object holding the images and extra info - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input."
80
+ def __init__(self, condhint: PlusPlusInputGroup):
81
+ super().__init__(condhint)
82
+ # just an IDE type hint
83
+ self.condhint: PlusPlusInputGroup
84
+
85
+ def movedim(self, source: int, destination: int):
86
+ condhint = self.condhint.clone()
87
+ for pp_input in condhint.controls.values():
88
+ pp_input.image = pp_input.image.movedim(source, destination)
89
+ return PlusPlusImageWrapper(condhint)
90
+
91
+ # parts taken from comfy/cldm/cldm.py
92
+ class OptimizedAttention(nn.Module):
93
+ def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
94
+ super().__init__()
95
+ self.heads = nhead
96
+ self.c = c
97
+
98
+ self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
99
+ self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
100
+
101
+ def forward(self, x):
102
+ x = self.in_proj(x)
103
+ q, k, v = x.split(self.c, dim=2)
104
+ out = optimized_attention(q, k, v, self.heads)
105
+ return self.out_proj(out)
106
+
107
+ class QuickGELU(nn.Module):
108
+ def forward(self, x: torch.Tensor):
109
+ return x * torch.sigmoid(1.702 * x)
110
+
111
+ class ResBlockUnionControlnet(nn.Module):
112
+ def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
113
+ super().__init__()
114
+ self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
115
+ self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
116
+ self.mlp = nn.Sequential(
117
+ OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
118
+ ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
119
+ self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
120
+
121
+ def attention(self, x: torch.Tensor):
122
+ return self.attn(x)
123
+
124
+ def forward(self, x: torch.Tensor):
125
+ x = x + self.attention(self.ln_1(x))
126
+ x = x + self.mlp(self.ln_2(x))
127
+ return x
128
+
129
+
130
+ class ControlAddEmbeddingAdv(nn.Module):
131
+ def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations: comfy.ops.disable_weight_init=None):
132
+ super().__init__()
133
+ self.num_control_type = num_control_type
134
+ self.in_dim = in_dim
135
+ self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
136
+ self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
137
+
138
+ def forward(self, control_type, dtype, device):
139
+ if control_type is None:
140
+ control_type = torch.zeros((self.num_control_type,), device=device)
141
+ c_type = timestep_embedding(control_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
142
+ return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
143
+
144
+
145
+ class ControlNetPlusPlus(ControlNetCLDM):
146
+ def __init__(self, *args,**kwargs):
147
+ super().__init__(*args, **kwargs)
148
+
149
+ operations: comfy.ops.disable_weight_init = kwargs.get("operations", comfy.ops.disable_weight_init)
150
+ device = kwargs.get("device", None)
151
+
152
+ time_embed_dim = self.model_channels * 4
153
+ control_add_embed_dim = 256
154
+
155
+ self.control_add_embedding = ControlAddEmbeddingAdv(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
156
+
157
+ def union_controlnet_merge(self, hint: list[Tensor], control_type, emb, context):
158
+ # Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
159
+ indexes = torch.nonzero(control_type[0])
160
+ inputs = []
161
+ condition_list = []
162
+
163
+ for idx in range(indexes.shape[0]):
164
+ controlnet_cond = self.input_hint_block(hint[indexes[idx][0]], emb, context)
165
+ feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
166
+ if idx < indexes.shape[0]:
167
+ feat_seq += self.task_embedding[indexes[idx][0]].to(dtype=feat_seq.dtype, device=feat_seq.device)
168
+
169
+ inputs.append(feat_seq.unsqueeze(1))
170
+ condition_list.append(controlnet_cond)
171
+
172
+ x = torch.cat(inputs, dim=1)
173
+ x = self.transformer_layes(x)
174
+
175
+ controlnet_cond_fuser = None
176
+ for idx in range(indexes.shape[0]):
177
+ alpha = self.spatial_ch_projs(x[:, idx])
178
+ alpha = alpha.unsqueeze(-1).unsqueeze(-1)
179
+ o = condition_list[idx] + alpha
180
+ if controlnet_cond_fuser is None:
181
+ controlnet_cond_fuser = o
182
+ else:
183
+ controlnet_cond_fuser += o
184
+ return controlnet_cond_fuser
185
+
186
+ def forward(self, x: Tensor, hint: list[Tensor], timesteps, context, y: Tensor=None, **kwargs):
187
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
188
+ emb = self.time_embed(t_emb)
189
+
190
+ guided_hint = None
191
+ if self.control_add_embedding is not None:
192
+ control_type = kwargs.get("control_type", None)
193
+
194
+ emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
195
+ if control_type is not None:
196
+ guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
197
+
198
+ if guided_hint is None:
199
+ guided_hint = self.input_hint_block(hint[0], emb, context)
200
+
201
+ out_output = []
202
+ out_middle = []
203
+
204
+ hs = []
205
+ if self.num_classes is not None:
206
+ assert y.shape[0] == x.shape[0]
207
+ emb = emb + self.label_emb(y)
208
+
209
+ h = x
210
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
211
+ if guided_hint is not None:
212
+ h = module(h, emb, context)
213
+ h += guided_hint
214
+ guided_hint = None
215
+ else:
216
+ h = module(h, emb, context)
217
+ out_output.append(zero_conv(h, emb, context))
218
+
219
+ h = self.middle_block(h, emb, context)
220
+ out_middle.append(self.middle_block_out(h, emb, context))
221
+
222
+ return {"middle": out_middle, "output": out_output}
223
+
224
+
225
+ class ControlNetPlusPlusAdvanced(ControlNet, AdvancedControlBase):
226
+ def __init__(self, control_model: ControlNetPlusPlus, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
227
+ super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
228
+ AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
229
+ self.add_compatible_weight(ControlWeightType.CONTROLNETPLUSPLUS)
230
+ # for IDE type hint purposes
231
+ self.control_model: ControlNetPlusPlus
232
+ self.cond_hint_original: Union[PlusPlusImageWrapper, PlusPlusInputGroup]
233
+ self.cond_hint: list[Union[Tensor, None]]
234
+ self.cond_hint_shape: Tensor = None
235
+ self.cond_hint_types: Tensor = None
236
+ # in case it is using the single loader
237
+ self.single_control_type: str = None
238
+
239
+ def get_universal_weights(self) -> ControlWeights:
240
+ def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
241
+ if key == "middle":
242
+ return 1.0
243
+ c_len = len(control[key])
244
+ raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
245
+ raw_weights = raw_weights[:-1]
246
+ if key == "input":
247
+ raw_weights.reverse()
248
+ return raw_weights[idx]
249
+ return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
250
+
251
+ def verify_control_type(self, model_name: str, pp_group: PlusPlusInputGroup=None):
252
+ if pp_group is not None:
253
+ for pp_input in pp_group.controls.values():
254
+ if PlusPlusType.to_idx(pp_input.control_type) >= self.control_model.num_control_type:
255
+ raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{pp_input.control_type}'.")
256
+ if self.single_control_type is not None:
257
+ if PlusPlusType.to_idx(self.single_control_type) >= self.control_model.num_control_type:
258
+ raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{self.single_control_type}'.")
259
+
260
+ def set_cond_hint_inject(self, *args, **kwargs):
261
+ to_return = super().set_cond_hint_inject(*args, **kwargs)
262
+ # if not single_control_type, expect PlusPlusImageWrapper
263
+ if self.single_control_type is None:
264
+ # check that cond_hint is wrapped, and unwrap it
265
+ if type(self.cond_hint_original) != PlusPlusImageWrapper:
266
+ raise Exception("ControlNet++ (Multi) expects image input from the Load ControlNet++ Model node, NOT from anything else. Images are provided to that node via ControlNet++ Input nodes.")
267
+ self.cond_hint_original = self.cond_hint_original.condhint.clone()
268
+ # otherwise, expect single image input (AKA, usual controlnet input)
269
+ else:
270
+ # check that cond_hint is not a PlusPlusImageWrapper
271
+ if type(self.cond_hint_original) == PlusPlusImageWrapper:
272
+ raise Exception("ControlNet++ (Single) expects usual image input, NOT the image input from a Load ControlNet++ Model (Multi) node.")
273
+ pp_group = PlusPlusInputGroup()
274
+ pp_input = PlusPlusInput(self.cond_hint_original, self.single_control_type, 1.0)
275
+ pp_group.add(pp_input)
276
+ self.cond_hint_original = pp_group
277
+ return to_return
278
+
279
+ def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number):
280
+ control_prev = None
281
+ if self.previous_controlnet is not None:
282
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
283
+
284
+ if self.timestep_range is not None:
285
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
286
+ if control_prev is not None:
287
+ return control_prev
288
+ else:
289
+ return None
290
+
291
+ dtype = self.control_model.dtype
292
+ if self.manual_cast_dtype is not None:
293
+ dtype = self.manual_cast_dtype
294
+
295
+ output_dtype = x_noisy.dtype
296
+
297
+ # make all cond_hints appropriate dimensions
298
+ # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs is present
299
+ if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint_shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint_shape[3]:
300
+ if self.cond_hint is not None:
301
+ del self.cond_hint
302
+ self.cond_hint = [None] * self.control_model.num_control_type
303
+ self.cond_hint_types = torch.tensor([0.0] * self.control_model.num_control_type)
304
+ self.cond_hint_shape = None
305
+ compression_ratio = self.compression_ratio
306
+ # unlike normal controlnet, need to handle each input image tensor (for each type)
307
+ for pp_type, pp_input in self.cond_hint_original.controls.items():
308
+ pp_idx = PlusPlusType.to_idx(pp_type)
309
+ # if negative, means no type should be selected (single only)
310
+ if pp_idx < 0:
311
+ pp_idx = 0
312
+ else:
313
+ self.cond_hint_types[pp_idx] = pp_input.strength
314
+ # if self.cond_hint_original lengths greater or equal to latent count, subdivide
315
+ if self.sub_idxs is not None:
316
+ actual_cond_hint_orig = pp_input.image
317
+ if pp_input.image.size(0) < self.full_latent_length:
318
+ actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
319
+ self.cond_hint[pp_idx] = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
320
+ else:
321
+ self.cond_hint[pp_idx] = comfy.utils.common_upscale(pp_input.image, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
322
+ self.cond_hint[pp_idx] = self.cond_hint[pp_idx].to(device=x_noisy.device, dtype=dtype)
323
+ self.cond_hint_shape = self.cond_hint[pp_idx].shape
324
+ # prepare cond_hint_controls to match batchsize
325
+ if self.cond_hint_types.count_nonzero() == 0:
326
+ self.cond_hint_types = None
327
+ else:
328
+ self.cond_hint_types = self.cond_hint_types.unsqueeze(0).to(device=x_noisy.device, dtype=dtype).repeat(x_noisy.shape[0], 1)
329
+ for i in range(len(self.cond_hint)):
330
+ if self.cond_hint[i] is not None:
331
+ if x_noisy.shape[0] != self.cond_hint[i].shape[0]:
332
+ self.cond_hint[i] = broadcast_image_to_extend(self.cond_hint[i], x_noisy.shape[0], batched_number)
333
+ if self.cond_hint_types is not None and x_noisy.shape[0] != self.cond_hint_types.shape[0]:
334
+ self.cond_hint_types = broadcast_image_to_extend(self.cond_hint_types, x_noisy.shape[0], batched_number, False)
335
+
336
+ # prepare mask_cond_hint
337
+ self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
338
+
339
+ context = cond.get('crossattn_controlnet', cond['c_crossattn'])
340
+ y = cond.get('y', None)
341
+ if y is not None:
342
+ y = y.to(dtype)
343
+ timestep = self.model_sampling_current.timestep(t)
344
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
345
+
346
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, control_type=self.cond_hint_types)
347
+ return self.control_merge(control, control_prev, output_dtype)
348
+
349
+ def copy(self):
350
+ c = ControlNetPlusPlusAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
351
+ self.copy_to(c)
352
+ self.copy_to_advanced(c)
353
+ c.single_control_type = self.single_control_type
354
+ return c
355
+
356
+
357
+ def load_controlnetplusplus(ckpt_path: str, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
358
+ controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
359
+ # check that actually is ControlNet++ model
360
+ if "task_embedding" not in controlnet_data:
361
+ raise Exception(f"'{ckpt_path}' is not a valid ControlNet++ model.")
362
+
363
+ controlnet_config = None
364
+ supported_inference_dtypes = None
365
+
366
+ if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
367
+ controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
368
+ diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
369
+ diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
370
+ diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
371
+
372
+ count = 0
373
+ loop = True
374
+ while loop:
375
+ suffix = [".weight", ".bias"]
376
+ for s in suffix:
377
+ k_in = "controlnet_down_blocks.{}{}".format(count, s)
378
+ k_out = "zero_convs.{}.0{}".format(count, s)
379
+ if k_in not in controlnet_data:
380
+ loop = False
381
+ break
382
+ diffusers_keys[k_in] = k_out
383
+ count += 1
384
+
385
+ count = 0
386
+ loop = True
387
+ while loop:
388
+ suffix = [".weight", ".bias"]
389
+ for s in suffix:
390
+ if count == 0:
391
+ k_in = "controlnet_cond_embedding.conv_in{}".format(s)
392
+ else:
393
+ k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
394
+ k_out = "input_hint_block.{}{}".format(count * 2, s)
395
+ if k_in not in controlnet_data:
396
+ k_in = "controlnet_cond_embedding.conv_out{}".format(s)
397
+ loop = False
398
+ diffusers_keys[k_in] = k_out
399
+ count += 1
400
+
401
+ new_sd = {}
402
+ for k in diffusers_keys:
403
+ if k in controlnet_data:
404
+ new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
405
+
406
+ if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
407
+ controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
408
+ for k in list(controlnet_data.keys()):
409
+ new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
410
+ new_sd[new_k] = controlnet_data.pop(k)
411
+
412
+ leftover_keys = controlnet_data.keys()
413
+ if len(leftover_keys) > 0:
414
+ logger.warning("leftover ControlNet++ keys: {}".format(leftover_keys))
415
+ controlnet_data = new_sd
416
+ elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
417
+ raise Exception("Unexpected SD3 diffusers format for ControlNet++ model. Something is very wrong.")
418
+
419
+ pth_key = 'control_model.zero_convs.0.0.weight'
420
+ pth = False
421
+ key = 'zero_convs.0.0.weight'
422
+ if pth_key in controlnet_data:
423
+ pth = True
424
+ key = pth_key
425
+ prefix = "control_model."
426
+ elif key in controlnet_data:
427
+ prefix = ""
428
+ else:
429
+ raise Exception("Unexpected T2IAdapter format for ControlNet++ model. Something is very wrong.")
430
+
431
+ if controlnet_config is None:
432
+ model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
433
+ supported_inference_dtypes = model_config.supported_inference_dtypes
434
+ controlnet_config = model_config.unet_config
435
+
436
+ load_device = comfy.model_management.get_torch_device()
437
+ if supported_inference_dtypes is None:
438
+ unet_dtype = comfy.model_management.unet_dtype()
439
+ else:
440
+ unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
441
+
442
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
443
+ if manual_cast_dtype is not None:
444
+ controlnet_config["operations"] = comfy.ops.manual_cast
445
+ controlnet_config["dtype"] = unet_dtype
446
+ controlnet_config.pop("out_channels")
447
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
448
+ control_model = ControlNetPlusPlus(**controlnet_config)
449
+
450
+ if pth:
451
+ if 'difference' in controlnet_data:
452
+ if model is not None:
453
+ comfy.model_management.load_models_gpu([model])
454
+ model_sd = model.model_state_dict()
455
+ for x in controlnet_data:
456
+ c_m = "control_model."
457
+ if x.startswith(c_m):
458
+ sd_key = "diffusion_model.{}".format(x[len(c_m):])
459
+ if sd_key in model_sd:
460
+ cd = controlnet_data[x]
461
+ cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
462
+ else:
463
+ logger.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
464
+
465
+ class WeightsLoader(torch.nn.Module):
466
+ pass
467
+ w = WeightsLoader()
468
+ w.control_model = control_model
469
+ missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
470
+ else:
471
+ missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
472
+
473
+ if len(missing) > 0:
474
+ logger.warning("missing ControlNet++ keys: {}".format(missing))
475
+
476
+ if len(unexpected) > 0:
477
+ logger.debug("unexpected ControlNet++ keys: {}".format(unexpected))
478
+
479
+ global_average_pooling = False
480
+ filename = os.path.splitext(ckpt_path)[0]
481
+ if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
482
+ global_average_pooling = True
483
+
484
+ control = ControlNetPlusPlusAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
485
+ return control
ComfyUI-Advanced-ControlNet/adv_control/control_reference.py CHANGED
The diff for this file is too large to render. See raw diff
 
ComfyUI-Advanced-ControlNet/adv_control/control_sparsectrl.py CHANGED
@@ -1,1078 +1,1078 @@
1
- #taken from: https://github.com/lllyasviel/ControlNet
2
- #and modified
3
- #and then taken from comfy/cldm/cldm.py and modified again
4
-
5
- from abc import ABC, abstractmethod
6
- import copy
7
- import math
8
- import numpy as np
9
- from typing import Iterable, Union
10
- import torch
11
- import torch as th
12
- import torch.nn as nn
13
- from torch import Tensor
14
- from einops import rearrange, repeat
15
-
16
- from comfy.ldm.modules.diffusionmodules.util import (
17
- zero_module,
18
- timestep_embedding,
19
- )
20
-
21
- from comfy.cli_args import args
22
- from comfy.cldm.cldm import ControlNet as ControlNetCLDM
23
- from comfy.ldm.modules.attention import SpatialTransformer
24
- from comfy.ldm.modules.attention import attention_basic, attention_pytorch, attention_split, attention_sub_quad, default
25
- from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
26
- from comfy.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential
27
- from comfy.model_patcher import ModelPatcher
28
- import comfy.ops
29
- import comfy.model_management
30
- import comfy.utils
31
-
32
- from .logger import logger
33
- from .utils import (BIGMAX, AbstractPreprocWrapper, disable_weight_init_clean_groupnorm,
34
- prepare_mask_batch, broadcast_image_to_extend, extend_to_batch_size)
35
-
36
-
37
- # until xformers bug is fixed, do not use xformers for VersatileAttention! TODO: change this when fix is out
38
- # logic for choosing optimized_attention method taken from comfy/ldm/modules/attention.py
39
- # a fallback_attention_mm is selected to avoid CUDA configuration limitation with pytorch's scaled_dot_product
40
- optimized_attention_mm = attention_basic
41
- fallback_attention_mm = attention_basic
42
- if comfy.model_management.xformers_enabled():
43
- pass
44
- #optimized_attention_mm = attention_xformers
45
- if comfy.model_management.pytorch_attention_enabled():
46
- optimized_attention_mm = attention_pytorch
47
- if args.use_split_cross_attention:
48
- fallback_attention_mm = attention_split
49
- else:
50
- fallback_attention_mm = attention_sub_quad
51
- else:
52
- if args.use_split_cross_attention:
53
- optimized_attention_mm = attention_split
54
- else:
55
- optimized_attention_mm = attention_sub_quad
56
-
57
-
58
- class SparseConst:
59
- HINT_MULT = "sparse_hint_mult"
60
- NONHINT_MULT = "sparse_nonhint_mult"
61
- MASK_MULT = "sparse_mask_mult"
62
-
63
-
64
- class SparseControlNet(ControlNetCLDM):
65
- def __init__(self, *args,**kwargs):
66
- super().__init__(*args, **kwargs)
67
- hint_channels = kwargs.get("hint_channels")
68
- operations: disable_weight_init_clean_groupnorm = kwargs.get("operations", disable_weight_init_clean_groupnorm)
69
- device = kwargs.get("device", None)
70
- self.use_simplified_conditioning_embedding = kwargs.get("use_simplified_conditioning_embedding", False)
71
- if self.use_simplified_conditioning_embedding:
72
- self.input_hint_block = TimestepEmbedSequential(
73
- zero_module(operations.conv_nd(self.dims, hint_channels, self.model_channels, 3, padding=1, dtype=self.dtype, device=device)),
74
- )
75
- self.motion_wrapper: SparseCtrlMotionWrapper = None
76
-
77
- def set_actual_length(self, actual_length: int, full_length: int):
78
- if self.motion_wrapper is not None:
79
- self.motion_wrapper.set_video_length(video_length=actual_length, full_length=full_length)
80
-
81
- def forward(self, x: Tensor, hint: Tensor, timesteps, context, y=None, **kwargs):
82
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
83
- emb = self.time_embed(t_emb)
84
-
85
- # SparseCtrl sets noisy input to zeros
86
- x = torch.zeros_like(x)
87
- guided_hint = self.input_hint_block(hint, emb, context)
88
-
89
- out_output = []
90
- out_middle = []
91
-
92
- hs = []
93
- if self.num_classes is not None:
94
- assert y.shape[0] == x.shape[0]
95
- emb = emb + self.label_emb(y)
96
-
97
- h = x
98
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
99
- if guided_hint is not None:
100
- h = module(h, emb, context)
101
- h += guided_hint
102
- guided_hint = None
103
- else:
104
- h = module(h, emb, context)
105
- out_output.append(zero_conv(h, emb, context))
106
-
107
- h = self.middle_block(h, emb, context)
108
- out_middle.append(self.middle_block_out(h, emb, context))
109
-
110
- return {"middle": out_middle, "output": out_output}
111
-
112
-
113
- class SparseModelPatcher(ModelPatcher):
114
- def __init__(self, *args, **kwargs):
115
- self.model: SparseControlNet
116
- super().__init__(*args, **kwargs)
117
-
118
- def load(self, device_to=None, lowvram_model_memory=0, *args, **kwargs):
119
- to_return = super().load(device_to=device_to, lowvram_model_memory=lowvram_model_memory, *args, **kwargs)
120
- if lowvram_model_memory > 0:
121
- self._patch_lowvram_extras(device_to=device_to)
122
- self._handle_float8_pe_tensors()
123
- return to_return
124
-
125
- def _patch_lowvram_extras(self, device_to=None):
126
- if self.model.motion_wrapper is not None:
127
- # figure out the tensors (likely pe's) that should be cast to device besides just the named_modules
128
- remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
129
- named_modules = []
130
- for n, _ in self.model.motion_wrapper.named_modules():
131
- named_modules.append(n)
132
- named_modules.append(f"{n}.weight")
133
- named_modules.append(f"{n}.bias")
134
- for name in named_modules:
135
- if name in remaining_tensors:
136
- remaining_tensors.remove(name)
137
-
138
- for key in remaining_tensors:
139
- self.patch_weight_to_device(key, device_to)
140
- if device_to is not None:
141
- comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).to(device_to))
142
-
143
- def _handle_float8_pe_tensors(self):
144
- if self.model.motion_wrapper is not None:
145
- remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
146
- pe_tensors = [x for x in remaining_tensors if '.pe' in x]
147
- is_first = True
148
- for key in pe_tensors:
149
- if is_first:
150
- is_first = False
151
- if comfy.utils.get_attr(self.model.motion_wrapper, key).dtype not in [torch.float8_e5m2, torch.float8_e4m3fn]:
152
- break
153
- comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).half())
154
-
155
- # NOTE: no longer called by ComfyUI, but here for backwards compatibility
156
- def patch_model_lowvram(self, device_to=None, *args, **kwargs):
157
- patched_model = super().patch_model_lowvram(device_to, *args, **kwargs)
158
- self._patch_lowvram_extras(device_to=device_to)
159
- return patched_model
160
-
161
- def clone(self):
162
- # normal ModelPatcher clone actions
163
- n = SparseModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
164
- n.patches = {}
165
- for k in self.patches:
166
- n.patches[k] = self.patches[k][:]
167
- if hasattr(n, "patches_uuid"):
168
- self.patches_uuid = n.patches_uuid
169
-
170
- n.object_patches = self.object_patches.copy()
171
- n.model_options = copy.deepcopy(self.model_options)
172
- if hasattr(n, "model_keys"):
173
- n.model_keys = self.model_keys
174
- if hasattr(n, "backup"):
175
- self.backup = n.backup
176
- if hasattr(n, "object_patches_backup"):
177
- self.object_patches_backup = n.object_patches_backup
178
-
179
-
180
- class PreprocSparseRGBWrapper(AbstractPreprocWrapper):
181
- error_msg = error_msg = "Invalid use of RGB SparseCtrl output. The output of RGB SparseCtrl preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply ControlNet node (advanced or otherwise). It cannot be used for anything else that accepts IMAGE input."
182
- def __init__(self, condhint: Tensor):
183
- super().__init__(condhint)
184
-
185
-
186
- class SparseContextAware:
187
- NEAREST_HINT = "nearest_hint"
188
- OFF = "off"
189
-
190
- LIST = [NEAREST_HINT, OFF]
191
-
192
-
193
- class SparseSettings:
194
- def __init__(self, sparse_method: 'SparseMethod', use_motion: bool=True, motion_strength=1.0, motion_scale=1.0, merged=False,
195
- sparse_mask_mult=1.0, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, context_aware=SparseContextAware.NEAREST_HINT):
196
- # account for Steerable-Motion workflow incompatibility;
197
- # doing this to for my own peace of mind (not an issue with my code)
198
- if type(sparse_method) == str:
199
- logger.warn("Outdated Steerable-Motion workflow detected; attempting to auto-convert indexes input. If you experience an error here, consult Steerable-Motion github, NOT Advanced-ControlNet.")
200
- sparse_method = SparseIndexMethod(get_idx_list_from_str(sparse_method))
201
- self.sparse_method = sparse_method
202
- self.use_motion = use_motion
203
- self.motion_strength = motion_strength
204
- self.motion_scale = motion_scale
205
- self.merged = merged
206
- self.sparse_mask_mult = float(sparse_mask_mult)
207
- self.sparse_hint_mult = float(sparse_hint_mult)
208
- self.sparse_nonhint_mult = float(sparse_nonhint_mult)
209
- self.context_aware = context_aware
210
-
211
- def is_context_aware(self):
212
- return self.context_aware != SparseContextAware.OFF
213
-
214
- @classmethod
215
- def default(cls):
216
- return SparseSettings(sparse_method=SparseSpreadMethod(), use_motion=True)
217
-
218
-
219
- class SparseMethod(ABC):
220
- SPREAD = "spread"
221
- INDEX = "index"
222
- def __init__(self, method: str):
223
- self.method = method
224
-
225
- @abstractmethod
226
- def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
227
- pass
228
-
229
- def get_indexes(self, hint_length: int, full_length: int, sub_idxs: list[int]=None) -> tuple[list[int], list[int]]:
230
- returned_idxs = self._get_indexes(hint_length, full_length)
231
- if sub_idxs is None:
232
- return returned_idxs, None
233
- # need to map full indexes to condhint indexes
234
- index_mapping = {}
235
- for i, value in enumerate(returned_idxs):
236
- index_mapping[value] = i
237
- def get_mapped_idxs(idxs: list[int]):
238
- return [index_mapping[idx] for idx in idxs]
239
- # check if returned_idxs fit within subidxs
240
- fitting_idxs = []
241
- for sub_idx in sub_idxs:
242
- if sub_idx in returned_idxs:
243
- fitting_idxs.append(sub_idx)
244
- # if have any fitting_idxs, deal with it
245
- if len(fitting_idxs) > 0:
246
- return fitting_idxs, get_mapped_idxs(fitting_idxs)
247
-
248
- # since no returned_idxs fit in sub_idxs, need to get the next-closest hint images based on strategy
249
- def get_closest_idx(target_idx: int, idxs: list[int]):
250
- min_idx = -1
251
- min_dist = BIGMAX
252
- for idx in idxs:
253
- new_dist = abs(idx-target_idx)
254
- if new_dist < min_dist:
255
- min_idx = idx
256
- min_dist = new_dist
257
- if min_dist == 1:
258
- return min_idx, min_dist
259
- return min_idx, min_dist
260
- start_closest_idx, start_dist = get_closest_idx(sub_idxs[0], returned_idxs)
261
- end_closest_idx, end_dist = get_closest_idx(sub_idxs[-1], returned_idxs)
262
- # if only one cond hint exists, do special behavior
263
- if hint_length == 1:
264
- # if same distance from start and end,
265
- if start_dist == end_dist:
266
- # find center index of sub_idxs
267
- center_idx = sub_idxs[np.linspace(0, len(sub_idxs)-1, 3, endpoint=True, dtype=int)[1]]
268
- return [center_idx], get_mapped_idxs([start_closest_idx])
269
- # otherwise, return closest
270
- if start_dist < end_dist:
271
- return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
272
- return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
273
- # otherwise, select up to two closest images, or just 1, whichever one applies best
274
- # if same distance from start and end, return two images to use
275
- if start_dist == end_dist:
276
- return [sub_idxs[0], sub_idxs[-1]], get_mapped_idxs([start_closest_idx, end_closest_idx])
277
- # else, use just one
278
- if start_dist < end_dist:
279
- return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
280
- return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
281
-
282
-
283
- class SparseSpreadMethod(SparseMethod):
284
- UNIFORM = "uniform"
285
- STARTING = "starting"
286
- ENDING = "ending"
287
- CENTER = "center"
288
-
289
- LIST = [UNIFORM, STARTING, ENDING, CENTER]
290
-
291
- def __init__(self, spread=UNIFORM):
292
- super().__init__(self.SPREAD)
293
- self.spread = spread
294
-
295
- def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
296
- # if hint_length >= full_length, limit hints to full_length
297
- if hint_length >= full_length:
298
- return list(range(full_length))
299
- # handle special case of 1 hint image
300
- if hint_length == 1:
301
- if self.spread in [self.UNIFORM, self.STARTING]:
302
- return [0]
303
- elif self.spread == self.ENDING:
304
- return [full_length-1]
305
- elif self.spread == self.CENTER:
306
- # return second (of three) values as the center
307
- return [np.linspace(0, full_length-1, 3, endpoint=True, dtype=int)[1]]
308
- else:
309
- raise ValueError(f"Unrecognized spread: {self.spread}")
310
- # otherwise, handle other cases
311
- if self.spread == self.UNIFORM:
312
- return list(np.linspace(0, full_length-1, hint_length, endpoint=True, dtype=int))
313
- elif self.spread == self.STARTING:
314
- # make split 1 larger, remove last element
315
- return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
316
- elif self.spread == self.ENDING:
317
- # make split 1 larger, remove first element
318
- return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[1:]
319
- elif self.spread == self.CENTER:
320
- # if hint length is not 3 greater than full length, do STARTING behavior
321
- if full_length-hint_length < 3:
322
- return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
323
- # otherwise, get linspace of 2 greater than needed, then cut off first and last
324
- return list(np.linspace(0, full_length-1, hint_length+2, endpoint=True, dtype=int))[1:-1]
325
- return ValueError(f"Unrecognized spread: {self.spread}")
326
-
327
-
328
- class SparseIndexMethod(SparseMethod):
329
- def __init__(self, idxs: list[int]):
330
- super().__init__(self.INDEX)
331
- self.idxs = idxs
332
-
333
- def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
334
- orig_hint_length = hint_length
335
- if hint_length > full_length:
336
- hint_length = full_length
337
- # if idxs is less than hint_length, throw error
338
- if len(self.idxs) < hint_length:
339
- err_msg = f"There are not enough indexes ({len(self.idxs)}) provided to fit the usable {hint_length} input images."
340
- if orig_hint_length != hint_length:
341
- err_msg = f"{err_msg} (original input images: {orig_hint_length})"
342
- raise ValueError(err_msg)
343
- # cap idxs to hint_length
344
- idxs = self.idxs[:hint_length]
345
- new_idxs = []
346
- real_idxs = set()
347
- for idx in idxs:
348
- if idx < 0:
349
- real_idx = full_length+idx
350
- if real_idx in real_idxs:
351
- raise ValueError(f"Index '{idx}' maps to '{real_idx}' and is duplicate - indexes in Sparse Index Method must be unique.")
352
- else:
353
- real_idx = idx
354
- if real_idx in real_idxs:
355
- raise ValueError(f"Index '{idx}' is duplicate (or a negative index is equivalent) - indexes in Sparse Index Method must be unique.")
356
- real_idxs.add(real_idx)
357
- new_idxs.append(real_idx)
358
- return new_idxs
359
-
360
-
361
- def get_idx_list_from_str(indexes: str) -> list[int]:
362
- idxs = []
363
- unique_idxs = set()
364
- # get indeces from string
365
- str_idxs = [x.strip() for x in indexes.strip().split(",")]
366
- for str_idx in str_idxs:
367
- try:
368
- idx = int(str_idx)
369
- if idx in unique_idxs:
370
- raise ValueError(f"'{idx}' is duplicated; indexes must be unique.")
371
- idxs.append(idx)
372
- unique_idxs.add(idx)
373
- except ValueError:
374
- raise ValueError(f"'{str_idx}' is not a valid integer index.")
375
- if len(idxs) == 0:
376
- raise ValueError(f"No indexes were listed in Sparse Index Method.")
377
- return idxs
378
-
379
-
380
- #########################################
381
- # motion-related portion of controlnet
382
- class BlockType:
383
- UP = "up"
384
- DOWN = "down"
385
- MID = "mid"
386
-
387
- def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
388
- return get_block_max(mm_state_dict, "down_blocks")
389
-
390
- def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int:
391
- return get_block_max(mm_state_dict, "up_blocks")
392
-
393
- def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int:
394
- # keep track of biggest down_block count in module
395
- biggest_block = -1
396
- for key in mm_state_dict.keys():
397
- if block_name in key:
398
- try:
399
- block_int = key.split(".")[1]
400
- block_num = int(block_int)
401
- if block_num > biggest_block:
402
- biggest_block = block_num
403
- except ValueError:
404
- pass
405
- return biggest_block
406
-
407
- def has_mid_block(mm_state_dict: dict[str, Tensor]):
408
- # check if keys contain mid_block
409
- for key in mm_state_dict.keys():
410
- if key.startswith("mid_block."):
411
- return True
412
- return False
413
-
414
- def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str=None) -> int:
415
- # use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
416
- for key in mm_state_dict.keys():
417
- if key.endswith("pos_encoder.pe"):
418
- return mm_state_dict[key].size(1) # get middle dim
419
- raise ValueError(f"No pos_encoder.pe found in SparseCtrl state_dict - {mm_name} is not a valid SparseCtrl model!")
420
-
421
-
422
- class SparseCtrlMotionWrapper(nn.Module):
423
- def __init__(self, mm_state_dict: dict[str, Tensor], ops=disable_weight_init_clean_groupnorm):
424
- super().__init__()
425
- self.down_blocks: Iterable[MotionModule] = None
426
- self.up_blocks: Iterable[MotionModule] = None
427
- self.mid_block: MotionModule = None
428
- self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, "")
429
- layer_channels = (320, 640, 1280, 1280)
430
- if get_down_block_max(mm_state_dict) > -1:
431
- self.down_blocks = nn.ModuleList([])
432
- for c in layer_channels:
433
- self.down_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops))
434
- if get_up_block_max(mm_state_dict) > -1:
435
- self.up_blocks = nn.ModuleList([])
436
- for c in reversed(layer_channels):
437
- self.up_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops))
438
- if has_mid_block(mm_state_dict):
439
- self.mid_block = MotionModule(1280, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops)
440
-
441
- def inject(self, unet: SparseControlNet):
442
- # inject input (down) blocks
443
- self._inject(unet.input_blocks, self.down_blocks)
444
- # inject mid block, if present
445
- if self.mid_block is not None:
446
- self._inject([unet.middle_block], [self.mid_block])
447
- unet.motion_wrapper = self
448
-
449
- def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
450
- # Rules for injection:
451
- # For each component list in a unet block:
452
- # if SpatialTransformer exists in list, place next block after last occurrence
453
- # elif ResBlock exists in list, place next block after first occurrence
454
- # else don't place block
455
- injection_count = 0
456
- unet_idx = 0
457
- # details about blocks passed in
458
- per_block = len(mm_blocks[0].motion_modules)
459
- injection_goal = len(mm_blocks) * per_block
460
- # only stop injecting when modules exhausted
461
- while injection_count < injection_goal:
462
- # figure out which VanillaTemporalModule from mm to inject
463
- mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
464
- # figure out layout of unet block components
465
- st_idx = -1 # SpatialTransformer index
466
- res_idx = -1 # first ResBlock index
467
- # first, figure out indeces of relevant blocks
468
- for idx, component in enumerate(unet_blocks[unet_idx]):
469
- if type(component) == SpatialTransformer:
470
- st_idx = idx
471
- elif type(component).__name__ == "ResBlock" and res_idx < 0:
472
- res_idx = idx
473
- # if SpatialTransformer exists, inject right after
474
- if st_idx >= 0:
475
- unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
476
- injection_count += 1
477
- # otherwise, if only ResBlock exists, inject right after
478
- elif res_idx >= 0:
479
- unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
480
- injection_count += 1
481
- # increment unet_idx
482
- unet_idx += 1
483
-
484
- def eject(self, unet: SparseControlNet):
485
- # remove from input blocks (downblocks)
486
- self._eject(unet.input_blocks)
487
- # remove from middle block (encapsulate in list to make compatible)
488
- self._eject([unet.middle_block])
489
- del unet.motion_wrapper
490
- unet.motion_wrapper = None
491
-
492
- def _eject(self, unet_blocks: nn.ModuleList):
493
- # eject all VanillaTemporalModule objects from all blocks
494
- for block in unet_blocks:
495
- idx_to_pop = []
496
- for idx, component in enumerate(block):
497
- if type(component) == VanillaTemporalModule:
498
- idx_to_pop.append(idx)
499
- # pop in backwards order, as to not disturb what the indeces refer to
500
- for idx in sorted(idx_to_pop, reverse=True):
501
- block.pop(idx)
502
-
503
- def set_video_length(self, video_length: int, full_length: int):
504
- self.AD_video_length = video_length
505
- if self.down_blocks is not None:
506
- for block in self.down_blocks:
507
- block.set_video_length(video_length, full_length)
508
- if self.up_blocks is not None:
509
- for block in self.up_blocks:
510
- block.set_video_length(video_length, full_length)
511
- if self.mid_block is not None:
512
- self.mid_block.set_video_length(video_length, full_length)
513
-
514
- def set_scale_multiplier(self, multiplier: Union[float, None]):
515
- if self.down_blocks is not None:
516
- for block in self.down_blocks:
517
- block.set_scale_multiplier(multiplier)
518
- if self.up_blocks is not None:
519
- for block in self.up_blocks:
520
- block.set_scale_multiplier(multiplier)
521
- if self.mid_block is not None:
522
- self.mid_block.set_scale_multiplier(multiplier)
523
-
524
- def set_strength(self, strength: float):
525
- if self.down_blocks is not None:
526
- for block in self.down_blocks:
527
- block.set_strength(strength)
528
- if self.up_blocks is not None:
529
- for block in self.up_blocks:
530
- block.set_strength(strength)
531
- if self.mid_block is not None:
532
- self.mid_block.set_strength(strength)
533
-
534
- def reset_temp_vars(self):
535
- if self.down_blocks is not None:
536
- for block in self.down_blocks:
537
- block.reset_temp_vars()
538
- if self.up_blocks is not None:
539
- for block in self.up_blocks:
540
- block.reset_temp_vars()
541
- if self.mid_block is not None:
542
- self.mid_block.reset_temp_vars()
543
-
544
- def reset_scale_multiplier(self):
545
- self.set_scale_multiplier(None)
546
-
547
- def reset(self):
548
- self.reset_scale_multiplier()
549
- self.reset_temp_vars()
550
-
551
-
552
- class MotionModule(nn.Module):
553
- def __init__(self, in_channels, temporal_position_encoding_max_len=24, block_type: str=BlockType.DOWN, ops=disable_weight_init_clean_groupnorm):
554
- super().__init__()
555
- if block_type == BlockType.MID:
556
- # mid blocks contain only a single VanillaTemporalModule
557
- self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)])
558
- else:
559
- # down blocks contain two VanillaTemporalModules
560
- self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList(
561
- [
562
- get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops),
563
- get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)
564
- ]
565
- )
566
- # up blocks contain one additional VanillaTemporalModule
567
- if block_type == BlockType.UP:
568
- self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops))
569
-
570
- def set_video_length(self, video_length: int, full_length: int):
571
- for motion_module in self.motion_modules:
572
- motion_module.set_video_length(video_length, full_length)
573
-
574
- def set_scale_multiplier(self, multiplier: Union[float, None]):
575
- for motion_module in self.motion_modules:
576
- motion_module.set_scale_multiplier(multiplier)
577
-
578
- def set_masks(self, masks: Tensor, min_val: float, max_val: float):
579
- for motion_module in self.motion_modules:
580
- motion_module.set_masks(masks, min_val, max_val)
581
-
582
- def set_sub_idxs(self, sub_idxs: list[int]):
583
- for motion_module in self.motion_modules:
584
- motion_module.set_sub_idxs(sub_idxs)
585
-
586
- def set_strength(self, strength: float):
587
- for motion_module in self.motion_modules:
588
- motion_module.set_strength(strength)
589
-
590
- def reset_temp_vars(self):
591
- for motion_module in self.motion_modules:
592
- motion_module.reset_temp_vars()
593
-
594
-
595
- def get_motion_module(in_channels, temporal_position_encoding_max_len, ops=disable_weight_init_clean_groupnorm):
596
- # unlike normal AD, there is only one attention block expected in SparseCtrl models
597
- return VanillaTemporalModule(in_channels=in_channels, attention_block_types=("Temporal_Self",), temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops)
598
-
599
-
600
- class VanillaTemporalModule(nn.Module):
601
- def __init__(
602
- self,
603
- in_channels,
604
- num_attention_heads=8,
605
- num_transformer_block=1,
606
- attention_block_types=("Temporal_Self", "Temporal_Self"),
607
- cross_frame_attention_mode=None,
608
- temporal_position_encoding=True,
609
- temporal_position_encoding_max_len=24,
610
- temporal_attention_dim_div=1,
611
- zero_initialize=True,
612
- ops=disable_weight_init_clean_groupnorm,
613
- ):
614
- super().__init__()
615
- self.strength = 1.0
616
- self.temporal_transformer = TemporalTransformer3DModel(
617
- in_channels=in_channels,
618
- num_attention_heads=num_attention_heads,
619
- attention_head_dim=in_channels
620
- // num_attention_heads
621
- // temporal_attention_dim_div,
622
- num_layers=num_transformer_block,
623
- attention_block_types=attention_block_types,
624
- cross_frame_attention_mode=cross_frame_attention_mode,
625
- temporal_position_encoding=temporal_position_encoding,
626
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
627
- ops=ops,
628
- )
629
-
630
- if zero_initialize:
631
- self.temporal_transformer.proj_out = zero_module(
632
- self.temporal_transformer.proj_out
633
- )
634
-
635
- def set_video_length(self, video_length: int, full_length: int):
636
- self.temporal_transformer.set_video_length(video_length, full_length)
637
-
638
- def set_scale_multiplier(self, multiplier: Union[float, None]):
639
- self.temporal_transformer.set_scale_multiplier(multiplier)
640
-
641
- def set_masks(self, masks: Tensor, min_val: float, max_val: float):
642
- self.temporal_transformer.set_masks(masks, min_val, max_val)
643
-
644
- def set_sub_idxs(self, sub_idxs: list[int]):
645
- self.temporal_transformer.set_sub_idxs(sub_idxs)
646
-
647
- def set_strength(self, strength: float):
648
- self.strength = strength
649
-
650
- def reset_temp_vars(self):
651
- self.set_strength(1.0)
652
- self.temporal_transformer.reset_temp_vars()
653
-
654
- def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None):
655
- if math.isclose(self.strength, 1.0):
656
- return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)
657
- elif math.isclose(self.strength, 0.0):
658
- return input_tensor
659
- # elif self.strength > 1.0:
660
- # return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength
661
- else:
662
- return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength + input_tensor*(1.0-self.strength)
663
-
664
-
665
- class TemporalTransformer3DModel(nn.Module):
666
- def __init__(
667
- self,
668
- in_channels,
669
- num_attention_heads,
670
- attention_head_dim,
671
- num_layers,
672
- attention_block_types=(
673
- "Temporal_Self",
674
- "Temporal_Self",
675
- ),
676
- dropout=0.0,
677
- norm_num_groups=32,
678
- cross_attention_dim=768,
679
- activation_fn="geglu",
680
- attention_bias=False,
681
- upcast_attention=False,
682
- cross_frame_attention_mode=None,
683
- temporal_position_encoding=False,
684
- temporal_position_encoding_max_len=24,
685
- ops=disable_weight_init_clean_groupnorm,
686
- ):
687
- super().__init__()
688
- self.video_length = 16
689
- self.full_length = 16
690
- self.scale_min = 1.0
691
- self.scale_max = 1.0
692
- self.raw_scale_mask: Union[Tensor, None] = None
693
- self.temp_scale_mask: Union[Tensor, None] = None
694
- self.sub_idxs: Union[list[int], None] = None
695
- self.prev_hidden_states_batch = 0
696
-
697
-
698
- inner_dim = num_attention_heads * attention_head_dim
699
-
700
- self.norm = ops.GroupNorm(
701
- num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
702
- )
703
- self.proj_in = ops.Linear(in_channels, inner_dim)
704
-
705
- self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
706
- [
707
- TemporalTransformerBlock(
708
- dim=inner_dim,
709
- num_attention_heads=num_attention_heads,
710
- attention_head_dim=attention_head_dim,
711
- attention_block_types=attention_block_types,
712
- dropout=dropout,
713
- norm_num_groups=norm_num_groups,
714
- cross_attention_dim=cross_attention_dim,
715
- activation_fn=activation_fn,
716
- attention_bias=attention_bias,
717
- upcast_attention=upcast_attention,
718
- cross_frame_attention_mode=cross_frame_attention_mode,
719
- temporal_position_encoding=temporal_position_encoding,
720
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
721
- ops=ops,
722
- )
723
- for d in range(num_layers)
724
- ]
725
- )
726
- self.proj_out = ops.Linear(inner_dim, in_channels)
727
-
728
- def set_video_length(self, video_length: int, full_length: int):
729
- self.video_length = video_length
730
- self.full_length = full_length
731
-
732
- def set_scale_multiplier(self, multiplier: Union[float, None]):
733
- for block in self.transformer_blocks:
734
- block.set_scale_multiplier(multiplier)
735
-
736
- def set_masks(self, masks: Tensor, min_val: float, max_val: float):
737
- self.scale_min = min_val
738
- self.scale_max = max_val
739
- self.raw_scale_mask = masks
740
-
741
- def set_sub_idxs(self, sub_idxs: list[int]):
742
- self.sub_idxs = sub_idxs
743
- for block in self.transformer_blocks:
744
- block.set_sub_idxs(sub_idxs)
745
-
746
- def reset_temp_vars(self):
747
- del self.temp_scale_mask
748
- self.temp_scale_mask = None
749
- self.prev_hidden_states_batch = 0
750
- for block in self.transformer_blocks:
751
- block.reset_temp_vars()
752
-
753
- def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]:
754
- # if no raw mask, return None
755
- if self.raw_scale_mask is None:
756
- return None
757
- shape = hidden_states.shape
758
- batch, channel, height, width = shape
759
- # if temp mask already calculated, return it
760
- if self.temp_scale_mask != None:
761
- # check if hidden_states batch matches
762
- if batch == self.prev_hidden_states_batch:
763
- if self.sub_idxs is not None:
764
- return self.temp_scale_mask[:, self.sub_idxs, :]
765
- return self.temp_scale_mask
766
- # if does not match, reset cached temp_scale_mask and recalculate it
767
- del self.temp_scale_mask
768
- self.temp_scale_mask = None
769
- # otherwise, calculate temp mask
770
- self.prev_hidden_states_batch = batch
771
- mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width))
772
- mask = extend_to_batch_size(mask, self.full_length)
773
- # if mask not the same amount length as full length, make it match
774
- if self.full_length != mask.shape[0]:
775
- mask = broadcast_image_to_extend(mask, self.full_length, 1)
776
- # reshape mask to attention K shape (h*w, latent_count, 1)
777
- batch, channel, height, width = mask.shape
778
- # first, perform same operations as on hidden_states,
779
- # turning (b, c, h, w) -> (b, h*w, c)
780
- mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
781
- # then, make it the same shape as attention's k, (h*w, b, c)
782
- mask = mask.permute(1, 0, 2)
783
- # make masks match the expected length of h*w
784
- batched_number = shape[0] // self.video_length
785
- if batched_number > 1:
786
- mask = torch.cat([mask] * batched_number, dim=0)
787
- # cache mask and set to proper device
788
- self.temp_scale_mask = mask
789
- # move temp_scale_mask to proper dtype + device
790
- self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device)
791
- # return subset of masks, if needed
792
- if self.sub_idxs is not None:
793
- return self.temp_scale_mask[:, self.sub_idxs, :]
794
- return self.temp_scale_mask
795
-
796
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
797
- batch, channel, height, width = hidden_states.shape
798
- residual = hidden_states
799
- scale_mask = self.get_scale_mask(hidden_states)
800
- # add some casts for fp8 purposes - does not affect speed otherwise
801
- hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
802
- inner_dim = hidden_states.shape[1]
803
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
804
- batch, height * width, inner_dim
805
- )
806
- hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)
807
-
808
- # Transformer Blocks
809
- for block in self.transformer_blocks:
810
- hidden_states = block(
811
- hidden_states,
812
- encoder_hidden_states=encoder_hidden_states,
813
- attention_mask=attention_mask,
814
- video_length=self.video_length,
815
- scale_mask=scale_mask
816
- )
817
-
818
- # output
819
- hidden_states = self.proj_out(hidden_states)
820
- hidden_states = (
821
- hidden_states.reshape(batch, height, width, inner_dim)
822
- .permute(0, 3, 1, 2)
823
- .contiguous()
824
- )
825
-
826
- output = hidden_states + residual
827
-
828
- return output
829
-
830
-
831
- class TemporalTransformerBlock(nn.Module):
832
- def __init__(
833
- self,
834
- dim,
835
- num_attention_heads,
836
- attention_head_dim,
837
- attention_block_types=(
838
- "Temporal_Self",
839
- "Temporal_Self",
840
- ),
841
- dropout=0.0,
842
- norm_num_groups=32,
843
- cross_attention_dim=768,
844
- activation_fn="geglu",
845
- attention_bias=False,
846
- upcast_attention=False,
847
- cross_frame_attention_mode=None,
848
- temporal_position_encoding=False,
849
- temporal_position_encoding_max_len=24,
850
- ops=disable_weight_init_clean_groupnorm,
851
- ):
852
- super().__init__()
853
-
854
- attention_blocks = []
855
- norms = []
856
-
857
- for block_name in attention_block_types:
858
- attention_blocks.append(
859
- VersatileAttention(
860
- attention_mode=block_name.split("_")[0],
861
- context_dim=cross_attention_dim # called context_dim for ComfyUI impl
862
- if block_name.endswith("_Cross")
863
- else None,
864
- query_dim=dim,
865
- heads=num_attention_heads,
866
- dim_head=attention_head_dim,
867
- dropout=dropout,
868
- #bias=attention_bias, # remove for Comfy CrossAttention
869
- #upcast_attention=upcast_attention, # remove for Comfy CrossAttention
870
- cross_frame_attention_mode=cross_frame_attention_mode,
871
- temporal_position_encoding=temporal_position_encoding,
872
- temporal_position_encoding_max_len=temporal_position_encoding_max_len,
873
- ops=ops,
874
- )
875
- )
876
- norms.append(ops.LayerNorm(dim))
877
-
878
- self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
879
- self.norms = nn.ModuleList(norms)
880
-
881
- self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
882
- self.ff_norm = ops.LayerNorm(dim)
883
-
884
- def set_scale_multiplier(self, multiplier: Union[float, None]):
885
- for block in self.attention_blocks:
886
- block.set_scale_multiplier(multiplier)
887
-
888
- def set_sub_idxs(self, sub_idxs: list[int]):
889
- for block in self.attention_blocks:
890
- block.set_sub_idxs(sub_idxs)
891
-
892
- def reset_temp_vars(self):
893
- for block in self.attention_blocks:
894
- block.reset_temp_vars()
895
-
896
- def forward(
897
- self,
898
- hidden_states,
899
- encoder_hidden_states=None,
900
- attention_mask=None,
901
- video_length=None,
902
- scale_mask=None
903
- ):
904
- for attention_block, norm in zip(self.attention_blocks, self.norms):
905
- norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
906
- hidden_states = (
907
- attention_block(
908
- norm_hidden_states,
909
- encoder_hidden_states=encoder_hidden_states
910
- if attention_block.is_cross_attention
911
- else None,
912
- attention_mask=attention_mask,
913
- video_length=video_length,
914
- scale_mask=scale_mask
915
- )
916
- + hidden_states
917
- )
918
-
919
- hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
920
-
921
- output = hidden_states
922
- return output
923
-
924
-
925
- class PositionalEncoding(nn.Module):
926
- def __init__(self, d_model, dropout=0.0, max_len=24):
927
- super().__init__()
928
- self.dropout = nn.Dropout(p=dropout)
929
- position = torch.arange(max_len).unsqueeze(1)
930
- div_term = torch.exp(
931
- torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
932
- )
933
- pe = torch.zeros(1, max_len, d_model)
934
- pe[0, :, 0::2] = torch.sin(position * div_term)
935
- pe[0, :, 1::2] = torch.cos(position * div_term)
936
- self.register_buffer("pe", pe)
937
- self.sub_idxs = None
938
-
939
- def set_sub_idxs(self, sub_idxs: list[int]):
940
- self.sub_idxs = sub_idxs
941
-
942
- def forward(self, x):
943
- #if self.sub_idxs is not None:
944
- # x = x + self.pe[:, self.sub_idxs]
945
- #else:
946
- x = x + self.pe[:, : x.size(1)]
947
- return self.dropout(x)
948
-
949
-
950
- class CrossAttentionMMSparse(nn.Module):
951
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None,
952
- operations=disable_weight_init_clean_groupnorm):
953
- super().__init__()
954
- inner_dim = dim_head * heads
955
- context_dim = default(context_dim, query_dim)
956
-
957
- self.actual_attention = optimized_attention_mm
958
- self.heads = heads
959
- self.dim_head = dim_head
960
- self.scale = None
961
-
962
- self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
963
- self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
964
- self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
965
-
966
- self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
967
-
968
- def reset_attention_type(self):
969
- self.actual_attention = optimized_attention_mm
970
-
971
- def forward(self, x, context=None, value=None, mask=None, scale_mask=None):
972
- q = self.to_q(x)
973
- context = default(context, x)
974
- k: Tensor = self.to_k(context)
975
- if value is not None:
976
- v = self.to_v(value)
977
- del value
978
- else:
979
- v = self.to_v(context)
980
-
981
- # apply custom scale by multiplying k by scale factor
982
- if self.scale is not None:
983
- k *= self.scale
984
-
985
- # apply scale mask, if present
986
- if scale_mask is not None:
987
- k *= scale_mask
988
-
989
- try:
990
- out = self.actual_attention(q, k, v, self.heads, mask)
991
- except RuntimeError as e:
992
- if str(e).startswith("CUDA error: invalid configuration argument"):
993
- self.actual_attention = fallback_attention_mm
994
- out = self.actual_attention(q, k, v, self.heads, mask)
995
- else:
996
- raise
997
- return self.to_out(out)
998
-
999
-
1000
- class VersatileAttention(CrossAttentionMMSparse):
1001
- def __init__(
1002
- self,
1003
- attention_mode=None,
1004
- cross_frame_attention_mode=None,
1005
- temporal_position_encoding=False,
1006
- temporal_position_encoding_max_len=24,
1007
- ops=disable_weight_init_clean_groupnorm,
1008
- *args,
1009
- **kwargs,
1010
- ):
1011
- super().__init__(operations=ops, *args, **kwargs)
1012
- assert attention_mode == "Temporal"
1013
-
1014
- self.attention_mode = attention_mode
1015
- self.is_cross_attention = kwargs["context_dim"] is not None
1016
-
1017
- self.pos_encoder = (
1018
- PositionalEncoding(
1019
- kwargs["query_dim"],
1020
- dropout=0.0,
1021
- max_len=temporal_position_encoding_max_len,
1022
- )
1023
- if (temporal_position_encoding and attention_mode == "Temporal")
1024
- else None
1025
- )
1026
-
1027
- def extra_repr(self):
1028
- return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
1029
-
1030
- def set_scale_multiplier(self, multiplier: Union[float, None]):
1031
- if multiplier is None or math.isclose(multiplier, 1.0):
1032
- self.scale = None
1033
- else:
1034
- self.scale = multiplier
1035
-
1036
- def set_sub_idxs(self, sub_idxs: list[int]):
1037
- if self.pos_encoder != None:
1038
- self.pos_encoder.set_sub_idxs(sub_idxs)
1039
-
1040
- def reset_temp_vars(self):
1041
- self.reset_attention_type()
1042
-
1043
- def forward(
1044
- self,
1045
- hidden_states: Tensor,
1046
- encoder_hidden_states=None,
1047
- attention_mask=None,
1048
- video_length=None,
1049
- scale_mask=None,
1050
- ):
1051
- if self.attention_mode != "Temporal":
1052
- raise NotImplementedError
1053
-
1054
- d = hidden_states.shape[1]
1055
- hidden_states = rearrange(
1056
- hidden_states, "(b f) d c -> (b d) f c", f=video_length
1057
- )
1058
-
1059
- if self.pos_encoder is not None:
1060
- hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype)
1061
-
1062
- encoder_hidden_states = (
1063
- repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
1064
- if encoder_hidden_states is not None
1065
- else encoder_hidden_states
1066
- )
1067
-
1068
- hidden_states = super().forward(
1069
- hidden_states,
1070
- encoder_hidden_states,
1071
- value=None,
1072
- mask=attention_mask,
1073
- scale_mask=scale_mask,
1074
- )
1075
-
1076
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
1077
-
1078
- return hidden_states
 
1
+ #taken from: https://github.com/lllyasviel/ControlNet
2
+ #and modified
3
+ #and then taken from comfy/cldm/cldm.py and modified again
4
+
5
+ from abc import ABC, abstractmethod
6
+ import copy
7
+ import math
8
+ import numpy as np
9
+ from typing import Iterable, Union
10
+ import torch
11
+ import torch as th
12
+ import torch.nn as nn
13
+ from torch import Tensor
14
+ from einops import rearrange, repeat
15
+
16
+ from comfy.ldm.modules.diffusionmodules.util import (
17
+ zero_module,
18
+ timestep_embedding,
19
+ )
20
+
21
+ from comfy.cli_args import args
22
+ from comfy.cldm.cldm import ControlNet as ControlNetCLDM
23
+ from comfy.ldm.modules.attention import SpatialTransformer
24
+ from comfy.ldm.modules.attention import attention_basic, attention_pytorch, attention_split, attention_sub_quad, default
25
+ from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
26
+ from comfy.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential
27
+ from comfy.model_patcher import ModelPatcher
28
+ import comfy.ops
29
+ import comfy.model_management
30
+ import comfy.utils
31
+
32
+ from .logger import logger
33
+ from .utils import (BIGMAX, AbstractPreprocWrapper, disable_weight_init_clean_groupnorm,
34
+ prepare_mask_batch, broadcast_image_to_extend, extend_to_batch_size)
35
+
36
+
37
+ # until xformers bug is fixed, do not use xformers for VersatileAttention! TODO: change this when fix is out
38
+ # logic for choosing optimized_attention method taken from comfy/ldm/modules/attention.py
39
+ # a fallback_attention_mm is selected to avoid CUDA configuration limitation with pytorch's scaled_dot_product
40
+ optimized_attention_mm = attention_basic
41
+ fallback_attention_mm = attention_basic
42
+ if comfy.model_management.xformers_enabled():
43
+ pass
44
+ #optimized_attention_mm = attention_xformers
45
+ if comfy.model_management.pytorch_attention_enabled():
46
+ optimized_attention_mm = attention_pytorch
47
+ if args.use_split_cross_attention:
48
+ fallback_attention_mm = attention_split
49
+ else:
50
+ fallback_attention_mm = attention_sub_quad
51
+ else:
52
+ if args.use_split_cross_attention:
53
+ optimized_attention_mm = attention_split
54
+ else:
55
+ optimized_attention_mm = attention_sub_quad
56
+
57
+
58
+ class SparseConst:
59
+ HINT_MULT = "sparse_hint_mult"
60
+ NONHINT_MULT = "sparse_nonhint_mult"
61
+ MASK_MULT = "sparse_mask_mult"
62
+
63
+
64
+ class SparseControlNet(ControlNetCLDM):
65
+ def __init__(self, *args,**kwargs):
66
+ super().__init__(*args, **kwargs)
67
+ hint_channels = kwargs.get("hint_channels")
68
+ operations: disable_weight_init_clean_groupnorm = kwargs.get("operations", disable_weight_init_clean_groupnorm)
69
+ device = kwargs.get("device", None)
70
+ self.use_simplified_conditioning_embedding = kwargs.get("use_simplified_conditioning_embedding", False)
71
+ if self.use_simplified_conditioning_embedding:
72
+ self.input_hint_block = TimestepEmbedSequential(
73
+ zero_module(operations.conv_nd(self.dims, hint_channels, self.model_channels, 3, padding=1, dtype=self.dtype, device=device)),
74
+ )
75
+ self.motion_wrapper: SparseCtrlMotionWrapper = None
76
+
77
+ def set_actual_length(self, actual_length: int, full_length: int):
78
+ if self.motion_wrapper is not None:
79
+ self.motion_wrapper.set_video_length(video_length=actual_length, full_length=full_length)
80
+
81
+ def forward(self, x: Tensor, hint: Tensor, timesteps, context, y=None, **kwargs):
82
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
83
+ emb = self.time_embed(t_emb)
84
+
85
+ # SparseCtrl sets noisy input to zeros
86
+ x = torch.zeros_like(x)
87
+ guided_hint = self.input_hint_block(hint, emb, context)
88
+
89
+ out_output = []
90
+ out_middle = []
91
+
92
+ hs = []
93
+ if self.num_classes is not None:
94
+ assert y.shape[0] == x.shape[0]
95
+ emb = emb + self.label_emb(y)
96
+
97
+ h = x
98
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
99
+ if guided_hint is not None:
100
+ h = module(h, emb, context)
101
+ h += guided_hint
102
+ guided_hint = None
103
+ else:
104
+ h = module(h, emb, context)
105
+ out_output.append(zero_conv(h, emb, context))
106
+
107
+ h = self.middle_block(h, emb, context)
108
+ out_middle.append(self.middle_block_out(h, emb, context))
109
+
110
+ return {"middle": out_middle, "output": out_output}
111
+
112
+
113
+ class SparseModelPatcher(ModelPatcher):
114
+ def __init__(self, *args, **kwargs):
115
+ self.model: SparseControlNet
116
+ super().__init__(*args, **kwargs)
117
+
118
+ def load(self, device_to=None, lowvram_model_memory=0, *args, **kwargs):
119
+ to_return = super().load(device_to=device_to, lowvram_model_memory=lowvram_model_memory, *args, **kwargs)
120
+ if lowvram_model_memory > 0:
121
+ self._patch_lowvram_extras(device_to=device_to)
122
+ self._handle_float8_pe_tensors()
123
+ return to_return
124
+
125
+ def _patch_lowvram_extras(self, device_to=None):
126
+ if self.model.motion_wrapper is not None:
127
+ # figure out the tensors (likely pe's) that should be cast to device besides just the named_modules
128
+ remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
129
+ named_modules = []
130
+ for n, _ in self.model.motion_wrapper.named_modules():
131
+ named_modules.append(n)
132
+ named_modules.append(f"{n}.weight")
133
+ named_modules.append(f"{n}.bias")
134
+ for name in named_modules:
135
+ if name in remaining_tensors:
136
+ remaining_tensors.remove(name)
137
+
138
+ for key in remaining_tensors:
139
+ self.patch_weight_to_device(key, device_to)
140
+ if device_to is not None:
141
+ comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).to(device_to))
142
+
143
+ def _handle_float8_pe_tensors(self):
144
+ if self.model.motion_wrapper is not None:
145
+ remaining_tensors = list(self.model.motion_wrapper.state_dict().keys())
146
+ pe_tensors = [x for x in remaining_tensors if '.pe' in x]
147
+ is_first = True
148
+ for key in pe_tensors:
149
+ if is_first:
150
+ is_first = False
151
+ if comfy.utils.get_attr(self.model.motion_wrapper, key).dtype not in [torch.float8_e5m2, torch.float8_e4m3fn]:
152
+ break
153
+ comfy.utils.set_attr(self.model.motion_wrapper, key, comfy.utils.get_attr(self.model.motion_wrapper, key).half())
154
+
155
+ # NOTE: no longer called by ComfyUI, but here for backwards compatibility
156
+ def patch_model_lowvram(self, device_to=None, *args, **kwargs):
157
+ patched_model = super().patch_model_lowvram(device_to, *args, **kwargs)
158
+ self._patch_lowvram_extras(device_to=device_to)
159
+ return patched_model
160
+
161
+ def clone(self):
162
+ # normal ModelPatcher clone actions
163
+ n = SparseModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
164
+ n.patches = {}
165
+ for k in self.patches:
166
+ n.patches[k] = self.patches[k][:]
167
+ if hasattr(n, "patches_uuid"):
168
+ self.patches_uuid = n.patches_uuid
169
+
170
+ n.object_patches = self.object_patches.copy()
171
+ n.model_options = copy.deepcopy(self.model_options)
172
+ if hasattr(n, "model_keys"):
173
+ n.model_keys = self.model_keys
174
+ if hasattr(n, "backup"):
175
+ self.backup = n.backup
176
+ if hasattr(n, "object_patches_backup"):
177
+ self.object_patches_backup = n.object_patches_backup
178
+
179
+
180
+ class PreprocSparseRGBWrapper(AbstractPreprocWrapper):
181
+ error_msg = error_msg = "Invalid use of RGB SparseCtrl output. The output of RGB SparseCtrl preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply ControlNet node (advanced or otherwise). It cannot be used for anything else that accepts IMAGE input."
182
+ def __init__(self, condhint: Tensor):
183
+ super().__init__(condhint)
184
+
185
+
186
+ class SparseContextAware:
187
+ NEAREST_HINT = "nearest_hint"
188
+ OFF = "off"
189
+
190
+ LIST = [NEAREST_HINT, OFF]
191
+
192
+
193
+ class SparseSettings:
194
+ def __init__(self, sparse_method: 'SparseMethod', use_motion: bool=True, motion_strength=1.0, motion_scale=1.0, merged=False,
195
+ sparse_mask_mult=1.0, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, context_aware=SparseContextAware.NEAREST_HINT):
196
+ # account for Steerable-Motion workflow incompatibility;
197
+ # doing this to for my own peace of mind (not an issue with my code)
198
+ if type(sparse_method) == str:
199
+ logger.warn("Outdated Steerable-Motion workflow detected; attempting to auto-convert indexes input. If you experience an error here, consult Steerable-Motion github, NOT Advanced-ControlNet.")
200
+ sparse_method = SparseIndexMethod(get_idx_list_from_str(sparse_method))
201
+ self.sparse_method = sparse_method
202
+ self.use_motion = use_motion
203
+ self.motion_strength = motion_strength
204
+ self.motion_scale = motion_scale
205
+ self.merged = merged
206
+ self.sparse_mask_mult = float(sparse_mask_mult)
207
+ self.sparse_hint_mult = float(sparse_hint_mult)
208
+ self.sparse_nonhint_mult = float(sparse_nonhint_mult)
209
+ self.context_aware = context_aware
210
+
211
+ def is_context_aware(self):
212
+ return self.context_aware != SparseContextAware.OFF
213
+
214
+ @classmethod
215
+ def default(cls):
216
+ return SparseSettings(sparse_method=SparseSpreadMethod(), use_motion=True)
217
+
218
+
219
+ class SparseMethod(ABC):
220
+ SPREAD = "spread"
221
+ INDEX = "index"
222
+ def __init__(self, method: str):
223
+ self.method = method
224
+
225
+ @abstractmethod
226
+ def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
227
+ pass
228
+
229
+ def get_indexes(self, hint_length: int, full_length: int, sub_idxs: list[int]=None) -> tuple[list[int], list[int]]:
230
+ returned_idxs = self._get_indexes(hint_length, full_length)
231
+ if sub_idxs is None:
232
+ return returned_idxs, None
233
+ # need to map full indexes to condhint indexes
234
+ index_mapping = {}
235
+ for i, value in enumerate(returned_idxs):
236
+ index_mapping[value] = i
237
+ def get_mapped_idxs(idxs: list[int]):
238
+ return [index_mapping[idx] for idx in idxs]
239
+ # check if returned_idxs fit within subidxs
240
+ fitting_idxs = []
241
+ for sub_idx in sub_idxs:
242
+ if sub_idx in returned_idxs:
243
+ fitting_idxs.append(sub_idx)
244
+ # if have any fitting_idxs, deal with it
245
+ if len(fitting_idxs) > 0:
246
+ return fitting_idxs, get_mapped_idxs(fitting_idxs)
247
+
248
+ # since no returned_idxs fit in sub_idxs, need to get the next-closest hint images based on strategy
249
+ def get_closest_idx(target_idx: int, idxs: list[int]):
250
+ min_idx = -1
251
+ min_dist = BIGMAX
252
+ for idx in idxs:
253
+ new_dist = abs(idx-target_idx)
254
+ if new_dist < min_dist:
255
+ min_idx = idx
256
+ min_dist = new_dist
257
+ if min_dist == 1:
258
+ return min_idx, min_dist
259
+ return min_idx, min_dist
260
+ start_closest_idx, start_dist = get_closest_idx(sub_idxs[0], returned_idxs)
261
+ end_closest_idx, end_dist = get_closest_idx(sub_idxs[-1], returned_idxs)
262
+ # if only one cond hint exists, do special behavior
263
+ if hint_length == 1:
264
+ # if same distance from start and end,
265
+ if start_dist == end_dist:
266
+ # find center index of sub_idxs
267
+ center_idx = sub_idxs[np.linspace(0, len(sub_idxs)-1, 3, endpoint=True, dtype=int)[1]]
268
+ return [center_idx], get_mapped_idxs([start_closest_idx])
269
+ # otherwise, return closest
270
+ if start_dist < end_dist:
271
+ return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
272
+ return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
273
+ # otherwise, select up to two closest images, or just 1, whichever one applies best
274
+ # if same distance from start and end, return two images to use
275
+ if start_dist == end_dist:
276
+ return [sub_idxs[0], sub_idxs[-1]], get_mapped_idxs([start_closest_idx, end_closest_idx])
277
+ # else, use just one
278
+ if start_dist < end_dist:
279
+ return [sub_idxs[0]], get_mapped_idxs([start_closest_idx])
280
+ return [sub_idxs[-1]], get_mapped_idxs([end_closest_idx])
281
+
282
+
283
+ class SparseSpreadMethod(SparseMethod):
284
+ UNIFORM = "uniform"
285
+ STARTING = "starting"
286
+ ENDING = "ending"
287
+ CENTER = "center"
288
+
289
+ LIST = [UNIFORM, STARTING, ENDING, CENTER]
290
+
291
+ def __init__(self, spread=UNIFORM):
292
+ super().__init__(self.SPREAD)
293
+ self.spread = spread
294
+
295
+ def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
296
+ # if hint_length >= full_length, limit hints to full_length
297
+ if hint_length >= full_length:
298
+ return list(range(full_length))
299
+ # handle special case of 1 hint image
300
+ if hint_length == 1:
301
+ if self.spread in [self.UNIFORM, self.STARTING]:
302
+ return [0]
303
+ elif self.spread == self.ENDING:
304
+ return [full_length-1]
305
+ elif self.spread == self.CENTER:
306
+ # return second (of three) values as the center
307
+ return [np.linspace(0, full_length-1, 3, endpoint=True, dtype=int)[1]]
308
+ else:
309
+ raise ValueError(f"Unrecognized spread: {self.spread}")
310
+ # otherwise, handle other cases
311
+ if self.spread == self.UNIFORM:
312
+ return list(np.linspace(0, full_length-1, hint_length, endpoint=True, dtype=int))
313
+ elif self.spread == self.STARTING:
314
+ # make split 1 larger, remove last element
315
+ return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
316
+ elif self.spread == self.ENDING:
317
+ # make split 1 larger, remove first element
318
+ return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[1:]
319
+ elif self.spread == self.CENTER:
320
+ # if hint length is not 3 greater than full length, do STARTING behavior
321
+ if full_length-hint_length < 3:
322
+ return list(np.linspace(0, full_length-1, hint_length+1, endpoint=True, dtype=int))[:-1]
323
+ # otherwise, get linspace of 2 greater than needed, then cut off first and last
324
+ return list(np.linspace(0, full_length-1, hint_length+2, endpoint=True, dtype=int))[1:-1]
325
+ return ValueError(f"Unrecognized spread: {self.spread}")
326
+
327
+
328
+ class SparseIndexMethod(SparseMethod):
329
+ def __init__(self, idxs: list[int]):
330
+ super().__init__(self.INDEX)
331
+ self.idxs = idxs
332
+
333
+ def _get_indexes(self, hint_length: int, full_length: int) -> list[int]:
334
+ orig_hint_length = hint_length
335
+ if hint_length > full_length:
336
+ hint_length = full_length
337
+ # if idxs is less than hint_length, throw error
338
+ if len(self.idxs) < hint_length:
339
+ err_msg = f"There are not enough indexes ({len(self.idxs)}) provided to fit the usable {hint_length} input images."
340
+ if orig_hint_length != hint_length:
341
+ err_msg = f"{err_msg} (original input images: {orig_hint_length})"
342
+ raise ValueError(err_msg)
343
+ # cap idxs to hint_length
344
+ idxs = self.idxs[:hint_length]
345
+ new_idxs = []
346
+ real_idxs = set()
347
+ for idx in idxs:
348
+ if idx < 0:
349
+ real_idx = full_length+idx
350
+ if real_idx in real_idxs:
351
+ raise ValueError(f"Index '{idx}' maps to '{real_idx}' and is duplicate - indexes in Sparse Index Method must be unique.")
352
+ else:
353
+ real_idx = idx
354
+ if real_idx in real_idxs:
355
+ raise ValueError(f"Index '{idx}' is duplicate (or a negative index is equivalent) - indexes in Sparse Index Method must be unique.")
356
+ real_idxs.add(real_idx)
357
+ new_idxs.append(real_idx)
358
+ return new_idxs
359
+
360
+
361
+ def get_idx_list_from_str(indexes: str) -> list[int]:
362
+ idxs = []
363
+ unique_idxs = set()
364
+ # get indeces from string
365
+ str_idxs = [x.strip() for x in indexes.strip().split(",")]
366
+ for str_idx in str_idxs:
367
+ try:
368
+ idx = int(str_idx)
369
+ if idx in unique_idxs:
370
+ raise ValueError(f"'{idx}' is duplicated; indexes must be unique.")
371
+ idxs.append(idx)
372
+ unique_idxs.add(idx)
373
+ except ValueError:
374
+ raise ValueError(f"'{str_idx}' is not a valid integer index.")
375
+ if len(idxs) == 0:
376
+ raise ValueError(f"No indexes were listed in Sparse Index Method.")
377
+ return idxs
378
+
379
+
380
+ #########################################
381
+ # motion-related portion of controlnet
382
+ class BlockType:
383
+ UP = "up"
384
+ DOWN = "down"
385
+ MID = "mid"
386
+
387
+ def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
388
+ return get_block_max(mm_state_dict, "down_blocks")
389
+
390
+ def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int:
391
+ return get_block_max(mm_state_dict, "up_blocks")
392
+
393
+ def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int:
394
+ # keep track of biggest down_block count in module
395
+ biggest_block = -1
396
+ for key in mm_state_dict.keys():
397
+ if block_name in key:
398
+ try:
399
+ block_int = key.split(".")[1]
400
+ block_num = int(block_int)
401
+ if block_num > biggest_block:
402
+ biggest_block = block_num
403
+ except ValueError:
404
+ pass
405
+ return biggest_block
406
+
407
+ def has_mid_block(mm_state_dict: dict[str, Tensor]):
408
+ # check if keys contain mid_block
409
+ for key in mm_state_dict.keys():
410
+ if key.startswith("mid_block."):
411
+ return True
412
+ return False
413
+
414
+ def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str=None) -> int:
415
+ # use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
416
+ for key in mm_state_dict.keys():
417
+ if key.endswith("pos_encoder.pe"):
418
+ return mm_state_dict[key].size(1) # get middle dim
419
+ raise ValueError(f"No pos_encoder.pe found in SparseCtrl state_dict - {mm_name} is not a valid SparseCtrl model!")
420
+
421
+
422
+ class SparseCtrlMotionWrapper(nn.Module):
423
+ def __init__(self, mm_state_dict: dict[str, Tensor], ops=disable_weight_init_clean_groupnorm):
424
+ super().__init__()
425
+ self.down_blocks: Iterable[MotionModule] = None
426
+ self.up_blocks: Iterable[MotionModule] = None
427
+ self.mid_block: MotionModule = None
428
+ self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, "")
429
+ layer_channels = (320, 640, 1280, 1280)
430
+ if get_down_block_max(mm_state_dict) > -1:
431
+ self.down_blocks = nn.ModuleList([])
432
+ for c in layer_channels:
433
+ self.down_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops))
434
+ if get_up_block_max(mm_state_dict) > -1:
435
+ self.up_blocks = nn.ModuleList([])
436
+ for c in reversed(layer_channels):
437
+ self.up_blocks.append(MotionModule(c, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops))
438
+ if has_mid_block(mm_state_dict):
439
+ self.mid_block = MotionModule(1280, temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops)
440
+
441
+ def inject(self, unet: SparseControlNet):
442
+ # inject input (down) blocks
443
+ self._inject(unet.input_blocks, self.down_blocks)
444
+ # inject mid block, if present
445
+ if self.mid_block is not None:
446
+ self._inject([unet.middle_block], [self.mid_block])
447
+ unet.motion_wrapper = self
448
+
449
+ def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
450
+ # Rules for injection:
451
+ # For each component list in a unet block:
452
+ # if SpatialTransformer exists in list, place next block after last occurrence
453
+ # elif ResBlock exists in list, place next block after first occurrence
454
+ # else don't place block
455
+ injection_count = 0
456
+ unet_idx = 0
457
+ # details about blocks passed in
458
+ per_block = len(mm_blocks[0].motion_modules)
459
+ injection_goal = len(mm_blocks) * per_block
460
+ # only stop injecting when modules exhausted
461
+ while injection_count < injection_goal:
462
+ # figure out which VanillaTemporalModule from mm to inject
463
+ mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
464
+ # figure out layout of unet block components
465
+ st_idx = -1 # SpatialTransformer index
466
+ res_idx = -1 # first ResBlock index
467
+ # first, figure out indeces of relevant blocks
468
+ for idx, component in enumerate(unet_blocks[unet_idx]):
469
+ if type(component) == SpatialTransformer:
470
+ st_idx = idx
471
+ elif type(component).__name__ == "ResBlock" and res_idx < 0:
472
+ res_idx = idx
473
+ # if SpatialTransformer exists, inject right after
474
+ if st_idx >= 0:
475
+ unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
476
+ injection_count += 1
477
+ # otherwise, if only ResBlock exists, inject right after
478
+ elif res_idx >= 0:
479
+ unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
480
+ injection_count += 1
481
+ # increment unet_idx
482
+ unet_idx += 1
483
+
484
+ def eject(self, unet: SparseControlNet):
485
+ # remove from input blocks (downblocks)
486
+ self._eject(unet.input_blocks)
487
+ # remove from middle block (encapsulate in list to make compatible)
488
+ self._eject([unet.middle_block])
489
+ del unet.motion_wrapper
490
+ unet.motion_wrapper = None
491
+
492
+ def _eject(self, unet_blocks: nn.ModuleList):
493
+ # eject all VanillaTemporalModule objects from all blocks
494
+ for block in unet_blocks:
495
+ idx_to_pop = []
496
+ for idx, component in enumerate(block):
497
+ if type(component) == VanillaTemporalModule:
498
+ idx_to_pop.append(idx)
499
+ # pop in backwards order, as to not disturb what the indeces refer to
500
+ for idx in sorted(idx_to_pop, reverse=True):
501
+ block.pop(idx)
502
+
503
+ def set_video_length(self, video_length: int, full_length: int):
504
+ self.AD_video_length = video_length
505
+ if self.down_blocks is not None:
506
+ for block in self.down_blocks:
507
+ block.set_video_length(video_length, full_length)
508
+ if self.up_blocks is not None:
509
+ for block in self.up_blocks:
510
+ block.set_video_length(video_length, full_length)
511
+ if self.mid_block is not None:
512
+ self.mid_block.set_video_length(video_length, full_length)
513
+
514
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
515
+ if self.down_blocks is not None:
516
+ for block in self.down_blocks:
517
+ block.set_scale_multiplier(multiplier)
518
+ if self.up_blocks is not None:
519
+ for block in self.up_blocks:
520
+ block.set_scale_multiplier(multiplier)
521
+ if self.mid_block is not None:
522
+ self.mid_block.set_scale_multiplier(multiplier)
523
+
524
+ def set_strength(self, strength: float):
525
+ if self.down_blocks is not None:
526
+ for block in self.down_blocks:
527
+ block.set_strength(strength)
528
+ if self.up_blocks is not None:
529
+ for block in self.up_blocks:
530
+ block.set_strength(strength)
531
+ if self.mid_block is not None:
532
+ self.mid_block.set_strength(strength)
533
+
534
+ def reset_temp_vars(self):
535
+ if self.down_blocks is not None:
536
+ for block in self.down_blocks:
537
+ block.reset_temp_vars()
538
+ if self.up_blocks is not None:
539
+ for block in self.up_blocks:
540
+ block.reset_temp_vars()
541
+ if self.mid_block is not None:
542
+ self.mid_block.reset_temp_vars()
543
+
544
+ def reset_scale_multiplier(self):
545
+ self.set_scale_multiplier(None)
546
+
547
+ def reset(self):
548
+ self.reset_scale_multiplier()
549
+ self.reset_temp_vars()
550
+
551
+
552
+ class MotionModule(nn.Module):
553
+ def __init__(self, in_channels, temporal_position_encoding_max_len=24, block_type: str=BlockType.DOWN, ops=disable_weight_init_clean_groupnorm):
554
+ super().__init__()
555
+ if block_type == BlockType.MID:
556
+ # mid blocks contain only a single VanillaTemporalModule
557
+ self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)])
558
+ else:
559
+ # down blocks contain two VanillaTemporalModules
560
+ self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList(
561
+ [
562
+ get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops),
563
+ get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops)
564
+ ]
565
+ )
566
+ # up blocks contain one additional VanillaTemporalModule
567
+ if block_type == BlockType.UP:
568
+ self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding_max_len, ops=ops))
569
+
570
+ def set_video_length(self, video_length: int, full_length: int):
571
+ for motion_module in self.motion_modules:
572
+ motion_module.set_video_length(video_length, full_length)
573
+
574
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
575
+ for motion_module in self.motion_modules:
576
+ motion_module.set_scale_multiplier(multiplier)
577
+
578
+ def set_masks(self, masks: Tensor, min_val: float, max_val: float):
579
+ for motion_module in self.motion_modules:
580
+ motion_module.set_masks(masks, min_val, max_val)
581
+
582
+ def set_sub_idxs(self, sub_idxs: list[int]):
583
+ for motion_module in self.motion_modules:
584
+ motion_module.set_sub_idxs(sub_idxs)
585
+
586
+ def set_strength(self, strength: float):
587
+ for motion_module in self.motion_modules:
588
+ motion_module.set_strength(strength)
589
+
590
+ def reset_temp_vars(self):
591
+ for motion_module in self.motion_modules:
592
+ motion_module.reset_temp_vars()
593
+
594
+
595
+ def get_motion_module(in_channels, temporal_position_encoding_max_len, ops=disable_weight_init_clean_groupnorm):
596
+ # unlike normal AD, there is only one attention block expected in SparseCtrl models
597
+ return VanillaTemporalModule(in_channels=in_channels, attention_block_types=("Temporal_Self",), temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops)
598
+
599
+
600
+ class VanillaTemporalModule(nn.Module):
601
+ def __init__(
602
+ self,
603
+ in_channels,
604
+ num_attention_heads=8,
605
+ num_transformer_block=1,
606
+ attention_block_types=("Temporal_Self", "Temporal_Self"),
607
+ cross_frame_attention_mode=None,
608
+ temporal_position_encoding=True,
609
+ temporal_position_encoding_max_len=24,
610
+ temporal_attention_dim_div=1,
611
+ zero_initialize=True,
612
+ ops=disable_weight_init_clean_groupnorm,
613
+ ):
614
+ super().__init__()
615
+ self.strength = 1.0
616
+ self.temporal_transformer = TemporalTransformer3DModel(
617
+ in_channels=in_channels,
618
+ num_attention_heads=num_attention_heads,
619
+ attention_head_dim=in_channels
620
+ // num_attention_heads
621
+ // temporal_attention_dim_div,
622
+ num_layers=num_transformer_block,
623
+ attention_block_types=attention_block_types,
624
+ cross_frame_attention_mode=cross_frame_attention_mode,
625
+ temporal_position_encoding=temporal_position_encoding,
626
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
627
+ ops=ops,
628
+ )
629
+
630
+ if zero_initialize:
631
+ self.temporal_transformer.proj_out = zero_module(
632
+ self.temporal_transformer.proj_out
633
+ )
634
+
635
+ def set_video_length(self, video_length: int, full_length: int):
636
+ self.temporal_transformer.set_video_length(video_length, full_length)
637
+
638
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
639
+ self.temporal_transformer.set_scale_multiplier(multiplier)
640
+
641
+ def set_masks(self, masks: Tensor, min_val: float, max_val: float):
642
+ self.temporal_transformer.set_masks(masks, min_val, max_val)
643
+
644
+ def set_sub_idxs(self, sub_idxs: list[int]):
645
+ self.temporal_transformer.set_sub_idxs(sub_idxs)
646
+
647
+ def set_strength(self, strength: float):
648
+ self.strength = strength
649
+
650
+ def reset_temp_vars(self):
651
+ self.set_strength(1.0)
652
+ self.temporal_transformer.reset_temp_vars()
653
+
654
+ def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None):
655
+ if math.isclose(self.strength, 1.0):
656
+ return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)
657
+ elif math.isclose(self.strength, 0.0):
658
+ return input_tensor
659
+ # elif self.strength > 1.0:
660
+ # return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength
661
+ else:
662
+ return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)*self.strength + input_tensor*(1.0-self.strength)
663
+
664
+
665
+ class TemporalTransformer3DModel(nn.Module):
666
+ def __init__(
667
+ self,
668
+ in_channels,
669
+ num_attention_heads,
670
+ attention_head_dim,
671
+ num_layers,
672
+ attention_block_types=(
673
+ "Temporal_Self",
674
+ "Temporal_Self",
675
+ ),
676
+ dropout=0.0,
677
+ norm_num_groups=32,
678
+ cross_attention_dim=768,
679
+ activation_fn="geglu",
680
+ attention_bias=False,
681
+ upcast_attention=False,
682
+ cross_frame_attention_mode=None,
683
+ temporal_position_encoding=False,
684
+ temporal_position_encoding_max_len=24,
685
+ ops=disable_weight_init_clean_groupnorm,
686
+ ):
687
+ super().__init__()
688
+ self.video_length = 16
689
+ self.full_length = 16
690
+ self.scale_min = 1.0
691
+ self.scale_max = 1.0
692
+ self.raw_scale_mask: Union[Tensor, None] = None
693
+ self.temp_scale_mask: Union[Tensor, None] = None
694
+ self.sub_idxs: Union[list[int], None] = None
695
+ self.prev_hidden_states_batch = 0
696
+
697
+
698
+ inner_dim = num_attention_heads * attention_head_dim
699
+
700
+ self.norm = ops.GroupNorm(
701
+ num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
702
+ )
703
+ self.proj_in = ops.Linear(in_channels, inner_dim)
704
+
705
+ self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
706
+ [
707
+ TemporalTransformerBlock(
708
+ dim=inner_dim,
709
+ num_attention_heads=num_attention_heads,
710
+ attention_head_dim=attention_head_dim,
711
+ attention_block_types=attention_block_types,
712
+ dropout=dropout,
713
+ norm_num_groups=norm_num_groups,
714
+ cross_attention_dim=cross_attention_dim,
715
+ activation_fn=activation_fn,
716
+ attention_bias=attention_bias,
717
+ upcast_attention=upcast_attention,
718
+ cross_frame_attention_mode=cross_frame_attention_mode,
719
+ temporal_position_encoding=temporal_position_encoding,
720
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
721
+ ops=ops,
722
+ )
723
+ for d in range(num_layers)
724
+ ]
725
+ )
726
+ self.proj_out = ops.Linear(inner_dim, in_channels)
727
+
728
+ def set_video_length(self, video_length: int, full_length: int):
729
+ self.video_length = video_length
730
+ self.full_length = full_length
731
+
732
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
733
+ for block in self.transformer_blocks:
734
+ block.set_scale_multiplier(multiplier)
735
+
736
+ def set_masks(self, masks: Tensor, min_val: float, max_val: float):
737
+ self.scale_min = min_val
738
+ self.scale_max = max_val
739
+ self.raw_scale_mask = masks
740
+
741
+ def set_sub_idxs(self, sub_idxs: list[int]):
742
+ self.sub_idxs = sub_idxs
743
+ for block in self.transformer_blocks:
744
+ block.set_sub_idxs(sub_idxs)
745
+
746
+ def reset_temp_vars(self):
747
+ del self.temp_scale_mask
748
+ self.temp_scale_mask = None
749
+ self.prev_hidden_states_batch = 0
750
+ for block in self.transformer_blocks:
751
+ block.reset_temp_vars()
752
+
753
+ def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]:
754
+ # if no raw mask, return None
755
+ if self.raw_scale_mask is None:
756
+ return None
757
+ shape = hidden_states.shape
758
+ batch, channel, height, width = shape
759
+ # if temp mask already calculated, return it
760
+ if self.temp_scale_mask != None:
761
+ # check if hidden_states batch matches
762
+ if batch == self.prev_hidden_states_batch:
763
+ if self.sub_idxs is not None:
764
+ return self.temp_scale_mask[:, self.sub_idxs, :]
765
+ return self.temp_scale_mask
766
+ # if does not match, reset cached temp_scale_mask and recalculate it
767
+ del self.temp_scale_mask
768
+ self.temp_scale_mask = None
769
+ # otherwise, calculate temp mask
770
+ self.prev_hidden_states_batch = batch
771
+ mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width))
772
+ mask = extend_to_batch_size(mask, self.full_length)
773
+ # if mask not the same amount length as full length, make it match
774
+ if self.full_length != mask.shape[0]:
775
+ mask = broadcast_image_to_extend(mask, self.full_length, 1)
776
+ # reshape mask to attention K shape (h*w, latent_count, 1)
777
+ batch, channel, height, width = mask.shape
778
+ # first, perform same operations as on hidden_states,
779
+ # turning (b, c, h, w) -> (b, h*w, c)
780
+ mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
781
+ # then, make it the same shape as attention's k, (h*w, b, c)
782
+ mask = mask.permute(1, 0, 2)
783
+ # make masks match the expected length of h*w
784
+ batched_number = shape[0] // self.video_length
785
+ if batched_number > 1:
786
+ mask = torch.cat([mask] * batched_number, dim=0)
787
+ # cache mask and set to proper device
788
+ self.temp_scale_mask = mask
789
+ # move temp_scale_mask to proper dtype + device
790
+ self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device)
791
+ # return subset of masks, if needed
792
+ if self.sub_idxs is not None:
793
+ return self.temp_scale_mask[:, self.sub_idxs, :]
794
+ return self.temp_scale_mask
795
+
796
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
797
+ batch, channel, height, width = hidden_states.shape
798
+ residual = hidden_states
799
+ scale_mask = self.get_scale_mask(hidden_states)
800
+ # add some casts for fp8 purposes - does not affect speed otherwise
801
+ hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
802
+ inner_dim = hidden_states.shape[1]
803
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
804
+ batch, height * width, inner_dim
805
+ )
806
+ hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)
807
+
808
+ # Transformer Blocks
809
+ for block in self.transformer_blocks:
810
+ hidden_states = block(
811
+ hidden_states,
812
+ encoder_hidden_states=encoder_hidden_states,
813
+ attention_mask=attention_mask,
814
+ video_length=self.video_length,
815
+ scale_mask=scale_mask
816
+ )
817
+
818
+ # output
819
+ hidden_states = self.proj_out(hidden_states)
820
+ hidden_states = (
821
+ hidden_states.reshape(batch, height, width, inner_dim)
822
+ .permute(0, 3, 1, 2)
823
+ .contiguous()
824
+ )
825
+
826
+ output = hidden_states + residual
827
+
828
+ return output
829
+
830
+
831
+ class TemporalTransformerBlock(nn.Module):
832
+ def __init__(
833
+ self,
834
+ dim,
835
+ num_attention_heads,
836
+ attention_head_dim,
837
+ attention_block_types=(
838
+ "Temporal_Self",
839
+ "Temporal_Self",
840
+ ),
841
+ dropout=0.0,
842
+ norm_num_groups=32,
843
+ cross_attention_dim=768,
844
+ activation_fn="geglu",
845
+ attention_bias=False,
846
+ upcast_attention=False,
847
+ cross_frame_attention_mode=None,
848
+ temporal_position_encoding=False,
849
+ temporal_position_encoding_max_len=24,
850
+ ops=disable_weight_init_clean_groupnorm,
851
+ ):
852
+ super().__init__()
853
+
854
+ attention_blocks = []
855
+ norms = []
856
+
857
+ for block_name in attention_block_types:
858
+ attention_blocks.append(
859
+ VersatileAttention(
860
+ attention_mode=block_name.split("_")[0],
861
+ context_dim=cross_attention_dim # called context_dim for ComfyUI impl
862
+ if block_name.endswith("_Cross")
863
+ else None,
864
+ query_dim=dim,
865
+ heads=num_attention_heads,
866
+ dim_head=attention_head_dim,
867
+ dropout=dropout,
868
+ #bias=attention_bias, # remove for Comfy CrossAttention
869
+ #upcast_attention=upcast_attention, # remove for Comfy CrossAttention
870
+ cross_frame_attention_mode=cross_frame_attention_mode,
871
+ temporal_position_encoding=temporal_position_encoding,
872
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
873
+ ops=ops,
874
+ )
875
+ )
876
+ norms.append(ops.LayerNorm(dim))
877
+
878
+ self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
879
+ self.norms = nn.ModuleList(norms)
880
+
881
+ self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
882
+ self.ff_norm = ops.LayerNorm(dim)
883
+
884
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
885
+ for block in self.attention_blocks:
886
+ block.set_scale_multiplier(multiplier)
887
+
888
+ def set_sub_idxs(self, sub_idxs: list[int]):
889
+ for block in self.attention_blocks:
890
+ block.set_sub_idxs(sub_idxs)
891
+
892
+ def reset_temp_vars(self):
893
+ for block in self.attention_blocks:
894
+ block.reset_temp_vars()
895
+
896
+ def forward(
897
+ self,
898
+ hidden_states,
899
+ encoder_hidden_states=None,
900
+ attention_mask=None,
901
+ video_length=None,
902
+ scale_mask=None
903
+ ):
904
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
905
+ norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
906
+ hidden_states = (
907
+ attention_block(
908
+ norm_hidden_states,
909
+ encoder_hidden_states=encoder_hidden_states
910
+ if attention_block.is_cross_attention
911
+ else None,
912
+ attention_mask=attention_mask,
913
+ video_length=video_length,
914
+ scale_mask=scale_mask
915
+ )
916
+ + hidden_states
917
+ )
918
+
919
+ hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
920
+
921
+ output = hidden_states
922
+ return output
923
+
924
+
925
+ class PositionalEncoding(nn.Module):
926
+ def __init__(self, d_model, dropout=0.0, max_len=24):
927
+ super().__init__()
928
+ self.dropout = nn.Dropout(p=dropout)
929
+ position = torch.arange(max_len).unsqueeze(1)
930
+ div_term = torch.exp(
931
+ torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
932
+ )
933
+ pe = torch.zeros(1, max_len, d_model)
934
+ pe[0, :, 0::2] = torch.sin(position * div_term)
935
+ pe[0, :, 1::2] = torch.cos(position * div_term)
936
+ self.register_buffer("pe", pe)
937
+ self.sub_idxs = None
938
+
939
+ def set_sub_idxs(self, sub_idxs: list[int]):
940
+ self.sub_idxs = sub_idxs
941
+
942
+ def forward(self, x):
943
+ #if self.sub_idxs is not None:
944
+ # x = x + self.pe[:, self.sub_idxs]
945
+ #else:
946
+ x = x + self.pe[:, : x.size(1)]
947
+ return self.dropout(x)
948
+
949
+
950
+ class CrossAttentionMMSparse(nn.Module):
951
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None,
952
+ operations=disable_weight_init_clean_groupnorm):
953
+ super().__init__()
954
+ inner_dim = dim_head * heads
955
+ context_dim = default(context_dim, query_dim)
956
+
957
+ self.actual_attention = optimized_attention_mm
958
+ self.heads = heads
959
+ self.dim_head = dim_head
960
+ self.scale = None
961
+
962
+ self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
963
+ self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
964
+ self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
965
+
966
+ self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
967
+
968
+ def reset_attention_type(self):
969
+ self.actual_attention = optimized_attention_mm
970
+
971
+ def forward(self, x, context=None, value=None, mask=None, scale_mask=None):
972
+ q = self.to_q(x)
973
+ context = default(context, x)
974
+ k: Tensor = self.to_k(context)
975
+ if value is not None:
976
+ v = self.to_v(value)
977
+ del value
978
+ else:
979
+ v = self.to_v(context)
980
+
981
+ # apply custom scale by multiplying k by scale factor
982
+ if self.scale is not None:
983
+ k *= self.scale
984
+
985
+ # apply scale mask, if present
986
+ if scale_mask is not None:
987
+ k *= scale_mask
988
+
989
+ try:
990
+ out = self.actual_attention(q, k, v, self.heads, mask)
991
+ except RuntimeError as e:
992
+ if str(e).startswith("CUDA error: invalid configuration argument"):
993
+ self.actual_attention = fallback_attention_mm
994
+ out = self.actual_attention(q, k, v, self.heads, mask)
995
+ else:
996
+ raise
997
+ return self.to_out(out)
998
+
999
+
1000
+ class VersatileAttention(CrossAttentionMMSparse):
1001
+ def __init__(
1002
+ self,
1003
+ attention_mode=None,
1004
+ cross_frame_attention_mode=None,
1005
+ temporal_position_encoding=False,
1006
+ temporal_position_encoding_max_len=24,
1007
+ ops=disable_weight_init_clean_groupnorm,
1008
+ *args,
1009
+ **kwargs,
1010
+ ):
1011
+ super().__init__(operations=ops, *args, **kwargs)
1012
+ assert attention_mode == "Temporal"
1013
+
1014
+ self.attention_mode = attention_mode
1015
+ self.is_cross_attention = kwargs["context_dim"] is not None
1016
+
1017
+ self.pos_encoder = (
1018
+ PositionalEncoding(
1019
+ kwargs["query_dim"],
1020
+ dropout=0.0,
1021
+ max_len=temporal_position_encoding_max_len,
1022
+ )
1023
+ if (temporal_position_encoding and attention_mode == "Temporal")
1024
+ else None
1025
+ )
1026
+
1027
+ def extra_repr(self):
1028
+ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
1029
+
1030
+ def set_scale_multiplier(self, multiplier: Union[float, None]):
1031
+ if multiplier is None or math.isclose(multiplier, 1.0):
1032
+ self.scale = None
1033
+ else:
1034
+ self.scale = multiplier
1035
+
1036
+ def set_sub_idxs(self, sub_idxs: list[int]):
1037
+ if self.pos_encoder != None:
1038
+ self.pos_encoder.set_sub_idxs(sub_idxs)
1039
+
1040
+ def reset_temp_vars(self):
1041
+ self.reset_attention_type()
1042
+
1043
+ def forward(
1044
+ self,
1045
+ hidden_states: Tensor,
1046
+ encoder_hidden_states=None,
1047
+ attention_mask=None,
1048
+ video_length=None,
1049
+ scale_mask=None,
1050
+ ):
1051
+ if self.attention_mode != "Temporal":
1052
+ raise NotImplementedError
1053
+
1054
+ d = hidden_states.shape[1]
1055
+ hidden_states = rearrange(
1056
+ hidden_states, "(b f) d c -> (b d) f c", f=video_length
1057
+ )
1058
+
1059
+ if self.pos_encoder is not None:
1060
+ hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype)
1061
+
1062
+ encoder_hidden_states = (
1063
+ repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
1064
+ if encoder_hidden_states is not None
1065
+ else encoder_hidden_states
1066
+ )
1067
+
1068
+ hidden_states = super().forward(
1069
+ hidden_states,
1070
+ encoder_hidden_states,
1071
+ value=None,
1072
+ mask=attention_mask,
1073
+ scale_mask=scale_mask,
1074
+ )
1075
+
1076
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
1077
+
1078
+ return hidden_states
ComfyUI-Advanced-ControlNet/adv_control/control_svd.py CHANGED
@@ -1,518 +1,518 @@
1
- import torch
2
- import torch.nn as nn
3
- from torch import Tensor
4
-
5
- import comfy.model_detection
6
- from comfy.utils import UNET_MAP_BASIC, UNET_MAP_RESNET, UNET_MAP_ATTENTIONS, TRANSFORMER_BLOCKS
7
-
8
- import torch
9
-
10
-
11
- from comfy.ldm.modules.diffusionmodules.util import (
12
- zero_module,
13
- timestep_embedding,
14
- )
15
-
16
- from comfy.ldm.modules.attention import SpatialVideoTransformer
17
- from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, VideoResBlock, Downsample
18
- from comfy.ldm.util import exists
19
- import comfy.ops
20
-
21
-
22
- class SVDControlNet(nn.Module):
23
- def __init__(
24
- self,
25
- image_size,
26
- in_channels,
27
- model_channels,
28
- hint_channels,
29
- num_res_blocks,
30
- dropout=0,
31
- channel_mult=(1, 2, 4, 8),
32
- conv_resample=True,
33
- dims=2,
34
- num_classes=None,
35
- use_checkpoint=False,
36
- dtype=torch.float32,
37
- num_heads=-1,
38
- num_head_channels=-1,
39
- num_heads_upsample=-1,
40
- use_scale_shift_norm=False,
41
- resblock_updown=False,
42
- use_new_attention_order=False,
43
- use_spatial_transformer=False, # custom transformer support
44
- transformer_depth=1, # custom transformer support
45
- context_dim=None, # custom transformer support
46
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
47
- legacy=True,
48
- disable_self_attentions=None,
49
- num_attention_blocks=None,
50
- disable_middle_self_attn=False,
51
- use_linear_in_transformer=False,
52
- adm_in_channels=None,
53
- transformer_depth_middle=None,
54
- transformer_depth_output=None,
55
- use_spatial_context=False,
56
- extra_ff_mix_layer=False,
57
- merge_strategy="fixed",
58
- merge_factor=0.5,
59
- video_kernel_size=3,
60
- device=None,
61
- operations=comfy.ops.disable_weight_init,
62
- **kwargs,
63
- ):
64
- super().__init__()
65
- assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
66
- if use_spatial_transformer:
67
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
68
-
69
- if context_dim is not None:
70
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
71
- # from omegaconf.listconfig import ListConfig
72
- # if type(context_dim) == ListConfig:
73
- # context_dim = list(context_dim)
74
-
75
- if num_heads_upsample == -1:
76
- num_heads_upsample = num_heads
77
-
78
- if num_heads == -1:
79
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
80
-
81
- if num_head_channels == -1:
82
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
83
-
84
- self.dims = dims
85
- self.image_size = image_size
86
- self.in_channels = in_channels
87
- self.model_channels = model_channels
88
-
89
- if isinstance(num_res_blocks, int):
90
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
91
- else:
92
- if len(num_res_blocks) != len(channel_mult):
93
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
94
- "as a list/tuple (per-level) with the same length as channel_mult")
95
- self.num_res_blocks = num_res_blocks
96
-
97
- if disable_self_attentions is not None:
98
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
99
- assert len(disable_self_attentions) == len(channel_mult)
100
- if num_attention_blocks is not None:
101
- assert len(num_attention_blocks) == len(self.num_res_blocks)
102
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
103
-
104
- transformer_depth = transformer_depth[:]
105
-
106
- self.dropout = dropout
107
- self.channel_mult = channel_mult
108
- self.conv_resample = conv_resample
109
- self.num_classes = num_classes
110
- self.use_checkpoint = use_checkpoint
111
- self.dtype = dtype
112
- self.num_heads = num_heads
113
- self.num_head_channels = num_head_channels
114
- self.num_heads_upsample = num_heads_upsample
115
- self.predict_codebook_ids = n_embed is not None
116
-
117
- time_embed_dim = model_channels * 4
118
- self.time_embed = nn.Sequential(
119
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
120
- nn.SiLU(),
121
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
122
- )
123
-
124
- if self.num_classes is not None:
125
- if isinstance(self.num_classes, int):
126
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
127
- elif self.num_classes == "continuous":
128
- print("setting up linear c_adm embedding layer")
129
- self.label_emb = nn.Linear(1, time_embed_dim)
130
- elif self.num_classes == "sequential":
131
- assert adm_in_channels is not None
132
- self.label_emb = nn.Sequential(
133
- nn.Sequential(
134
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
135
- nn.SiLU(),
136
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
137
- )
138
- )
139
- else:
140
- raise ValueError()
141
-
142
- self.input_blocks = nn.ModuleList(
143
- [
144
- TimestepEmbedSequential(
145
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
146
- )
147
- ]
148
- )
149
- self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
150
-
151
- self.input_hint_block = TimestepEmbedSequential(
152
- operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
153
- nn.SiLU(),
154
- operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
155
- nn.SiLU(),
156
- operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
157
- nn.SiLU(),
158
- operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
159
- nn.SiLU(),
160
- operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
161
- nn.SiLU(),
162
- operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
163
- nn.SiLU(),
164
- operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
165
- nn.SiLU(),
166
- operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
167
- )
168
-
169
- self._feature_size = model_channels
170
- input_block_chans = [model_channels]
171
- ch = model_channels
172
- ds = 1
173
- for level, mult in enumerate(channel_mult):
174
- for nr in range(self.num_res_blocks[level]):
175
- layers = [
176
- VideoResBlock(
177
- ch,
178
- time_embed_dim,
179
- dropout,
180
- out_channels=mult * model_channels,
181
- dims=dims,
182
- use_checkpoint=use_checkpoint,
183
- use_scale_shift_norm=use_scale_shift_norm,
184
- dtype=self.dtype,
185
- device=device,
186
- operations=operations,
187
- video_kernel_size=video_kernel_size,
188
- merge_strategy=merge_strategy, merge_factor=merge_factor,
189
- )
190
- ]
191
- ch = mult * model_channels
192
- num_transformers = transformer_depth.pop(0)
193
- if num_transformers > 0:
194
- if num_head_channels == -1:
195
- dim_head = ch // num_heads
196
- else:
197
- num_heads = ch // num_head_channels
198
- dim_head = num_head_channels
199
- if legacy:
200
- #num_heads = 1
201
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
202
- if exists(disable_self_attentions):
203
- disabled_sa = disable_self_attentions[level]
204
- else:
205
- disabled_sa = False
206
-
207
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
208
- layers.append(
209
- SpatialVideoTransformer(
210
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
211
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
212
- checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations,
213
- use_spatial_context=use_spatial_context, ff_in=extra_ff_mix_layer,
214
- merge_strategy=merge_strategy, merge_factor=merge_factor,
215
- )
216
- )
217
- self.input_blocks.append(TimestepEmbedSequential(*layers))
218
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
219
- self._feature_size += ch
220
- input_block_chans.append(ch)
221
- if level != len(channel_mult) - 1:
222
- out_ch = ch
223
- self.input_blocks.append(
224
- TimestepEmbedSequential(
225
- VideoResBlock(
226
- ch,
227
- time_embed_dim,
228
- dropout,
229
- out_channels=out_ch,
230
- dims=dims,
231
- use_checkpoint=use_checkpoint,
232
- use_scale_shift_norm=use_scale_shift_norm,
233
- down=True,
234
- dtype=self.dtype,
235
- device=device,
236
- operations=operations,
237
- video_kernel_size=video_kernel_size,
238
- merge_strategy=merge_strategy, merge_factor=merge_factor,
239
- )
240
- if resblock_updown
241
- else Downsample(
242
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
243
- )
244
- )
245
- )
246
- ch = out_ch
247
- input_block_chans.append(ch)
248
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
249
- ds *= 2
250
- self._feature_size += ch
251
-
252
- if num_head_channels == -1:
253
- dim_head = ch // num_heads
254
- else:
255
- num_heads = ch // num_head_channels
256
- dim_head = num_head_channels
257
- if legacy:
258
- #num_heads = 1
259
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
260
- mid_block = [
261
- VideoResBlock(
262
- ch,
263
- time_embed_dim,
264
- dropout,
265
- dims=dims,
266
- use_checkpoint=use_checkpoint,
267
- use_scale_shift_norm=use_scale_shift_norm,
268
- dtype=self.dtype,
269
- device=device,
270
- operations=operations,
271
- video_kernel_size=video_kernel_size,
272
- merge_strategy=merge_strategy, merge_factor=merge_factor,
273
- )]
274
- if transformer_depth_middle >= 0:
275
- mid_block += [SpatialVideoTransformer( # always uses a self-attn
276
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
277
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
278
- checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations,
279
- use_spatial_context=use_spatial_context, ff_in=extra_ff_mix_layer,
280
- merge_strategy=merge_strategy, merge_factor=merge_factor,
281
- ),
282
- VideoResBlock(
283
- ch,
284
- time_embed_dim,
285
- dropout,
286
- dims=dims,
287
- use_checkpoint=use_checkpoint,
288
- use_scale_shift_norm=use_scale_shift_norm,
289
- dtype=self.dtype,
290
- device=device,
291
- operations=operations,
292
- video_kernel_size=video_kernel_size,
293
- merge_strategy=merge_strategy, merge_factor=merge_factor,
294
- )]
295
- self.middle_block = TimestepEmbedSequential(*mid_block)
296
- self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
297
- self._feature_size += ch
298
-
299
- def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
300
- return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
301
-
302
- def forward(self, x, hint, timesteps, context, y=None, **kwargs):
303
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
304
- emb = self.time_embed(t_emb)
305
-
306
- cond = kwargs["cond"]
307
- num_video_frames = cond["num_video_frames"]
308
- image_only_indicator = cond.get("image_only_indicator", None)
309
- time_context = cond.get("time_context", None)
310
- del cond
311
-
312
- guided_hint = self.input_hint_block(hint, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
313
-
314
- out_output = []
315
- out_middle = []
316
-
317
- hs = []
318
- if self.num_classes is not None:
319
- assert y.shape[0] == x.shape[0]
320
- emb = emb + self.label_emb(y)
321
-
322
- h = x
323
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
324
- if guided_hint is not None:
325
- h = module(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
326
- h += guided_hint
327
- guided_hint = None
328
- else:
329
- h = module(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
330
- out_output.append(zero_conv(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator))
331
-
332
- h = self.middle_block(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
333
- out_middle.append(self.middle_block_out(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator))
334
-
335
- return {"middle": out_middle, "output": out_output}
336
-
337
-
338
- TEMPORAL_TRANSFORMER_BLOCKS = {
339
- "norm_in.weight",
340
- "norm_in.bias",
341
- "ff_in.net.0.proj.weight",
342
- "ff_in.net.0.proj.bias",
343
- "ff_in.net.2.weight",
344
- "ff_in.net.2.bias",
345
- }
346
- TEMPORAL_TRANSFORMER_BLOCKS.update(TRANSFORMER_BLOCKS)
347
-
348
-
349
- TEMPORAL_UNET_MAP_ATTENTIONS = {
350
- "time_mixer.mix_factor",
351
- }
352
- TEMPORAL_UNET_MAP_ATTENTIONS.update(UNET_MAP_ATTENTIONS)
353
-
354
-
355
- TEMPORAL_TRANSFORMER_MAP = {
356
- "time_pos_embed.0.weight": "time_pos_embed.linear_1.weight",
357
- "time_pos_embed.0.bias": "time_pos_embed.linear_1.bias",
358
- "time_pos_embed.2.weight": "time_pos_embed.linear_2.weight",
359
- "time_pos_embed.2.bias": "time_pos_embed.linear_2.bias",
360
- }
361
-
362
-
363
- TEMPORAL_RESNET = {
364
- "time_mixer.mix_factor",
365
- }
366
-
367
-
368
- def svd_unet_config_from_diffusers_unet(state_dict: dict[str, Tensor], dtype):
369
- match = {}
370
- transformer_depth = []
371
-
372
- attn_res = 1
373
- down_blocks = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}")
374
- for i in range(down_blocks):
375
- attn_blocks = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
376
- for ab in range(attn_blocks):
377
- transformer_count = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
378
- transformer_depth.append(transformer_count)
379
- if transformer_count > 0:
380
- match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
381
-
382
- attn_res *= 2
383
- if attn_blocks == 0:
384
- transformer_depth.append(0)
385
- transformer_depth.append(0)
386
-
387
- match["transformer_depth"] = transformer_depth
388
-
389
- match["model_channels"] = state_dict["conv_in.weight"].shape[0]
390
- match["in_channels"] = state_dict["conv_in.weight"].shape[1]
391
- match["adm_in_channels"] = None
392
- if "class_embedding.linear_1.weight" in state_dict:
393
- match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
394
- elif "add_embedding.linear_1.weight" in state_dict:
395
- match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
396
-
397
- # based on unet_config of SVD
398
- SVD = {
399
- 'use_checkpoint': False,
400
- 'image_size': 32,
401
- 'use_spatial_transformer': True,
402
- 'legacy': False,
403
- 'num_classes': 'sequential',
404
- 'adm_in_channels': 768,
405
- 'dtype': dtype,
406
- 'in_channels': 8,
407
- 'out_channels': 4,
408
- 'model_channels': 320,
409
- 'num_res_blocks': [2, 2, 2, 2],
410
- 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
411
- 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
412
- 'channel_mult': [1, 2, 4, 4],
413
- 'transformer_depth_middle': 1,
414
- 'use_linear_in_transformer': True,
415
- 'context_dim': 1024,
416
- 'extra_ff_mix_layer': True,
417
- 'use_spatial_context': True,
418
- 'merge_strategy': 'learned_with_images',
419
- 'merge_factor': 0.0,
420
- 'video_kernel_size': [3, 1, 1],
421
- 'use_temporal_attention': True,
422
- 'use_temporal_resblock': True,
423
- 'num_heads': -1,
424
- 'num_head_channels': 64,
425
- }
426
-
427
- supported_models = [SVD]
428
-
429
- for unet_config in supported_models:
430
- matches = True
431
- for k in match:
432
- if match[k] != unet_config[k]:
433
- matches = False
434
- break
435
- if matches:
436
- return comfy.model_detection.convert_config(unet_config)
437
- return None
438
-
439
-
440
- def svd_unet_to_diffusers(unet_config):
441
- num_res_blocks = unet_config["num_res_blocks"]
442
- channel_mult = unet_config["channel_mult"]
443
- transformer_depth = unet_config["transformer_depth"][:]
444
- transformer_depth_output = unet_config["transformer_depth_output"][:]
445
- num_blocks = len(channel_mult)
446
-
447
- transformers_mid = unet_config.get("transformer_depth_middle", None)
448
-
449
- diffusers_unet_map = {}
450
- for x in range(num_blocks):
451
- n = 1 + (num_res_blocks[x] + 1) * x
452
- for i in range(num_res_blocks[x]):
453
- for b in TEMPORAL_RESNET:
454
- diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, b)] = "input_blocks.{}.0.{}".format(n, b)
455
- for b in UNET_MAP_RESNET:
456
- diffusers_unet_map["down_blocks.{}.resnets.{}.spatial_res_block.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
457
- diffusers_unet_map["down_blocks.{}.resnets.{}.temporal_res_block.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.time_stack.{}".format(n, b)
458
- #diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
459
- num_transformers = transformer_depth.pop(0)
460
- if num_transformers > 0:
461
- for b in TEMPORAL_UNET_MAP_ATTENTIONS:
462
- diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
463
- for b in TEMPORAL_TRANSFORMER_MAP:
464
- diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, TEMPORAL_TRANSFORMER_MAP[b])] = "input_blocks.{}.1.{}".format(n, b)
465
- for t in range(num_transformers):
466
- for b in TRANSFORMER_BLOCKS:
467
- diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
468
- for b in TEMPORAL_TRANSFORMER_BLOCKS:
469
- diffusers_unet_map["down_blocks.{}.attentions.{}.temporal_transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.time_stack.{}.{}".format(n, t, b)
470
- n += 1
471
- for k in ["weight", "bias"]:
472
- diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)
473
-
474
- i = 0
475
- for b in TEMPORAL_UNET_MAP_ATTENTIONS:
476
- diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
477
- for b in TEMPORAL_TRANSFORMER_MAP:
478
- diffusers_unet_map["mid_block.attentions.{}.{}".format(i, TEMPORAL_TRANSFORMER_MAP[b])] = "middle_block.1.{}".format(b)
479
- for t in range(transformers_mid):
480
- for b in TRANSFORMER_BLOCKS:
481
- diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)
482
- for b in TEMPORAL_TRANSFORMER_BLOCKS:
483
- diffusers_unet_map["mid_block.attentions.{}.temporal_transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.time_stack.{}.{}".format(t, b)
484
-
485
- for i, n in enumerate([0, 2]):
486
- for b in TEMPORAL_RESNET:
487
- diffusers_unet_map["mid_block.resnets.{}.{}".format(i, b)] = "middle_block.{}.{}".format(n, b)
488
- for b in UNET_MAP_RESNET:
489
- diffusers_unet_map["mid_block.resnets.{}.spatial_res_block.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
490
- diffusers_unet_map["mid_block.resnets.{}.temporal_res_block.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.time_stack.{}".format(n, b)
491
- #diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
492
-
493
- num_res_blocks = list(reversed(num_res_blocks))
494
- for x in range(num_blocks):
495
- n = (num_res_blocks[x] + 1) * x
496
- l = num_res_blocks[x] + 1
497
- for i in range(l):
498
- c = 0
499
- for b in UNET_MAP_RESNET:
500
- diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
501
- c += 1
502
- num_transformers = transformer_depth_output.pop()
503
- if num_transformers > 0:
504
- c += 1
505
- for b in UNET_MAP_ATTENTIONS:
506
- diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
507
- for t in range(num_transformers):
508
- for b in TRANSFORMER_BLOCKS:
509
- diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
510
- if i == l - 1:
511
- for k in ["weight", "bias"]:
512
- diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
513
- n += 1
514
-
515
- for k in UNET_MAP_BASIC:
516
- diffusers_unet_map[k[1]] = k[0]
517
-
518
- return diffusers_unet_map
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch import Tensor
4
+
5
+ import comfy.model_detection
6
+ from comfy.utils import UNET_MAP_BASIC, UNET_MAP_RESNET, UNET_MAP_ATTENTIONS, TRANSFORMER_BLOCKS
7
+
8
+ import torch
9
+
10
+
11
+ from comfy.ldm.modules.diffusionmodules.util import (
12
+ zero_module,
13
+ timestep_embedding,
14
+ )
15
+
16
+ from comfy.ldm.modules.attention import SpatialVideoTransformer
17
+ from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, VideoResBlock, Downsample
18
+ from comfy.ldm.util import exists
19
+ import comfy.ops
20
+
21
+
22
+ class SVDControlNet(nn.Module):
23
+ def __init__(
24
+ self,
25
+ image_size,
26
+ in_channels,
27
+ model_channels,
28
+ hint_channels,
29
+ num_res_blocks,
30
+ dropout=0,
31
+ channel_mult=(1, 2, 4, 8),
32
+ conv_resample=True,
33
+ dims=2,
34
+ num_classes=None,
35
+ use_checkpoint=False,
36
+ dtype=torch.float32,
37
+ num_heads=-1,
38
+ num_head_channels=-1,
39
+ num_heads_upsample=-1,
40
+ use_scale_shift_norm=False,
41
+ resblock_updown=False,
42
+ use_new_attention_order=False,
43
+ use_spatial_transformer=False, # custom transformer support
44
+ transformer_depth=1, # custom transformer support
45
+ context_dim=None, # custom transformer support
46
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
47
+ legacy=True,
48
+ disable_self_attentions=None,
49
+ num_attention_blocks=None,
50
+ disable_middle_self_attn=False,
51
+ use_linear_in_transformer=False,
52
+ adm_in_channels=None,
53
+ transformer_depth_middle=None,
54
+ transformer_depth_output=None,
55
+ use_spatial_context=False,
56
+ extra_ff_mix_layer=False,
57
+ merge_strategy="fixed",
58
+ merge_factor=0.5,
59
+ video_kernel_size=3,
60
+ device=None,
61
+ operations=comfy.ops.disable_weight_init,
62
+ **kwargs,
63
+ ):
64
+ super().__init__()
65
+ assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
66
+ if use_spatial_transformer:
67
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
68
+
69
+ if context_dim is not None:
70
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
71
+ # from omegaconf.listconfig import ListConfig
72
+ # if type(context_dim) == ListConfig:
73
+ # context_dim = list(context_dim)
74
+
75
+ if num_heads_upsample == -1:
76
+ num_heads_upsample = num_heads
77
+
78
+ if num_heads == -1:
79
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
80
+
81
+ if num_head_channels == -1:
82
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
83
+
84
+ self.dims = dims
85
+ self.image_size = image_size
86
+ self.in_channels = in_channels
87
+ self.model_channels = model_channels
88
+
89
+ if isinstance(num_res_blocks, int):
90
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
91
+ else:
92
+ if len(num_res_blocks) != len(channel_mult):
93
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
94
+ "as a list/tuple (per-level) with the same length as channel_mult")
95
+ self.num_res_blocks = num_res_blocks
96
+
97
+ if disable_self_attentions is not None:
98
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
99
+ assert len(disable_self_attentions) == len(channel_mult)
100
+ if num_attention_blocks is not None:
101
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
102
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
103
+
104
+ transformer_depth = transformer_depth[:]
105
+
106
+ self.dropout = dropout
107
+ self.channel_mult = channel_mult
108
+ self.conv_resample = conv_resample
109
+ self.num_classes = num_classes
110
+ self.use_checkpoint = use_checkpoint
111
+ self.dtype = dtype
112
+ self.num_heads = num_heads
113
+ self.num_head_channels = num_head_channels
114
+ self.num_heads_upsample = num_heads_upsample
115
+ self.predict_codebook_ids = n_embed is not None
116
+
117
+ time_embed_dim = model_channels * 4
118
+ self.time_embed = nn.Sequential(
119
+ operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
120
+ nn.SiLU(),
121
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
122
+ )
123
+
124
+ if self.num_classes is not None:
125
+ if isinstance(self.num_classes, int):
126
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
127
+ elif self.num_classes == "continuous":
128
+ print("setting up linear c_adm embedding layer")
129
+ self.label_emb = nn.Linear(1, time_embed_dim)
130
+ elif self.num_classes == "sequential":
131
+ assert adm_in_channels is not None
132
+ self.label_emb = nn.Sequential(
133
+ nn.Sequential(
134
+ operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
135
+ nn.SiLU(),
136
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
137
+ )
138
+ )
139
+ else:
140
+ raise ValueError()
141
+
142
+ self.input_blocks = nn.ModuleList(
143
+ [
144
+ TimestepEmbedSequential(
145
+ operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
146
+ )
147
+ ]
148
+ )
149
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
150
+
151
+ self.input_hint_block = TimestepEmbedSequential(
152
+ operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
153
+ nn.SiLU(),
154
+ operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
155
+ nn.SiLU(),
156
+ operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
157
+ nn.SiLU(),
158
+ operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
159
+ nn.SiLU(),
160
+ operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
161
+ nn.SiLU(),
162
+ operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
163
+ nn.SiLU(),
164
+ operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
165
+ nn.SiLU(),
166
+ operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
167
+ )
168
+
169
+ self._feature_size = model_channels
170
+ input_block_chans = [model_channels]
171
+ ch = model_channels
172
+ ds = 1
173
+ for level, mult in enumerate(channel_mult):
174
+ for nr in range(self.num_res_blocks[level]):
175
+ layers = [
176
+ VideoResBlock(
177
+ ch,
178
+ time_embed_dim,
179
+ dropout,
180
+ out_channels=mult * model_channels,
181
+ dims=dims,
182
+ use_checkpoint=use_checkpoint,
183
+ use_scale_shift_norm=use_scale_shift_norm,
184
+ dtype=self.dtype,
185
+ device=device,
186
+ operations=operations,
187
+ video_kernel_size=video_kernel_size,
188
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
189
+ )
190
+ ]
191
+ ch = mult * model_channels
192
+ num_transformers = transformer_depth.pop(0)
193
+ if num_transformers > 0:
194
+ if num_head_channels == -1:
195
+ dim_head = ch // num_heads
196
+ else:
197
+ num_heads = ch // num_head_channels
198
+ dim_head = num_head_channels
199
+ if legacy:
200
+ #num_heads = 1
201
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
202
+ if exists(disable_self_attentions):
203
+ disabled_sa = disable_self_attentions[level]
204
+ else:
205
+ disabled_sa = False
206
+
207
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
208
+ layers.append(
209
+ SpatialVideoTransformer(
210
+ ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
211
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
212
+ checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations,
213
+ use_spatial_context=use_spatial_context, ff_in=extra_ff_mix_layer,
214
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
215
+ )
216
+ )
217
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
218
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
219
+ self._feature_size += ch
220
+ input_block_chans.append(ch)
221
+ if level != len(channel_mult) - 1:
222
+ out_ch = ch
223
+ self.input_blocks.append(
224
+ TimestepEmbedSequential(
225
+ VideoResBlock(
226
+ ch,
227
+ time_embed_dim,
228
+ dropout,
229
+ out_channels=out_ch,
230
+ dims=dims,
231
+ use_checkpoint=use_checkpoint,
232
+ use_scale_shift_norm=use_scale_shift_norm,
233
+ down=True,
234
+ dtype=self.dtype,
235
+ device=device,
236
+ operations=operations,
237
+ video_kernel_size=video_kernel_size,
238
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
239
+ )
240
+ if resblock_updown
241
+ else Downsample(
242
+ ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
243
+ )
244
+ )
245
+ )
246
+ ch = out_ch
247
+ input_block_chans.append(ch)
248
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
249
+ ds *= 2
250
+ self._feature_size += ch
251
+
252
+ if num_head_channels == -1:
253
+ dim_head = ch // num_heads
254
+ else:
255
+ num_heads = ch // num_head_channels
256
+ dim_head = num_head_channels
257
+ if legacy:
258
+ #num_heads = 1
259
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
260
+ mid_block = [
261
+ VideoResBlock(
262
+ ch,
263
+ time_embed_dim,
264
+ dropout,
265
+ dims=dims,
266
+ use_checkpoint=use_checkpoint,
267
+ use_scale_shift_norm=use_scale_shift_norm,
268
+ dtype=self.dtype,
269
+ device=device,
270
+ operations=operations,
271
+ video_kernel_size=video_kernel_size,
272
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
273
+ )]
274
+ if transformer_depth_middle >= 0:
275
+ mid_block += [SpatialVideoTransformer( # always uses a self-attn
276
+ ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
277
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
278
+ checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations,
279
+ use_spatial_context=use_spatial_context, ff_in=extra_ff_mix_layer,
280
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
281
+ ),
282
+ VideoResBlock(
283
+ ch,
284
+ time_embed_dim,
285
+ dropout,
286
+ dims=dims,
287
+ use_checkpoint=use_checkpoint,
288
+ use_scale_shift_norm=use_scale_shift_norm,
289
+ dtype=self.dtype,
290
+ device=device,
291
+ operations=operations,
292
+ video_kernel_size=video_kernel_size,
293
+ merge_strategy=merge_strategy, merge_factor=merge_factor,
294
+ )]
295
+ self.middle_block = TimestepEmbedSequential(*mid_block)
296
+ self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
297
+ self._feature_size += ch
298
+
299
+ def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
300
+ return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
301
+
302
+ def forward(self, x, hint, timesteps, context, y=None, **kwargs):
303
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
304
+ emb = self.time_embed(t_emb)
305
+
306
+ cond = kwargs["cond"]
307
+ num_video_frames = cond["num_video_frames"]
308
+ image_only_indicator = cond.get("image_only_indicator", None)
309
+ time_context = cond.get("time_context", None)
310
+ del cond
311
+
312
+ guided_hint = self.input_hint_block(hint, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
313
+
314
+ out_output = []
315
+ out_middle = []
316
+
317
+ hs = []
318
+ if self.num_classes is not None:
319
+ assert y.shape[0] == x.shape[0]
320
+ emb = emb + self.label_emb(y)
321
+
322
+ h = x
323
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
324
+ if guided_hint is not None:
325
+ h = module(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
326
+ h += guided_hint
327
+ guided_hint = None
328
+ else:
329
+ h = module(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
330
+ out_output.append(zero_conv(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator))
331
+
332
+ h = self.middle_block(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
333
+ out_middle.append(self.middle_block_out(h, emb, context, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator))
334
+
335
+ return {"middle": out_middle, "output": out_output}
336
+
337
+
338
+ TEMPORAL_TRANSFORMER_BLOCKS = {
339
+ "norm_in.weight",
340
+ "norm_in.bias",
341
+ "ff_in.net.0.proj.weight",
342
+ "ff_in.net.0.proj.bias",
343
+ "ff_in.net.2.weight",
344
+ "ff_in.net.2.bias",
345
+ }
346
+ TEMPORAL_TRANSFORMER_BLOCKS.update(TRANSFORMER_BLOCKS)
347
+
348
+
349
+ TEMPORAL_UNET_MAP_ATTENTIONS = {
350
+ "time_mixer.mix_factor",
351
+ }
352
+ TEMPORAL_UNET_MAP_ATTENTIONS.update(UNET_MAP_ATTENTIONS)
353
+
354
+
355
+ TEMPORAL_TRANSFORMER_MAP = {
356
+ "time_pos_embed.0.weight": "time_pos_embed.linear_1.weight",
357
+ "time_pos_embed.0.bias": "time_pos_embed.linear_1.bias",
358
+ "time_pos_embed.2.weight": "time_pos_embed.linear_2.weight",
359
+ "time_pos_embed.2.bias": "time_pos_embed.linear_2.bias",
360
+ }
361
+
362
+
363
+ TEMPORAL_RESNET = {
364
+ "time_mixer.mix_factor",
365
+ }
366
+
367
+
368
+ def svd_unet_config_from_diffusers_unet(state_dict: dict[str, Tensor], dtype):
369
+ match = {}
370
+ transformer_depth = []
371
+
372
+ attn_res = 1
373
+ down_blocks = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}")
374
+ for i in range(down_blocks):
375
+ attn_blocks = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
376
+ for ab in range(attn_blocks):
377
+ transformer_count = comfy.model_detection.count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
378
+ transformer_depth.append(transformer_count)
379
+ if transformer_count > 0:
380
+ match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
381
+
382
+ attn_res *= 2
383
+ if attn_blocks == 0:
384
+ transformer_depth.append(0)
385
+ transformer_depth.append(0)
386
+
387
+ match["transformer_depth"] = transformer_depth
388
+
389
+ match["model_channels"] = state_dict["conv_in.weight"].shape[0]
390
+ match["in_channels"] = state_dict["conv_in.weight"].shape[1]
391
+ match["adm_in_channels"] = None
392
+ if "class_embedding.linear_1.weight" in state_dict:
393
+ match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
394
+ elif "add_embedding.linear_1.weight" in state_dict:
395
+ match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
396
+
397
+ # based on unet_config of SVD
398
+ SVD = {
399
+ 'use_checkpoint': False,
400
+ 'image_size': 32,
401
+ 'use_spatial_transformer': True,
402
+ 'legacy': False,
403
+ 'num_classes': 'sequential',
404
+ 'adm_in_channels': 768,
405
+ 'dtype': dtype,
406
+ 'in_channels': 8,
407
+ 'out_channels': 4,
408
+ 'model_channels': 320,
409
+ 'num_res_blocks': [2, 2, 2, 2],
410
+ 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
411
+ 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
412
+ 'channel_mult': [1, 2, 4, 4],
413
+ 'transformer_depth_middle': 1,
414
+ 'use_linear_in_transformer': True,
415
+ 'context_dim': 1024,
416
+ 'extra_ff_mix_layer': True,
417
+ 'use_spatial_context': True,
418
+ 'merge_strategy': 'learned_with_images',
419
+ 'merge_factor': 0.0,
420
+ 'video_kernel_size': [3, 1, 1],
421
+ 'use_temporal_attention': True,
422
+ 'use_temporal_resblock': True,
423
+ 'num_heads': -1,
424
+ 'num_head_channels': 64,
425
+ }
426
+
427
+ supported_models = [SVD]
428
+
429
+ for unet_config in supported_models:
430
+ matches = True
431
+ for k in match:
432
+ if match[k] != unet_config[k]:
433
+ matches = False
434
+ break
435
+ if matches:
436
+ return comfy.model_detection.convert_config(unet_config)
437
+ return None
438
+
439
+
440
+ def svd_unet_to_diffusers(unet_config):
441
+ num_res_blocks = unet_config["num_res_blocks"]
442
+ channel_mult = unet_config["channel_mult"]
443
+ transformer_depth = unet_config["transformer_depth"][:]
444
+ transformer_depth_output = unet_config["transformer_depth_output"][:]
445
+ num_blocks = len(channel_mult)
446
+
447
+ transformers_mid = unet_config.get("transformer_depth_middle", None)
448
+
449
+ diffusers_unet_map = {}
450
+ for x in range(num_blocks):
451
+ n = 1 + (num_res_blocks[x] + 1) * x
452
+ for i in range(num_res_blocks[x]):
453
+ for b in TEMPORAL_RESNET:
454
+ diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, b)] = "input_blocks.{}.0.{}".format(n, b)
455
+ for b in UNET_MAP_RESNET:
456
+ diffusers_unet_map["down_blocks.{}.resnets.{}.spatial_res_block.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
457
+ diffusers_unet_map["down_blocks.{}.resnets.{}.temporal_res_block.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.time_stack.{}".format(n, b)
458
+ #diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
459
+ num_transformers = transformer_depth.pop(0)
460
+ if num_transformers > 0:
461
+ for b in TEMPORAL_UNET_MAP_ATTENTIONS:
462
+ diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
463
+ for b in TEMPORAL_TRANSFORMER_MAP:
464
+ diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, TEMPORAL_TRANSFORMER_MAP[b])] = "input_blocks.{}.1.{}".format(n, b)
465
+ for t in range(num_transformers):
466
+ for b in TRANSFORMER_BLOCKS:
467
+ diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
468
+ for b in TEMPORAL_TRANSFORMER_BLOCKS:
469
+ diffusers_unet_map["down_blocks.{}.attentions.{}.temporal_transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.time_stack.{}.{}".format(n, t, b)
470
+ n += 1
471
+ for k in ["weight", "bias"]:
472
+ diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)
473
+
474
+ i = 0
475
+ for b in TEMPORAL_UNET_MAP_ATTENTIONS:
476
+ diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
477
+ for b in TEMPORAL_TRANSFORMER_MAP:
478
+ diffusers_unet_map["mid_block.attentions.{}.{}".format(i, TEMPORAL_TRANSFORMER_MAP[b])] = "middle_block.1.{}".format(b)
479
+ for t in range(transformers_mid):
480
+ for b in TRANSFORMER_BLOCKS:
481
+ diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)
482
+ for b in TEMPORAL_TRANSFORMER_BLOCKS:
483
+ diffusers_unet_map["mid_block.attentions.{}.temporal_transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.time_stack.{}.{}".format(t, b)
484
+
485
+ for i, n in enumerate([0, 2]):
486
+ for b in TEMPORAL_RESNET:
487
+ diffusers_unet_map["mid_block.resnets.{}.{}".format(i, b)] = "middle_block.{}.{}".format(n, b)
488
+ for b in UNET_MAP_RESNET:
489
+ diffusers_unet_map["mid_block.resnets.{}.spatial_res_block.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
490
+ diffusers_unet_map["mid_block.resnets.{}.temporal_res_block.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.time_stack.{}".format(n, b)
491
+ #diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
492
+
493
+ num_res_blocks = list(reversed(num_res_blocks))
494
+ for x in range(num_blocks):
495
+ n = (num_res_blocks[x] + 1) * x
496
+ l = num_res_blocks[x] + 1
497
+ for i in range(l):
498
+ c = 0
499
+ for b in UNET_MAP_RESNET:
500
+ diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
501
+ c += 1
502
+ num_transformers = transformer_depth_output.pop()
503
+ if num_transformers > 0:
504
+ c += 1
505
+ for b in UNET_MAP_ATTENTIONS:
506
+ diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
507
+ for t in range(num_transformers):
508
+ for b in TRANSFORMER_BLOCKS:
509
+ diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
510
+ if i == l - 1:
511
+ for k in ["weight", "bias"]:
512
+ diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
513
+ n += 1
514
+
515
+ for k in UNET_MAP_BASIC:
516
+ diffusers_unet_map[k[1]] = k[0]
517
+
518
+ return diffusers_unet_map
ComfyUI-Advanced-ControlNet/adv_control/documentation.py CHANGED
@@ -1,47 +1,47 @@
1
- from .logger import logger
2
-
3
- def image(src):
4
- return f'<img src={src} style="width: 0px; min-width: 100%">'
5
- def video(src):
6
- return f'<video src={src} autoplay muted loop controls controlslist="nodownload noremoteplayback noplaybackrate" style="width: 0px; min-width: 100%" class="VHS_loopedvideo">'
7
- def short_desc(desc):
8
- return f'<div id=VHS_shortdesc style="font-size: .8em">{desc}</div>'
9
-
10
- descriptions = {
11
- }
12
-
13
- sizes = ['1.4','1.2','1']
14
- def as_html(entry, depth=0):
15
- if isinstance(entry, dict):
16
- size = 0.8 if depth < 2 else 1
17
- html = ''
18
- for k in entry:
19
- if k == "collapsed":
20
- continue
21
- collapse_single = k.endswith("_collapsed")
22
- if collapse_single:
23
- name = k[:-len("_collapsed")]
24
- else:
25
- name = k
26
- collapse_flag = ' VHS_precollapse' if entry.get("collapsed", False) or collapse_single else ''
27
- html += f'<div vhs_title=\"{name}\" style=\"display: flex; font-size: {size}em\" class=\"VHS_collapse{collapse_flag}\"><div style=\"color: #AAA; height: 1.5em;\">[<span style=\"font-family: monospace\">-</span>]</div><div style=\"width: 100%\">{name}: {as_html(entry[k], depth=depth+1)}</div></div>'
28
- return html
29
- if isinstance(entry, list):
30
- html = ''
31
- for i in entry:
32
- html += f'<div>{as_html(i, depth=depth)}</div>'
33
- return html
34
- return str(entry)
35
-
36
- def format_descriptions(nodes):
37
- for k in descriptions:
38
- if k.endswith("_collapsed"):
39
- k = k[:-len("_collapsed")]
40
- nodes[k].DESCRIPTION = as_html(descriptions[k])
41
- # undocumented_nodes = []
42
- # for k in nodes:
43
- # if not hasattr(nodes[k], "DESCRIPTION"):
44
- # undocumented_nodes.append(k)
45
- # if len(undocumented_nodes) > 0:
46
- # logger.info(f"Undocumented nodes: {undocumented_nodes}")
47
-
 
1
+ from .logger import logger
2
+
3
+ def image(src):
4
+ return f'<img src={src} style="width: 0px; min-width: 100%">'
5
+ def video(src):
6
+ return f'<video src={src} autoplay muted loop controls controlslist="nodownload noremoteplayback noplaybackrate" style="width: 0px; min-width: 100%" class="VHS_loopedvideo">'
7
+ def short_desc(desc):
8
+ return f'<div id=VHS_shortdesc style="font-size: .8em">{desc}</div>'
9
+
10
+ descriptions = {
11
+ }
12
+
13
+ sizes = ['1.4','1.2','1']
14
+ def as_html(entry, depth=0):
15
+ if isinstance(entry, dict):
16
+ size = 0.8 if depth < 2 else 1
17
+ html = ''
18
+ for k in entry:
19
+ if k == "collapsed":
20
+ continue
21
+ collapse_single = k.endswith("_collapsed")
22
+ if collapse_single:
23
+ name = k[:-len("_collapsed")]
24
+ else:
25
+ name = k
26
+ collapse_flag = ' VHS_precollapse' if entry.get("collapsed", False) or collapse_single else ''
27
+ html += f'<div vhs_title=\"{name}\" style=\"display: flex; font-size: {size}em\" class=\"VHS_collapse{collapse_flag}\"><div style=\"color: #AAA; height: 1.5em;\">[<span style=\"font-family: monospace\">-</span>]</div><div style=\"width: 100%\">{name}: {as_html(entry[k], depth=depth+1)}</div></div>'
28
+ return html
29
+ if isinstance(entry, list):
30
+ html = ''
31
+ for i in entry:
32
+ html += f'<div>{as_html(i, depth=depth)}</div>'
33
+ return html
34
+ return str(entry)
35
+
36
+ def format_descriptions(nodes):
37
+ for k in descriptions:
38
+ if k.endswith("_collapsed"):
39
+ k = k[:-len("_collapsed")]
40
+ nodes[k].DESCRIPTION = as_html(descriptions[k])
41
+ # undocumented_nodes = []
42
+ # for k in nodes:
43
+ # if not hasattr(nodes[k], "DESCRIPTION"):
44
+ # undocumented_nodes.append(k)
45
+ # if len(undocumented_nodes) > 0:
46
+ # logger.info(f"Undocumented nodes: {undocumented_nodes}")
47
+
ComfyUI-Advanced-ControlNet/adv_control/logger.py CHANGED
@@ -1,36 +1,36 @@
1
- import sys
2
- import copy
3
- import logging
4
-
5
-
6
- class ColoredFormatter(logging.Formatter):
7
- COLORS = {
8
- "DEBUG": "\033[0;36m", # CYAN
9
- "INFO": "\033[0;32m", # GREEN
10
- "WARNING": "\033[0;33m", # YELLOW
11
- "ERROR": "\033[0;31m", # RED
12
- "CRITICAL": "\033[0;37;41m", # WHITE ON RED
13
- "RESET": "\033[0m", # RESET COLOR
14
- }
15
-
16
- def format(self, record):
17
- colored_record = copy.copy(record)
18
- levelname = colored_record.levelname
19
- seq = self.COLORS.get(levelname, self.COLORS["RESET"])
20
- colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
21
- return super().format(colored_record)
22
-
23
-
24
- # Create a new logger
25
- logger = logging.getLogger("Advanced-ControlNet")
26
- logger.propagate = False
27
-
28
- # Add handler if we don't have one.
29
- if not logger.handlers:
30
- handler = logging.StreamHandler(sys.stdout)
31
- handler.setFormatter(ColoredFormatter("[%(name)s] - %(levelname)s - %(message)s"))
32
- logger.addHandler(handler)
33
-
34
- # Configure logger
35
- loglevel = logging.INFO
36
- logger.setLevel(loglevel)
 
1
+ import sys
2
+ import copy
3
+ import logging
4
+
5
+
6
+ class ColoredFormatter(logging.Formatter):
7
+ COLORS = {
8
+ "DEBUG": "\033[0;36m", # CYAN
9
+ "INFO": "\033[0;32m", # GREEN
10
+ "WARNING": "\033[0;33m", # YELLOW
11
+ "ERROR": "\033[0;31m", # RED
12
+ "CRITICAL": "\033[0;37;41m", # WHITE ON RED
13
+ "RESET": "\033[0m", # RESET COLOR
14
+ }
15
+
16
+ def format(self, record):
17
+ colored_record = copy.copy(record)
18
+ levelname = colored_record.levelname
19
+ seq = self.COLORS.get(levelname, self.COLORS["RESET"])
20
+ colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
21
+ return super().format(colored_record)
22
+
23
+
24
+ # Create a new logger
25
+ logger = logging.getLogger("Advanced-ControlNet")
26
+ logger.propagate = False
27
+
28
+ # Add handler if we don't have one.
29
+ if not logger.handlers:
30
+ handler = logging.StreamHandler(sys.stdout)
31
+ handler.setFormatter(ColoredFormatter("[%(name)s] - %(levelname)s - %(message)s"))
32
+ logger.addHandler(handler)
33
+
34
+ # Configure logger
35
+ loglevel = logging.INFO
36
+ logger.setLevel(loglevel)
ComfyUI-Advanced-ControlNet/adv_control/nodes.py CHANGED
@@ -1,331 +1,331 @@
1
- import numpy as np
2
- from torch import Tensor
3
-
4
- import folder_paths
5
- import comfy.sample
6
- from comfy.model_patcher import ModelPatcher
7
-
8
- from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
9
- from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX
10
- from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights,
11
- SoftControlNetWeightsSD15, CustomControlNetWeightsSD15, CustomControlNetWeightsFlux,
12
- SoftT2IAdapterWeights, CustomT2IAdapterWeights)
13
- from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode,
14
- TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode)
15
- from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor, SparseWeightExtras
16
- from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode
17
- from .nodes_plusplus import PlusPlusLoaderAdvanced, PlusPlusLoaderSingle, PlusPlusInputNode
18
- from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced
19
- from .nodes_deprecated import (LoadImagesFromDirectory, ScaledSoftUniversalWeightsDeprecated,
20
- SoftControlNetWeightsDeprecated, CustomControlNetWeightsDeprecated,
21
- SoftT2IAdapterWeightsDeprecated, CustomT2IAdapterWeightsDeprecated)
22
- from .logger import logger
23
-
24
- from .sampling import acn_sample_factory
25
- # inject sample functions
26
- comfy.sample.sample = acn_sample_factory(comfy.sample.sample)
27
- comfy.sample.sample_custom = acn_sample_factory(comfy.sample.sample_custom, is_custom=True)
28
-
29
-
30
- class ControlNetLoaderAdvanced:
31
- @classmethod
32
- def INPUT_TYPES(s):
33
- return {
34
- "required": {
35
- "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
36
- },
37
- "optional": {
38
- "tk_optional": ("TIMESTEP_KEYFRAME", ),
39
- }
40
- }
41
-
42
- RETURN_TYPES = ("CONTROL_NET", )
43
- FUNCTION = "load_controlnet"
44
-
45
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
46
-
47
- def load_controlnet(self, control_net_name,
48
- tk_optional: TimestepKeyframeGroup=None,
49
- timestep_keyframe: TimestepKeyframeGroup=None,
50
- ):
51
- if timestep_keyframe is not None: # backwards compatibility
52
- tk_optional = timestep_keyframe
53
- controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
54
- controlnet = load_controlnet(controlnet_path, tk_optional)
55
- return (controlnet,)
56
-
57
-
58
- class DiffControlNetLoaderAdvanced:
59
- @classmethod
60
- def INPUT_TYPES(s):
61
- return {
62
- "required": {
63
- "model": ("MODEL",),
64
- "control_net_name": (folder_paths.get_filename_list("controlnet"), )
65
- },
66
- "optional": {
67
- "tk_optional": ("TIMESTEP_KEYFRAME", ),
68
- "autosize": ("ACNAUTOSIZE", {"padding": 160}),
69
- }
70
- }
71
-
72
- RETURN_TYPES = ("CONTROL_NET", )
73
- FUNCTION = "load_controlnet"
74
-
75
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
76
-
77
- def load_controlnet(self, control_net_name, model,
78
- tk_optional: TimestepKeyframeGroup=None,
79
- timestep_keyframe: TimestepKeyframeGroup=None
80
- ):
81
- if timestep_keyframe is not None: # backwards compatibility
82
- tk_optional = timestep_keyframe
83
- controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
84
- controlnet = load_controlnet(controlnet_path, tk_optional, model)
85
- if is_advanced_controlnet(controlnet):
86
- controlnet.verify_all_weights()
87
- return (controlnet,)
88
-
89
-
90
- class AdvancedControlNetApply:
91
- @classmethod
92
- def INPUT_TYPES(s):
93
- return {
94
- "required": {
95
- "positive": ("CONDITIONING", ),
96
- "negative": ("CONDITIONING", ),
97
- "control_net": ("CONTROL_NET", ),
98
- "image": ("IMAGE", ),
99
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
100
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
101
- "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
102
- },
103
- "optional": {
104
- "mask_optional": ("MASK", ),
105
- "timestep_kf": ("TIMESTEP_KEYFRAME", ),
106
- "latent_kf_override": ("LATENT_KEYFRAME", ),
107
- "weights_override": ("CONTROL_NET_WEIGHTS", ),
108
- "model_optional": ("MODEL",),
109
- "vae_optional": ("VAE",),
110
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
111
- }
112
- }
113
-
114
- RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
115
- RETURN_NAMES = ("positive", "negative", "model_opt")
116
- FUNCTION = "apply_controlnet"
117
-
118
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
119
-
120
- def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
121
- mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
122
- timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
123
- weights_override: ControlWeights=None, control_apply_to_uncond=False):
124
- if strength == 0:
125
- return (positive, negative, model_optional)
126
- if model_optional:
127
- model_optional = model_optional.clone()
128
-
129
- control_hint = image.movedim(-1,1)
130
- cnets = {}
131
-
132
- out = []
133
- for conditioning in [positive, negative]:
134
- c = []
135
- if conditioning is not None:
136
- for t in conditioning:
137
- d = t[1].copy()
138
-
139
- prev_cnet = d.get('control', None)
140
- if prev_cnet in cnets:
141
- c_net = cnets[prev_cnet]
142
- else:
143
- # copy, convert to advanced if needed, and set cond
144
- c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
145
- if is_advanced_controlnet(c_net):
146
- # disarm node check
147
- c_net.disarm()
148
- # if model required, verify model is passed in, and if so patch it
149
- if c_net.require_model:
150
- if not model_optional:
151
- raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.")
152
- c_net.patch_model(model=model_optional)
153
- # if vae required, verify vae is passed in
154
- if c_net.require_vae:
155
- # if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
156
- if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
157
- pass
158
- elif not vae_optional:
159
- # make sure SD3 ControlNet will get a special message instead of generic type mention
160
- if is_sd3_advanced_controlnet:
161
- raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
162
- else:
163
- raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
164
- # apply optional parameters and overrides, if provided
165
- if timestep_kf is not None:
166
- c_net.set_timestep_keyframes(timestep_kf)
167
- if latent_kf_override is not None:
168
- c_net.latent_keyframe_override = latent_kf_override
169
- if weights_override is not None:
170
- c_net.weights_override = weights_override
171
- # verify weights are compatible
172
- c_net.verify_all_weights()
173
- # set cond hint mask
174
- if mask_optional is not None:
175
- mask_optional = mask_optional.clone()
176
- # if not in the form of a batch, make it so
177
- if len(mask_optional.shape) < 3:
178
- mask_optional = mask_optional.unsqueeze(0)
179
- c_net.set_cond_hint_mask(mask_optional)
180
- c_net.set_previous_controlnet(prev_cnet)
181
- cnets[prev_cnet] = c_net
182
-
183
- d['control'] = c_net
184
- d['control_apply_to_uncond'] = control_apply_to_uncond
185
- n = [t[0], d]
186
- c.append(n)
187
- out.append(c)
188
- return (out[0], out[1], model_optional)
189
-
190
-
191
- class AdvancedControlNetApplySingle:
192
- @classmethod
193
- def INPUT_TYPES(s):
194
- return {
195
- "required": {
196
- "conditioning": ("CONDITIONING", ),
197
- "control_net": ("CONTROL_NET", ),
198
- "image": ("IMAGE", ),
199
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
200
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
201
- "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
202
- },
203
- "optional": {
204
- "mask_optional": ("MASK", ),
205
- "timestep_kf": ("TIMESTEP_KEYFRAME", ),
206
- "latent_kf_override": ("LATENT_KEYFRAME", ),
207
- "weights_override": ("CONTROL_NET_WEIGHTS", ),
208
- "model_optional": ("MODEL",),
209
- "vae_optional": ("VAE",),
210
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
211
- }
212
- }
213
-
214
- RETURN_TYPES = ("CONDITIONING","MODEL",)
215
- RETURN_NAMES = ("CONDITIONING", "model_opt")
216
- FUNCTION = "apply_controlnet"
217
-
218
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
219
-
220
- def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
221
- mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
222
- timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
223
- weights_override: ControlWeights=None):
224
- values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
225
- strength=strength, start_percent=start_percent, end_percent=end_percent,
226
- mask_optional=mask_optional, model_optional=model_optional, vae_optional=vae_optional,
227
- timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
228
- control_apply_to_uncond=True)
229
- return (values[0], values[2])
230
-
231
-
232
- # NODE MAPPING
233
- NODE_CLASS_MAPPINGS = {
234
- # Keyframes
235
- "TimestepKeyframe": TimestepKeyframeNode,
236
- "ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode,
237
- "ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode,
238
- "LatentKeyframe": LatentKeyframeNode,
239
- "LatentKeyframeTiming": LatentKeyframeInterpolationNode,
240
- "LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
241
- "LatentKeyframeGroup": LatentKeyframeGroupNode,
242
- # Conditioning
243
- "ACN_AdvancedControlNetApply": AdvancedControlNetApply,
244
- "ACN_AdvancedControlNetApplySingle": AdvancedControlNetApplySingle,
245
- # Loaders
246
- "ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
247
- "DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
248
- # Weights
249
- "ACN_ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
250
- "ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
251
- "ACN_SoftControlNetWeightsSD15": SoftControlNetWeightsSD15,
252
- "ACN_CustomControlNetWeightsSD15": CustomControlNetWeightsSD15,
253
- "ACN_CustomControlNetWeightsFlux": CustomControlNetWeightsFlux,
254
- "ACN_SoftT2IAdapterWeights": SoftT2IAdapterWeights,
255
- "ACN_CustomT2IAdapterWeights": CustomT2IAdapterWeights,
256
- "ACN_DefaultUniversalWeights": DefaultWeights,
257
- # SparseCtrl
258
- "ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor,
259
- "ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced,
260
- "ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced,
261
- "ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode,
262
- "ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode,
263
- "ACN_SparseCtrlWeightExtras": SparseWeightExtras,
264
- # ControlNet++
265
- "ACN_ControlNet++LoaderSingle": PlusPlusLoaderSingle,
266
- "ACN_ControlNet++LoaderAdvanced": PlusPlusLoaderAdvanced,
267
- "ACN_ControlNet++InputNode": PlusPlusInputNode,
268
- # Reference
269
- "ACN_ReferencePreprocessor": ReferencePreprocessorNode,
270
- "ACN_ReferenceControlNet": ReferenceControlNetNode,
271
- "ACN_ReferenceControlNetFinetune": ReferenceControlFinetune,
272
- # LOOSEControl
273
- #"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced,
274
- # Deprecated
275
- "LoadImagesFromDirectory": LoadImagesFromDirectory,
276
- "ScaledSoftControlNetWeights": ScaledSoftUniversalWeightsDeprecated,
277
- "SoftControlNetWeights": SoftControlNetWeightsDeprecated,
278
- "CustomControlNetWeights": CustomControlNetWeightsDeprecated,
279
- "SoftT2IAdapterWeights": SoftT2IAdapterWeightsDeprecated,
280
- "CustomT2IAdapterWeights": CustomT2IAdapterWeightsDeprecated,
281
- }
282
-
283
- NODE_DISPLAY_NAME_MAPPINGS = {
284
- # Keyframes
285
- "TimestepKeyframe": "Timestep Keyframe 🛂🅐🅒🅝",
286
- "ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interp. 🛂🅐🅒🅝",
287
- "ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List 🛂🅐🅒🅝",
288
- "LatentKeyframe": "Latent Keyframe 🛂🅐🅒🅝",
289
- "LatentKeyframeTiming": "Latent Keyframe Interp. 🛂🅐🅒🅝",
290
- "LatentKeyframeBatchedGroup": "Latent Keyframe From List 🛂🅐🅒🅝",
291
- "LatentKeyframeGroup": "Latent Keyframe Group 🛂🅐🅒🅝",
292
- # Conditioning
293
- "ACN_AdvancedControlNetApply": "Apply Advanced ControlNet 🛂🅐🅒🅝",
294
- "ACN_AdvancedControlNetApplySingle": "Apply Advanced ControlNet(1) 🛂🅐🅒🅝",
295
- # Loaders
296
- "ControlNetLoaderAdvanced": "Load Advanced ControlNet Model 🛂🅐🅒🅝",
297
- "DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) 🛂🅐🅒🅝",
298
- # Weights
299
- "ACN_ScaledSoftControlNetWeights": "Scaled Soft Weights 🛂🅐🅒🅝",
300
- "ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights 🛂🅐🅒🅝",
301
- "ACN_SoftControlNetWeightsSD15": "ControlNet Soft Weights [SD1.5] 🛂🅐🅒🅝",
302
- "ACN_CustomControlNetWeightsSD15": "ControlNet Custom Weights [SD1.5] 🛂🅐🅒🅝",
303
- "ACN_CustomControlNetWeightsFlux": "ControlNet Custom Weights [Flux] 🛂🅐🅒🅝",
304
- "ACN_SoftT2IAdapterWeights": "T2IAdapter Soft Weights 🛂🅐🅒🅝",
305
- "ACN_CustomT2IAdapterWeights": "T2IAdapter Custom Weights 🛂🅐🅒🅝",
306
- "ACN_DefaultUniversalWeights": "Default Weights 🛂🅐🅒🅝",
307
- # SparseCtrl
308
- "ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl 🛂🅐🅒🅝",
309
- "ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model 🛂🅐🅒🅝",
310
- "ACN_SparseCtrlMergedLoaderAdvanced": "🧪Load Merged SparseCtrl Model 🛂🅐🅒🅝",
311
- "ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method 🛂🅐🅒🅝",
312
- "ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method 🛂🅐🅒🅝",
313
- "ACN_SparseCtrlWeightExtras": "SparseCtrl Weight Extras 🛂🅐🅒🅝",
314
- # ControlNet++
315
- "ACN_ControlNet++LoaderSingle": "Load ControlNet++ Model (Single) 🛂🅐🅒🅝",
316
- "ACN_ControlNet++LoaderAdvanced": "Load ControlNet++ Model (Multi) 🛂🅐🅒🅝",
317
- "ACN_ControlNet++InputNode": "ControlNet++ Input 🛂🅐🅒🅝",
318
- # Reference
319
- "ACN_ReferencePreprocessor": "Reference Preproccessor 🛂🅐🅒🅝",
320
- "ACN_ReferenceControlNet": "Reference ControlNet 🛂🅐🅒🅝",
321
- "ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) 🛂🅐🅒🅝",
322
- # LOOSEControl
323
- #"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA 🛂🅐🅒🅝",
324
- # Deprecated
325
- "LoadImagesFromDirectory": "🚫Load Images [DEPRECATED] 🛂🅐🅒🅝",
326
- "ScaledSoftControlNetWeights": "Scaled Soft Weights 🛂🅐🅒🅝",
327
- "SoftControlNetWeights": "ControlNet Soft Weights 🛂🅐🅒🅝",
328
- "CustomControlNetWeights": "ControlNet Custom Weights 🛂🅐🅒🅝",
329
- "SoftT2IAdapterWeights": "T2IAdapter Soft Weights 🛂🅐🅒🅝",
330
- "CustomT2IAdapterWeights": "T2IAdapter Custom Weights 🛂🅐🅒🅝",
331
- }
 
1
+ import numpy as np
2
+ from torch import Tensor
3
+
4
+ import folder_paths
5
+ import comfy.sample
6
+ from comfy.model_patcher import ModelPatcher
7
+
8
+ from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
9
+ from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX
10
+ from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights,
11
+ SoftControlNetWeightsSD15, CustomControlNetWeightsSD15, CustomControlNetWeightsFlux,
12
+ SoftT2IAdapterWeights, CustomT2IAdapterWeights)
13
+ from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode,
14
+ TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode)
15
+ from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor, SparseWeightExtras
16
+ from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode
17
+ from .nodes_plusplus import PlusPlusLoaderAdvanced, PlusPlusLoaderSingle, PlusPlusInputNode
18
+ from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced
19
+ from .nodes_deprecated import (LoadImagesFromDirectory, ScaledSoftUniversalWeightsDeprecated,
20
+ SoftControlNetWeightsDeprecated, CustomControlNetWeightsDeprecated,
21
+ SoftT2IAdapterWeightsDeprecated, CustomT2IAdapterWeightsDeprecated)
22
+ from .logger import logger
23
+
24
+ from .sampling import acn_sample_factory
25
+ # inject sample functions
26
+ comfy.sample.sample = acn_sample_factory(comfy.sample.sample)
27
+ comfy.sample.sample_custom = acn_sample_factory(comfy.sample.sample_custom, is_custom=True)
28
+
29
+
30
+ class ControlNetLoaderAdvanced:
31
+ @classmethod
32
+ def INPUT_TYPES(s):
33
+ return {
34
+ "required": {
35
+ "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
36
+ },
37
+ "optional": {
38
+ "tk_optional": ("TIMESTEP_KEYFRAME", ),
39
+ }
40
+ }
41
+
42
+ RETURN_TYPES = ("CONTROL_NET", )
43
+ FUNCTION = "load_controlnet"
44
+
45
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
46
+
47
+ def load_controlnet(self, control_net_name,
48
+ tk_optional: TimestepKeyframeGroup=None,
49
+ timestep_keyframe: TimestepKeyframeGroup=None,
50
+ ):
51
+ if timestep_keyframe is not None: # backwards compatibility
52
+ tk_optional = timestep_keyframe
53
+ controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
54
+ controlnet = load_controlnet(controlnet_path, tk_optional)
55
+ return (controlnet,)
56
+
57
+
58
+ class DiffControlNetLoaderAdvanced:
59
+ @classmethod
60
+ def INPUT_TYPES(s):
61
+ return {
62
+ "required": {
63
+ "model": ("MODEL",),
64
+ "control_net_name": (folder_paths.get_filename_list("controlnet"), )
65
+ },
66
+ "optional": {
67
+ "tk_optional": ("TIMESTEP_KEYFRAME", ),
68
+ "autosize": ("ACNAUTOSIZE", {"padding": 160}),
69
+ }
70
+ }
71
+
72
+ RETURN_TYPES = ("CONTROL_NET", )
73
+ FUNCTION = "load_controlnet"
74
+
75
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
76
+
77
+ def load_controlnet(self, control_net_name, model,
78
+ tk_optional: TimestepKeyframeGroup=None,
79
+ timestep_keyframe: TimestepKeyframeGroup=None
80
+ ):
81
+ if timestep_keyframe is not None: # backwards compatibility
82
+ tk_optional = timestep_keyframe
83
+ controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
84
+ controlnet = load_controlnet(controlnet_path, tk_optional, model)
85
+ if is_advanced_controlnet(controlnet):
86
+ controlnet.verify_all_weights()
87
+ return (controlnet,)
88
+
89
+
90
+ class AdvancedControlNetApply:
91
+ @classmethod
92
+ def INPUT_TYPES(s):
93
+ return {
94
+ "required": {
95
+ "positive": ("CONDITIONING", ),
96
+ "negative": ("CONDITIONING", ),
97
+ "control_net": ("CONTROL_NET", ),
98
+ "image": ("IMAGE", ),
99
+ "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
100
+ "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
101
+ "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
102
+ },
103
+ "optional": {
104
+ "mask_optional": ("MASK", ),
105
+ "timestep_kf": ("TIMESTEP_KEYFRAME", ),
106
+ "latent_kf_override": ("LATENT_KEYFRAME", ),
107
+ "weights_override": ("CONTROL_NET_WEIGHTS", ),
108
+ "model_optional": ("MODEL",),
109
+ "vae_optional": ("VAE",),
110
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
111
+ }
112
+ }
113
+
114
+ RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
115
+ RETURN_NAMES = ("positive", "negative", "model_opt")
116
+ FUNCTION = "apply_controlnet"
117
+
118
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
119
+
120
+ def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
121
+ mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
122
+ timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
123
+ weights_override: ControlWeights=None, control_apply_to_uncond=False):
124
+ if strength == 0:
125
+ return (positive, negative, model_optional)
126
+ if model_optional:
127
+ model_optional = model_optional.clone()
128
+
129
+ control_hint = image.movedim(-1,1)
130
+ cnets = {}
131
+
132
+ out = []
133
+ for conditioning in [positive, negative]:
134
+ c = []
135
+ if conditioning is not None:
136
+ for t in conditioning:
137
+ d = t[1].copy()
138
+
139
+ prev_cnet = d.get('control', None)
140
+ if prev_cnet in cnets:
141
+ c_net = cnets[prev_cnet]
142
+ else:
143
+ # copy, convert to advanced if needed, and set cond
144
+ c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
145
+ if is_advanced_controlnet(c_net):
146
+ # disarm node check
147
+ c_net.disarm()
148
+ # if model required, verify model is passed in, and if so patch it
149
+ if c_net.require_model:
150
+ if not model_optional:
151
+ raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.")
152
+ c_net.patch_model(model=model_optional)
153
+ # if vae required, verify vae is passed in
154
+ if c_net.require_vae:
155
+ # if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
156
+ if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
157
+ pass
158
+ elif not vae_optional:
159
+ # make sure SD3 ControlNet will get a special message instead of generic type mention
160
+ if is_sd3_advanced_controlnet:
161
+ raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
162
+ else:
163
+ raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
164
+ # apply optional parameters and overrides, if provided
165
+ if timestep_kf is not None:
166
+ c_net.set_timestep_keyframes(timestep_kf)
167
+ if latent_kf_override is not None:
168
+ c_net.latent_keyframe_override = latent_kf_override
169
+ if weights_override is not None:
170
+ c_net.weights_override = weights_override
171
+ # verify weights are compatible
172
+ c_net.verify_all_weights()
173
+ # set cond hint mask
174
+ if mask_optional is not None:
175
+ mask_optional = mask_optional.clone()
176
+ # if not in the form of a batch, make it so
177
+ if len(mask_optional.shape) < 3:
178
+ mask_optional = mask_optional.unsqueeze(0)
179
+ c_net.set_cond_hint_mask(mask_optional)
180
+ c_net.set_previous_controlnet(prev_cnet)
181
+ cnets[prev_cnet] = c_net
182
+
183
+ d['control'] = c_net
184
+ d['control_apply_to_uncond'] = control_apply_to_uncond
185
+ n = [t[0], d]
186
+ c.append(n)
187
+ out.append(c)
188
+ return (out[0], out[1], model_optional)
189
+
190
+
191
+ class AdvancedControlNetApplySingle:
192
+ @classmethod
193
+ def INPUT_TYPES(s):
194
+ return {
195
+ "required": {
196
+ "conditioning": ("CONDITIONING", ),
197
+ "control_net": ("CONTROL_NET", ),
198
+ "image": ("IMAGE", ),
199
+ "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
200
+ "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
201
+ "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
202
+ },
203
+ "optional": {
204
+ "mask_optional": ("MASK", ),
205
+ "timestep_kf": ("TIMESTEP_KEYFRAME", ),
206
+ "latent_kf_override": ("LATENT_KEYFRAME", ),
207
+ "weights_override": ("CONTROL_NET_WEIGHTS", ),
208
+ "model_optional": ("MODEL",),
209
+ "vae_optional": ("VAE",),
210
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
211
+ }
212
+ }
213
+
214
+ RETURN_TYPES = ("CONDITIONING","MODEL",)
215
+ RETURN_NAMES = ("CONDITIONING", "model_opt")
216
+ FUNCTION = "apply_controlnet"
217
+
218
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝"
219
+
220
+ def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
221
+ mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
222
+ timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
223
+ weights_override: ControlWeights=None):
224
+ values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
225
+ strength=strength, start_percent=start_percent, end_percent=end_percent,
226
+ mask_optional=mask_optional, model_optional=model_optional, vae_optional=vae_optional,
227
+ timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
228
+ control_apply_to_uncond=True)
229
+ return (values[0], values[2])
230
+
231
+
232
+ # NODE MAPPING
233
+ NODE_CLASS_MAPPINGS = {
234
+ # Keyframes
235
+ "TimestepKeyframe": TimestepKeyframeNode,
236
+ "ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode,
237
+ "ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode,
238
+ "LatentKeyframe": LatentKeyframeNode,
239
+ "LatentKeyframeTiming": LatentKeyframeInterpolationNode,
240
+ "LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
241
+ "LatentKeyframeGroup": LatentKeyframeGroupNode,
242
+ # Conditioning
243
+ "ACN_AdvancedControlNetApply": AdvancedControlNetApply,
244
+ "ACN_AdvancedControlNetApplySingle": AdvancedControlNetApplySingle,
245
+ # Loaders
246
+ "ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
247
+ "DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
248
+ # Weights
249
+ "ACN_ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
250
+ "ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
251
+ "ACN_SoftControlNetWeightsSD15": SoftControlNetWeightsSD15,
252
+ "ACN_CustomControlNetWeightsSD15": CustomControlNetWeightsSD15,
253
+ "ACN_CustomControlNetWeightsFlux": CustomControlNetWeightsFlux,
254
+ "ACN_SoftT2IAdapterWeights": SoftT2IAdapterWeights,
255
+ "ACN_CustomT2IAdapterWeights": CustomT2IAdapterWeights,
256
+ "ACN_DefaultUniversalWeights": DefaultWeights,
257
+ # SparseCtrl
258
+ "ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor,
259
+ "ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced,
260
+ "ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced,
261
+ "ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode,
262
+ "ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode,
263
+ "ACN_SparseCtrlWeightExtras": SparseWeightExtras,
264
+ # ControlNet++
265
+ "ACN_ControlNet++LoaderSingle": PlusPlusLoaderSingle,
266
+ "ACN_ControlNet++LoaderAdvanced": PlusPlusLoaderAdvanced,
267
+ "ACN_ControlNet++InputNode": PlusPlusInputNode,
268
+ # Reference
269
+ "ACN_ReferencePreprocessor": ReferencePreprocessorNode,
270
+ "ACN_ReferenceControlNet": ReferenceControlNetNode,
271
+ "ACN_ReferenceControlNetFinetune": ReferenceControlFinetune,
272
+ # LOOSEControl
273
+ #"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced,
274
+ # Deprecated
275
+ "LoadImagesFromDirectory": LoadImagesFromDirectory,
276
+ "ScaledSoftControlNetWeights": ScaledSoftUniversalWeightsDeprecated,
277
+ "SoftControlNetWeights": SoftControlNetWeightsDeprecated,
278
+ "CustomControlNetWeights": CustomControlNetWeightsDeprecated,
279
+ "SoftT2IAdapterWeights": SoftT2IAdapterWeightsDeprecated,
280
+ "CustomT2IAdapterWeights": CustomT2IAdapterWeightsDeprecated,
281
+ }
282
+
283
+ NODE_DISPLAY_NAME_MAPPINGS = {
284
+ # Keyframes
285
+ "TimestepKeyframe": "Timestep Keyframe 🛂🅐🅒🅝",
286
+ "ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interp. 🛂🅐🅒🅝",
287
+ "ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List 🛂🅐🅒🅝",
288
+ "LatentKeyframe": "Latent Keyframe 🛂🅐🅒🅝",
289
+ "LatentKeyframeTiming": "Latent Keyframe Interp. 🛂🅐🅒🅝",
290
+ "LatentKeyframeBatchedGroup": "Latent Keyframe From List 🛂🅐🅒🅝",
291
+ "LatentKeyframeGroup": "Latent Keyframe Group 🛂🅐🅒🅝",
292
+ # Conditioning
293
+ "ACN_AdvancedControlNetApply": "Apply Advanced ControlNet 🛂🅐🅒🅝",
294
+ "ACN_AdvancedControlNetApplySingle": "Apply Advanced ControlNet(1) 🛂🅐🅒🅝",
295
+ # Loaders
296
+ "ControlNetLoaderAdvanced": "Load Advanced ControlNet Model 🛂🅐🅒🅝",
297
+ "DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) 🛂🅐🅒🅝",
298
+ # Weights
299
+ "ACN_ScaledSoftControlNetWeights": "Scaled Soft Weights 🛂🅐🅒🅝",
300
+ "ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights 🛂🅐🅒🅝",
301
+ "ACN_SoftControlNetWeightsSD15": "ControlNet Soft Weights [SD1.5] 🛂🅐🅒🅝",
302
+ "ACN_CustomControlNetWeightsSD15": "ControlNet Custom Weights [SD1.5] 🛂🅐🅒🅝",
303
+ "ACN_CustomControlNetWeightsFlux": "ControlNet Custom Weights [Flux] 🛂🅐🅒🅝",
304
+ "ACN_SoftT2IAdapterWeights": "T2IAdapter Soft Weights 🛂🅐🅒🅝",
305
+ "ACN_CustomT2IAdapterWeights": "T2IAdapter Custom Weights 🛂🅐🅒🅝",
306
+ "ACN_DefaultUniversalWeights": "Default Weights 🛂🅐🅒🅝",
307
+ # SparseCtrl
308
+ "ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl 🛂🅐🅒🅝",
309
+ "ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model 🛂🅐🅒🅝",
310
+ "ACN_SparseCtrlMergedLoaderAdvanced": "🧪Load Merged SparseCtrl Model 🛂🅐🅒🅝",
311
+ "ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method 🛂🅐🅒🅝",
312
+ "ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method 🛂🅐🅒🅝",
313
+ "ACN_SparseCtrlWeightExtras": "SparseCtrl Weight Extras 🛂🅐🅒🅝",
314
+ # ControlNet++
315
+ "ACN_ControlNet++LoaderSingle": "Load ControlNet++ Model (Single) 🛂🅐🅒🅝",
316
+ "ACN_ControlNet++LoaderAdvanced": "Load ControlNet++ Model (Multi) 🛂🅐🅒🅝",
317
+ "ACN_ControlNet++InputNode": "ControlNet++ Input 🛂🅐🅒🅝",
318
+ # Reference
319
+ "ACN_ReferencePreprocessor": "Reference Preproccessor 🛂🅐🅒🅝",
320
+ "ACN_ReferenceControlNet": "Reference ControlNet 🛂🅐🅒🅝",
321
+ "ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) 🛂🅐🅒🅝",
322
+ # LOOSEControl
323
+ #"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA 🛂🅐🅒🅝",
324
+ # Deprecated
325
+ "LoadImagesFromDirectory": "🚫Load Images [DEPRECATED] 🛂🅐🅒🅝",
326
+ "ScaledSoftControlNetWeights": "Scaled Soft Weights 🛂🅐🅒🅝",
327
+ "SoftControlNetWeights": "ControlNet Soft Weights 🛂🅐🅒🅝",
328
+ "CustomControlNetWeights": "ControlNet Custom Weights 🛂🅐🅒🅝",
329
+ "SoftT2IAdapterWeights": "T2IAdapter Soft Weights 🛂🅐🅒🅝",
330
+ "CustomT2IAdapterWeights": "T2IAdapter Custom Weights 🛂🅐🅒🅝",
331
+ }
ComfyUI-Advanced-ControlNet/adv_control/nodes_deprecated.py CHANGED
@@ -1,251 +1,251 @@
1
- import os
2
-
3
- import torch
4
-
5
- import numpy as np
6
- from PIL import Image, ImageOps
7
- from .utils import BIGMAX, ControlWeights, TimestepKeyframeGroup, TimestepKeyframe, get_properly_arranged_t2i_weights
8
- from .logger import logger
9
-
10
-
11
- class LoadImagesFromDirectory:
12
- @classmethod
13
- def INPUT_TYPES(s):
14
- return {
15
- "required": {
16
- "directory": ("STRING", {"default": ""}),
17
- },
18
- "optional": {
19
- "image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
20
- "start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
21
- }
22
- }
23
-
24
- RETURN_TYPES = ("IMAGE", "MASK", "INT")
25
- FUNCTION = "load_images"
26
-
27
- CATEGORY = ""
28
-
29
- def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
30
- if not os.path.isdir(directory):
31
- raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
32
- dir_files = os.listdir(directory)
33
- if len(dir_files) == 0:
34
- raise FileNotFoundError(f"No files in directory '{directory}'.")
35
-
36
- dir_files = sorted(dir_files)
37
- dir_files = [os.path.join(directory, x) for x in dir_files]
38
- # start at start_index
39
- dir_files = dir_files[start_index:]
40
-
41
- images = []
42
- masks = []
43
-
44
- limit_images = False
45
- if image_load_cap > 0:
46
- limit_images = True
47
- image_count = 0
48
-
49
- for image_path in dir_files:
50
- if os.path.isdir(image_path):
51
- continue
52
- if limit_images and image_count >= image_load_cap:
53
- break
54
- i = Image.open(image_path)
55
- i = ImageOps.exif_transpose(i)
56
- image = i.convert("RGB")
57
- image = np.array(image).astype(np.float32) / 255.0
58
- image = torch.from_numpy(image)[None,]
59
- if 'A' in i.getbands():
60
- mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
61
- mask = 1. - torch.from_numpy(mask)
62
- else:
63
- mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
64
- images.append(image)
65
- masks.append(mask)
66
- image_count += 1
67
-
68
- if len(images) == 0:
69
- raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
70
-
71
- return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)
72
-
73
-
74
- class ScaledSoftUniversalWeightsDeprecated:
75
- @classmethod
76
- def INPUT_TYPES(s):
77
- return {
78
- "required": {
79
- "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
80
- "flip_weights": ("BOOLEAN", {"default": False}),
81
- },
82
- "optional": {
83
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
84
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
85
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
86
- }
87
- }
88
-
89
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
90
- RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
91
- FUNCTION = "load_weights"
92
-
93
- CATEGORY = ""
94
-
95
- def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
96
- weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
97
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
98
-
99
-
100
- class SoftControlNetWeightsDeprecated:
101
- @classmethod
102
- def INPUT_TYPES(s):
103
- return {
104
- "required": {
105
- "weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
106
- "weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
107
- "weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
108
- "weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
109
- "weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
110
- "weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
111
- "weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
112
- "weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
113
- "weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
114
- "weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
115
- "weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
116
- "weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
117
- "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
118
- "flip_weights": ("BOOLEAN", {"default": False}),
119
- },
120
- "optional": {
121
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
122
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
123
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
124
- }
125
- }
126
-
127
- DEPRECATED = True
128
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
129
- RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
130
- FUNCTION = "load_weights"
131
-
132
- CATEGORY = ""
133
-
134
- def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
135
- weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
136
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
137
- weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
138
- weight_07, weight_08, weight_09, weight_10, weight_11]
139
- weights_middle = [weight_12]
140
- weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
141
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
142
-
143
-
144
- class CustomControlNetWeightsDeprecated:
145
- @classmethod
146
- def INPUT_TYPES(s):
147
- return {
148
- "required": {
149
- "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
150
- "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
151
- "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
152
- "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
153
- "weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
154
- "weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
155
- "weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
156
- "weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
157
- "weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
158
- "weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
159
- "weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
160
- "weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
161
- "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
162
- "flip_weights": ("BOOLEAN", {"default": False}),
163
- },
164
- "optional": {
165
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
166
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
167
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
168
- }
169
- }
170
-
171
- DEPRECATED = True
172
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
173
- RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
174
- FUNCTION = "load_weights"
175
-
176
- CATEGORY = ""
177
-
178
- def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
179
- weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
180
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
181
- weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
182
- weight_07, weight_08, weight_09, weight_10, weight_11]
183
- weights_middle = [weight_12]
184
- weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
185
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
186
-
187
-
188
- class SoftT2IAdapterWeightsDeprecated:
189
- @classmethod
190
- def INPUT_TYPES(s):
191
- return {
192
- "required": {
193
- "weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
194
- "weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
195
- "weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
196
- "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
197
- "flip_weights": ("BOOLEAN", {"default": False}),
198
- },
199
- "optional": {
200
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
201
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
202
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
203
- }
204
- }
205
-
206
- DEPRECATED = True
207
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
208
- RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
209
- FUNCTION = "load_weights"
210
-
211
- CATEGORY = ""
212
-
213
- def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
214
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
215
- weights = [weight_00, weight_01, weight_02, weight_03]
216
- weights = get_properly_arranged_t2i_weights(weights)
217
- weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
218
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
219
-
220
-
221
- class CustomT2IAdapterWeightsDeprecated:
222
- @classmethod
223
- def INPUT_TYPES(s):
224
- return {
225
- "required": {
226
- "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
227
- "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
228
- "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
229
- "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
230
- "flip_weights": ("BOOLEAN", {"default": False}),
231
- },
232
- "optional": {
233
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
234
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
235
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
236
- }
237
- }
238
-
239
- DEPRECATED = True
240
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
241
- RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
242
- FUNCTION = "load_weights"
243
-
244
- CATEGORY = ""
245
-
246
- def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
247
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
248
- weights = [weight_00, weight_01, weight_02, weight_03]
249
- weights = get_properly_arranged_t2i_weights(weights)
250
- weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
251
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
 
1
+ import os
2
+
3
+ import torch
4
+
5
+ import numpy as np
6
+ from PIL import Image, ImageOps
7
+ from .utils import BIGMAX, ControlWeights, TimestepKeyframeGroup, TimestepKeyframe, get_properly_arranged_t2i_weights
8
+ from .logger import logger
9
+
10
+
11
+ class LoadImagesFromDirectory:
12
+ @classmethod
13
+ def INPUT_TYPES(s):
14
+ return {
15
+ "required": {
16
+ "directory": ("STRING", {"default": ""}),
17
+ },
18
+ "optional": {
19
+ "image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
20
+ "start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
21
+ }
22
+ }
23
+
24
+ RETURN_TYPES = ("IMAGE", "MASK", "INT")
25
+ FUNCTION = "load_images"
26
+
27
+ CATEGORY = ""
28
+
29
+ def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
30
+ if not os.path.isdir(directory):
31
+ raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
32
+ dir_files = os.listdir(directory)
33
+ if len(dir_files) == 0:
34
+ raise FileNotFoundError(f"No files in directory '{directory}'.")
35
+
36
+ dir_files = sorted(dir_files)
37
+ dir_files = [os.path.join(directory, x) for x in dir_files]
38
+ # start at start_index
39
+ dir_files = dir_files[start_index:]
40
+
41
+ images = []
42
+ masks = []
43
+
44
+ limit_images = False
45
+ if image_load_cap > 0:
46
+ limit_images = True
47
+ image_count = 0
48
+
49
+ for image_path in dir_files:
50
+ if os.path.isdir(image_path):
51
+ continue
52
+ if limit_images and image_count >= image_load_cap:
53
+ break
54
+ i = Image.open(image_path)
55
+ i = ImageOps.exif_transpose(i)
56
+ image = i.convert("RGB")
57
+ image = np.array(image).astype(np.float32) / 255.0
58
+ image = torch.from_numpy(image)[None,]
59
+ if 'A' in i.getbands():
60
+ mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
61
+ mask = 1. - torch.from_numpy(mask)
62
+ else:
63
+ mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
64
+ images.append(image)
65
+ masks.append(mask)
66
+ image_count += 1
67
+
68
+ if len(images) == 0:
69
+ raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
70
+
71
+ return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)
72
+
73
+
74
+ class ScaledSoftUniversalWeightsDeprecated:
75
+ @classmethod
76
+ def INPUT_TYPES(s):
77
+ return {
78
+ "required": {
79
+ "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
80
+ "flip_weights": ("BOOLEAN", {"default": False}),
81
+ },
82
+ "optional": {
83
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
84
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
85
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
86
+ }
87
+ }
88
+
89
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
90
+ RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
91
+ FUNCTION = "load_weights"
92
+
93
+ CATEGORY = ""
94
+
95
+ def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
96
+ weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
97
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
98
+
99
+
100
+ class SoftControlNetWeightsDeprecated:
101
+ @classmethod
102
+ def INPUT_TYPES(s):
103
+ return {
104
+ "required": {
105
+ "weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
106
+ "weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
107
+ "weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
108
+ "weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
109
+ "weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
110
+ "weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
111
+ "weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
112
+ "weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
113
+ "weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
114
+ "weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
115
+ "weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
116
+ "weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
117
+ "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
118
+ "flip_weights": ("BOOLEAN", {"default": False}),
119
+ },
120
+ "optional": {
121
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
122
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
123
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
124
+ }
125
+ }
126
+
127
+ DEPRECATED = True
128
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
129
+ RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
130
+ FUNCTION = "load_weights"
131
+
132
+ CATEGORY = ""
133
+
134
+ def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
135
+ weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
136
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
137
+ weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
138
+ weight_07, weight_08, weight_09, weight_10, weight_11]
139
+ weights_middle = [weight_12]
140
+ weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
141
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
142
+
143
+
144
+ class CustomControlNetWeightsDeprecated:
145
+ @classmethod
146
+ def INPUT_TYPES(s):
147
+ return {
148
+ "required": {
149
+ "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
150
+ "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
151
+ "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
152
+ "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
153
+ "weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
154
+ "weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
155
+ "weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
156
+ "weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
157
+ "weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
158
+ "weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
159
+ "weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
160
+ "weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
161
+ "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
162
+ "flip_weights": ("BOOLEAN", {"default": False}),
163
+ },
164
+ "optional": {
165
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
166
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
167
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
168
+ }
169
+ }
170
+
171
+ DEPRECATED = True
172
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
173
+ RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
174
+ FUNCTION = "load_weights"
175
+
176
+ CATEGORY = ""
177
+
178
+ def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
179
+ weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
180
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
181
+ weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
182
+ weight_07, weight_08, weight_09, weight_10, weight_11]
183
+ weights_middle = [weight_12]
184
+ weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
185
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
186
+
187
+
188
+ class SoftT2IAdapterWeightsDeprecated:
189
+ @classmethod
190
+ def INPUT_TYPES(s):
191
+ return {
192
+ "required": {
193
+ "weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
194
+ "weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
195
+ "weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
196
+ "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
197
+ "flip_weights": ("BOOLEAN", {"default": False}),
198
+ },
199
+ "optional": {
200
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
201
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
202
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
203
+ }
204
+ }
205
+
206
+ DEPRECATED = True
207
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
208
+ RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
209
+ FUNCTION = "load_weights"
210
+
211
+ CATEGORY = ""
212
+
213
+ def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
214
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
215
+ weights = [weight_00, weight_01, weight_02, weight_03]
216
+ weights = get_properly_arranged_t2i_weights(weights)
217
+ weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
218
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
219
+
220
+
221
+ class CustomT2IAdapterWeightsDeprecated:
222
+ @classmethod
223
+ def INPUT_TYPES(s):
224
+ return {
225
+ "required": {
226
+ "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
227
+ "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
228
+ "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
229
+ "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
230
+ "flip_weights": ("BOOLEAN", {"default": False}),
231
+ },
232
+ "optional": {
233
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
234
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
235
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
236
+ }
237
+ }
238
+
239
+ DEPRECATED = True
240
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
241
+ RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
242
+ FUNCTION = "load_weights"
243
+
244
+ CATEGORY = ""
245
+
246
+ def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
247
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
248
+ weights = [weight_00, weight_01, weight_02, weight_03]
249
+ weights = get_properly_arranged_t2i_weights(weights)
250
+ weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
251
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
ComfyUI-Advanced-ControlNet/adv_control/nodes_keyframes.py CHANGED
@@ -1,468 +1,468 @@
1
- from typing import Union
2
- import numpy as np
3
- from collections.abc import Iterable
4
-
5
- from .utils import ControlWeights, TimestepKeyframe, TimestepKeyframeGroup, LatentKeyframe, LatentKeyframeGroup, BIGMIN, BIGMAX
6
- from .utils import StrengthInterpolation as SI
7
- from .logger import logger
8
-
9
-
10
- class TimestepKeyframeNode:
11
- OUTDATED_DUMMY = -39
12
-
13
- @classmethod
14
- def INPUT_TYPES(s):
15
- return {
16
- "required": {
17
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
18
- },
19
- "optional": {
20
- "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
21
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
22
- "cn_weights": ("CONTROL_NET_WEIGHTS", ),
23
- "latent_keyframe": ("LATENT_KEYFRAME", ),
24
- "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
25
- "inherit_missing": ("BOOLEAN", {"default": True}, ),
26
- "guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
27
- "mask_optional": ("MASK", ),
28
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
29
- }
30
- }
31
-
32
- RETURN_NAMES = ("TIMESTEP_KF", )
33
- RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
34
- FUNCTION = "load_keyframe"
35
-
36
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
37
-
38
- def load_keyframe(self,
39
- start_percent: float,
40
- strength: float=1.0,
41
- cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
42
- latent_keyframe: LatentKeyframeGroup=None,
43
- prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
44
- null_latent_kf_strength: float=0.0,
45
- inherit_missing=True,
46
- guarantee_steps=OUTDATED_DUMMY,
47
- guarantee_usage=True, # old input
48
- mask_optional=None,):
49
- # if using outdated dummy value, means node on workflow is outdated and should appropriately convert behavior
50
- if guarantee_steps == self.OUTDATED_DUMMY:
51
- guarantee_steps = int(guarantee_usage)
52
- control_net_weights = control_net_weights if control_net_weights else cn_weights
53
- prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
54
- if not prev_timestep_keyframe:
55
- prev_timestep_keyframe = TimestepKeyframeGroup()
56
- else:
57
- prev_timestep_keyframe = prev_timestep_keyframe.clone()
58
- keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
59
- control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
60
- guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)
61
- prev_timestep_keyframe.add(keyframe)
62
- return (prev_timestep_keyframe,)
63
-
64
-
65
- class TimestepKeyframeInterpolationNode:
66
- @classmethod
67
- def INPUT_TYPES(s):
68
- return {
69
- "required": {
70
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
71
- "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
72
- "strength_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
73
- "strength_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
74
- "interpolation": (SI._LIST, ),
75
- "intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}),
76
- },
77
- "optional": {
78
- "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
79
- "cn_weights": ("CONTROL_NET_WEIGHTS", ),
80
- "latent_keyframe": ("LATENT_KEYFRAME", ),
81
- "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
82
- "inherit_missing": ("BOOLEAN", {"default": True},),
83
- "mask_optional": ("MASK", ),
84
- "print_keyframes": ("BOOLEAN", {"default": False}),
85
- "autosize": ("ACNAUTOSIZE", {"padding": 50}),
86
- }
87
- }
88
-
89
- RETURN_NAMES = ("TIMESTEP_KF", )
90
- RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
91
- FUNCTION = "load_keyframe"
92
-
93
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
94
-
95
- def load_keyframe(self,
96
- start_percent: float, end_percent: float,
97
- strength_start: float, strength_end: float, interpolation: str, intervals: int,
98
- cn_weights: ControlWeights=None,
99
- latent_keyframe: LatentKeyframeGroup=None,
100
- prev_timestep_kf: TimestepKeyframeGroup=None,
101
- null_latent_kf_strength: float=0.0,
102
- inherit_missing=True,
103
- guarantee_steps=1,
104
- mask_optional=None, print_keyframes=False):
105
- if not prev_timestep_kf:
106
- prev_timestep_kf = TimestepKeyframeGroup()
107
- else:
108
- prev_timestep_kf = prev_timestep_kf.clone()
109
-
110
- percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=SI.LINEAR)
111
- strengths = SI.get_weights(num_from=strength_start, num_to=strength_end, length=intervals, method=interpolation)
112
-
113
- is_first = True
114
- for percent, strength in zip(percents, strengths):
115
- guarantee_steps = 0
116
- if is_first:
117
- guarantee_steps = 1
118
- is_first = False
119
- prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
120
- control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
121
- guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
122
- if print_keyframes:
123
- logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
124
- return (prev_timestep_kf,)
125
-
126
-
127
- class TimestepKeyframeFromStrengthListNode:
128
- @classmethod
129
- def INPUT_TYPES(s):
130
- return {
131
- "required": {
132
- "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
133
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
134
- "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
135
- },
136
- "optional": {
137
- "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
138
- "cn_weights": ("CONTROL_NET_WEIGHTS", ),
139
- "latent_keyframe": ("LATENT_KEYFRAME", ),
140
- "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
141
- "inherit_missing": ("BOOLEAN", {"default": True},),
142
- "mask_optional": ("MASK", ),
143
- "print_keyframes": ("BOOLEAN", {"default": False}),
144
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
145
- }
146
- }
147
-
148
- RETURN_NAMES = ("TIMESTEP_KF", )
149
- RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
150
- FUNCTION = "load_keyframe"
151
-
152
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
153
-
154
- def load_keyframe(self,
155
- start_percent: float, end_percent: float,
156
- float_strengths: float,
157
- cn_weights: ControlWeights=None,
158
- latent_keyframe: LatentKeyframeGroup=None,
159
- prev_timestep_kf: TimestepKeyframeGroup=None,
160
- null_latent_kf_strength: float=0.0,
161
- inherit_missing=True,
162
- guarantee_steps=1,
163
- mask_optional=None, print_keyframes=False):
164
- if not prev_timestep_kf:
165
- prev_timestep_kf = TimestepKeyframeGroup()
166
- else:
167
- prev_timestep_kf = prev_timestep_kf.clone()
168
-
169
- if type(float_strengths) in (float, int):
170
- float_strengths = [float(float_strengths)]
171
- elif isinstance(float_strengths, Iterable):
172
- pass
173
- else:
174
- raise Exception(f"strengths_float must be either an iterable input or a float, but was {type(float_strengths).__repr__}.")
175
- percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=len(float_strengths), method=SI.LINEAR)
176
-
177
- is_first = True
178
- for percent, strength in zip(percents, float_strengths):
179
- guarantee_steps = 0
180
- if is_first:
181
- guarantee_steps = 1
182
- is_first = False
183
- prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
184
- control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
185
- guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
186
- if print_keyframes:
187
- logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
188
- return (prev_timestep_kf,)
189
-
190
-
191
- class LatentKeyframeNode:
192
- @classmethod
193
- def INPUT_TYPES(s):
194
- return {
195
- "required": {
196
- "batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
197
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
198
- },
199
- "optional": {
200
- "prev_latent_kf": ("LATENT_KEYFRAME", ),
201
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
202
- }
203
- }
204
-
205
- RETURN_NAMES = ("LATENT_KF", )
206
- RETURN_TYPES = ("LATENT_KEYFRAME", )
207
- FUNCTION = "load_keyframe"
208
-
209
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
210
-
211
- def load_keyframe(self,
212
- batch_index: int,
213
- strength: float,
214
- prev_latent_kf: LatentKeyframeGroup=None,
215
- prev_latent_keyframe: LatentKeyframeGroup=None, # old name
216
- ):
217
- prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
218
- if not prev_latent_keyframe:
219
- prev_latent_keyframe = LatentKeyframeGroup()
220
- else:
221
- prev_latent_keyframe = prev_latent_keyframe.clone()
222
- keyframe = LatentKeyframe(batch_index, strength)
223
- prev_latent_keyframe.add(keyframe)
224
- return (prev_latent_keyframe,)
225
-
226
-
227
- class LatentKeyframeGroupNode:
228
- @classmethod
229
- def INPUT_TYPES(s):
230
- return {
231
- "required": {
232
- "index_strengths": ("STRING", {"multiline": True, "default": ""}),
233
- },
234
- "optional": {
235
- "prev_latent_kf": ("LATENT_KEYFRAME", ),
236
- "latent_optional": ("LATENT", ),
237
- "print_keyframes": ("BOOLEAN", {"default": False}),
238
- "autosize": ("ACNAUTOSIZE", {"padding": 35}),
239
- }
240
- }
241
-
242
- RETURN_NAMES = ("LATENT_KF", )
243
- RETURN_TYPES = ("LATENT_KEYFRAME", )
244
- FUNCTION = "load_keyframes"
245
-
246
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
247
-
248
- def validate_index(self, index: int, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
249
- # if part of range, do nothing
250
- if is_range:
251
- return index
252
- # otherwise, validate index
253
- # validate not out of range - only when latent_count is passed in
254
- if latent_count > 0 and index > latent_count-1:
255
- raise IndexError(f"Index '{index}' out of range for the total {latent_count} latents.")
256
- # if negative, validate not out of range
257
- if index < 0:
258
- if not allow_negative:
259
- raise IndexError(f"Negative indeces not allowed, but was {index}.")
260
- conv_index = latent_count+index
261
- if conv_index < 0:
262
- raise IndexError(f"Index '{index}', converted to '{conv_index}' out of range for the total {latent_count} latents.")
263
- index = conv_index
264
- return index
265
-
266
- def convert_to_index_int(self, raw_index: str, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
267
- try:
268
- return self.validate_index(int(raw_index), latent_count=latent_count, is_range=is_range, allow_negative=allow_negative)
269
- except ValueError as e:
270
- raise ValueError(f"index '{raw_index}' must be an integer.", e)
271
-
272
- def convert_to_latent_keyframes(self, latent_indeces: str, latent_count: int) -> set[LatentKeyframe]:
273
- if not latent_indeces:
274
- return set()
275
- int_latent_indeces = [i for i in range(0, latent_count)]
276
- allow_negative = latent_count > 0
277
- chosen_indeces = set()
278
- # parse string - allow positive ints, negative ints, and ranges separated by ':'
279
- groups = latent_indeces.split(",")
280
- groups = [g.strip() for g in groups]
281
- for g in groups:
282
- # parse strengths - default to 1.0 if no strength given
283
- strength = 1.0
284
- if '=' in g:
285
- g, strength_str = g.split("=", 1)
286
- g = g.strip()
287
- try:
288
- strength = float(strength_str.strip())
289
- except ValueError as e:
290
- raise ValueError(f"strength '{strength_str}' must be a float.", e)
291
- if strength < 0:
292
- raise ValueError(f"Strength '{strength}' cannot be negative.")
293
- # parse range of indeces (e.g. 2:16)
294
- if ':' in g:
295
- index_range = g.split(":", 1)
296
- index_range = [r.strip() for r in index_range]
297
- start_index = self.convert_to_index_int(index_range[0], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
298
- end_index = self.convert_to_index_int(index_range[1], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
299
- # if latents were passed in, base indeces on known latent count
300
- if len(int_latent_indeces) > 0:
301
- for i in int_latent_indeces[start_index:end_index]:
302
- chosen_indeces.add(LatentKeyframe(i, strength))
303
- # otherwise, assume indeces are valid
304
- else:
305
- for i in range(start_index, end_index):
306
- chosen_indeces.add(LatentKeyframe(i, strength))
307
- # parse individual indeces
308
- else:
309
- chosen_indeces.add(LatentKeyframe(self.convert_to_index_int(g, latent_count=latent_count, allow_negative=allow_negative), strength))
310
- return chosen_indeces
311
-
312
- def load_keyframes(self,
313
- index_strengths: str,
314
- prev_latent_kf: LatentKeyframeGroup=None,
315
- prev_latent_keyframe: LatentKeyframeGroup=None, # old name
316
- latent_image_opt=None,
317
- print_keyframes=False):
318
- prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
319
- if not prev_latent_keyframe:
320
- prev_latent_keyframe = LatentKeyframeGroup()
321
- else:
322
- prev_latent_keyframe = prev_latent_keyframe.clone()
323
- curr_latent_keyframe = LatentKeyframeGroup()
324
-
325
- latent_count = -1
326
- if latent_image_opt:
327
- latent_count = latent_image_opt['samples'].size()[0]
328
- latent_keyframes = self.convert_to_latent_keyframes(index_strengths, latent_count=latent_count)
329
-
330
- for latent_keyframe in latent_keyframes:
331
- curr_latent_keyframe.add(latent_keyframe)
332
-
333
- if print_keyframes:
334
- for keyframe in curr_latent_keyframe.keyframes:
335
- logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
336
-
337
- # replace values with prev_latent_keyframes
338
- for latent_keyframe in prev_latent_keyframe.keyframes:
339
- curr_latent_keyframe.add(latent_keyframe)
340
-
341
- return (curr_latent_keyframe,)
342
-
343
-
344
- class LatentKeyframeInterpolationNode:
345
- @classmethod
346
- def INPUT_TYPES(s):
347
- return {
348
- "required": {
349
- "batch_index_from": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
350
- "batch_index_to_excl": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
351
- "strength_from": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
352
- "strength_to": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
353
- "interpolation": (SI._LIST, ),
354
- },
355
- "optional": {
356
- "prev_latent_kf": ("LATENT_KEYFRAME", ),
357
- "print_keyframes": ("BOOLEAN", {"default": False}),
358
- "autosize": ("ACNAUTOSIZE", {"padding": 50}),
359
- }
360
- }
361
-
362
- RETURN_NAMES = ("LATENT_KF", )
363
- RETURN_TYPES = ("LATENT_KEYFRAME", )
364
- FUNCTION = "load_keyframe"
365
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
366
-
367
- def load_keyframe(self,
368
- batch_index_from: int,
369
- strength_from: float,
370
- batch_index_to_excl: int,
371
- strength_to: float,
372
- interpolation: str,
373
- prev_latent_kf: LatentKeyframeGroup=None,
374
- prev_latent_keyframe: LatentKeyframeGroup=None, # old name
375
- print_keyframes=False):
376
-
377
- if (batch_index_from > batch_index_to_excl):
378
- raise ValueError("batch_index_from must be less than or equal to batch_index_to.")
379
-
380
- if (batch_index_from < 0 and batch_index_to_excl >= 0):
381
- raise ValueError("batch_index_from and batch_index_to must be either both positive or both negative.")
382
-
383
- prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
384
- if not prev_latent_keyframe:
385
- prev_latent_keyframe = LatentKeyframeGroup()
386
- else:
387
- prev_latent_keyframe = prev_latent_keyframe.clone()
388
- curr_latent_keyframe = LatentKeyframeGroup()
389
-
390
- steps = batch_index_to_excl - batch_index_from
391
- diff = strength_to - strength_from
392
- if interpolation == SI.LINEAR:
393
- weights = np.linspace(strength_from, strength_to, steps)
394
- elif interpolation == SI.EASE_IN:
395
- index = np.linspace(0, 1, steps)
396
- weights = diff * np.power(index, 2) + strength_from
397
- elif interpolation == SI.EASE_OUT:
398
- index = np.linspace(0, 1, steps)
399
- weights = diff * (1 - np.power(1 - index, 2)) + strength_from
400
- elif interpolation == SI.EASE_IN_OUT:
401
- index = np.linspace(0, 1, steps)
402
- weights = diff * ((1 - np.cos(index * np.pi)) / 2) + strength_from
403
-
404
- for i in range(steps):
405
- keyframe = LatentKeyframe(batch_index_from + i, float(weights[i]))
406
- curr_latent_keyframe.add(keyframe)
407
-
408
- if print_keyframes:
409
- for keyframe in curr_latent_keyframe.keyframes:
410
- logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
411
-
412
- # replace values with prev_latent_keyframes
413
- for latent_keyframe in prev_latent_keyframe.keyframes:
414
- curr_latent_keyframe.add(latent_keyframe)
415
-
416
- return (curr_latent_keyframe,)
417
-
418
-
419
- class LatentKeyframeBatchedGroupNode:
420
- @classmethod
421
- def INPUT_TYPES(s):
422
- return {
423
- "required": {
424
- "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
425
- },
426
- "optional": {
427
- "prev_latent_kf": ("LATENT_KEYFRAME", ),
428
- "print_keyframes": ("BOOLEAN", {"default": False}),
429
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
430
- }
431
- }
432
-
433
- RETURN_NAMES = ("LATENT_KF", )
434
- RETURN_TYPES = ("LATENT_KEYFRAME", )
435
- FUNCTION = "load_keyframe"
436
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
437
-
438
- def load_keyframe(self, float_strengths: Union[float, list[float]],
439
- prev_latent_kf: LatentKeyframeGroup=None,
440
- prev_latent_keyframe: LatentKeyframeGroup=None, # old name
441
- print_keyframes=False):
442
- prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
443
- if not prev_latent_keyframe:
444
- prev_latent_keyframe = LatentKeyframeGroup()
445
- else:
446
- prev_latent_keyframe = prev_latent_keyframe.clone()
447
- curr_latent_keyframe = LatentKeyframeGroup()
448
-
449
- # if received a normal float input, do nothing
450
- if type(float_strengths) in (float, int):
451
- logger.info("No batched float_strengths passed into Latent Keyframe Batch Group node; will not create any new keyframes.")
452
- # if iterable, attempt to create LatentKeyframes with chosen strengths
453
- elif isinstance(float_strengths, Iterable):
454
- for idx, strength in enumerate(float_strengths):
455
- keyframe = LatentKeyframe(idx, strength)
456
- curr_latent_keyframe.add(keyframe)
457
- else:
458
- raise ValueError(f"Expected strengths to be an iterable input, but was {type(float_strengths).__repr__}.")
459
-
460
- if print_keyframes:
461
- for keyframe in curr_latent_keyframe.keyframes:
462
- logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
463
-
464
- # replace values with prev_latent_keyframes
465
- for latent_keyframe in prev_latent_keyframe.keyframes:
466
- curr_latent_keyframe.add(latent_keyframe)
467
-
468
- return (curr_latent_keyframe,)
 
1
+ from typing import Union
2
+ import numpy as np
3
+ from collections.abc import Iterable
4
+
5
+ from .utils import ControlWeights, TimestepKeyframe, TimestepKeyframeGroup, LatentKeyframe, LatentKeyframeGroup, BIGMIN, BIGMAX
6
+ from .utils import StrengthInterpolation as SI
7
+ from .logger import logger
8
+
9
+
10
+ class TimestepKeyframeNode:
11
+ OUTDATED_DUMMY = -39
12
+
13
+ @classmethod
14
+ def INPUT_TYPES(s):
15
+ return {
16
+ "required": {
17
+ "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
18
+ },
19
+ "optional": {
20
+ "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
21
+ "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
22
+ "cn_weights": ("CONTROL_NET_WEIGHTS", ),
23
+ "latent_keyframe": ("LATENT_KEYFRAME", ),
24
+ "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
25
+ "inherit_missing": ("BOOLEAN", {"default": True}, ),
26
+ "guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
27
+ "mask_optional": ("MASK", ),
28
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
29
+ }
30
+ }
31
+
32
+ RETURN_NAMES = ("TIMESTEP_KF", )
33
+ RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
34
+ FUNCTION = "load_keyframe"
35
+
36
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
37
+
38
+ def load_keyframe(self,
39
+ start_percent: float,
40
+ strength: float=1.0,
41
+ cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
42
+ latent_keyframe: LatentKeyframeGroup=None,
43
+ prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
44
+ null_latent_kf_strength: float=0.0,
45
+ inherit_missing=True,
46
+ guarantee_steps=OUTDATED_DUMMY,
47
+ guarantee_usage=True, # old input
48
+ mask_optional=None,):
49
+ # if using outdated dummy value, means node on workflow is outdated and should appropriately convert behavior
50
+ if guarantee_steps == self.OUTDATED_DUMMY:
51
+ guarantee_steps = int(guarantee_usage)
52
+ control_net_weights = control_net_weights if control_net_weights else cn_weights
53
+ prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
54
+ if not prev_timestep_keyframe:
55
+ prev_timestep_keyframe = TimestepKeyframeGroup()
56
+ else:
57
+ prev_timestep_keyframe = prev_timestep_keyframe.clone()
58
+ keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
59
+ control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
60
+ guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)
61
+ prev_timestep_keyframe.add(keyframe)
62
+ return (prev_timestep_keyframe,)
63
+
64
+
65
+ class TimestepKeyframeInterpolationNode:
66
+ @classmethod
67
+ def INPUT_TYPES(s):
68
+ return {
69
+ "required": {
70
+ "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
71
+ "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
72
+ "strength_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
73
+ "strength_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
74
+ "interpolation": (SI._LIST, ),
75
+ "intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}),
76
+ },
77
+ "optional": {
78
+ "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
79
+ "cn_weights": ("CONTROL_NET_WEIGHTS", ),
80
+ "latent_keyframe": ("LATENT_KEYFRAME", ),
81
+ "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
82
+ "inherit_missing": ("BOOLEAN", {"default": True},),
83
+ "mask_optional": ("MASK", ),
84
+ "print_keyframes": ("BOOLEAN", {"default": False}),
85
+ "autosize": ("ACNAUTOSIZE", {"padding": 50}),
86
+ }
87
+ }
88
+
89
+ RETURN_NAMES = ("TIMESTEP_KF", )
90
+ RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
91
+ FUNCTION = "load_keyframe"
92
+
93
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
94
+
95
+ def load_keyframe(self,
96
+ start_percent: float, end_percent: float,
97
+ strength_start: float, strength_end: float, interpolation: str, intervals: int,
98
+ cn_weights: ControlWeights=None,
99
+ latent_keyframe: LatentKeyframeGroup=None,
100
+ prev_timestep_kf: TimestepKeyframeGroup=None,
101
+ null_latent_kf_strength: float=0.0,
102
+ inherit_missing=True,
103
+ guarantee_steps=1,
104
+ mask_optional=None, print_keyframes=False):
105
+ if not prev_timestep_kf:
106
+ prev_timestep_kf = TimestepKeyframeGroup()
107
+ else:
108
+ prev_timestep_kf = prev_timestep_kf.clone()
109
+
110
+ percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=SI.LINEAR)
111
+ strengths = SI.get_weights(num_from=strength_start, num_to=strength_end, length=intervals, method=interpolation)
112
+
113
+ is_first = True
114
+ for percent, strength in zip(percents, strengths):
115
+ guarantee_steps = 0
116
+ if is_first:
117
+ guarantee_steps = 1
118
+ is_first = False
119
+ prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
120
+ control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
121
+ guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
122
+ if print_keyframes:
123
+ logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
124
+ return (prev_timestep_kf,)
125
+
126
+
127
+ class TimestepKeyframeFromStrengthListNode:
128
+ @classmethod
129
+ def INPUT_TYPES(s):
130
+ return {
131
+ "required": {
132
+ "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
133
+ "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
134
+ "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
135
+ },
136
+ "optional": {
137
+ "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
138
+ "cn_weights": ("CONTROL_NET_WEIGHTS", ),
139
+ "latent_keyframe": ("LATENT_KEYFRAME", ),
140
+ "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
141
+ "inherit_missing": ("BOOLEAN", {"default": True},),
142
+ "mask_optional": ("MASK", ),
143
+ "print_keyframes": ("BOOLEAN", {"default": False}),
144
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
145
+ }
146
+ }
147
+
148
+ RETURN_NAMES = ("TIMESTEP_KF", )
149
+ RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
150
+ FUNCTION = "load_keyframe"
151
+
152
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
153
+
154
+ def load_keyframe(self,
155
+ start_percent: float, end_percent: float,
156
+ float_strengths: float,
157
+ cn_weights: ControlWeights=None,
158
+ latent_keyframe: LatentKeyframeGroup=None,
159
+ prev_timestep_kf: TimestepKeyframeGroup=None,
160
+ null_latent_kf_strength: float=0.0,
161
+ inherit_missing=True,
162
+ guarantee_steps=1,
163
+ mask_optional=None, print_keyframes=False):
164
+ if not prev_timestep_kf:
165
+ prev_timestep_kf = TimestepKeyframeGroup()
166
+ else:
167
+ prev_timestep_kf = prev_timestep_kf.clone()
168
+
169
+ if type(float_strengths) in (float, int):
170
+ float_strengths = [float(float_strengths)]
171
+ elif isinstance(float_strengths, Iterable):
172
+ pass
173
+ else:
174
+ raise Exception(f"strengths_float must be either an iterable input or a float, but was {type(float_strengths).__repr__}.")
175
+ percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=len(float_strengths), method=SI.LINEAR)
176
+
177
+ is_first = True
178
+ for percent, strength in zip(percents, float_strengths):
179
+ guarantee_steps = 0
180
+ if is_first:
181
+ guarantee_steps = 1
182
+ is_first = False
183
+ prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
184
+ control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
185
+ guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
186
+ if print_keyframes:
187
+ logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
188
+ return (prev_timestep_kf,)
189
+
190
+
191
+ class LatentKeyframeNode:
192
+ @classmethod
193
+ def INPUT_TYPES(s):
194
+ return {
195
+ "required": {
196
+ "batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
197
+ "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
198
+ },
199
+ "optional": {
200
+ "prev_latent_kf": ("LATENT_KEYFRAME", ),
201
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
202
+ }
203
+ }
204
+
205
+ RETURN_NAMES = ("LATENT_KF", )
206
+ RETURN_TYPES = ("LATENT_KEYFRAME", )
207
+ FUNCTION = "load_keyframe"
208
+
209
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
210
+
211
+ def load_keyframe(self,
212
+ batch_index: int,
213
+ strength: float,
214
+ prev_latent_kf: LatentKeyframeGroup=None,
215
+ prev_latent_keyframe: LatentKeyframeGroup=None, # old name
216
+ ):
217
+ prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
218
+ if not prev_latent_keyframe:
219
+ prev_latent_keyframe = LatentKeyframeGroup()
220
+ else:
221
+ prev_latent_keyframe = prev_latent_keyframe.clone()
222
+ keyframe = LatentKeyframe(batch_index, strength)
223
+ prev_latent_keyframe.add(keyframe)
224
+ return (prev_latent_keyframe,)
225
+
226
+
227
+ class LatentKeyframeGroupNode:
228
+ @classmethod
229
+ def INPUT_TYPES(s):
230
+ return {
231
+ "required": {
232
+ "index_strengths": ("STRING", {"multiline": True, "default": ""}),
233
+ },
234
+ "optional": {
235
+ "prev_latent_kf": ("LATENT_KEYFRAME", ),
236
+ "latent_optional": ("LATENT", ),
237
+ "print_keyframes": ("BOOLEAN", {"default": False}),
238
+ "autosize": ("ACNAUTOSIZE", {"padding": 35}),
239
+ }
240
+ }
241
+
242
+ RETURN_NAMES = ("LATENT_KF", )
243
+ RETURN_TYPES = ("LATENT_KEYFRAME", )
244
+ FUNCTION = "load_keyframes"
245
+
246
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
247
+
248
+ def validate_index(self, index: int, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
249
+ # if part of range, do nothing
250
+ if is_range:
251
+ return index
252
+ # otherwise, validate index
253
+ # validate not out of range - only when latent_count is passed in
254
+ if latent_count > 0 and index > latent_count-1:
255
+ raise IndexError(f"Index '{index}' out of range for the total {latent_count} latents.")
256
+ # if negative, validate not out of range
257
+ if index < 0:
258
+ if not allow_negative:
259
+ raise IndexError(f"Negative indeces not allowed, but was {index}.")
260
+ conv_index = latent_count+index
261
+ if conv_index < 0:
262
+ raise IndexError(f"Index '{index}', converted to '{conv_index}' out of range for the total {latent_count} latents.")
263
+ index = conv_index
264
+ return index
265
+
266
+ def convert_to_index_int(self, raw_index: str, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
267
+ try:
268
+ return self.validate_index(int(raw_index), latent_count=latent_count, is_range=is_range, allow_negative=allow_negative)
269
+ except ValueError as e:
270
+ raise ValueError(f"index '{raw_index}' must be an integer.", e)
271
+
272
+ def convert_to_latent_keyframes(self, latent_indeces: str, latent_count: int) -> set[LatentKeyframe]:
273
+ if not latent_indeces:
274
+ return set()
275
+ int_latent_indeces = [i for i in range(0, latent_count)]
276
+ allow_negative = latent_count > 0
277
+ chosen_indeces = set()
278
+ # parse string - allow positive ints, negative ints, and ranges separated by ':'
279
+ groups = latent_indeces.split(",")
280
+ groups = [g.strip() for g in groups]
281
+ for g in groups:
282
+ # parse strengths - default to 1.0 if no strength given
283
+ strength = 1.0
284
+ if '=' in g:
285
+ g, strength_str = g.split("=", 1)
286
+ g = g.strip()
287
+ try:
288
+ strength = float(strength_str.strip())
289
+ except ValueError as e:
290
+ raise ValueError(f"strength '{strength_str}' must be a float.", e)
291
+ if strength < 0:
292
+ raise ValueError(f"Strength '{strength}' cannot be negative.")
293
+ # parse range of indeces (e.g. 2:16)
294
+ if ':' in g:
295
+ index_range = g.split(":", 1)
296
+ index_range = [r.strip() for r in index_range]
297
+ start_index = self.convert_to_index_int(index_range[0], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
298
+ end_index = self.convert_to_index_int(index_range[1], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
299
+ # if latents were passed in, base indeces on known latent count
300
+ if len(int_latent_indeces) > 0:
301
+ for i in int_latent_indeces[start_index:end_index]:
302
+ chosen_indeces.add(LatentKeyframe(i, strength))
303
+ # otherwise, assume indeces are valid
304
+ else:
305
+ for i in range(start_index, end_index):
306
+ chosen_indeces.add(LatentKeyframe(i, strength))
307
+ # parse individual indeces
308
+ else:
309
+ chosen_indeces.add(LatentKeyframe(self.convert_to_index_int(g, latent_count=latent_count, allow_negative=allow_negative), strength))
310
+ return chosen_indeces
311
+
312
+ def load_keyframes(self,
313
+ index_strengths: str,
314
+ prev_latent_kf: LatentKeyframeGroup=None,
315
+ prev_latent_keyframe: LatentKeyframeGroup=None, # old name
316
+ latent_image_opt=None,
317
+ print_keyframes=False):
318
+ prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
319
+ if not prev_latent_keyframe:
320
+ prev_latent_keyframe = LatentKeyframeGroup()
321
+ else:
322
+ prev_latent_keyframe = prev_latent_keyframe.clone()
323
+ curr_latent_keyframe = LatentKeyframeGroup()
324
+
325
+ latent_count = -1
326
+ if latent_image_opt:
327
+ latent_count = latent_image_opt['samples'].size()[0]
328
+ latent_keyframes = self.convert_to_latent_keyframes(index_strengths, latent_count=latent_count)
329
+
330
+ for latent_keyframe in latent_keyframes:
331
+ curr_latent_keyframe.add(latent_keyframe)
332
+
333
+ if print_keyframes:
334
+ for keyframe in curr_latent_keyframe.keyframes:
335
+ logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
336
+
337
+ # replace values with prev_latent_keyframes
338
+ for latent_keyframe in prev_latent_keyframe.keyframes:
339
+ curr_latent_keyframe.add(latent_keyframe)
340
+
341
+ return (curr_latent_keyframe,)
342
+
343
+
344
+ class LatentKeyframeInterpolationNode:
345
+ @classmethod
346
+ def INPUT_TYPES(s):
347
+ return {
348
+ "required": {
349
+ "batch_index_from": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
350
+ "batch_index_to_excl": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
351
+ "strength_from": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
352
+ "strength_to": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
353
+ "interpolation": (SI._LIST, ),
354
+ },
355
+ "optional": {
356
+ "prev_latent_kf": ("LATENT_KEYFRAME", ),
357
+ "print_keyframes": ("BOOLEAN", {"default": False}),
358
+ "autosize": ("ACNAUTOSIZE", {"padding": 50}),
359
+ }
360
+ }
361
+
362
+ RETURN_NAMES = ("LATENT_KF", )
363
+ RETURN_TYPES = ("LATENT_KEYFRAME", )
364
+ FUNCTION = "load_keyframe"
365
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
366
+
367
+ def load_keyframe(self,
368
+ batch_index_from: int,
369
+ strength_from: float,
370
+ batch_index_to_excl: int,
371
+ strength_to: float,
372
+ interpolation: str,
373
+ prev_latent_kf: LatentKeyframeGroup=None,
374
+ prev_latent_keyframe: LatentKeyframeGroup=None, # old name
375
+ print_keyframes=False):
376
+
377
+ if (batch_index_from > batch_index_to_excl):
378
+ raise ValueError("batch_index_from must be less than or equal to batch_index_to.")
379
+
380
+ if (batch_index_from < 0 and batch_index_to_excl >= 0):
381
+ raise ValueError("batch_index_from and batch_index_to must be either both positive or both negative.")
382
+
383
+ prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
384
+ if not prev_latent_keyframe:
385
+ prev_latent_keyframe = LatentKeyframeGroup()
386
+ else:
387
+ prev_latent_keyframe = prev_latent_keyframe.clone()
388
+ curr_latent_keyframe = LatentKeyframeGroup()
389
+
390
+ steps = batch_index_to_excl - batch_index_from
391
+ diff = strength_to - strength_from
392
+ if interpolation == SI.LINEAR:
393
+ weights = np.linspace(strength_from, strength_to, steps)
394
+ elif interpolation == SI.EASE_IN:
395
+ index = np.linspace(0, 1, steps)
396
+ weights = diff * np.power(index, 2) + strength_from
397
+ elif interpolation == SI.EASE_OUT:
398
+ index = np.linspace(0, 1, steps)
399
+ weights = diff * (1 - np.power(1 - index, 2)) + strength_from
400
+ elif interpolation == SI.EASE_IN_OUT:
401
+ index = np.linspace(0, 1, steps)
402
+ weights = diff * ((1 - np.cos(index * np.pi)) / 2) + strength_from
403
+
404
+ for i in range(steps):
405
+ keyframe = LatentKeyframe(batch_index_from + i, float(weights[i]))
406
+ curr_latent_keyframe.add(keyframe)
407
+
408
+ if print_keyframes:
409
+ for keyframe in curr_latent_keyframe.keyframes:
410
+ logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
411
+
412
+ # replace values with prev_latent_keyframes
413
+ for latent_keyframe in prev_latent_keyframe.keyframes:
414
+ curr_latent_keyframe.add(latent_keyframe)
415
+
416
+ return (curr_latent_keyframe,)
417
+
418
+
419
+ class LatentKeyframeBatchedGroupNode:
420
+ @classmethod
421
+ def INPUT_TYPES(s):
422
+ return {
423
+ "required": {
424
+ "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
425
+ },
426
+ "optional": {
427
+ "prev_latent_kf": ("LATENT_KEYFRAME", ),
428
+ "print_keyframes": ("BOOLEAN", {"default": False}),
429
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
430
+ }
431
+ }
432
+
433
+ RETURN_NAMES = ("LATENT_KF", )
434
+ RETURN_TYPES = ("LATENT_KEYFRAME", )
435
+ FUNCTION = "load_keyframe"
436
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/keyframes"
437
+
438
+ def load_keyframe(self, float_strengths: Union[float, list[float]],
439
+ prev_latent_kf: LatentKeyframeGroup=None,
440
+ prev_latent_keyframe: LatentKeyframeGroup=None, # old name
441
+ print_keyframes=False):
442
+ prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
443
+ if not prev_latent_keyframe:
444
+ prev_latent_keyframe = LatentKeyframeGroup()
445
+ else:
446
+ prev_latent_keyframe = prev_latent_keyframe.clone()
447
+ curr_latent_keyframe = LatentKeyframeGroup()
448
+
449
+ # if received a normal float input, do nothing
450
+ if type(float_strengths) in (float, int):
451
+ logger.info("No batched float_strengths passed into Latent Keyframe Batch Group node; will not create any new keyframes.")
452
+ # if iterable, attempt to create LatentKeyframes with chosen strengths
453
+ elif isinstance(float_strengths, Iterable):
454
+ for idx, strength in enumerate(float_strengths):
455
+ keyframe = LatentKeyframe(idx, strength)
456
+ curr_latent_keyframe.add(keyframe)
457
+ else:
458
+ raise ValueError(f"Expected strengths to be an iterable input, but was {type(float_strengths).__repr__}.")
459
+
460
+ if print_keyframes:
461
+ for keyframe in curr_latent_keyframe.keyframes:
462
+ logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
463
+
464
+ # replace values with prev_latent_keyframes
465
+ for latent_keyframe in prev_latent_keyframe.keyframes:
466
+ curr_latent_keyframe.add(latent_keyframe)
467
+
468
+ return (curr_latent_keyframe,)
ComfyUI-Advanced-ControlNet/adv_control/nodes_loosecontrol.py CHANGED
@@ -1,67 +1,67 @@
1
- import folder_paths
2
- import comfy.utils
3
- import comfy.model_detection
4
- import comfy.model_management
5
- import comfy.lora
6
- from comfy.model_patcher import ModelPatcher
7
-
8
- from .utils import TimestepKeyframeGroup
9
- from .control import ControlNetAdvanced, load_controlnet
10
-
11
-
12
-
13
-
14
- def convert_cn_lora_from_diffusers(cn_model: ModelPatcher, lora_path: str):
15
- lora_data = comfy.utils.load_torch_file(lora_path, safe_load=True)
16
- unet_dtype = comfy.model_management.unet_dtype()
17
- for key, value in lora_data.items():
18
- lora_data[key] = value.to(unet_dtype)
19
- diffusers_keys = comfy.utils.unet_to_diffusers(cn_model.model.state_dict())
20
-
21
- #lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, dtype=unet_dtype)
22
-
23
-
24
-
25
- #key_map = comfy.lora.model_lora_keys_unet(cn_model.model, key_map)
26
- lora_data = comfy.lora.load_lora(lora_data, to_load=diffusers_keys)
27
-
28
- # TODO: detect if diffusers for sure? not sure if needed at this time, since cn loras are
29
- # only used currently for LOOSEControl, and those are all in diffusers format
30
- #unet_dtype = comfy.model_management.unet_dtype()
31
- #lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, unet_dtype)
32
- return lora_data
33
-
34
-
35
- class ControlNetLoaderWithLoraAdvanced:
36
- @classmethod
37
- def INPUT_TYPES(s):
38
- return {
39
- "required": {
40
- "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
41
- "cn_lora_name": (folder_paths.get_filename_list("controlnet"), ),
42
- "cn_lora_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
43
- },
44
- "optional": {
45
- "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
46
- }
47
- }
48
-
49
- RETURN_TYPES = ("CONTROL_NET", )
50
- FUNCTION = "load_controlnet"
51
-
52
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/LOOSEControl"
53
-
54
- def load_controlnet(self, control_net_name, cn_lora_name, cn_lora_strength: float,
55
- timestep_keyframe: TimestepKeyframeGroup=None
56
- ):
57
- controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
58
- controlnet: ControlNetAdvanced = load_controlnet(controlnet_path, timestep_keyframe)
59
- if not isinstance(controlnet, ControlNetAdvanced):
60
- raise ValueError("Type {} is not compatible with CN LoRA features at this time.")
61
- # now, try to load CN LoRA
62
- lora_path = folder_paths.get_full_path("controlnet", cn_lora_name)
63
- lora_data = convert_cn_lora_from_diffusers(cn_model=controlnet.control_model_wrapped, lora_path=lora_path)
64
- # apply patches to wrapped control_model
65
- controlnet.control_model_wrapped.add_patches(lora_data, strength_patch=cn_lora_strength)
66
- # all done
67
- return (controlnet,)
 
1
+ import folder_paths
2
+ import comfy.utils
3
+ import comfy.model_detection
4
+ import comfy.model_management
5
+ import comfy.lora
6
+ from comfy.model_patcher import ModelPatcher
7
+
8
+ from .utils import TimestepKeyframeGroup
9
+ from .control import ControlNetAdvanced, load_controlnet
10
+
11
+
12
+
13
+
14
+ def convert_cn_lora_from_diffusers(cn_model: ModelPatcher, lora_path: str):
15
+ lora_data = comfy.utils.load_torch_file(lora_path, safe_load=True)
16
+ unet_dtype = comfy.model_management.unet_dtype()
17
+ for key, value in lora_data.items():
18
+ lora_data[key] = value.to(unet_dtype)
19
+ diffusers_keys = comfy.utils.unet_to_diffusers(cn_model.model.state_dict())
20
+
21
+ #lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, dtype=unet_dtype)
22
+
23
+
24
+
25
+ #key_map = comfy.lora.model_lora_keys_unet(cn_model.model, key_map)
26
+ lora_data = comfy.lora.load_lora(lora_data, to_load=diffusers_keys)
27
+
28
+ # TODO: detect if diffusers for sure? not sure if needed at this time, since cn loras are
29
+ # only used currently for LOOSEControl, and those are all in diffusers format
30
+ #unet_dtype = comfy.model_management.unet_dtype()
31
+ #lora_data = comfy.model_detection.unet_config_from_diffusers_unet(lora_data, unet_dtype)
32
+ return lora_data
33
+
34
+
35
+ class ControlNetLoaderWithLoraAdvanced:
36
+ @classmethod
37
+ def INPUT_TYPES(s):
38
+ return {
39
+ "required": {
40
+ "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
41
+ "cn_lora_name": (folder_paths.get_filename_list("controlnet"), ),
42
+ "cn_lora_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
43
+ },
44
+ "optional": {
45
+ "timestep_keyframe": ("TIMESTEP_KEYFRAME", ),
46
+ }
47
+ }
48
+
49
+ RETURN_TYPES = ("CONTROL_NET", )
50
+ FUNCTION = "load_controlnet"
51
+
52
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/LOOSEControl"
53
+
54
+ def load_controlnet(self, control_net_name, cn_lora_name, cn_lora_strength: float,
55
+ timestep_keyframe: TimestepKeyframeGroup=None
56
+ ):
57
+ controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
58
+ controlnet: ControlNetAdvanced = load_controlnet(controlnet_path, timestep_keyframe)
59
+ if not isinstance(controlnet, ControlNetAdvanced):
60
+ raise ValueError("Type {} is not compatible with CN LoRA features at this time.")
61
+ # now, try to load CN LoRA
62
+ lora_path = folder_paths.get_full_path("controlnet", cn_lora_name)
63
+ lora_data = convert_cn_lora_from_diffusers(cn_model=controlnet.control_model_wrapped, lora_path=lora_path)
64
+ # apply patches to wrapped control_model
65
+ controlnet.control_model_wrapped.add_patches(lora_data, strength_patch=cn_lora_strength)
66
+ # all done
67
+ return (controlnet,)
ComfyUI-Advanced-ControlNet/adv_control/nodes_plusplus.py CHANGED
@@ -1,85 +1,85 @@
1
- from torch import Tensor
2
- import math
3
-
4
- import folder_paths
5
-
6
- from .control_plusplus import load_controlnetplusplus, PlusPlusType, PlusPlusInput, PlusPlusInputGroup, PlusPlusImageWrapper
7
- from .utils import BIGMAX
8
-
9
-
10
- class PlusPlusLoaderAdvanced:
11
- @classmethod
12
- def INPUT_TYPES(s):
13
- return {
14
- "required": {
15
- "plus_input": ("PLUS_INPUT", ),
16
- "name": (folder_paths.get_filename_list("controlnet"), ),
17
- }
18
- }
19
-
20
- RETURN_TYPES = ("CONTROL_NET", "IMAGE",)
21
- FUNCTION = "load_controlnet_plusplus"
22
-
23
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
24
-
25
- def load_controlnet_plusplus(self, plus_input: PlusPlusInputGroup, name: str):
26
- controlnet_path = folder_paths.get_full_path("controlnet", name)
27
- controlnet = load_controlnetplusplus(controlnet_path)
28
- controlnet.verify_control_type(name, plus_input)
29
- return (controlnet, PlusPlusImageWrapper(plus_input),)
30
-
31
-
32
- class PlusPlusLoaderSingle:
33
- @classmethod
34
- def INPUT_TYPES(s):
35
- return {
36
- "required": {
37
- "name": (folder_paths.get_filename_list("controlnet"), ),
38
- "control_type": (PlusPlusType._LIST_WITH_NONE, {"default": PlusPlusType.NONE}, ),
39
- }
40
- }
41
-
42
- RETURN_TYPES = ("CONTROL_NET",)
43
- FUNCTION = "load_controlnet_plusplus"
44
-
45
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
46
-
47
- def load_controlnet_plusplus(self, name: str, control_type: str):
48
- controlnet_path = folder_paths.get_full_path("controlnet", name)
49
- controlnet = load_controlnetplusplus(controlnet_path)
50
- controlnet.single_control_type = control_type
51
- controlnet.verify_control_type(name)
52
- return (controlnet,)
53
-
54
-
55
- class PlusPlusInputNode:
56
- @classmethod
57
- def INPUT_TYPES(s):
58
- return {
59
- "required": {
60
- "image": ("IMAGE",),
61
- "control_type": (PlusPlusType._LIST,),
62
- },
63
- "optional": {
64
- "prev_plus_input": ("PLUS_INPUT",),
65
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
66
- #"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": BIGMAX, "step": 0.01}),
67
- }
68
- }
69
-
70
- RETURN_TYPES = ("PLUS_INPUT", )
71
- FUNCTION = "wrap_images"
72
-
73
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
74
-
75
- def wrap_images(self, image: Tensor, control_type: str, strength=1.0, prev_plus_input: PlusPlusInputGroup=None):
76
- if prev_plus_input is None:
77
- prev_plus_input = PlusPlusInputGroup()
78
- prev_plus_input = prev_plus_input.clone()
79
-
80
- if math.isclose(strength, 0.0):
81
- strength = 0.0000001
82
- pp_input = PlusPlusInput(image, control_type, strength)
83
- prev_plus_input.add(pp_input)
84
-
85
- return (prev_plus_input,)
 
1
+ from torch import Tensor
2
+ import math
3
+
4
+ import folder_paths
5
+
6
+ from .control_plusplus import load_controlnetplusplus, PlusPlusType, PlusPlusInput, PlusPlusInputGroup, PlusPlusImageWrapper
7
+ from .utils import BIGMAX
8
+
9
+
10
+ class PlusPlusLoaderAdvanced:
11
+ @classmethod
12
+ def INPUT_TYPES(s):
13
+ return {
14
+ "required": {
15
+ "plus_input": ("PLUS_INPUT", ),
16
+ "name": (folder_paths.get_filename_list("controlnet"), ),
17
+ }
18
+ }
19
+
20
+ RETURN_TYPES = ("CONTROL_NET", "IMAGE",)
21
+ FUNCTION = "load_controlnet_plusplus"
22
+
23
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
24
+
25
+ def load_controlnet_plusplus(self, plus_input: PlusPlusInputGroup, name: str):
26
+ controlnet_path = folder_paths.get_full_path("controlnet", name)
27
+ controlnet = load_controlnetplusplus(controlnet_path)
28
+ controlnet.verify_control_type(name, plus_input)
29
+ return (controlnet, PlusPlusImageWrapper(plus_input),)
30
+
31
+
32
+ class PlusPlusLoaderSingle:
33
+ @classmethod
34
+ def INPUT_TYPES(s):
35
+ return {
36
+ "required": {
37
+ "name": (folder_paths.get_filename_list("controlnet"), ),
38
+ "control_type": (PlusPlusType._LIST_WITH_NONE, {"default": PlusPlusType.NONE}, ),
39
+ }
40
+ }
41
+
42
+ RETURN_TYPES = ("CONTROL_NET",)
43
+ FUNCTION = "load_controlnet_plusplus"
44
+
45
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
46
+
47
+ def load_controlnet_plusplus(self, name: str, control_type: str):
48
+ controlnet_path = folder_paths.get_full_path("controlnet", name)
49
+ controlnet = load_controlnetplusplus(controlnet_path)
50
+ controlnet.single_control_type = control_type
51
+ controlnet.verify_control_type(name)
52
+ return (controlnet,)
53
+
54
+
55
+ class PlusPlusInputNode:
56
+ @classmethod
57
+ def INPUT_TYPES(s):
58
+ return {
59
+ "required": {
60
+ "image": ("IMAGE",),
61
+ "control_type": (PlusPlusType._LIST,),
62
+ },
63
+ "optional": {
64
+ "prev_plus_input": ("PLUS_INPUT",),
65
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
66
+ #"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": BIGMAX, "step": 0.01}),
67
+ }
68
+ }
69
+
70
+ RETURN_TYPES = ("PLUS_INPUT", )
71
+ FUNCTION = "wrap_images"
72
+
73
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/ControlNet++"
74
+
75
+ def wrap_images(self, image: Tensor, control_type: str, strength=1.0, prev_plus_input: PlusPlusInputGroup=None):
76
+ if prev_plus_input is None:
77
+ prev_plus_input = PlusPlusInputGroup()
78
+ prev_plus_input = prev_plus_input.clone()
79
+
80
+ if math.isclose(strength, 0.0):
81
+ strength = 0.0000001
82
+ pp_input = PlusPlusInput(image, control_type, strength)
83
+ prev_plus_input.add(pp_input)
84
+
85
+ return (prev_plus_input,)
ComfyUI-Advanced-ControlNet/adv_control/nodes_reference.py CHANGED
@@ -1,90 +1,90 @@
1
- from torch import Tensor
2
-
3
- from nodes import VAEEncode
4
- import comfy.utils
5
- from comfy.sd import VAE
6
-
7
- from .control_reference import ReferenceAdvanced, ReferenceOptions, ReferenceType, ReferencePreprocWrapper
8
-
9
-
10
- # node for ReferenceCN
11
- class ReferenceControlNetNode:
12
- @classmethod
13
- def INPUT_TYPES(s):
14
- return {
15
- "required": {
16
- "reference_type": (ReferenceType._LIST,),
17
- "style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
18
- "ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
19
- },
20
- }
21
-
22
- RETURN_TYPES = ("CONTROL_NET", )
23
- FUNCTION = "load_controlnet"
24
-
25
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference"
26
-
27
- def load_controlnet(self, reference_type: str, style_fidelity: float, ref_weight: float):
28
- ref_opts = ReferenceOptions.create_combo(reference_type=reference_type, style_fidelity=style_fidelity, ref_weight=ref_weight)
29
- controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None)
30
- return (controlnet,)
31
-
32
-
33
- class ReferenceControlFinetune:
34
- @classmethod
35
- def INPUT_TYPES(s):
36
- return {
37
- "required": {
38
- "attn_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
39
- "attn_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
40
- "attn_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
41
- "adain_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
42
- "adain_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
43
- "adain_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
44
- },
45
- }
46
-
47
- RETURN_TYPES = ("CONTROL_NET", )
48
- FUNCTION = "load_controlnet"
49
-
50
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference"
51
-
52
- def load_controlnet(self,
53
- attn_style_fidelity: float, attn_ref_weight: float, attn_strength: float,
54
- adain_style_fidelity: float, adain_ref_weight: float, adain_strength: float):
55
- ref_opts = ReferenceOptions(reference_type=ReferenceType.ATTN_ADAIN,
56
- attn_style_fidelity=attn_style_fidelity, attn_ref_weight=attn_ref_weight, attn_strength=attn_strength,
57
- adain_style_fidelity=adain_style_fidelity, adain_ref_weight=adain_ref_weight, adain_strength=adain_strength)
58
- controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None)
59
- return (controlnet,)
60
-
61
-
62
- class ReferencePreprocessorNode:
63
- @classmethod
64
- def INPUT_TYPES(s):
65
- return {
66
- "required": {
67
- "image": ("IMAGE", ),
68
- "vae": ("VAE", ),
69
- "latent_size": ("LATENT", ),
70
- }
71
- }
72
-
73
- RETURN_TYPES = ("IMAGE",)
74
- RETURN_NAMES = ("proc_IMAGE",)
75
- FUNCTION = "preprocess_images"
76
-
77
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference/preprocess"
78
-
79
- def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor):
80
- # first, resize image to match latents
81
- image = image.movedim(-1,1)
82
- image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center")
83
- image = image.movedim(1,-1)
84
- # then, vae encode
85
- try:
86
- image = vae.vae_encode_crop_pixels(image)
87
- except Exception:
88
- image = VAEEncode.vae_encode_crop_pixels(image)
89
- encoded = vae.encode(image[:,:,:,:3])
90
- return (ReferencePreprocWrapper(condhint=encoded),)
 
1
+ from torch import Tensor
2
+
3
+ from nodes import VAEEncode
4
+ import comfy.utils
5
+ from comfy.sd import VAE
6
+
7
+ from .control_reference import ReferenceAdvanced, ReferenceOptions, ReferenceType, ReferencePreprocWrapper
8
+
9
+
10
+ # node for ReferenceCN
11
+ class ReferenceControlNetNode:
12
+ @classmethod
13
+ def INPUT_TYPES(s):
14
+ return {
15
+ "required": {
16
+ "reference_type": (ReferenceType._LIST,),
17
+ "style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
18
+ "ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
19
+ },
20
+ }
21
+
22
+ RETURN_TYPES = ("CONTROL_NET", )
23
+ FUNCTION = "load_controlnet"
24
+
25
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference"
26
+
27
+ def load_controlnet(self, reference_type: str, style_fidelity: float, ref_weight: float):
28
+ ref_opts = ReferenceOptions.create_combo(reference_type=reference_type, style_fidelity=style_fidelity, ref_weight=ref_weight)
29
+ controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None)
30
+ return (controlnet,)
31
+
32
+
33
+ class ReferenceControlFinetune:
34
+ @classmethod
35
+ def INPUT_TYPES(s):
36
+ return {
37
+ "required": {
38
+ "attn_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
39
+ "attn_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
40
+ "attn_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
41
+ "adain_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
42
+ "adain_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
43
+ "adain_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
44
+ },
45
+ }
46
+
47
+ RETURN_TYPES = ("CONTROL_NET", )
48
+ FUNCTION = "load_controlnet"
49
+
50
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference"
51
+
52
+ def load_controlnet(self,
53
+ attn_style_fidelity: float, attn_ref_weight: float, attn_strength: float,
54
+ adain_style_fidelity: float, adain_ref_weight: float, adain_strength: float):
55
+ ref_opts = ReferenceOptions(reference_type=ReferenceType.ATTN_ADAIN,
56
+ attn_style_fidelity=attn_style_fidelity, attn_ref_weight=attn_ref_weight, attn_strength=attn_strength,
57
+ adain_style_fidelity=adain_style_fidelity, adain_ref_weight=adain_ref_weight, adain_strength=adain_strength)
58
+ controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None)
59
+ return (controlnet,)
60
+
61
+
62
+ class ReferencePreprocessorNode:
63
+ @classmethod
64
+ def INPUT_TYPES(s):
65
+ return {
66
+ "required": {
67
+ "image": ("IMAGE", ),
68
+ "vae": ("VAE", ),
69
+ "latent_size": ("LATENT", ),
70
+ }
71
+ }
72
+
73
+ RETURN_TYPES = ("IMAGE",)
74
+ RETURN_NAMES = ("proc_IMAGE",)
75
+ FUNCTION = "preprocess_images"
76
+
77
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference/preprocess"
78
+
79
+ def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor):
80
+ # first, resize image to match latents
81
+ image = image.movedim(-1,1)
82
+ image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center")
83
+ image = image.movedim(1,-1)
84
+ # then, vae encode
85
+ try:
86
+ image = vae.vae_encode_crop_pixels(image)
87
+ except Exception:
88
+ image = VAEEncode.vae_encode_crop_pixels(image)
89
+ encoded = vae.encode(image[:,:,:,:3])
90
+ return (ReferencePreprocWrapper(condhint=encoded),)
ComfyUI-Advanced-ControlNet/adv_control/nodes_sparsectrl.py CHANGED
@@ -1,186 +1,186 @@
1
- from torch import Tensor
2
-
3
- import folder_paths
4
- from nodes import VAEEncode
5
- import comfy.utils
6
- from comfy.sd import VAE
7
-
8
- from .utils import TimestepKeyframeGroup
9
- from .control_sparsectrl import SparseMethod, SparseIndexMethod, SparseSettings, SparseSpreadMethod, PreprocSparseRGBWrapper, SparseConst, SparseContextAware, get_idx_list_from_str
10
- from .control import load_sparsectrl, load_controlnet, ControlNetAdvanced, SparseCtrlAdvanced
11
-
12
-
13
- # node for SparseCtrl loading
14
- class SparseCtrlLoaderAdvanced:
15
- @classmethod
16
- def INPUT_TYPES(s):
17
- return {
18
- "required": {
19
- "sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
20
- "use_motion": ("BOOLEAN", {"default": True}, ),
21
- "motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
22
- "motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
23
- },
24
- "optional": {
25
- "sparse_method": ("SPARSE_METHOD", ),
26
- "tk_optional": ("TIMESTEP_KEYFRAME", ),
27
- "context_aware": (SparseContextAware.LIST, ),
28
- "sparse_hint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
29
- "sparse_nonhint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
30
- "sparse_mask_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
31
- }
32
- }
33
-
34
- RETURN_TYPES = ("CONTROL_NET", )
35
- FUNCTION = "load_controlnet"
36
-
37
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
38
-
39
- def load_controlnet(self, sparsectrl_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None,
40
- context_aware=SparseContextAware.NEAREST_HINT, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, sparse_mask_mult=1.0):
41
- sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
42
- sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale,
43
- context_aware=context_aware,
44
- sparse_mask_mult=sparse_mask_mult, sparse_hint_mult=sparse_hint_mult, sparse_nonhint_mult=sparse_nonhint_mult)
45
- sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
46
- return (sparsectrl,)
47
-
48
-
49
- class SparseCtrlMergedLoaderAdvanced:
50
- @classmethod
51
- def INPUT_TYPES(s):
52
- return {
53
- "required": {
54
- "sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
55
- "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
56
- "use_motion": ("BOOLEAN", {"default": True}, ),
57
- "motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
58
- "motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
59
- },
60
- "optional": {
61
- "sparse_method": ("SPARSE_METHOD", ),
62
- "tk_optional": ("TIMESTEP_KEYFRAME", ),
63
- }
64
- }
65
-
66
- RETURN_TYPES = ("CONTROL_NET", )
67
- FUNCTION = "load_controlnet"
68
-
69
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/experimental"
70
-
71
- def load_controlnet(self, sparsectrl_name: str, control_net_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None):
72
- sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
73
- controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
74
- sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale, merged=True)
75
- # first, load normal controlnet
76
- controlnet = load_controlnet(controlnet_path, timestep_keyframe=tk_optional)
77
- # confirm that controlnet is ControlNetAdvanced
78
- if controlnet is None or type(controlnet) != ControlNetAdvanced:
79
- raise ValueError(f"controlnet_path must point to a normal ControlNet, but instead: {type(controlnet).__name__}")
80
- # next, load sparsectrl, making sure to load motion portion
81
- sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=SparseSettings.default())
82
- # now, combine state dicts
83
- new_state_dict = controlnet.control_model.state_dict()
84
- for key, value in sparsectrl.control_model.motion_holder.motion_wrapper.state_dict().items():
85
- new_state_dict[key] = value
86
- # now, reload sparsectrl with real settings
87
- sparsectrl = load_sparsectrl(sparsectrl_path, controlnet_data=new_state_dict, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
88
- return (sparsectrl,)
89
-
90
-
91
- class SparseIndexMethodNode:
92
- @classmethod
93
- def INPUT_TYPES(s):
94
- return {
95
- "required": {
96
- "indexes": ("STRING", {"default": "0"}),
97
- }
98
- }
99
-
100
- RETURN_TYPES = ("SPARSE_METHOD",)
101
- FUNCTION = "get_method"
102
-
103
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
104
-
105
- def get_method(self, indexes: str):
106
- idxs = get_idx_list_from_str(indexes)
107
- return (SparseIndexMethod(idxs),)
108
-
109
-
110
- class SparseSpreadMethodNode:
111
- @classmethod
112
- def INPUT_TYPES(s):
113
- return {
114
- "required": {
115
- "spread": (SparseSpreadMethod.LIST,),
116
- }
117
- }
118
-
119
- RETURN_TYPES = ("SPARSE_METHOD",)
120
- FUNCTION = "get_method"
121
-
122
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
123
-
124
- def get_method(self, spread: str):
125
- return (SparseSpreadMethod(spread=spread),)
126
-
127
-
128
- class RgbSparseCtrlPreprocessor:
129
- @classmethod
130
- def INPUT_TYPES(s):
131
- return {
132
- "required": {
133
- "image": ("IMAGE", ),
134
- "vae": ("VAE", ),
135
- "latent_size": ("LATENT", ),
136
- },
137
- "optional": {
138
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
139
- }
140
- }
141
-
142
- RETURN_TYPES = ("IMAGE",)
143
- RETURN_NAMES = ("proc_IMAGE",)
144
- FUNCTION = "preprocess_images"
145
-
146
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/preprocess"
147
-
148
- def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor):
149
- # first, resize image to match latents
150
- image = image.movedim(-1,1)
151
- image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center")
152
- image = image.movedim(1,-1)
153
- # then, vae encode
154
- try:
155
- image = vae.vae_encode_crop_pixels(image)
156
- except Exception:
157
- image = VAEEncode.vae_encode_crop_pixels(image)
158
- encoded = vae.encode(image[:,:,:,:3])
159
- return (PreprocSparseRGBWrapper(condhint=encoded),)
160
-
161
-
162
- class SparseWeightExtras:
163
- @classmethod
164
- def INPUT_TYPES(s):
165
- return {
166
- "optional": {
167
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
168
- "sparse_hint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
169
- "sparse_nonhint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
170
- "sparse_mask_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
171
- "autosize": ("ACNAUTOSIZE", {"padding": 50}),
172
- }
173
- }
174
-
175
- RETURN_TYPES = ("CN_WEIGHTS_EXTRAS", )
176
- RETURN_NAMES = ("cn_extras", )
177
- FUNCTION = "create_weight_extras"
178
-
179
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/extras"
180
-
181
- def create_weight_extras(self, cn_extras: dict[str]={}, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, sparse_mask_mult=1.0):
182
- cn_extras = cn_extras.copy()
183
- cn_extras[SparseConst.HINT_MULT] = sparse_hint_mult
184
- cn_extras[SparseConst.NONHINT_MULT] = sparse_nonhint_mult
185
- cn_extras[SparseConst.MASK_MULT] = sparse_mask_mult
186
- return (cn_extras, )
 
1
+ from torch import Tensor
2
+
3
+ import folder_paths
4
+ from nodes import VAEEncode
5
+ import comfy.utils
6
+ from comfy.sd import VAE
7
+
8
+ from .utils import TimestepKeyframeGroup
9
+ from .control_sparsectrl import SparseMethod, SparseIndexMethod, SparseSettings, SparseSpreadMethod, PreprocSparseRGBWrapper, SparseConst, SparseContextAware, get_idx_list_from_str
10
+ from .control import load_sparsectrl, load_controlnet, ControlNetAdvanced, SparseCtrlAdvanced
11
+
12
+
13
+ # node for SparseCtrl loading
14
+ class SparseCtrlLoaderAdvanced:
15
+ @classmethod
16
+ def INPUT_TYPES(s):
17
+ return {
18
+ "required": {
19
+ "sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
20
+ "use_motion": ("BOOLEAN", {"default": True}, ),
21
+ "motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
22
+ "motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
23
+ },
24
+ "optional": {
25
+ "sparse_method": ("SPARSE_METHOD", ),
26
+ "tk_optional": ("TIMESTEP_KEYFRAME", ),
27
+ "context_aware": (SparseContextAware.LIST, ),
28
+ "sparse_hint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
29
+ "sparse_nonhint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
30
+ "sparse_mask_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
31
+ }
32
+ }
33
+
34
+ RETURN_TYPES = ("CONTROL_NET", )
35
+ FUNCTION = "load_controlnet"
36
+
37
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
38
+
39
+ def load_controlnet(self, sparsectrl_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None,
40
+ context_aware=SparseContextAware.NEAREST_HINT, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, sparse_mask_mult=1.0):
41
+ sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
42
+ sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale,
43
+ context_aware=context_aware,
44
+ sparse_mask_mult=sparse_mask_mult, sparse_hint_mult=sparse_hint_mult, sparse_nonhint_mult=sparse_nonhint_mult)
45
+ sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
46
+ return (sparsectrl,)
47
+
48
+
49
+ class SparseCtrlMergedLoaderAdvanced:
50
+ @classmethod
51
+ def INPUT_TYPES(s):
52
+ return {
53
+ "required": {
54
+ "sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
55
+ "control_net_name": (folder_paths.get_filename_list("controlnet"), ),
56
+ "use_motion": ("BOOLEAN", {"default": True}, ),
57
+ "motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
58
+ "motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
59
+ },
60
+ "optional": {
61
+ "sparse_method": ("SPARSE_METHOD", ),
62
+ "tk_optional": ("TIMESTEP_KEYFRAME", ),
63
+ }
64
+ }
65
+
66
+ RETURN_TYPES = ("CONTROL_NET", )
67
+ FUNCTION = "load_controlnet"
68
+
69
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/experimental"
70
+
71
+ def load_controlnet(self, sparsectrl_name: str, control_net_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None):
72
+ sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
73
+ controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
74
+ sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale, merged=True)
75
+ # first, load normal controlnet
76
+ controlnet = load_controlnet(controlnet_path, timestep_keyframe=tk_optional)
77
+ # confirm that controlnet is ControlNetAdvanced
78
+ if controlnet is None or type(controlnet) != ControlNetAdvanced:
79
+ raise ValueError(f"controlnet_path must point to a normal ControlNet, but instead: {type(controlnet).__name__}")
80
+ # next, load sparsectrl, making sure to load motion portion
81
+ sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=SparseSettings.default())
82
+ # now, combine state dicts
83
+ new_state_dict = controlnet.control_model.state_dict()
84
+ for key, value in sparsectrl.control_model.motion_holder.motion_wrapper.state_dict().items():
85
+ new_state_dict[key] = value
86
+ # now, reload sparsectrl with real settings
87
+ sparsectrl = load_sparsectrl(sparsectrl_path, controlnet_data=new_state_dict, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
88
+ return (sparsectrl,)
89
+
90
+
91
+ class SparseIndexMethodNode:
92
+ @classmethod
93
+ def INPUT_TYPES(s):
94
+ return {
95
+ "required": {
96
+ "indexes": ("STRING", {"default": "0"}),
97
+ }
98
+ }
99
+
100
+ RETURN_TYPES = ("SPARSE_METHOD",)
101
+ FUNCTION = "get_method"
102
+
103
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
104
+
105
+ def get_method(self, indexes: str):
106
+ idxs = get_idx_list_from_str(indexes)
107
+ return (SparseIndexMethod(idxs),)
108
+
109
+
110
+ class SparseSpreadMethodNode:
111
+ @classmethod
112
+ def INPUT_TYPES(s):
113
+ return {
114
+ "required": {
115
+ "spread": (SparseSpreadMethod.LIST,),
116
+ }
117
+ }
118
+
119
+ RETURN_TYPES = ("SPARSE_METHOD",)
120
+ FUNCTION = "get_method"
121
+
122
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl"
123
+
124
+ def get_method(self, spread: str):
125
+ return (SparseSpreadMethod(spread=spread),)
126
+
127
+
128
+ class RgbSparseCtrlPreprocessor:
129
+ @classmethod
130
+ def INPUT_TYPES(s):
131
+ return {
132
+ "required": {
133
+ "image": ("IMAGE", ),
134
+ "vae": ("VAE", ),
135
+ "latent_size": ("LATENT", ),
136
+ },
137
+ "optional": {
138
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
139
+ }
140
+ }
141
+
142
+ RETURN_TYPES = ("IMAGE",)
143
+ RETURN_NAMES = ("proc_IMAGE",)
144
+ FUNCTION = "preprocess_images"
145
+
146
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/preprocess"
147
+
148
+ def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor):
149
+ # first, resize image to match latents
150
+ image = image.movedim(-1,1)
151
+ image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center")
152
+ image = image.movedim(1,-1)
153
+ # then, vae encode
154
+ try:
155
+ image = vae.vae_encode_crop_pixels(image)
156
+ except Exception:
157
+ image = VAEEncode.vae_encode_crop_pixels(image)
158
+ encoded = vae.encode(image[:,:,:,:3])
159
+ return (PreprocSparseRGBWrapper(condhint=encoded),)
160
+
161
+
162
+ class SparseWeightExtras:
163
+ @classmethod
164
+ def INPUT_TYPES(s):
165
+ return {
166
+ "optional": {
167
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
168
+ "sparse_hint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
169
+ "sparse_nonhint_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
170
+ "sparse_mask_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
171
+ "autosize": ("ACNAUTOSIZE", {"padding": 50}),
172
+ }
173
+ }
174
+
175
+ RETURN_TYPES = ("CN_WEIGHTS_EXTRAS", )
176
+ RETURN_NAMES = ("cn_extras", )
177
+ FUNCTION = "create_weight_extras"
178
+
179
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/SparseCtrl/extras"
180
+
181
+ def create_weight_extras(self, cn_extras: dict[str]={}, sparse_hint_mult=1.0, sparse_nonhint_mult=1.0, sparse_mask_mult=1.0):
182
+ cn_extras = cn_extras.copy()
183
+ cn_extras[SparseConst.HINT_MULT] = sparse_hint_mult
184
+ cn_extras[SparseConst.NONHINT_MULT] = sparse_nonhint_mult
185
+ cn_extras[SparseConst.MASK_MULT] = sparse_mask_mult
186
+ return (cn_extras, )
ComfyUI-Advanced-ControlNet/adv_control/nodes_weight.py CHANGED
@@ -1,285 +1,285 @@
1
- from torch import Tensor
2
- import torch
3
- from .utils import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion
4
- from .logger import logger
5
-
6
-
7
- WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
8
-
9
-
10
- class DefaultWeights:
11
- @classmethod
12
- def INPUT_TYPES(s):
13
- return {
14
- "optional": {
15
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
16
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
17
- }
18
- }
19
-
20
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
21
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
22
- FUNCTION = "load_weights"
23
-
24
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
25
-
26
- def load_weights(self, cn_extras: dict[str]={}):
27
- weights = ControlWeights.default(extras=cn_extras)
28
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
29
-
30
-
31
- class ScaledSoftMaskedUniversalWeights:
32
- @classmethod
33
- def INPUT_TYPES(s):
34
- return {
35
- "required": {
36
- "mask": ("MASK", ),
37
- "min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
38
- "max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
39
- #"lock_min": ("BOOLEAN", {"default": False}, ),
40
- #"lock_max": ("BOOLEAN", {"default": False}, ),
41
- },
42
- "optional": {
43
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
44
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
45
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
46
- }
47
- }
48
-
49
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
50
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
51
- FUNCTION = "load_weights"
52
-
53
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
54
-
55
- def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False,
56
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
57
- # normalize mask
58
- mask = mask.clone()
59
- x_min = 0.0 if lock_min else mask.min()
60
- x_max = 1.0 if lock_max else mask.max()
61
- if x_min == x_max:
62
- mask = torch.ones_like(mask) * max_base_multiplier
63
- else:
64
- mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier)
65
- weights = ControlWeights.universal_mask(weight_mask=mask, uncond_multiplier=uncond_multiplier, extras=cn_extras)
66
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
67
-
68
-
69
- class ScaledSoftUniversalWeights:
70
- @classmethod
71
- def INPUT_TYPES(s):
72
- return {
73
- "required": {
74
- "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
75
- },
76
- "optional": {
77
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
78
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
79
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
80
- }
81
- }
82
-
83
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
84
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
85
- FUNCTION = "load_weights"
86
-
87
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
88
-
89
- def load_weights(self, base_multiplier, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
90
- weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
91
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
92
-
93
-
94
- class SoftControlNetWeightsSD15:
95
- @classmethod
96
- def INPUT_TYPES(s):
97
- return {
98
- "required": {
99
- "output_0": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
100
- "output_1": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
101
- "output_2": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
102
- "output_3": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
103
- "output_4": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
104
- "output_5": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
105
- "output_6": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
106
- "output_7": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
107
- "output_8": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
108
- "output_9": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
109
- "output_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
110
- "output_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
111
- "middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
112
- },
113
- "optional": {
114
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
115
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
116
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
117
- }
118
- }
119
-
120
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
121
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
122
- FUNCTION = "load_weights"
123
-
124
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
125
-
126
- def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
127
- output_7, output_8, output_9, output_10, output_11, middle_0,
128
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
129
- return CustomControlNetWeightsSD15.load_weights(self,
130
- output_0=output_0, output_1=output_1, output_2=output_2, output_3=output_3,
131
- output_4=output_4, output_5=output_5, output_6=output_6, output_7=output_7,
132
- output_8=output_8, output_9=output_9, output_10=output_10, output_11=output_11,
133
- middle_0=middle_0,
134
- uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
135
-
136
-
137
- class CustomControlNetWeightsSD15:
138
- @classmethod
139
- def INPUT_TYPES(s):
140
- return {
141
- "required": {
142
- "output_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
143
- "output_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
144
- "output_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
145
- "output_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
146
- "output_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
147
- "output_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
148
- "output_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
149
- "output_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
150
- "output_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
151
- "output_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
152
- "output_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
153
- "output_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
154
- "middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
155
- },
156
- "optional": {
157
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
158
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
159
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
160
- }
161
- }
162
-
163
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
164
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
165
- FUNCTION = "load_weights"
166
-
167
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
168
-
169
- def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
170
- output_7, output_8, output_9, output_10, output_11, middle_0,
171
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
172
- weights_output = [output_0, output_1, output_2, output_3, output_4, output_5, output_6,
173
- output_7, output_8, output_9, output_10, output_11]
174
- weights_middle = [middle_0]
175
- weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
176
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
177
-
178
-
179
- class CustomControlNetWeightsFlux:
180
- @classmethod
181
- def INPUT_TYPES(s):
182
- return {
183
- "required": {
184
- "input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
185
- "input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
186
- "input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
187
- "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
188
- "input_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
189
- "input_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
190
- "input_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
191
- "input_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
192
- "input_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
193
- "input_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
194
- "input_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
195
- "input_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
196
- "input_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
197
- "input_13": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
198
- "input_14": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
199
- "input_15": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
200
- "input_16": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
201
- "input_17": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
202
- "input_18": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
203
- },
204
- "optional": {
205
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
206
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
207
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
208
- }
209
- }
210
-
211
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
212
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
213
- FUNCTION = "load_weights"
214
-
215
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
216
-
217
- def load_weights(self, input_0, input_1, input_2, input_3, input_4, input_5, input_6,
218
- input_7, input_8, input_9, input_10, input_11, input_12, input_13,
219
- input_14, input_15, input_16, input_17, input_18,
220
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
221
- weights_input = [input_0, input_1, input_2, input_3, input_4, input_5,
222
- input_6, input_7, input_8, input_9, input_10, input_11,
223
- input_12, input_13, input_14, input_15, input_16, input_17, input_18]
224
- weights = ControlWeights.controlnet(weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=cn_extras)
225
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
226
-
227
-
228
- class SoftT2IAdapterWeights:
229
- @classmethod
230
- def INPUT_TYPES(s):
231
- return {
232
- "required": {
233
- "input_0": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
234
- "input_1": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
235
- "input_2": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
236
- "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
237
- },
238
- "optional": {
239
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
240
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
241
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
242
- }
243
- }
244
-
245
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
246
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
247
- FUNCTION = "load_weights"
248
-
249
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter"
250
-
251
- def load_weights(self, input_0, input_1, input_2, input_3,
252
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
253
- return CustomT2IAdapterWeights.load_weights(self, input_0=input_0, input_1=input_1, input_2=input_2, input_3=input_3,
254
- uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
255
-
256
-
257
- class CustomT2IAdapterWeights:
258
- @classmethod
259
- def INPUT_TYPES(s):
260
- return {
261
- "required": {
262
- "input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
263
- "input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
264
- "input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
265
- "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
266
- },
267
- "optional": {
268
- "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
269
- "cn_extras": ("CN_WEIGHTS_EXTRAS",),
270
- "autosize": ("ACNAUTOSIZE", {"padding": 0}),
271
- }
272
- }
273
-
274
- RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
275
- RETURN_NAMES = WEIGHTS_RETURN_NAMES
276
- FUNCTION = "load_weights"
277
-
278
- CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter"
279
-
280
- def load_weights(self, input_0, input_1, input_2, input_3,
281
- uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
282
- weights = [input_0, input_1, input_2, input_3]
283
- weights = get_properly_arranged_t2i_weights(weights)
284
- weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
285
- return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
 
1
+ from torch import Tensor
2
+ import torch
3
+ from .utils import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion
4
+ from .logger import logger
5
+
6
+
7
+ WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
8
+
9
+
10
+ class DefaultWeights:
11
+ @classmethod
12
+ def INPUT_TYPES(s):
13
+ return {
14
+ "optional": {
15
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
16
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
17
+ }
18
+ }
19
+
20
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
21
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
22
+ FUNCTION = "load_weights"
23
+
24
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
25
+
26
+ def load_weights(self, cn_extras: dict[str]={}):
27
+ weights = ControlWeights.default(extras=cn_extras)
28
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
29
+
30
+
31
+ class ScaledSoftMaskedUniversalWeights:
32
+ @classmethod
33
+ def INPUT_TYPES(s):
34
+ return {
35
+ "required": {
36
+ "mask": ("MASK", ),
37
+ "min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
38
+ "max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
39
+ #"lock_min": ("BOOLEAN", {"default": False}, ),
40
+ #"lock_max": ("BOOLEAN", {"default": False}, ),
41
+ },
42
+ "optional": {
43
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
44
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
45
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
46
+ }
47
+ }
48
+
49
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
50
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
51
+ FUNCTION = "load_weights"
52
+
53
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
54
+
55
+ def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False,
56
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
57
+ # normalize mask
58
+ mask = mask.clone()
59
+ x_min = 0.0 if lock_min else mask.min()
60
+ x_max = 1.0 if lock_max else mask.max()
61
+ if x_min == x_max:
62
+ mask = torch.ones_like(mask) * max_base_multiplier
63
+ else:
64
+ mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier)
65
+ weights = ControlWeights.universal_mask(weight_mask=mask, uncond_multiplier=uncond_multiplier, extras=cn_extras)
66
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
67
+
68
+
69
+ class ScaledSoftUniversalWeights:
70
+ @classmethod
71
+ def INPUT_TYPES(s):
72
+ return {
73
+ "required": {
74
+ "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
75
+ },
76
+ "optional": {
77
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
78
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
79
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
80
+ }
81
+ }
82
+
83
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
84
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
85
+ FUNCTION = "load_weights"
86
+
87
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights"
88
+
89
+ def load_weights(self, base_multiplier, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
90
+ weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
91
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
92
+
93
+
94
+ class SoftControlNetWeightsSD15:
95
+ @classmethod
96
+ def INPUT_TYPES(s):
97
+ return {
98
+ "required": {
99
+ "output_0": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
100
+ "output_1": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
101
+ "output_2": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
102
+ "output_3": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
103
+ "output_4": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
104
+ "output_5": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
105
+ "output_6": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
106
+ "output_7": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
107
+ "output_8": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
108
+ "output_9": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
109
+ "output_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
110
+ "output_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
111
+ "middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
112
+ },
113
+ "optional": {
114
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
115
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
116
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
117
+ }
118
+ }
119
+
120
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
121
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
122
+ FUNCTION = "load_weights"
123
+
124
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
125
+
126
+ def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
127
+ output_7, output_8, output_9, output_10, output_11, middle_0,
128
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
129
+ return CustomControlNetWeightsSD15.load_weights(self,
130
+ output_0=output_0, output_1=output_1, output_2=output_2, output_3=output_3,
131
+ output_4=output_4, output_5=output_5, output_6=output_6, output_7=output_7,
132
+ output_8=output_8, output_9=output_9, output_10=output_10, output_11=output_11,
133
+ middle_0=middle_0,
134
+ uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
135
+
136
+
137
+ class CustomControlNetWeightsSD15:
138
+ @classmethod
139
+ def INPUT_TYPES(s):
140
+ return {
141
+ "required": {
142
+ "output_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
143
+ "output_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
144
+ "output_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
145
+ "output_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
146
+ "output_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
147
+ "output_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
148
+ "output_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
149
+ "output_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
150
+ "output_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
151
+ "output_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
152
+ "output_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
153
+ "output_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
154
+ "middle_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
155
+ },
156
+ "optional": {
157
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
158
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
159
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
160
+ }
161
+ }
162
+
163
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
164
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
165
+ FUNCTION = "load_weights"
166
+
167
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
168
+
169
+ def load_weights(self, output_0, output_1, output_2, output_3, output_4, output_5, output_6,
170
+ output_7, output_8, output_9, output_10, output_11, middle_0,
171
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
172
+ weights_output = [output_0, output_1, output_2, output_3, output_4, output_5, output_6,
173
+ output_7, output_8, output_9, output_10, output_11]
174
+ weights_middle = [middle_0]
175
+ weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
176
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
177
+
178
+
179
+ class CustomControlNetWeightsFlux:
180
+ @classmethod
181
+ def INPUT_TYPES(s):
182
+ return {
183
+ "required": {
184
+ "input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
185
+ "input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
186
+ "input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
187
+ "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
188
+ "input_4": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
189
+ "input_5": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
190
+ "input_6": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
191
+ "input_7": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
192
+ "input_8": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
193
+ "input_9": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
194
+ "input_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
195
+ "input_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
196
+ "input_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
197
+ "input_13": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
198
+ "input_14": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
199
+ "input_15": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
200
+ "input_16": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
201
+ "input_17": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
202
+ "input_18": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
203
+ },
204
+ "optional": {
205
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
206
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
207
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
208
+ }
209
+ }
210
+
211
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
212
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
213
+ FUNCTION = "load_weights"
214
+
215
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet"
216
+
217
+ def load_weights(self, input_0, input_1, input_2, input_3, input_4, input_5, input_6,
218
+ input_7, input_8, input_9, input_10, input_11, input_12, input_13,
219
+ input_14, input_15, input_16, input_17, input_18,
220
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
221
+ weights_input = [input_0, input_1, input_2, input_3, input_4, input_5,
222
+ input_6, input_7, input_8, input_9, input_10, input_11,
223
+ input_12, input_13, input_14, input_15, input_16, input_17, input_18]
224
+ weights = ControlWeights.controlnet(weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=cn_extras)
225
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
226
+
227
+
228
+ class SoftT2IAdapterWeights:
229
+ @classmethod
230
+ def INPUT_TYPES(s):
231
+ return {
232
+ "required": {
233
+ "input_0": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
234
+ "input_1": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
235
+ "input_2": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
236
+ "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
237
+ },
238
+ "optional": {
239
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
240
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
241
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
242
+ }
243
+ }
244
+
245
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
246
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
247
+ FUNCTION = "load_weights"
248
+
249
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter"
250
+
251
+ def load_weights(self, input_0, input_1, input_2, input_3,
252
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
253
+ return CustomT2IAdapterWeights.load_weights(self, input_0=input_0, input_1=input_1, input_2=input_2, input_3=input_3,
254
+ uncond_multiplier=uncond_multiplier, cn_extras=cn_extras)
255
+
256
+
257
+ class CustomT2IAdapterWeights:
258
+ @classmethod
259
+ def INPUT_TYPES(s):
260
+ return {
261
+ "required": {
262
+ "input_0": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
263
+ "input_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
264
+ "input_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
265
+ "input_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
266
+ },
267
+ "optional": {
268
+ "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
269
+ "cn_extras": ("CN_WEIGHTS_EXTRAS",),
270
+ "autosize": ("ACNAUTOSIZE", {"padding": 0}),
271
+ }
272
+ }
273
+
274
+ RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
275
+ RETURN_NAMES = WEIGHTS_RETURN_NAMES
276
+ FUNCTION = "load_weights"
277
+
278
+ CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter"
279
+
280
+ def load_weights(self, input_0, input_1, input_2, input_3,
281
+ uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
282
+ weights = [input_0, input_1, input_2, input_3]
283
+ weights = get_properly_arranged_t2i_weights(weights)
284
+ weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
285
+ return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
ComfyUI-Advanced-ControlNet/adv_control/sampling.py CHANGED
@@ -1,216 +1,216 @@
1
- from typing import Callable, Union
2
-
3
- import comfy.sample
4
- from comfy.model_patcher import ModelPatcher
5
- from comfy.controlnet import ControlBase
6
- from comfy.ldm.modules.attention import BasicTransformerBlock
7
-
8
-
9
- from .control import convert_all_to_advanced, restore_all_controlnet_conns
10
- from .control_reference import (ReferenceAdvanced, ReferenceInjections,
11
- RefBasicTransformerBlock, RefTimestepEmbedSequential,
12
- InjectionBasicTransformerBlockHolder, InjectionTimestepEmbedSequentialHolder,
13
- _forward_inject_BasicTransformerBlock, factory_forward_inject_UNetModel,
14
- handle_context_ref_setup,
15
- REF_CONTROL_LIST_ALL, CONTEXTREF_CLEAN_FUNC)
16
- from .control_lllite import (ControlLLLiteAdvanced)
17
- from .utils import torch_dfs
18
-
19
-
20
- def support_sliding_context_windows(model, positive, negative) -> tuple[bool, dict, dict]:
21
- # convert to advanced, with report if anything was actually modified
22
- modified, new_conds = convert_all_to_advanced([positive, negative])
23
- positive, negative = new_conds
24
- return modified, positive, negative
25
-
26
-
27
- def has_sliding_context_windows(model):
28
- motion_injection_params = getattr(model, "motion_injection_params", None)
29
- if motion_injection_params is None:
30
- return False
31
- context_options = getattr(motion_injection_params, "context_options")
32
- return context_options.context_length is not None
33
-
34
-
35
- def get_contextref_obj(model):
36
- motion_injection_params = getattr(model, "motion_injection_params", None)
37
- if motion_injection_params is None:
38
- return None
39
- context_options = getattr(motion_injection_params, "context_options")
40
- extras = getattr(context_options, "extras", None)
41
- if extras is None:
42
- return None
43
- return getattr(extras, "context_ref", None)
44
-
45
-
46
- def acn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable:
47
- def get_refcn(control: ControlBase, order: int=-1):
48
- ref_set: set[ReferenceAdvanced] = set()
49
- if control is None:
50
- return ref_set
51
- if type(control) == ReferenceAdvanced and not control.is_context_ref:
52
- control.order = order
53
- order -= 1
54
- ref_set.add(control)
55
- ref_set.update(get_refcn(control.previous_controlnet, order=order))
56
- return ref_set
57
-
58
- def get_lllitecn(control: ControlBase):
59
- cn_dict: dict[ControlLLLiteAdvanced,None] = {}
60
- if control is None:
61
- return cn_dict
62
- if type(control) == ControlLLLiteAdvanced:
63
- cn_dict[control] = None
64
- cn_dict.update(get_lllitecn(control.previous_controlnet))
65
- return cn_dict
66
-
67
- def acn_sample(model: ModelPatcher, *args, **kwargs):
68
- controlnets_modified = False
69
- orig_positive = args[-3]
70
- orig_negative = args[-2]
71
- try:
72
- orig_model_options = model.model_options
73
- # check if positive or negative conds contain ref cn
74
- positive = args[-3]
75
- negative = args[-2]
76
- # if context options present, perform some special actions that may be required
77
- context_refs = []
78
- if has_sliding_context_windows(model):
79
- model.model_options = model.model_options.copy()
80
- model.model_options["transformer_options"] = model.model_options["transformer_options"].copy()
81
- # convert all CNs to Advanced if needed
82
- controlnets_modified, positive, negative = support_sliding_context_windows(model, positive, negative)
83
- if controlnets_modified:
84
- args = list(args)
85
- args[-3] = positive
86
- args[-2] = negative
87
- args = tuple(args)
88
- # enable ContextRef, if requested
89
- existing_contextref_obj = get_contextref_obj(model)
90
- if existing_contextref_obj is not None:
91
- context_refs = handle_context_ref_setup(existing_contextref_obj, model.model_options["transformer_options"], positive, negative)
92
- controlnets_modified = True
93
- # look for Advanced ControlNets that will require intervention to work
94
- ref_set = set()
95
- lllite_dict: dict[ControlLLLiteAdvanced, None] = {} # dicts preserve insertion order since py3.7
96
- if positive is not None:
97
- for cond in positive:
98
- if "control" in cond[1]:
99
- ref_set.update(get_refcn(cond[1]["control"]))
100
- lllite_dict.update(get_lllitecn(cond[1]["control"]))
101
- if negative is not None:
102
- for cond in negative:
103
- if "control" in cond[1]:
104
- ref_set.update(get_refcn(cond[1]["control"]))
105
- lllite_dict.update(get_lllitecn(cond[1]["control"]))
106
- # if lllite found, apply patches to a cloned model_options, and continue
107
- if len(lllite_dict) > 0:
108
- lllite_list = list(lllite_dict.keys())
109
- model.model_options = model.model_options.copy()
110
- model.model_options["transformer_options"] = model.model_options["transformer_options"].copy()
111
- lllite_list.reverse() # reverse so that patches will be applied in expected order
112
- for lll in lllite_list:
113
- lll.live_model_patches(model.model_options)
114
- # if no ref cn found, do original function immediately
115
- if len(ref_set) == 0 and len(context_refs) == 0:
116
- return orig_comfy_sample(model, *args, **kwargs)
117
- # otherwise, injection time
118
- try:
119
- # inject
120
- # storage for all Reference-related injections
121
- reference_injections = ReferenceInjections()
122
-
123
- # first, handle attn module injection
124
- all_modules = torch_dfs(model.model)
125
- attn_modules: list[RefBasicTransformerBlock] = []
126
- for module in all_modules:
127
- if isinstance(module, BasicTransformerBlock):
128
- attn_modules.append(module)
129
- attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)]
130
- attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
131
- for i, module in enumerate(attn_modules):
132
- injection_holder = InjectionBasicTransformerBlockHolder(block=module, idx=i)
133
- injection_holder.attn_weight = float(i) / float(len(attn_modules))
134
- if hasattr(module, "_forward"): # backward compatibility
135
- module._forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
136
- else:
137
- module.forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
138
- module.injection_holder = injection_holder
139
- reference_injections.attn_modules.append(module)
140
- # figure out which module is middle block
141
- if hasattr(model.model.diffusion_model, "middle_block"):
142
- mid_modules = torch_dfs(model.model.diffusion_model.middle_block)
143
- mid_attn_modules: list[RefBasicTransformerBlock] = [module for module in mid_modules if isinstance(module, BasicTransformerBlock)]
144
- for module in mid_attn_modules:
145
- module.injection_holder.is_middle = True
146
-
147
- # next, handle gn module injection (TimestepEmbedSequential)
148
- # TODO: figure out the logic behind these hardcoded indexes
149
- if type(model.model).__name__ == "SDXL":
150
- input_block_indices = [4, 5, 7, 8]
151
- output_block_indices = [0, 1, 2, 3, 4, 5]
152
- else:
153
- input_block_indices = [4, 5, 7, 8, 10, 11]
154
- output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
155
- if hasattr(model.model.diffusion_model, "middle_block"):
156
- module = model.model.diffusion_model.middle_block
157
- injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=0, is_middle=True)
158
- injection_holder.gn_weight = 0.0
159
- module.injection_holder = injection_holder
160
- reference_injections.gn_modules.append(module)
161
- for w, i in enumerate(input_block_indices):
162
- module = model.model.diffusion_model.input_blocks[i]
163
- injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_input=True)
164
- injection_holder.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
165
- module.injection_holder = injection_holder
166
- reference_injections.gn_modules.append(module)
167
- for w, i in enumerate(output_block_indices):
168
- module = model.model.diffusion_model.output_blocks[i]
169
- injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_output=True)
170
- injection_holder.gn_weight = float(w) / float(len(output_block_indices))
171
- module.injection_holder = injection_holder
172
- reference_injections.gn_modules.append(module)
173
- # hack gn_module forwards and update weights
174
- for i, module in enumerate(reference_injections.gn_modules):
175
- module.injection_holder.gn_weight *= 2
176
-
177
- # handle diffusion_model forward injection
178
- reference_injections.diffusion_model_orig_forward = model.model.diffusion_model.forward
179
- model.model.diffusion_model.forward = factory_forward_inject_UNetModel(reference_injections).__get__(model.model.diffusion_model, type(model.model.diffusion_model))
180
- # store ordered ref cns in model's transformer options
181
- new_model_options = model.model_options.copy()
182
- new_model_options["transformer_options"] = model.model_options["transformer_options"].copy()
183
- ref_list: list[ReferenceAdvanced] = list(ref_set)
184
- new_model_options["transformer_options"][REF_CONTROL_LIST_ALL] = sorted(ref_list, key=lambda x: x.order)
185
- new_model_options["transformer_options"][CONTEXTREF_CLEAN_FUNC] = reference_injections.clean_contextref_module_mem
186
- model.model_options = new_model_options
187
- # continue with original function
188
- return orig_comfy_sample(model, *args, **kwargs)
189
- finally:
190
- # cleanup injections
191
- # restore attn modules
192
- attn_modules: list[RefBasicTransformerBlock] = reference_injections.attn_modules
193
- for module in attn_modules:
194
- module.injection_holder.restore(module)
195
- module.injection_holder.clean_all()
196
- del module.injection_holder
197
- del attn_modules
198
- # restore gn modules
199
- gn_modules: list[RefTimestepEmbedSequential] = reference_injections.gn_modules
200
- for module in gn_modules:
201
- module.injection_holder.restore(module)
202
- module.injection_holder.clean_all()
203
- del module.injection_holder
204
- del gn_modules
205
- # restore diffusion_model forward function
206
- model.model.diffusion_model.forward = reference_injections.diffusion_model_orig_forward.__get__(model.model.diffusion_model, type(model.model.diffusion_model))
207
- # cleanup
208
- reference_injections.cleanup()
209
- finally:
210
- # restore model_options
211
- model.model_options = orig_model_options
212
- # restore controlnets in conds, if needed
213
- if controlnets_modified:
214
- restore_all_controlnet_conns([orig_positive, orig_negative])
215
-
216
- return acn_sample
 
1
+ from typing import Callable, Union
2
+
3
+ import comfy.sample
4
+ from comfy.model_patcher import ModelPatcher
5
+ from comfy.controlnet import ControlBase
6
+ from comfy.ldm.modules.attention import BasicTransformerBlock
7
+
8
+
9
+ from .control import convert_all_to_advanced, restore_all_controlnet_conns
10
+ from .control_reference import (ReferenceAdvanced, ReferenceInjections,
11
+ RefBasicTransformerBlock, RefTimestepEmbedSequential,
12
+ InjectionBasicTransformerBlockHolder, InjectionTimestepEmbedSequentialHolder,
13
+ _forward_inject_BasicTransformerBlock, factory_forward_inject_UNetModel,
14
+ handle_context_ref_setup,
15
+ REF_CONTROL_LIST_ALL, CONTEXTREF_CLEAN_FUNC)
16
+ from .control_lllite import (ControlLLLiteAdvanced)
17
+ from .utils import torch_dfs
18
+
19
+
20
+ def support_sliding_context_windows(model, positive, negative) -> tuple[bool, dict, dict]:
21
+ # convert to advanced, with report if anything was actually modified
22
+ modified, new_conds = convert_all_to_advanced([positive, negative])
23
+ positive, negative = new_conds
24
+ return modified, positive, negative
25
+
26
+
27
+ def has_sliding_context_windows(model):
28
+ motion_injection_params = getattr(model, "motion_injection_params", None)
29
+ if motion_injection_params is None:
30
+ return False
31
+ context_options = getattr(motion_injection_params, "context_options")
32
+ return context_options.context_length is not None
33
+
34
+
35
+ def get_contextref_obj(model):
36
+ motion_injection_params = getattr(model, "motion_injection_params", None)
37
+ if motion_injection_params is None:
38
+ return None
39
+ context_options = getattr(motion_injection_params, "context_options")
40
+ extras = getattr(context_options, "extras", None)
41
+ if extras is None:
42
+ return None
43
+ return getattr(extras, "context_ref", None)
44
+
45
+
46
+ def acn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable:
47
+ def get_refcn(control: ControlBase, order: int=-1):
48
+ ref_set: set[ReferenceAdvanced] = set()
49
+ if control is None:
50
+ return ref_set
51
+ if type(control) == ReferenceAdvanced and not control.is_context_ref:
52
+ control.order = order
53
+ order -= 1
54
+ ref_set.add(control)
55
+ ref_set.update(get_refcn(control.previous_controlnet, order=order))
56
+ return ref_set
57
+
58
+ def get_lllitecn(control: ControlBase):
59
+ cn_dict: dict[ControlLLLiteAdvanced,None] = {}
60
+ if control is None:
61
+ return cn_dict
62
+ if type(control) == ControlLLLiteAdvanced:
63
+ cn_dict[control] = None
64
+ cn_dict.update(get_lllitecn(control.previous_controlnet))
65
+ return cn_dict
66
+
67
+ def acn_sample(model: ModelPatcher, *args, **kwargs):
68
+ controlnets_modified = False
69
+ orig_positive = args[-3]
70
+ orig_negative = args[-2]
71
+ try:
72
+ orig_model_options = model.model_options
73
+ # check if positive or negative conds contain ref cn
74
+ positive = args[-3]
75
+ negative = args[-2]
76
+ # if context options present, perform some special actions that may be required
77
+ context_refs = []
78
+ if has_sliding_context_windows(model):
79
+ model.model_options = model.model_options.copy()
80
+ model.model_options["transformer_options"] = model.model_options["transformer_options"].copy()
81
+ # convert all CNs to Advanced if needed
82
+ controlnets_modified, positive, negative = support_sliding_context_windows(model, positive, negative)
83
+ if controlnets_modified:
84
+ args = list(args)
85
+ args[-3] = positive
86
+ args[-2] = negative
87
+ args = tuple(args)
88
+ # enable ContextRef, if requested
89
+ existing_contextref_obj = get_contextref_obj(model)
90
+ if existing_contextref_obj is not None:
91
+ context_refs = handle_context_ref_setup(existing_contextref_obj, model.model_options["transformer_options"], positive, negative)
92
+ controlnets_modified = True
93
+ # look for Advanced ControlNets that will require intervention to work
94
+ ref_set = set()
95
+ lllite_dict: dict[ControlLLLiteAdvanced, None] = {} # dicts preserve insertion order since py3.7
96
+ if positive is not None:
97
+ for cond in positive:
98
+ if "control" in cond[1]:
99
+ ref_set.update(get_refcn(cond[1]["control"]))
100
+ lllite_dict.update(get_lllitecn(cond[1]["control"]))
101
+ if negative is not None:
102
+ for cond in negative:
103
+ if "control" in cond[1]:
104
+ ref_set.update(get_refcn(cond[1]["control"]))
105
+ lllite_dict.update(get_lllitecn(cond[1]["control"]))
106
+ # if lllite found, apply patches to a cloned model_options, and continue
107
+ if len(lllite_dict) > 0:
108
+ lllite_list = list(lllite_dict.keys())
109
+ model.model_options = model.model_options.copy()
110
+ model.model_options["transformer_options"] = model.model_options["transformer_options"].copy()
111
+ lllite_list.reverse() # reverse so that patches will be applied in expected order
112
+ for lll in lllite_list:
113
+ lll.live_model_patches(model.model_options)
114
+ # if no ref cn found, do original function immediately
115
+ if len(ref_set) == 0 and len(context_refs) == 0:
116
+ return orig_comfy_sample(model, *args, **kwargs)
117
+ # otherwise, injection time
118
+ try:
119
+ # inject
120
+ # storage for all Reference-related injections
121
+ reference_injections = ReferenceInjections()
122
+
123
+ # first, handle attn module injection
124
+ all_modules = torch_dfs(model.model)
125
+ attn_modules: list[RefBasicTransformerBlock] = []
126
+ for module in all_modules:
127
+ if isinstance(module, BasicTransformerBlock):
128
+ attn_modules.append(module)
129
+ attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)]
130
+ attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
131
+ for i, module in enumerate(attn_modules):
132
+ injection_holder = InjectionBasicTransformerBlockHolder(block=module, idx=i)
133
+ injection_holder.attn_weight = float(i) / float(len(attn_modules))
134
+ if hasattr(module, "_forward"): # backward compatibility
135
+ module._forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
136
+ else:
137
+ module.forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module))
138
+ module.injection_holder = injection_holder
139
+ reference_injections.attn_modules.append(module)
140
+ # figure out which module is middle block
141
+ if hasattr(model.model.diffusion_model, "middle_block"):
142
+ mid_modules = torch_dfs(model.model.diffusion_model.middle_block)
143
+ mid_attn_modules: list[RefBasicTransformerBlock] = [module for module in mid_modules if isinstance(module, BasicTransformerBlock)]
144
+ for module in mid_attn_modules:
145
+ module.injection_holder.is_middle = True
146
+
147
+ # next, handle gn module injection (TimestepEmbedSequential)
148
+ # TODO: figure out the logic behind these hardcoded indexes
149
+ if type(model.model).__name__ == "SDXL":
150
+ input_block_indices = [4, 5, 7, 8]
151
+ output_block_indices = [0, 1, 2, 3, 4, 5]
152
+ else:
153
+ input_block_indices = [4, 5, 7, 8, 10, 11]
154
+ output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7]
155
+ if hasattr(model.model.diffusion_model, "middle_block"):
156
+ module = model.model.diffusion_model.middle_block
157
+ injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=0, is_middle=True)
158
+ injection_holder.gn_weight = 0.0
159
+ module.injection_holder = injection_holder
160
+ reference_injections.gn_modules.append(module)
161
+ for w, i in enumerate(input_block_indices):
162
+ module = model.model.diffusion_model.input_blocks[i]
163
+ injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_input=True)
164
+ injection_holder.gn_weight = 1.0 - float(w) / float(len(input_block_indices))
165
+ module.injection_holder = injection_holder
166
+ reference_injections.gn_modules.append(module)
167
+ for w, i in enumerate(output_block_indices):
168
+ module = model.model.diffusion_model.output_blocks[i]
169
+ injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_output=True)
170
+ injection_holder.gn_weight = float(w) / float(len(output_block_indices))
171
+ module.injection_holder = injection_holder
172
+ reference_injections.gn_modules.append(module)
173
+ # hack gn_module forwards and update weights
174
+ for i, module in enumerate(reference_injections.gn_modules):
175
+ module.injection_holder.gn_weight *= 2
176
+
177
+ # handle diffusion_model forward injection
178
+ reference_injections.diffusion_model_orig_forward = model.model.diffusion_model.forward
179
+ model.model.diffusion_model.forward = factory_forward_inject_UNetModel(reference_injections).__get__(model.model.diffusion_model, type(model.model.diffusion_model))
180
+ # store ordered ref cns in model's transformer options
181
+ new_model_options = model.model_options.copy()
182
+ new_model_options["transformer_options"] = model.model_options["transformer_options"].copy()
183
+ ref_list: list[ReferenceAdvanced] = list(ref_set)
184
+ new_model_options["transformer_options"][REF_CONTROL_LIST_ALL] = sorted(ref_list, key=lambda x: x.order)
185
+ new_model_options["transformer_options"][CONTEXTREF_CLEAN_FUNC] = reference_injections.clean_contextref_module_mem
186
+ model.model_options = new_model_options
187
+ # continue with original function
188
+ return orig_comfy_sample(model, *args, **kwargs)
189
+ finally:
190
+ # cleanup injections
191
+ # restore attn modules
192
+ attn_modules: list[RefBasicTransformerBlock] = reference_injections.attn_modules
193
+ for module in attn_modules:
194
+ module.injection_holder.restore(module)
195
+ module.injection_holder.clean_all()
196
+ del module.injection_holder
197
+ del attn_modules
198
+ # restore gn modules
199
+ gn_modules: list[RefTimestepEmbedSequential] = reference_injections.gn_modules
200
+ for module in gn_modules:
201
+ module.injection_holder.restore(module)
202
+ module.injection_holder.clean_all()
203
+ del module.injection_holder
204
+ del gn_modules
205
+ # restore diffusion_model forward function
206
+ model.model.diffusion_model.forward = reference_injections.diffusion_model_orig_forward.__get__(model.model.diffusion_model, type(model.model.diffusion_model))
207
+ # cleanup
208
+ reference_injections.cleanup()
209
+ finally:
210
+ # restore model_options
211
+ model.model_options = orig_model_options
212
+ # restore controlnets in conds, if needed
213
+ if controlnets_modified:
214
+ restore_all_controlnet_conns([orig_positive, orig_negative])
215
+
216
+ return acn_sample
ComfyUI-Advanced-ControlNet/adv_control/utils.py CHANGED
@@ -1,981 +1,981 @@
1
- from copy import deepcopy
2
- from typing import Callable, Union
3
- import torch
4
- from torch import Tensor
5
- import torch.nn.functional
6
- from einops import rearrange
7
- import numpy as np
8
- import math
9
-
10
- import comfy.ops
11
- import comfy.utils
12
- import comfy.sample
13
- import comfy.samplers
14
- import comfy.model_base
15
-
16
- from comfy.controlnet import ControlBase
17
- from comfy.model_patcher import ModelPatcher
18
- from comfy.sd import VAE
19
-
20
- from .logger import logger
21
-
22
- BIGMIN = -(2**53-1)
23
- BIGMAX = (2**53-1)
24
-
25
- ORIG_PREVIOUS_CONTROLNET = "_orig_previous_controlnet"
26
- CONTROL_INIT_BY_ACN = "_control_init_by_ACN"
27
-
28
-
29
- def load_torch_file_with_dict_factory(controlnet_data: dict[str, Tensor], orig_load_torch_file: Callable):
30
- def load_torch_file_with_dict(*args, **kwargs):
31
- # immediately restore load_torch_file to original version
32
- comfy.utils.load_torch_file = orig_load_torch_file
33
- return controlnet_data
34
- return load_torch_file_with_dict
35
-
36
- # wrapping len function so that it will save the thing len is trying to get the length of;
37
- # this will be assumed to be the cond_or_uncond variable;
38
- # automatically restores len to original function after running
39
- def wrapper_len_factory(orig_len: Callable) -> Callable:
40
- def wrapper_len(*args, **kwargs):
41
- cond_or_uncond = args[0]
42
- real_length = orig_len(*args, **kwargs)
43
- if real_length > 0 and type(cond_or_uncond) == list and isinstance(cond_or_uncond[0], int) and (cond_or_uncond[0] in [0, 1]):
44
- try:
45
- to_return = IntWithCondOrUncond(real_length)
46
- setattr(to_return, "cond_or_uncond", cond_or_uncond)
47
- return to_return
48
- finally:
49
- __builtins__["len"] = orig_len
50
- else:
51
- return real_length
52
- return wrapper_len
53
-
54
- # wrapping cond_cat function so that it will wrap around len function to get cond_or_uncond variable value
55
- # from comfy.samplers.calc_conds_batch
56
- def wrapper_cond_cat_factory(orig_cond_cat: Callable):
57
- def wrapper_cond_cat(*args, **kwargs):
58
- __builtins__["len"] = wrapper_len_factory(__builtins__["len"])
59
- return orig_cond_cat(*args, **kwargs)
60
- return wrapper_cond_cat
61
- orig_cond_cat = comfy.samplers.cond_cat
62
- comfy.samplers.cond_cat = wrapper_cond_cat_factory(orig_cond_cat)
63
-
64
-
65
- # wrapping apply_model so that len function will be cleaned up fairly soon after being injected
66
- def apply_model_uncond_cleanup_factory(orig_apply_model, orig_len):
67
- def apply_model_uncond_cleanup_wrapper(self, *args, **kwargs):
68
- __builtins__["len"] = orig_len
69
- return orig_apply_model(self, *args, **kwargs)
70
- return apply_model_uncond_cleanup_wrapper
71
- global_orig_len = __builtins__["len"]
72
- orig_apply_model = comfy.model_base.BaseModel.apply_model
73
- comfy.model_base.BaseModel.apply_model = apply_model_uncond_cleanup_factory(orig_apply_model, global_orig_len)
74
-
75
-
76
- def uncond_multiplier_check_cn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable:
77
- def contains_uncond_multiplier(control: Union[ControlBase, 'AdvancedControlBase']):
78
- if control is None:
79
- return False
80
- if not isinstance(control, AdvancedControlBase):
81
- return contains_uncond_multiplier(control.previous_controlnet)
82
- # check if weights_override has an uncond_multiplier
83
- if control.weights_override is not None and control.weights_override.has_uncond_multiplier:
84
- return True
85
- # check if any timestep_keyframes have an uncond_multiplier on their weights
86
- if control.timestep_keyframes is not None:
87
- for tk in control.timestep_keyframes.keyframes:
88
- if tk.has_control_weights() and tk.control_weights.has_uncond_multiplier:
89
- return True
90
- return contains_uncond_multiplier(control.previous_controlnet)
91
-
92
- # check if positive or negative conds contain Adv. Cns that use multiply_negative on weights
93
- def uncond_multiplier_check_cn_sample(model: ModelPatcher, *args, **kwargs):
94
- positive = args[-3]
95
- negative = args[-2]
96
- has_uncond_multiplier = False
97
- if positive is not None:
98
- for cond in positive:
99
- if "control" in cond[1]:
100
- has_uncond_multiplier = contains_uncond_multiplier(cond[1]["control"])
101
- if has_uncond_multiplier:
102
- break
103
- if negative is not None and not has_uncond_multiplier:
104
- for cond in negative:
105
- if "control" in cond[1]:
106
- has_uncond_multiplier = contains_uncond_multiplier(cond[1]["control"])
107
- if has_uncond_multiplier:
108
- break
109
- try:
110
- # if uncond_multiplier found, continue to use wrapped version of function
111
- if has_uncond_multiplier:
112
- return orig_comfy_sample(model, *args, **kwargs)
113
- # otherwise, use original version of function to prevent even the smallest of slowdowns (0.XX%)
114
- try:
115
- wrapped_cond_cat = comfy.samplers.cond_cat
116
- comfy.samplers.cond_cat = orig_cond_cat
117
- return orig_comfy_sample(model, *args, **kwargs)
118
- finally:
119
- comfy.samplers.cond_cat = wrapped_cond_cat
120
- finally:
121
- # make sure len function is unwrapped by the time sampling is done, just in case
122
- __builtins__["len"] = global_orig_len
123
- return uncond_multiplier_check_cn_sample
124
- # inject sample functions
125
- comfy.sample.sample = uncond_multiplier_check_cn_sample_factory(comfy.sample.sample)
126
- comfy.sample.sample_custom = uncond_multiplier_check_cn_sample_factory(comfy.sample.sample_custom, is_custom=True)
127
-
128
-
129
- class IntWithCondOrUncond(int):
130
- def __new__(cls, *args, **kwargs):
131
- return super(IntWithCondOrUncond, cls).__new__(cls, *args, **kwargs)
132
-
133
- def __init__(self, *args, **kwargs):
134
- super().__init__()
135
- self.cond_or_uncond = None
136
-
137
-
138
-
139
- def get_properly_arranged_t2i_weights(initial_weights: list[float]):
140
- new_weights = []
141
- new_weights.extend([initial_weights[0]]*3)
142
- new_weights.extend([initial_weights[1]]*3)
143
- new_weights.extend([initial_weights[2]]*3)
144
- new_weights.extend([initial_weights[3]]*3)
145
- return new_weights
146
-
147
-
148
- class ControlWeightType:
149
- DEFAULT = "default"
150
- UNIVERSAL = "universal"
151
- T2IADAPTER = "t2iadapter"
152
- CONTROLNET = "controlnet"
153
- CONTROLNETPLUSPLUS = "controlnet++"
154
- CONTROLLORA = "controllora"
155
- CONTROLLLLITE = "controllllite"
156
- SVD_CONTROLNET = "svd_controlnet"
157
- SPARSECTRL = "sparsectrl"
158
-
159
-
160
- class ControlWeights:
161
- def __init__(self, weight_type: str, base_multiplier: float=1.0,
162
- weights_input: list[float]=None, weights_middle: list[float]=None, weights_output: list[float]=None,
163
- weight_func: Callable=None, weight_mask: Tensor=None,
164
- uncond_multiplier=1.0, uncond_mask: Tensor=None, extras: dict[str]={},):
165
- self.weight_type = weight_type
166
- self.base_multiplier = base_multiplier
167
- self.weights_input = weights_input
168
- self.weights_middle = weights_middle
169
- self.weights_output = weights_output
170
- self.weight_func = weight_func
171
- self.weight_mask = weight_mask
172
- self.uncond_multiplier = float(uncond_multiplier)
173
- self.has_uncond_multiplier = not math.isclose(self.uncond_multiplier, 1.0)
174
- self.uncond_mask = uncond_mask if uncond_mask is not None else 1.0
175
- self.has_uncond_mask = uncond_mask is not None
176
- self.extras = extras
177
-
178
- def get(self, idx: int, control: dict[str, list[Tensor]], key: str, default=1.0) -> Union[float, Tensor]:
179
- # if weight_func present, use it
180
- if self.weight_func is not None:
181
- return self.weight_func(idx=idx, control=control, key=key)
182
- # if weights is not none, return index
183
- relevant_weights = None
184
- if key == "middle":
185
- relevant_weights = self.weights_middle
186
- elif key == "input":
187
- relevant_weights = self.weights_input
188
- if relevant_weights is not None:
189
- relevant_weights = list(reversed(relevant_weights))
190
- else:
191
- relevant_weights = self.weights_output
192
- if relevant_weights is None:
193
- return default
194
- elif idx >= len(relevant_weights):
195
- return default
196
- return relevant_weights[idx]
197
-
198
- def copy_with_new_weights(self, new_weights_input: list[float]=None, new_weights_middle: list[float]=None, new_weights_output: list[float]=None,
199
- new_weight_func: Callable=None):
200
- return ControlWeights(weight_type=self.weight_type, base_multiplier=self.base_multiplier,
201
- weights_input=new_weights_input, weights_middle=new_weights_middle, weights_output=new_weights_output,
202
- weight_func=new_weight_func, weight_mask=self.weight_mask,
203
- uncond_multiplier=self.uncond_multiplier, extras=self.extras)
204
-
205
- @classmethod
206
- def default(cls, extras: dict[str]={}):
207
- return cls(ControlWeightType.DEFAULT, extras=extras)
208
-
209
- @classmethod
210
- def universal(cls, base_multiplier: float, uncond_multiplier: float=1.0, extras: dict[str]={}):
211
- return cls(ControlWeightType.UNIVERSAL, base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=extras)
212
-
213
- @classmethod
214
- def universal_mask(cls, weight_mask: Tensor, uncond_multiplier: float=1.0, extras: dict[str]={}):
215
- return cls(ControlWeightType.UNIVERSAL, weight_mask=weight_mask, uncond_multiplier=uncond_multiplier, extras=extras)
216
-
217
- @classmethod
218
- def t2iadapter(cls, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
219
- return cls(ControlWeightType.T2IADAPTER, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
220
-
221
- @classmethod
222
- def controlnet(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
223
- return cls(ControlWeightType.CONTROLNET, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
224
-
225
- @classmethod
226
- def controllora(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
227
- return cls(ControlWeightType.CONTROLLORA, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
228
-
229
- @classmethod
230
- def controllllite(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
231
- return cls(ControlWeightType.CONTROLLLLITE, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
232
-
233
-
234
- class StrengthInterpolation:
235
- LINEAR = "linear"
236
- EASE_IN = "ease-in"
237
- EASE_OUT = "ease-out"
238
- EASE_IN_OUT = "ease-in-out"
239
- NONE = "none"
240
-
241
- _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
242
- _LIST_WITH_NONE = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT, NONE]
243
-
244
- @classmethod
245
- def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
246
- diff = num_to - num_from
247
- if method == cls.LINEAR:
248
- weights = torch.linspace(num_from, num_to, length)
249
- elif method == cls.EASE_IN:
250
- index = torch.linspace(0, 1, length)
251
- weights = diff * np.power(index, 2) + num_from
252
- elif method == cls.EASE_OUT:
253
- index = torch.linspace(0, 1, length)
254
- weights = diff * (1 - np.power(1 - index, 2)) + num_from
255
- elif method == cls.EASE_IN_OUT:
256
- index = torch.linspace(0, 1, length)
257
- weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
258
- else:
259
- raise ValueError(f"Unrecognized interpolation method '{method}'.")
260
- if reverse:
261
- weights = weights.flip(dims=(0,))
262
- return weights
263
-
264
-
265
- class LatentKeyframe:
266
- def __init__(self, batch_index: int, strength: float) -> None:
267
- self.batch_index = batch_index
268
- self.strength = strength
269
-
270
-
271
- # always maintain sorted state (by batch_index of LatentKeyframe)
272
- class LatentKeyframeGroup:
273
- def __init__(self) -> None:
274
- self.keyframes: list[LatentKeyframe] = []
275
-
276
- def add(self, keyframe: LatentKeyframe) -> None:
277
- added = False
278
- # replace existing keyframe if same batch_index
279
- for i in range(len(self.keyframes)):
280
- if self.keyframes[i].batch_index == keyframe.batch_index:
281
- self.keyframes[i] = keyframe
282
- added = True
283
- break
284
- if not added:
285
- self.keyframes.append(keyframe)
286
- self.keyframes.sort(key=lambda k: k.batch_index)
287
-
288
- def get_index(self, index: int) -> Union[LatentKeyframe, None]:
289
- try:
290
- return self.keyframes[index]
291
- except IndexError:
292
- return None
293
-
294
- def __getitem__(self, index) -> LatentKeyframe:
295
- return self.keyframes[index]
296
-
297
- def is_empty(self) -> bool:
298
- return len(self.keyframes) == 0
299
-
300
- def clone(self) -> 'LatentKeyframeGroup':
301
- cloned = LatentKeyframeGroup()
302
- for tk in self.keyframes:
303
- cloned.add(tk)
304
- return cloned
305
-
306
-
307
- class TimestepKeyframe:
308
- def __init__(self,
309
- start_percent: float = 0.0,
310
- strength: float = 1.0,
311
- control_weights: ControlWeights = None,
312
- latent_keyframes: LatentKeyframeGroup = None,
313
- null_latent_kf_strength: float = 0.0,
314
- inherit_missing: bool = True,
315
- guarantee_steps: int = 1,
316
- mask_hint_orig: Tensor = None) -> None:
317
- self.start_percent = float(start_percent)
318
- self.start_t = 999999999.9
319
- self.strength = strength
320
- self.control_weights = control_weights
321
- self.latent_keyframes = latent_keyframes
322
- self.null_latent_kf_strength = null_latent_kf_strength
323
- self.inherit_missing = inherit_missing
324
- self.guarantee_steps = guarantee_steps
325
- self.mask_hint_orig = mask_hint_orig
326
-
327
- def has_control_weights(self):
328
- return self.control_weights is not None
329
-
330
- def has_latent_keyframes(self):
331
- return self.latent_keyframes is not None
332
-
333
- def has_mask_hint(self):
334
- return self.mask_hint_orig is not None
335
-
336
-
337
- @staticmethod
338
- def default() -> 'TimestepKeyframe':
339
- return TimestepKeyframe(start_percent=0.0, guarantee_steps=0)
340
-
341
-
342
- # always maintain sorted state (by start_percent of TimestepKeyFrame)
343
- class TimestepKeyframeGroup:
344
- def __init__(self) -> None:
345
- self.keyframes: list[TimestepKeyframe] = []
346
- self.keyframes.append(TimestepKeyframe.default())
347
-
348
- def add(self, keyframe: TimestepKeyframe) -> None:
349
- # add to end of list, then sort
350
- self.keyframes.append(keyframe)
351
- self.keyframes = get_sorted_list_via_attr(self.keyframes, attr="start_percent")
352
-
353
- def get_index(self, index: int) -> Union[TimestepKeyframe, None]:
354
- try:
355
- return self.keyframes[index]
356
- except IndexError:
357
- return None
358
-
359
- def has_index(self, index: int) -> int:
360
- return index >=0 and index < len(self.keyframes)
361
-
362
- def __getitem__(self, index) -> TimestepKeyframe:
363
- return self.keyframes[index]
364
-
365
- def __len__(self) -> int:
366
- return len(self.keyframes)
367
-
368
- def is_empty(self) -> bool:
369
- return len(self.keyframes) == 0
370
-
371
- def clone(self) -> 'TimestepKeyframeGroup':
372
- cloned = TimestepKeyframeGroup()
373
- # already sorted, so don't use add function to make cloning quicker
374
- for tk in self.keyframes:
375
- cloned.keyframes.append(tk)
376
- return cloned
377
-
378
- @classmethod
379
- def default(cls, keyframe: TimestepKeyframe) -> 'TimestepKeyframeGroup':
380
- group = cls()
381
- group.keyframes[0] = keyframe
382
- return group
383
-
384
-
385
- class AbstractPreprocWrapper:
386
- error_msg = "Invalid use of [InsertHere] output. The output of [InsertHere] preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply ControlNet node (advanced or otherwise). It cannot be used for anything else that accepts IMAGE input."
387
- def __init__(self, condhint):
388
- self.condhint = condhint
389
-
390
- def movedim(self, *args, **kwargs):
391
- return self
392
-
393
- def __getattr__(self, *args, **kwargs):
394
- raise AttributeError(self.error_msg)
395
-
396
- def __setattr__(self, name, value):
397
- if name != "condhint":
398
- raise AttributeError(self.error_msg)
399
- super().__setattr__(name, value)
400
-
401
- def __iter__(self, *args, **kwargs):
402
- raise AttributeError(self.error_msg)
403
-
404
- def __next__(self, *args, **kwargs):
405
- raise AttributeError(self.error_msg)
406
-
407
- def __len__(self, *args, **kwargs):
408
- raise AttributeError(self.error_msg)
409
-
410
- def __getitem__(self, *args, **kwargs):
411
- raise AttributeError(self.error_msg)
412
-
413
- def __setitem__(self, *args, **kwargs):
414
- raise AttributeError(self.error_msg)
415
-
416
-
417
- # depending on model, AnimateDiff may inject into GroupNorm, so make sure GroupNorm will be clean
418
- class disable_weight_init_clean_groupnorm(comfy.ops.disable_weight_init):
419
- class GroupNorm(comfy.ops.disable_weight_init.GroupNorm):
420
- def forward_comfy_cast_weights(self, input):
421
- weight, bias = comfy.ops.cast_bias_weight(self, input)
422
- return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
423
-
424
- def forward(self, input):
425
- if self.comfy_cast_weights:
426
- return self.forward_comfy_cast_weights(input)
427
- else:
428
- return torch.nn.functional.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
429
-
430
- class manual_cast_clean_groupnorm(comfy.ops.manual_cast):
431
- class GroupNorm(disable_weight_init_clean_groupnorm.GroupNorm):
432
- comfy_cast_weights = True
433
-
434
-
435
- # adapted from comfy/sample.py
436
- def prepare_mask_batch(mask: Tensor, shape: Tensor, multiplier: int=1, match_dim1=False, match_shape=False, flux_shape=None):
437
- mask = mask.clone()
438
- if flux_shape is not None:
439
- multiplier = multiplier * 0.5
440
- mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(round(flux_shape[-2]*multiplier), round(flux_shape[-1]*multiplier)), mode="bilinear")
441
- mask = rearrange(mask, "b c h w -> b (h w) c")
442
- else:
443
- mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(round(shape[-2]*multiplier), round(shape[-1]*multiplier)), mode="bilinear")
444
- if match_dim1:
445
- if match_shape and len(shape) < 4:
446
- raise Exception(f"match_dim1 cannot be True if shape is under 4 dims; was {len(shape)}.")
447
- mask = torch.cat([mask] * shape[1], dim=1)
448
- if match_shape and len(shape) == 3 and len(mask.shape) != 3:
449
- mask = mask.squeeze(1)
450
- return mask
451
-
452
-
453
- # applies min-max normalization, from:
454
- # https://stackoverflow.com/questions/68791508/min-max-normalization-of-a-tensor-in-pytorch
455
- def normalize_min_max(x: Tensor, new_min = 0.0, new_max = 1.0):
456
- x_min, x_max = x.min(), x.max()
457
- return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
458
-
459
- def linear_conversion(x, x_min=0.0, x_max=1.0, new_min=0.0, new_max=1.0):
460
- return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
461
-
462
- def extend_to_batch_size(tensor: Tensor, batch_size: int):
463
- if tensor.shape[0] > batch_size:
464
- return tensor[:batch_size]
465
- elif tensor.shape[0] < batch_size:
466
- remainder = batch_size-tensor.shape[0]
467
- return torch.cat([tensor] + [tensor[-1:]]*remainder, dim=0)
468
- return tensor
469
-
470
- def broadcast_image_to_extend(tensor, target_batch_size, batched_number, except_one=True):
471
- current_batch_size = tensor.shape[0]
472
- #print(current_batch_size, target_batch_size)
473
- if except_one and current_batch_size == 1:
474
- return tensor
475
-
476
- per_batch = target_batch_size // batched_number
477
- tensor = tensor[:per_batch]
478
-
479
- if per_batch > tensor.shape[0]:
480
- tensor = extend_to_batch_size(tensor=tensor, batch_size=per_batch)
481
-
482
- current_batch_size = tensor.shape[0]
483
- if current_batch_size == target_batch_size:
484
- return tensor
485
- else:
486
- return torch.cat([tensor] * batched_number, dim=0)
487
-
488
-
489
- # from https://stackoverflow.com/a/24621200
490
- def deepcopy_with_sharing(obj, shared_attribute_names, memo=None):
491
- '''
492
- Deepcopy an object, except for a given list of attributes, which should
493
- be shared between the original object and its copy.
494
-
495
- obj is some object
496
- shared_attribute_names: A list of strings identifying the attributes that
497
- should be shared between the original and its copy.
498
- memo is the dictionary passed into __deepcopy__. Ignore this argument if
499
- not calling from within __deepcopy__.
500
- '''
501
- assert isinstance(shared_attribute_names, (list, tuple))
502
-
503
- shared_attributes = {k: getattr(obj, k) for k in shared_attribute_names}
504
-
505
- if hasattr(obj, '__deepcopy__'):
506
- # Do hack to prevent infinite recursion in call to deepcopy
507
- deepcopy_method = obj.__deepcopy__
508
- obj.__deepcopy__ = None
509
-
510
- for attr in shared_attribute_names:
511
- del obj.__dict__[attr]
512
-
513
- clone = deepcopy(obj)
514
-
515
- for attr, val in shared_attributes.items():
516
- setattr(obj, attr, val)
517
- setattr(clone, attr, val)
518
-
519
- if hasattr(obj, '__deepcopy__'):
520
- # Undo hack
521
- obj.__deepcopy__ = deepcopy_method
522
- del clone.__deepcopy__
523
-
524
- return clone
525
-
526
-
527
- def get_sorted_list_via_attr(objects: list, attr: str) -> list:
528
- if not objects:
529
- return objects
530
- elif len(objects) <= 1:
531
- return [x for x in objects]
532
- # now that we know we have to sort, do it following these rules:
533
- # a) if objects have same value of attribute, maintain their relative order
534
- # b) perform sorting of the groups of objects with same attributes
535
- unique_attrs = {}
536
- for o in objects:
537
- val_attr = getattr(o, attr)
538
- attr_list: list = unique_attrs.get(val_attr, list())
539
- attr_list.append(o)
540
- if val_attr not in unique_attrs:
541
- unique_attrs[val_attr] = attr_list
542
- # now that we have the unique attr values grouped together in relative order, sort them by key
543
- sorted_attrs = dict(sorted(unique_attrs.items()))
544
- # now flatten out the dict into a list to return
545
- sorted_list = []
546
- for object_list in sorted_attrs.values():
547
- sorted_list.extend(object_list)
548
- return sorted_list
549
-
550
-
551
- # DFS Search for Torch.nn.Module, Written by Lvmin
552
- def torch_dfs(model: torch.nn.Module):
553
- result = [model]
554
- for child in model.children():
555
- result += torch_dfs(child)
556
- return result
557
-
558
-
559
- class WeightTypeException(TypeError):
560
- "Raised when weight not compatible with AdvancedControlBase object"
561
- pass
562
-
563
-
564
- class AdvancedControlBase:
565
- def __init__(self, base: ControlBase, timestep_keyframes: TimestepKeyframeGroup, weights_default: ControlWeights, require_model=False, require_vae=False, allow_condhint_latents=False):
566
- self.base = base
567
- self.compatible_weights = [ControlWeightType.UNIVERSAL, ControlWeightType.DEFAULT]
568
- self.add_compatible_weight(weights_default.weight_type)
569
- # mask for which parts of controlnet output to keep
570
- self.mask_cond_hint_original = None
571
- self.mask_cond_hint = None
572
- self.tk_mask_cond_hint_original = None
573
- self.tk_mask_cond_hint = None
574
- self.weight_mask_cond_hint = None
575
- # actual index values
576
- self.sub_idxs = None
577
- self.full_latent_length = 0
578
- self.context_length = 0
579
- # timesteps
580
- self.t: float = None
581
- self.prev_t: float = None
582
- self.batched_number: Union[int, IntWithCondOrUncond] = None
583
- self.batch_size: int = 0
584
- # weights + override
585
- self.weights: ControlWeights = None
586
- self.weights_default: ControlWeights = weights_default
587
- self.weights_override: ControlWeights = None
588
- # latent keyframe + override
589
- self.latent_keyframes: LatentKeyframeGroup = None
590
- self.latent_keyframe_override: LatentKeyframeGroup = None
591
- # initialize timestep_keyframes
592
- self.set_timestep_keyframes(timestep_keyframes)
593
- # override some functions
594
- self.get_control = self.get_control_inject
595
- self.control_merge = self.control_merge_inject
596
- self.pre_run = self.pre_run_inject
597
- self.cleanup = self.cleanup_inject
598
- self.set_previous_controlnet = self.set_previous_controlnet_inject
599
- self.set_cond_hint = self.set_cond_hint_inject
600
- # vae to store
601
- self.adv_vae = None
602
- # require model/vae to be passed into Apply Advanced ControlNet 🛂🅐🅒🅝 node
603
- self.require_model = require_model
604
- self.require_vae = require_vae
605
- self.allow_condhint_latents = allow_condhint_latents
606
- # disarm - when set to False, used to force usage of Apply Advanced ControlNet 🛂🅐🅒🅝 node (which will set it to True)
607
- self.disarmed = not require_model
608
-
609
- def patch_model(self, model: ModelPatcher):
610
- pass
611
-
612
- def add_compatible_weight(self, control_weight_type: str):
613
- self.compatible_weights.append(control_weight_type)
614
-
615
- def verify_all_weights(self, throw_error=True):
616
- # first, check if override exists - if so, only need to check the override
617
- if self.weights_override is not None:
618
- if self.weights_override.weight_type not in self.compatible_weights:
619
- msg = f"Weight override is type {self.weights_override.weight_type}, but loaded {type(self).__name__}" + \
620
- f"only supports {self.compatible_weights} weights."
621
- raise WeightTypeException(msg)
622
- # otherwise, check all timestep keyframe weights
623
- else:
624
- for tk in self.timestep_keyframes.keyframes:
625
- if tk.has_control_weights() and tk.control_weights.weight_type not in self.compatible_weights:
626
- msg = f"Weight on Timestep Keyframe with start_percent={tk.start_percent} is type " + \
627
- f"{tk.control_weights.weight_type}, but loaded {type(self).__name__} only supports {self.compatible_weights} weights."
628
- raise WeightTypeException(msg)
629
-
630
- def set_timestep_keyframes(self, timestep_keyframes: TimestepKeyframeGroup):
631
- self.timestep_keyframes = timestep_keyframes if timestep_keyframes else TimestepKeyframeGroup()
632
- # prepare first timestep_keyframe related stuff
633
- self._current_timestep_keyframe = None
634
- self._current_timestep_index = -1
635
- self._current_used_steps = 0
636
- self.weights = None
637
- self.latent_keyframes = None
638
-
639
- def prepare_current_timestep(self, t: Tensor, batched_number: int=1):
640
- self.t = float(t[0])
641
- # check if t has changed (otherwise do nothing, as step already accounted for)
642
- if self.t == self.prev_t:
643
- return
644
- # get current step percent
645
- curr_t: float = self.t
646
- prev_index = self._current_timestep_index
647
- # if met guaranteed steps (or no current keyframe), look for next keyframe in case need to switch
648
- if self._current_timestep_keyframe is None or self._current_used_steps >= self._current_timestep_keyframe.guarantee_steps:
649
- # if has next index, loop through and see if need to switch
650
- if self.timestep_keyframes.has_index(self._current_timestep_index+1):
651
- for i in range(self._current_timestep_index+1, len(self.timestep_keyframes)):
652
- eval_tk = self.timestep_keyframes[i]
653
- # check if start percent is less or equal to curr_t
654
- if eval_tk.start_t >= curr_t:
655
- self._current_timestep_index = i
656
- self._current_timestep_keyframe = eval_tk
657
- self._current_used_steps = 0
658
- # keep track of control weights, latent keyframes, and masks,
659
- # accounting for inherit_missing
660
- if self._current_timestep_keyframe.has_control_weights():
661
- self.weights = self._current_timestep_keyframe.control_weights
662
- elif not self._current_timestep_keyframe.inherit_missing:
663
- self.weights = self.weights_default
664
- if self._current_timestep_keyframe.has_latent_keyframes():
665
- self.latent_keyframes = self._current_timestep_keyframe.latent_keyframes
666
- elif not self._current_timestep_keyframe.inherit_missing:
667
- self.latent_keyframes = None
668
- if self._current_timestep_keyframe.has_mask_hint():
669
- self.tk_mask_cond_hint_original = self._current_timestep_keyframe.mask_hint_orig
670
- elif not self._current_timestep_keyframe.inherit_missing:
671
- del self.tk_mask_cond_hint_original
672
- self.tk_mask_cond_hint_original = None
673
- # if guarantee_steps greater than zero, stop searching for other keyframes
674
- if self._current_timestep_keyframe.guarantee_steps > 0:
675
- break
676
- # if eval_tk is outside of percent range, stop looking further
677
- else:
678
- break
679
- # update prev_t
680
- self.prev_t = self.t
681
- # update steps current keyframe is used
682
- self._current_used_steps += 1
683
- # if index changed, apply overrides
684
- if prev_index != self._current_timestep_index:
685
- if self.weights_override is not None:
686
- self.weights = self.weights_override
687
- if self.latent_keyframe_override is not None:
688
- self.latent_keyframes = self.latent_keyframe_override
689
-
690
- # make sure weights and latent_keyframes are in a workable state
691
- # Note: each AdvancedControlBase should create their own get_universal_weights class
692
- self.prepare_weights()
693
-
694
- def prepare_weights(self):
695
- if self.weights is None:
696
- self.weights = self.weights_default
697
- elif self.weights.weight_type == ControlWeightType.UNIVERSAL:
698
- # if universal and weight_mask present, no need to convert
699
- if self.weights.weight_mask is not None:
700
- return
701
- self.weights = self.get_universal_weights()
702
-
703
- def get_universal_weights(self) -> ControlWeights:
704
- return self.weights
705
-
706
- def set_cond_hint_mask(self, mask_hint):
707
- self.mask_cond_hint_original = mask_hint
708
- return self
709
-
710
- def set_cond_hint_inject(self, *args, **kwargs):
711
- to_return = self.base.set_cond_hint(*args, **kwargs)
712
- # if vae required, look in args and kwargs for it
713
- if self.require_vae:
714
- # check args first, as that's the default way vae param is used in ComfyUI
715
- for arg in args:
716
- if isinstance(arg, VAE):
717
- self.adv_vae = arg
718
- break
719
- # if not in args, check kwargs now
720
- if self.adv_vae is None:
721
- if 'vae' in kwargs:
722
- self.adv_vae = kwargs['vae']
723
- return to_return
724
-
725
- def pre_run_inject(self, model, percent_to_timestep_function):
726
- self.base.pre_run(model, percent_to_timestep_function)
727
- self.pre_run_advanced(model, percent_to_timestep_function)
728
-
729
- def pre_run_advanced(self, model, percent_to_timestep_function):
730
- # for each timestep keyframe, calculate the start_t
731
- for tk in self.timestep_keyframes.keyframes:
732
- tk.start_t = percent_to_timestep_function(tk.start_percent)
733
- # clear variables
734
- self.cleanup_advanced()
735
-
736
- def set_previous_controlnet_inject(self, *args, **kwargs):
737
- to_return = self.base.set_previous_controlnet(*args, **kwargs)
738
- if not self.disarmed:
739
- raise Exception(f"Type '{type(self).__name__}' must be used with Apply Advanced ControlNet 🛂🅐🅒🅝 node (with model_optional passed in); otherwise, it will not work.")
740
- return to_return
741
-
742
- def disarm(self):
743
- self.disarmed = True
744
-
745
- def should_run(self):
746
- if math.isclose(self.strength, 0.0) or math.isclose(self._current_timestep_keyframe.strength, 0.0):
747
- return False
748
- if self.timestep_range is not None:
749
- if self.t > self.timestep_range[0] or self.t < self.timestep_range[1]:
750
- return False
751
- return True
752
-
753
- def get_control_inject(self, x_noisy, t, cond, batched_number):
754
- self.batched_number = batched_number
755
- self.batch_size = len(t)
756
- # prepare timestep and everything related
757
- self.prepare_current_timestep(t=t, batched_number=batched_number)
758
- # if should not perform any actions for the controlnet, exit without doing any work
759
- if self.strength == 0.0 or self._current_timestep_keyframe.strength == 0.0:
760
- return self.default_control_actions(x_noisy, t, cond, batched_number)
761
- # otherwise, perform normal function
762
- return self.get_control_advanced(x_noisy, t, cond, batched_number)
763
-
764
- def get_control_advanced(self, x_noisy, t, cond, batched_number):
765
- return self.default_control_actions(x_noisy, t, cond, batched_number)
766
-
767
- def default_control_actions(self, x_noisy, t, cond, batched_number):
768
- control_prev = None
769
- if self.previous_controlnet is not None:
770
- control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
771
- return control_prev
772
-
773
- def calc_weight(self, idx: int, x: Tensor, control: dict[str, list[Tensor]], key: str) -> Union[float, Tensor]:
774
- if self.weights.weight_mask is not None:
775
- # prepare weight mask
776
- self.prepare_weight_mask_cond_hint(x, self.batched_number)
777
- # adjust mask for current layer and return
778
- return torch.pow(self.weight_mask_cond_hint, self.get_calc_pow(idx=idx, control=control, key=key))
779
- return self.weights.get(idx=idx, control=control, key=key)
780
-
781
- def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
782
- if key == "middle":
783
- return 0
784
- else:
785
- c_len = len(control[key])
786
- real_idx = c_len-idx
787
- if key == "input":
788
- real_idx = c_len - real_idx + 1
789
- return real_idx
790
-
791
- def calc_latent_keyframe_mults(self, x: Tensor, batched_number: int) -> Tensor:
792
- # apply strengths, and get batch indeces to null out
793
- # AKA latents that should not be influenced by ControlNet
794
- final_mults = [1.0] * x.shape[0]
795
- if self.latent_keyframes:
796
- latent_count = x.shape[0] // batched_number
797
- indeces_to_null = set(range(latent_count))
798
- mapped_indeces = None
799
- # if expecting subdivision, will need to translate between subset and actual idx values
800
- if self.sub_idxs:
801
- mapped_indeces = {}
802
- for i, actual in enumerate(self.sub_idxs):
803
- mapped_indeces[actual] = i
804
- for keyframe in self.latent_keyframes:
805
- real_index = keyframe.batch_index
806
- # if negative, count from end
807
- if real_index < 0:
808
- real_index += latent_count if self.sub_idxs is None else self.full_latent_length
809
-
810
- # if not mapping indeces, what you see is what you get
811
- if mapped_indeces is None:
812
- if real_index in indeces_to_null:
813
- indeces_to_null.remove(real_index)
814
- # otherwise, see if batch_index is even included in this set of latents
815
- else:
816
- real_index = mapped_indeces.get(real_index, None)
817
- if real_index is None:
818
- continue
819
- indeces_to_null.remove(real_index)
820
-
821
- # if real_index is outside the bounds of latents, don't apply
822
- if real_index >= latent_count or real_index < 0:
823
- continue
824
-
825
- # apply strength for each batched cond/uncond
826
- for b in range(batched_number):
827
- final_mults[(latent_count*b)+real_index] = keyframe.strength
828
- # null them out by multiplying by null_latent_kf_strength
829
- for batch_index in indeces_to_null:
830
- # apply null for each batched cond/uncond
831
- for b in range(batched_number):
832
- final_mults[(latent_count*b)+batch_index] = self._current_timestep_keyframe.null_latent_kf_strength
833
- # convert final_mults into tensor and match expected dimension count
834
- final_tensor = torch.tensor(final_mults, dtype=x.dtype, device=x.device)
835
- while len(final_tensor.shape) < len(x.shape):
836
- final_tensor = final_tensor.unsqueeze(-1)
837
- return final_tensor
838
-
839
- def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape: tuple=None):
840
- # handle weight's uncond_multiplier, if applicable
841
- if self.weights.has_uncond_multiplier:
842
- cond_or_uncond = self.batched_number.cond_or_uncond
843
- actual_length = x.size(0) // batched_number
844
- for idx, cond_type in enumerate(cond_or_uncond):
845
- # if uncond, set to weight's uncond_multiplier
846
- if cond_type == 1:
847
- x[actual_length*idx:actual_length*(idx+1)] *= self.weights.uncond_multiplier
848
- if self.weights.has_uncond_mask:
849
- pass
850
-
851
- if self.latent_keyframes is not None:
852
- x[:] = x[:] * self.calc_latent_keyframe_mults(x=x, batched_number=batched_number)
853
- # apply masks, resizing mask to required dims
854
- if self.mask_cond_hint is not None:
855
- masks = prepare_mask_batch(self.mask_cond_hint, x.shape, match_shape=True, flux_shape=flux_shape)
856
- x[:] = x[:] * masks
857
- if self.tk_mask_cond_hint is not None:
858
- masks = prepare_mask_batch(self.tk_mask_cond_hint, x.shape, match_shape=True, flux_shape=flux_shape)
859
- x[:] = x[:] * masks
860
- # apply timestep keyframe strengths
861
- if self._current_timestep_keyframe.strength != 1.0:
862
- x[:] *= self._current_timestep_keyframe.strength
863
-
864
- def control_merge_inject(self: 'AdvancedControlBase', control: dict[str, list[Tensor]], control_prev: dict, output_dtype):
865
- out = {'input':[], 'middle':[], 'output': []}
866
-
867
- for key in control:
868
- control_output = control[key]
869
- applied_to = set()
870
- for i in range(len(control_output)):
871
- x = control_output[i]
872
- if x is not None:
873
- if self.global_average_pooling:
874
- x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
875
-
876
- if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
877
- applied_to.add(x)
878
- self.apply_advanced_strengths_and_masks(x, self.batched_number)
879
- x *= self.strength * self.calc_weight(i, x, control, key)
880
-
881
- if output_dtype is not None and x.dtype != output_dtype:
882
- x = x.to(output_dtype)
883
-
884
- out[key].append(x)
885
-
886
- if control_prev is not None:
887
- for x in ['input', 'middle', 'output']:
888
- o = out[x]
889
- for i in range(len(control_prev[x])):
890
- prev_val = control_prev[x][i]
891
- if i >= len(o):
892
- o.append(prev_val)
893
- elif prev_val is not None:
894
- if o[i] is None:
895
- o[i] = prev_val
896
- else:
897
- if o[i].shape[0] < prev_val.shape[0]:
898
- o[i] = prev_val + o[i]
899
- else:
900
- o[i] = prev_val + o[i] # TODO from base ComfyUI: change back to inplace add if shared tensors stop being an issue
901
- return out
902
-
903
- def prepare_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
904
- self._prepare_mask("mask_cond_hint", self.mask_cond_hint_original, x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
905
- self.prepare_tk_mask_cond_hint(x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
906
-
907
- def prepare_tk_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
908
- return self._prepare_mask("tk_mask_cond_hint", self._current_timestep_keyframe.mask_hint_orig, x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
909
-
910
- def prepare_weight_mask_cond_hint(self, x_noisy: Tensor, batched_number, dtype=None):
911
- return self._prepare_mask("weight_mask_cond_hint", self.weights.weight_mask, x_noisy, t=None, cond=None, batched_number=batched_number, dtype=dtype, direct_attn=True)
912
-
913
- def _prepare_mask(self, attr_name, orig_mask: Tensor, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
914
- # make mask appropriate dimensions, if present
915
- if orig_mask is not None:
916
- out_mask = getattr(self, attr_name)
917
- multiplier = 1 if direct_attn else 8
918
- if self.sub_idxs is not None or out_mask is None or x_noisy.shape[2] * multiplier != out_mask.shape[1] or x_noisy.shape[3] * multiplier != out_mask.shape[2]:
919
- self._reset_attr(attr_name)
920
- del out_mask
921
- # TODO: perform upscale on only the sub_idxs masks at a time instead of all to conserve RAM
922
- # resize mask and match batch count
923
- out_mask = prepare_mask_batch(orig_mask, x_noisy.shape, multiplier=multiplier, match_shape=True)
924
- actual_latent_length = x_noisy.shape[0] // batched_number
925
- out_mask = extend_to_batch_size(out_mask, actual_latent_length if self.sub_idxs is None else self.full_latent_length)
926
- if self.sub_idxs is not None:
927
- out_mask = out_mask[self.sub_idxs]
928
- # make cond_hint_mask length match x_noise
929
- if x_noisy.shape[0] != out_mask.shape[0]:
930
- out_mask = broadcast_image_to_extend(out_mask, x_noisy.shape[0], batched_number)
931
- # default dtype to be same as x_noisy
932
- if dtype is None:
933
- dtype = x_noisy.dtype
934
- setattr(self, attr_name, out_mask.to(dtype=dtype).to(x_noisy.device))
935
- del out_mask
936
-
937
- def _reset_attr(self, attr_name, new_value=None):
938
- if hasattr(self, attr_name):
939
- delattr(self, attr_name)
940
- setattr(self, attr_name, new_value)
941
-
942
- def cleanup_inject(self):
943
- self.base.cleanup()
944
- self.cleanup_advanced()
945
-
946
- def cleanup_advanced(self):
947
- self.sub_idxs = None
948
- self.full_latent_length = 0
949
- self.context_length = 0
950
- self.t = None
951
- self.prev_t = None
952
- self.batched_number = None
953
- self.batch_size = 0
954
- self.weights = None
955
- self.latent_keyframes = None
956
- # timestep stuff
957
- self._current_timestep_keyframe = None
958
- self._current_timestep_index = -1
959
- self._current_used_steps = 0
960
- # clear mask hints
961
- if self.mask_cond_hint is not None:
962
- del self.mask_cond_hint
963
- self.mask_cond_hint = None
964
- if self.tk_mask_cond_hint_original is not None:
965
- del self.tk_mask_cond_hint_original
966
- self.tk_mask_cond_hint_original = None
967
- if self.tk_mask_cond_hint is not None:
968
- del self.tk_mask_cond_hint
969
- self.tk_mask_cond_hint = None
970
- if self.weight_mask_cond_hint is not None:
971
- del self.weight_mask_cond_hint
972
- self.weight_mask_cond_hint = None
973
-
974
- def copy_to_advanced(self, copied: 'AdvancedControlBase'):
975
- copied.mask_cond_hint_original = self.mask_cond_hint_original
976
- copied.weights_override = self.weights_override
977
- copied.latent_keyframe_override = self.latent_keyframe_override
978
- copied.adv_vae = self.adv_vae
979
- copied.require_vae = self.require_vae
980
- copied.allow_condhint_latents = self.allow_condhint_latents
981
- copied.disarmed = self.disarmed
 
1
+ from copy import deepcopy
2
+ from typing import Callable, Union
3
+ import torch
4
+ from torch import Tensor
5
+ import torch.nn.functional
6
+ from einops import rearrange
7
+ import numpy as np
8
+ import math
9
+
10
+ import comfy.ops
11
+ import comfy.utils
12
+ import comfy.sample
13
+ import comfy.samplers
14
+ import comfy.model_base
15
+
16
+ from comfy.controlnet import ControlBase
17
+ from comfy.model_patcher import ModelPatcher
18
+ from comfy.sd import VAE
19
+
20
+ from .logger import logger
21
+
22
+ BIGMIN = -(2**53-1)
23
+ BIGMAX = (2**53-1)
24
+
25
+ ORIG_PREVIOUS_CONTROLNET = "_orig_previous_controlnet"
26
+ CONTROL_INIT_BY_ACN = "_control_init_by_ACN"
27
+
28
+
29
+ def load_torch_file_with_dict_factory(controlnet_data: dict[str, Tensor], orig_load_torch_file: Callable):
30
+ def load_torch_file_with_dict(*args, **kwargs):
31
+ # immediately restore load_torch_file to original version
32
+ comfy.utils.load_torch_file = orig_load_torch_file
33
+ return controlnet_data
34
+ return load_torch_file_with_dict
35
+
36
+ # wrapping len function so that it will save the thing len is trying to get the length of;
37
+ # this will be assumed to be the cond_or_uncond variable;
38
+ # automatically restores len to original function after running
39
+ def wrapper_len_factory(orig_len: Callable) -> Callable:
40
+ def wrapper_len(*args, **kwargs):
41
+ cond_or_uncond = args[0]
42
+ real_length = orig_len(*args, **kwargs)
43
+ if real_length > 0 and type(cond_or_uncond) == list and isinstance(cond_or_uncond[0], int) and (cond_or_uncond[0] in [0, 1]):
44
+ try:
45
+ to_return = IntWithCondOrUncond(real_length)
46
+ setattr(to_return, "cond_or_uncond", cond_or_uncond)
47
+ return to_return
48
+ finally:
49
+ __builtins__["len"] = orig_len
50
+ else:
51
+ return real_length
52
+ return wrapper_len
53
+
54
+ # wrapping cond_cat function so that it will wrap around len function to get cond_or_uncond variable value
55
+ # from comfy.samplers.calc_conds_batch
56
+ def wrapper_cond_cat_factory(orig_cond_cat: Callable):
57
+ def wrapper_cond_cat(*args, **kwargs):
58
+ __builtins__["len"] = wrapper_len_factory(__builtins__["len"])
59
+ return orig_cond_cat(*args, **kwargs)
60
+ return wrapper_cond_cat
61
+ orig_cond_cat = comfy.samplers.cond_cat
62
+ comfy.samplers.cond_cat = wrapper_cond_cat_factory(orig_cond_cat)
63
+
64
+
65
+ # wrapping apply_model so that len function will be cleaned up fairly soon after being injected
66
+ def apply_model_uncond_cleanup_factory(orig_apply_model, orig_len):
67
+ def apply_model_uncond_cleanup_wrapper(self, *args, **kwargs):
68
+ __builtins__["len"] = orig_len
69
+ return orig_apply_model(self, *args, **kwargs)
70
+ return apply_model_uncond_cleanup_wrapper
71
+ global_orig_len = __builtins__["len"]
72
+ orig_apply_model = comfy.model_base.BaseModel.apply_model
73
+ comfy.model_base.BaseModel.apply_model = apply_model_uncond_cleanup_factory(orig_apply_model, global_orig_len)
74
+
75
+
76
+ def uncond_multiplier_check_cn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable:
77
+ def contains_uncond_multiplier(control: Union[ControlBase, 'AdvancedControlBase']):
78
+ if control is None:
79
+ return False
80
+ if not isinstance(control, AdvancedControlBase):
81
+ return contains_uncond_multiplier(control.previous_controlnet)
82
+ # check if weights_override has an uncond_multiplier
83
+ if control.weights_override is not None and control.weights_override.has_uncond_multiplier:
84
+ return True
85
+ # check if any timestep_keyframes have an uncond_multiplier on their weights
86
+ if control.timestep_keyframes is not None:
87
+ for tk in control.timestep_keyframes.keyframes:
88
+ if tk.has_control_weights() and tk.control_weights.has_uncond_multiplier:
89
+ return True
90
+ return contains_uncond_multiplier(control.previous_controlnet)
91
+
92
+ # check if positive or negative conds contain Adv. Cns that use multiply_negative on weights
93
+ def uncond_multiplier_check_cn_sample(model: ModelPatcher, *args, **kwargs):
94
+ positive = args[-3]
95
+ negative = args[-2]
96
+ has_uncond_multiplier = False
97
+ if positive is not None:
98
+ for cond in positive:
99
+ if "control" in cond[1]:
100
+ has_uncond_multiplier = contains_uncond_multiplier(cond[1]["control"])
101
+ if has_uncond_multiplier:
102
+ break
103
+ if negative is not None and not has_uncond_multiplier:
104
+ for cond in negative:
105
+ if "control" in cond[1]:
106
+ has_uncond_multiplier = contains_uncond_multiplier(cond[1]["control"])
107
+ if has_uncond_multiplier:
108
+ break
109
+ try:
110
+ # if uncond_multiplier found, continue to use wrapped version of function
111
+ if has_uncond_multiplier:
112
+ return orig_comfy_sample(model, *args, **kwargs)
113
+ # otherwise, use original version of function to prevent even the smallest of slowdowns (0.XX%)
114
+ try:
115
+ wrapped_cond_cat = comfy.samplers.cond_cat
116
+ comfy.samplers.cond_cat = orig_cond_cat
117
+ return orig_comfy_sample(model, *args, **kwargs)
118
+ finally:
119
+ comfy.samplers.cond_cat = wrapped_cond_cat
120
+ finally:
121
+ # make sure len function is unwrapped by the time sampling is done, just in case
122
+ __builtins__["len"] = global_orig_len
123
+ return uncond_multiplier_check_cn_sample
124
+ # inject sample functions
125
+ comfy.sample.sample = uncond_multiplier_check_cn_sample_factory(comfy.sample.sample)
126
+ comfy.sample.sample_custom = uncond_multiplier_check_cn_sample_factory(comfy.sample.sample_custom, is_custom=True)
127
+
128
+
129
+ class IntWithCondOrUncond(int):
130
+ def __new__(cls, *args, **kwargs):
131
+ return super(IntWithCondOrUncond, cls).__new__(cls, *args, **kwargs)
132
+
133
+ def __init__(self, *args, **kwargs):
134
+ super().__init__()
135
+ self.cond_or_uncond = None
136
+
137
+
138
+
139
+ def get_properly_arranged_t2i_weights(initial_weights: list[float]):
140
+ new_weights = []
141
+ new_weights.extend([initial_weights[0]]*3)
142
+ new_weights.extend([initial_weights[1]]*3)
143
+ new_weights.extend([initial_weights[2]]*3)
144
+ new_weights.extend([initial_weights[3]]*3)
145
+ return new_weights
146
+
147
+
148
+ class ControlWeightType:
149
+ DEFAULT = "default"
150
+ UNIVERSAL = "universal"
151
+ T2IADAPTER = "t2iadapter"
152
+ CONTROLNET = "controlnet"
153
+ CONTROLNETPLUSPLUS = "controlnet++"
154
+ CONTROLLORA = "controllora"
155
+ CONTROLLLLITE = "controllllite"
156
+ SVD_CONTROLNET = "svd_controlnet"
157
+ SPARSECTRL = "sparsectrl"
158
+
159
+
160
+ class ControlWeights:
161
+ def __init__(self, weight_type: str, base_multiplier: float=1.0,
162
+ weights_input: list[float]=None, weights_middle: list[float]=None, weights_output: list[float]=None,
163
+ weight_func: Callable=None, weight_mask: Tensor=None,
164
+ uncond_multiplier=1.0, uncond_mask: Tensor=None, extras: dict[str]={},):
165
+ self.weight_type = weight_type
166
+ self.base_multiplier = base_multiplier
167
+ self.weights_input = weights_input
168
+ self.weights_middle = weights_middle
169
+ self.weights_output = weights_output
170
+ self.weight_func = weight_func
171
+ self.weight_mask = weight_mask
172
+ self.uncond_multiplier = float(uncond_multiplier)
173
+ self.has_uncond_multiplier = not math.isclose(self.uncond_multiplier, 1.0)
174
+ self.uncond_mask = uncond_mask if uncond_mask is not None else 1.0
175
+ self.has_uncond_mask = uncond_mask is not None
176
+ self.extras = extras
177
+
178
+ def get(self, idx: int, control: dict[str, list[Tensor]], key: str, default=1.0) -> Union[float, Tensor]:
179
+ # if weight_func present, use it
180
+ if self.weight_func is not None:
181
+ return self.weight_func(idx=idx, control=control, key=key)
182
+ # if weights is not none, return index
183
+ relevant_weights = None
184
+ if key == "middle":
185
+ relevant_weights = self.weights_middle
186
+ elif key == "input":
187
+ relevant_weights = self.weights_input
188
+ if relevant_weights is not None:
189
+ relevant_weights = list(reversed(relevant_weights))
190
+ else:
191
+ relevant_weights = self.weights_output
192
+ if relevant_weights is None:
193
+ return default
194
+ elif idx >= len(relevant_weights):
195
+ return default
196
+ return relevant_weights[idx]
197
+
198
+ def copy_with_new_weights(self, new_weights_input: list[float]=None, new_weights_middle: list[float]=None, new_weights_output: list[float]=None,
199
+ new_weight_func: Callable=None):
200
+ return ControlWeights(weight_type=self.weight_type, base_multiplier=self.base_multiplier,
201
+ weights_input=new_weights_input, weights_middle=new_weights_middle, weights_output=new_weights_output,
202
+ weight_func=new_weight_func, weight_mask=self.weight_mask,
203
+ uncond_multiplier=self.uncond_multiplier, extras=self.extras)
204
+
205
+ @classmethod
206
+ def default(cls, extras: dict[str]={}):
207
+ return cls(ControlWeightType.DEFAULT, extras=extras)
208
+
209
+ @classmethod
210
+ def universal(cls, base_multiplier: float, uncond_multiplier: float=1.0, extras: dict[str]={}):
211
+ return cls(ControlWeightType.UNIVERSAL, base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=extras)
212
+
213
+ @classmethod
214
+ def universal_mask(cls, weight_mask: Tensor, uncond_multiplier: float=1.0, extras: dict[str]={}):
215
+ return cls(ControlWeightType.UNIVERSAL, weight_mask=weight_mask, uncond_multiplier=uncond_multiplier, extras=extras)
216
+
217
+ @classmethod
218
+ def t2iadapter(cls, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
219
+ return cls(ControlWeightType.T2IADAPTER, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
220
+
221
+ @classmethod
222
+ def controlnet(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
223
+ return cls(ControlWeightType.CONTROLNET, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
224
+
225
+ @classmethod
226
+ def controllora(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
227
+ return cls(ControlWeightType.CONTROLLORA, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
228
+
229
+ @classmethod
230
+ def controllllite(cls, weights_output: list[float]=None, weights_middle: list[float]=None, weights_input: list[float]=None, uncond_multiplier: float=1.0, extras: dict[str]={}):
231
+ return cls(ControlWeightType.CONTROLLLLITE, weights_output=weights_output, weights_middle=weights_middle, weights_input=weights_input, uncond_multiplier=uncond_multiplier, extras=extras)
232
+
233
+
234
+ class StrengthInterpolation:
235
+ LINEAR = "linear"
236
+ EASE_IN = "ease-in"
237
+ EASE_OUT = "ease-out"
238
+ EASE_IN_OUT = "ease-in-out"
239
+ NONE = "none"
240
+
241
+ _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
242
+ _LIST_WITH_NONE = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT, NONE]
243
+
244
+ @classmethod
245
+ def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
246
+ diff = num_to - num_from
247
+ if method == cls.LINEAR:
248
+ weights = torch.linspace(num_from, num_to, length)
249
+ elif method == cls.EASE_IN:
250
+ index = torch.linspace(0, 1, length)
251
+ weights = diff * np.power(index, 2) + num_from
252
+ elif method == cls.EASE_OUT:
253
+ index = torch.linspace(0, 1, length)
254
+ weights = diff * (1 - np.power(1 - index, 2)) + num_from
255
+ elif method == cls.EASE_IN_OUT:
256
+ index = torch.linspace(0, 1, length)
257
+ weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
258
+ else:
259
+ raise ValueError(f"Unrecognized interpolation method '{method}'.")
260
+ if reverse:
261
+ weights = weights.flip(dims=(0,))
262
+ return weights
263
+
264
+
265
+ class LatentKeyframe:
266
+ def __init__(self, batch_index: int, strength: float) -> None:
267
+ self.batch_index = batch_index
268
+ self.strength = strength
269
+
270
+
271
+ # always maintain sorted state (by batch_index of LatentKeyframe)
272
+ class LatentKeyframeGroup:
273
+ def __init__(self) -> None:
274
+ self.keyframes: list[LatentKeyframe] = []
275
+
276
+ def add(self, keyframe: LatentKeyframe) -> None:
277
+ added = False
278
+ # replace existing keyframe if same batch_index
279
+ for i in range(len(self.keyframes)):
280
+ if self.keyframes[i].batch_index == keyframe.batch_index:
281
+ self.keyframes[i] = keyframe
282
+ added = True
283
+ break
284
+ if not added:
285
+ self.keyframes.append(keyframe)
286
+ self.keyframes.sort(key=lambda k: k.batch_index)
287
+
288
+ def get_index(self, index: int) -> Union[LatentKeyframe, None]:
289
+ try:
290
+ return self.keyframes[index]
291
+ except IndexError:
292
+ return None
293
+
294
+ def __getitem__(self, index) -> LatentKeyframe:
295
+ return self.keyframes[index]
296
+
297
+ def is_empty(self) -> bool:
298
+ return len(self.keyframes) == 0
299
+
300
+ def clone(self) -> 'LatentKeyframeGroup':
301
+ cloned = LatentKeyframeGroup()
302
+ for tk in self.keyframes:
303
+ cloned.add(tk)
304
+ return cloned
305
+
306
+
307
+ class TimestepKeyframe:
308
+ def __init__(self,
309
+ start_percent: float = 0.0,
310
+ strength: float = 1.0,
311
+ control_weights: ControlWeights = None,
312
+ latent_keyframes: LatentKeyframeGroup = None,
313
+ null_latent_kf_strength: float = 0.0,
314
+ inherit_missing: bool = True,
315
+ guarantee_steps: int = 1,
316
+ mask_hint_orig: Tensor = None) -> None:
317
+ self.start_percent = float(start_percent)
318
+ self.start_t = 999999999.9
319
+ self.strength = strength
320
+ self.control_weights = control_weights
321
+ self.latent_keyframes = latent_keyframes
322
+ self.null_latent_kf_strength = null_latent_kf_strength
323
+ self.inherit_missing = inherit_missing
324
+ self.guarantee_steps = guarantee_steps
325
+ self.mask_hint_orig = mask_hint_orig
326
+
327
+ def has_control_weights(self):
328
+ return self.control_weights is not None
329
+
330
+ def has_latent_keyframes(self):
331
+ return self.latent_keyframes is not None
332
+
333
+ def has_mask_hint(self):
334
+ return self.mask_hint_orig is not None
335
+
336
+
337
+ @staticmethod
338
+ def default() -> 'TimestepKeyframe':
339
+ return TimestepKeyframe(start_percent=0.0, guarantee_steps=0)
340
+
341
+
342
+ # always maintain sorted state (by start_percent of TimestepKeyFrame)
343
+ class TimestepKeyframeGroup:
344
+ def __init__(self) -> None:
345
+ self.keyframes: list[TimestepKeyframe] = []
346
+ self.keyframes.append(TimestepKeyframe.default())
347
+
348
+ def add(self, keyframe: TimestepKeyframe) -> None:
349
+ # add to end of list, then sort
350
+ self.keyframes.append(keyframe)
351
+ self.keyframes = get_sorted_list_via_attr(self.keyframes, attr="start_percent")
352
+
353
+ def get_index(self, index: int) -> Union[TimestepKeyframe, None]:
354
+ try:
355
+ return self.keyframes[index]
356
+ except IndexError:
357
+ return None
358
+
359
+ def has_index(self, index: int) -> int:
360
+ return index >=0 and index < len(self.keyframes)
361
+
362
+ def __getitem__(self, index) -> TimestepKeyframe:
363
+ return self.keyframes[index]
364
+
365
+ def __len__(self) -> int:
366
+ return len(self.keyframes)
367
+
368
+ def is_empty(self) -> bool:
369
+ return len(self.keyframes) == 0
370
+
371
+ def clone(self) -> 'TimestepKeyframeGroup':
372
+ cloned = TimestepKeyframeGroup()
373
+ # already sorted, so don't use add function to make cloning quicker
374
+ for tk in self.keyframes:
375
+ cloned.keyframes.append(tk)
376
+ return cloned
377
+
378
+ @classmethod
379
+ def default(cls, keyframe: TimestepKeyframe) -> 'TimestepKeyframeGroup':
380
+ group = cls()
381
+ group.keyframes[0] = keyframe
382
+ return group
383
+
384
+
385
+ class AbstractPreprocWrapper:
386
+ error_msg = "Invalid use of [InsertHere] output. The output of [InsertHere] preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply ControlNet node (advanced or otherwise). It cannot be used for anything else that accepts IMAGE input."
387
+ def __init__(self, condhint):
388
+ self.condhint = condhint
389
+
390
+ def movedim(self, *args, **kwargs):
391
+ return self
392
+
393
+ def __getattr__(self, *args, **kwargs):
394
+ raise AttributeError(self.error_msg)
395
+
396
+ def __setattr__(self, name, value):
397
+ if name != "condhint":
398
+ raise AttributeError(self.error_msg)
399
+ super().__setattr__(name, value)
400
+
401
+ def __iter__(self, *args, **kwargs):
402
+ raise AttributeError(self.error_msg)
403
+
404
+ def __next__(self, *args, **kwargs):
405
+ raise AttributeError(self.error_msg)
406
+
407
+ def __len__(self, *args, **kwargs):
408
+ raise AttributeError(self.error_msg)
409
+
410
+ def __getitem__(self, *args, **kwargs):
411
+ raise AttributeError(self.error_msg)
412
+
413
+ def __setitem__(self, *args, **kwargs):
414
+ raise AttributeError(self.error_msg)
415
+
416
+
417
+ # depending on model, AnimateDiff may inject into GroupNorm, so make sure GroupNorm will be clean
418
+ class disable_weight_init_clean_groupnorm(comfy.ops.disable_weight_init):
419
+ class GroupNorm(comfy.ops.disable_weight_init.GroupNorm):
420
+ def forward_comfy_cast_weights(self, input):
421
+ weight, bias = comfy.ops.cast_bias_weight(self, input)
422
+ return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
423
+
424
+ def forward(self, input):
425
+ if self.comfy_cast_weights:
426
+ return self.forward_comfy_cast_weights(input)
427
+ else:
428
+ return torch.nn.functional.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
429
+
430
+ class manual_cast_clean_groupnorm(comfy.ops.manual_cast):
431
+ class GroupNorm(disable_weight_init_clean_groupnorm.GroupNorm):
432
+ comfy_cast_weights = True
433
+
434
+
435
+ # adapted from comfy/sample.py
436
+ def prepare_mask_batch(mask: Tensor, shape: Tensor, multiplier: int=1, match_dim1=False, match_shape=False, flux_shape=None):
437
+ mask = mask.clone()
438
+ if flux_shape is not None:
439
+ multiplier = multiplier * 0.5
440
+ mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(round(flux_shape[-2]*multiplier), round(flux_shape[-1]*multiplier)), mode="bilinear")
441
+ mask = rearrange(mask, "b c h w -> b (h w) c")
442
+ else:
443
+ mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(round(shape[-2]*multiplier), round(shape[-1]*multiplier)), mode="bilinear")
444
+ if match_dim1:
445
+ if match_shape and len(shape) < 4:
446
+ raise Exception(f"match_dim1 cannot be True if shape is under 4 dims; was {len(shape)}.")
447
+ mask = torch.cat([mask] * shape[1], dim=1)
448
+ if match_shape and len(shape) == 3 and len(mask.shape) != 3:
449
+ mask = mask.squeeze(1)
450
+ return mask
451
+
452
+
453
+ # applies min-max normalization, from:
454
+ # https://stackoverflow.com/questions/68791508/min-max-normalization-of-a-tensor-in-pytorch
455
+ def normalize_min_max(x: Tensor, new_min = 0.0, new_max = 1.0):
456
+ x_min, x_max = x.min(), x.max()
457
+ return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
458
+
459
+ def linear_conversion(x, x_min=0.0, x_max=1.0, new_min=0.0, new_max=1.0):
460
+ return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
461
+
462
+ def extend_to_batch_size(tensor: Tensor, batch_size: int):
463
+ if tensor.shape[0] > batch_size:
464
+ return tensor[:batch_size]
465
+ elif tensor.shape[0] < batch_size:
466
+ remainder = batch_size-tensor.shape[0]
467
+ return torch.cat([tensor] + [tensor[-1:]]*remainder, dim=0)
468
+ return tensor
469
+
470
+ def broadcast_image_to_extend(tensor, target_batch_size, batched_number, except_one=True):
471
+ current_batch_size = tensor.shape[0]
472
+ #print(current_batch_size, target_batch_size)
473
+ if except_one and current_batch_size == 1:
474
+ return tensor
475
+
476
+ per_batch = target_batch_size // batched_number
477
+ tensor = tensor[:per_batch]
478
+
479
+ if per_batch > tensor.shape[0]:
480
+ tensor = extend_to_batch_size(tensor=tensor, batch_size=per_batch)
481
+
482
+ current_batch_size = tensor.shape[0]
483
+ if current_batch_size == target_batch_size:
484
+ return tensor
485
+ else:
486
+ return torch.cat([tensor] * batched_number, dim=0)
487
+
488
+
489
+ # from https://stackoverflow.com/a/24621200
490
+ def deepcopy_with_sharing(obj, shared_attribute_names, memo=None):
491
+ '''
492
+ Deepcopy an object, except for a given list of attributes, which should
493
+ be shared between the original object and its copy.
494
+
495
+ obj is some object
496
+ shared_attribute_names: A list of strings identifying the attributes that
497
+ should be shared between the original and its copy.
498
+ memo is the dictionary passed into __deepcopy__. Ignore this argument if
499
+ not calling from within __deepcopy__.
500
+ '''
501
+ assert isinstance(shared_attribute_names, (list, tuple))
502
+
503
+ shared_attributes = {k: getattr(obj, k) for k in shared_attribute_names}
504
+
505
+ if hasattr(obj, '__deepcopy__'):
506
+ # Do hack to prevent infinite recursion in call to deepcopy
507
+ deepcopy_method = obj.__deepcopy__
508
+ obj.__deepcopy__ = None
509
+
510
+ for attr in shared_attribute_names:
511
+ del obj.__dict__[attr]
512
+
513
+ clone = deepcopy(obj)
514
+
515
+ for attr, val in shared_attributes.items():
516
+ setattr(obj, attr, val)
517
+ setattr(clone, attr, val)
518
+
519
+ if hasattr(obj, '__deepcopy__'):
520
+ # Undo hack
521
+ obj.__deepcopy__ = deepcopy_method
522
+ del clone.__deepcopy__
523
+
524
+ return clone
525
+
526
+
527
+ def get_sorted_list_via_attr(objects: list, attr: str) -> list:
528
+ if not objects:
529
+ return objects
530
+ elif len(objects) <= 1:
531
+ return [x for x in objects]
532
+ # now that we know we have to sort, do it following these rules:
533
+ # a) if objects have same value of attribute, maintain their relative order
534
+ # b) perform sorting of the groups of objects with same attributes
535
+ unique_attrs = {}
536
+ for o in objects:
537
+ val_attr = getattr(o, attr)
538
+ attr_list: list = unique_attrs.get(val_attr, list())
539
+ attr_list.append(o)
540
+ if val_attr not in unique_attrs:
541
+ unique_attrs[val_attr] = attr_list
542
+ # now that we have the unique attr values grouped together in relative order, sort them by key
543
+ sorted_attrs = dict(sorted(unique_attrs.items()))
544
+ # now flatten out the dict into a list to return
545
+ sorted_list = []
546
+ for object_list in sorted_attrs.values():
547
+ sorted_list.extend(object_list)
548
+ return sorted_list
549
+
550
+
551
+ # DFS Search for Torch.nn.Module, Written by Lvmin
552
+ def torch_dfs(model: torch.nn.Module):
553
+ result = [model]
554
+ for child in model.children():
555
+ result += torch_dfs(child)
556
+ return result
557
+
558
+
559
+ class WeightTypeException(TypeError):
560
+ "Raised when weight not compatible with AdvancedControlBase object"
561
+ pass
562
+
563
+
564
+ class AdvancedControlBase:
565
+ def __init__(self, base: ControlBase, timestep_keyframes: TimestepKeyframeGroup, weights_default: ControlWeights, require_model=False, require_vae=False, allow_condhint_latents=False):
566
+ self.base = base
567
+ self.compatible_weights = [ControlWeightType.UNIVERSAL, ControlWeightType.DEFAULT]
568
+ self.add_compatible_weight(weights_default.weight_type)
569
+ # mask for which parts of controlnet output to keep
570
+ self.mask_cond_hint_original = None
571
+ self.mask_cond_hint = None
572
+ self.tk_mask_cond_hint_original = None
573
+ self.tk_mask_cond_hint = None
574
+ self.weight_mask_cond_hint = None
575
+ # actual index values
576
+ self.sub_idxs = None
577
+ self.full_latent_length = 0
578
+ self.context_length = 0
579
+ # timesteps
580
+ self.t: float = None
581
+ self.prev_t: float = None
582
+ self.batched_number: Union[int, IntWithCondOrUncond] = None
583
+ self.batch_size: int = 0
584
+ # weights + override
585
+ self.weights: ControlWeights = None
586
+ self.weights_default: ControlWeights = weights_default
587
+ self.weights_override: ControlWeights = None
588
+ # latent keyframe + override
589
+ self.latent_keyframes: LatentKeyframeGroup = None
590
+ self.latent_keyframe_override: LatentKeyframeGroup = None
591
+ # initialize timestep_keyframes
592
+ self.set_timestep_keyframes(timestep_keyframes)
593
+ # override some functions
594
+ self.get_control = self.get_control_inject
595
+ self.control_merge = self.control_merge_inject
596
+ self.pre_run = self.pre_run_inject
597
+ self.cleanup = self.cleanup_inject
598
+ self.set_previous_controlnet = self.set_previous_controlnet_inject
599
+ self.set_cond_hint = self.set_cond_hint_inject
600
+ # vae to store
601
+ self.adv_vae = None
602
+ # require model/vae to be passed into Apply Advanced ControlNet 🛂🅐🅒🅝 node
603
+ self.require_model = require_model
604
+ self.require_vae = require_vae
605
+ self.allow_condhint_latents = allow_condhint_latents
606
+ # disarm - when set to False, used to force usage of Apply Advanced ControlNet 🛂🅐🅒🅝 node (which will set it to True)
607
+ self.disarmed = not require_model
608
+
609
+ def patch_model(self, model: ModelPatcher):
610
+ pass
611
+
612
+ def add_compatible_weight(self, control_weight_type: str):
613
+ self.compatible_weights.append(control_weight_type)
614
+
615
+ def verify_all_weights(self, throw_error=True):
616
+ # first, check if override exists - if so, only need to check the override
617
+ if self.weights_override is not None:
618
+ if self.weights_override.weight_type not in self.compatible_weights:
619
+ msg = f"Weight override is type {self.weights_override.weight_type}, but loaded {type(self).__name__}" + \
620
+ f"only supports {self.compatible_weights} weights."
621
+ raise WeightTypeException(msg)
622
+ # otherwise, check all timestep keyframe weights
623
+ else:
624
+ for tk in self.timestep_keyframes.keyframes:
625
+ if tk.has_control_weights() and tk.control_weights.weight_type not in self.compatible_weights:
626
+ msg = f"Weight on Timestep Keyframe with start_percent={tk.start_percent} is type " + \
627
+ f"{tk.control_weights.weight_type}, but loaded {type(self).__name__} only supports {self.compatible_weights} weights."
628
+ raise WeightTypeException(msg)
629
+
630
+ def set_timestep_keyframes(self, timestep_keyframes: TimestepKeyframeGroup):
631
+ self.timestep_keyframes = timestep_keyframes if timestep_keyframes else TimestepKeyframeGroup()
632
+ # prepare first timestep_keyframe related stuff
633
+ self._current_timestep_keyframe = None
634
+ self._current_timestep_index = -1
635
+ self._current_used_steps = 0
636
+ self.weights = None
637
+ self.latent_keyframes = None
638
+
639
+ def prepare_current_timestep(self, t: Tensor, batched_number: int=1):
640
+ self.t = float(t[0])
641
+ # check if t has changed (otherwise do nothing, as step already accounted for)
642
+ if self.t == self.prev_t:
643
+ return
644
+ # get current step percent
645
+ curr_t: float = self.t
646
+ prev_index = self._current_timestep_index
647
+ # if met guaranteed steps (or no current keyframe), look for next keyframe in case need to switch
648
+ if self._current_timestep_keyframe is None or self._current_used_steps >= self._current_timestep_keyframe.guarantee_steps:
649
+ # if has next index, loop through and see if need to switch
650
+ if self.timestep_keyframes.has_index(self._current_timestep_index+1):
651
+ for i in range(self._current_timestep_index+1, len(self.timestep_keyframes)):
652
+ eval_tk = self.timestep_keyframes[i]
653
+ # check if start percent is less or equal to curr_t
654
+ if eval_tk.start_t >= curr_t:
655
+ self._current_timestep_index = i
656
+ self._current_timestep_keyframe = eval_tk
657
+ self._current_used_steps = 0
658
+ # keep track of control weights, latent keyframes, and masks,
659
+ # accounting for inherit_missing
660
+ if self._current_timestep_keyframe.has_control_weights():
661
+ self.weights = self._current_timestep_keyframe.control_weights
662
+ elif not self._current_timestep_keyframe.inherit_missing:
663
+ self.weights = self.weights_default
664
+ if self._current_timestep_keyframe.has_latent_keyframes():
665
+ self.latent_keyframes = self._current_timestep_keyframe.latent_keyframes
666
+ elif not self._current_timestep_keyframe.inherit_missing:
667
+ self.latent_keyframes = None
668
+ if self._current_timestep_keyframe.has_mask_hint():
669
+ self.tk_mask_cond_hint_original = self._current_timestep_keyframe.mask_hint_orig
670
+ elif not self._current_timestep_keyframe.inherit_missing:
671
+ del self.tk_mask_cond_hint_original
672
+ self.tk_mask_cond_hint_original = None
673
+ # if guarantee_steps greater than zero, stop searching for other keyframes
674
+ if self._current_timestep_keyframe.guarantee_steps > 0:
675
+ break
676
+ # if eval_tk is outside of percent range, stop looking further
677
+ else:
678
+ break
679
+ # update prev_t
680
+ self.prev_t = self.t
681
+ # update steps current keyframe is used
682
+ self._current_used_steps += 1
683
+ # if index changed, apply overrides
684
+ if prev_index != self._current_timestep_index:
685
+ if self.weights_override is not None:
686
+ self.weights = self.weights_override
687
+ if self.latent_keyframe_override is not None:
688
+ self.latent_keyframes = self.latent_keyframe_override
689
+
690
+ # make sure weights and latent_keyframes are in a workable state
691
+ # Note: each AdvancedControlBase should create their own get_universal_weights class
692
+ self.prepare_weights()
693
+
694
+ def prepare_weights(self):
695
+ if self.weights is None:
696
+ self.weights = self.weights_default
697
+ elif self.weights.weight_type == ControlWeightType.UNIVERSAL:
698
+ # if universal and weight_mask present, no need to convert
699
+ if self.weights.weight_mask is not None:
700
+ return
701
+ self.weights = self.get_universal_weights()
702
+
703
+ def get_universal_weights(self) -> ControlWeights:
704
+ return self.weights
705
+
706
+ def set_cond_hint_mask(self, mask_hint):
707
+ self.mask_cond_hint_original = mask_hint
708
+ return self
709
+
710
+ def set_cond_hint_inject(self, *args, **kwargs):
711
+ to_return = self.base.set_cond_hint(*args, **kwargs)
712
+ # if vae required, look in args and kwargs for it
713
+ if self.require_vae:
714
+ # check args first, as that's the default way vae param is used in ComfyUI
715
+ for arg in args:
716
+ if isinstance(arg, VAE):
717
+ self.adv_vae = arg
718
+ break
719
+ # if not in args, check kwargs now
720
+ if self.adv_vae is None:
721
+ if 'vae' in kwargs:
722
+ self.adv_vae = kwargs['vae']
723
+ return to_return
724
+
725
+ def pre_run_inject(self, model, percent_to_timestep_function):
726
+ self.base.pre_run(model, percent_to_timestep_function)
727
+ self.pre_run_advanced(model, percent_to_timestep_function)
728
+
729
+ def pre_run_advanced(self, model, percent_to_timestep_function):
730
+ # for each timestep keyframe, calculate the start_t
731
+ for tk in self.timestep_keyframes.keyframes:
732
+ tk.start_t = percent_to_timestep_function(tk.start_percent)
733
+ # clear variables
734
+ self.cleanup_advanced()
735
+
736
+ def set_previous_controlnet_inject(self, *args, **kwargs):
737
+ to_return = self.base.set_previous_controlnet(*args, **kwargs)
738
+ if not self.disarmed:
739
+ raise Exception(f"Type '{type(self).__name__}' must be used with Apply Advanced ControlNet 🛂🅐🅒🅝 node (with model_optional passed in); otherwise, it will not work.")
740
+ return to_return
741
+
742
+ def disarm(self):
743
+ self.disarmed = True
744
+
745
+ def should_run(self):
746
+ if math.isclose(self.strength, 0.0) or math.isclose(self._current_timestep_keyframe.strength, 0.0):
747
+ return False
748
+ if self.timestep_range is not None:
749
+ if self.t > self.timestep_range[0] or self.t < self.timestep_range[1]:
750
+ return False
751
+ return True
752
+
753
+ def get_control_inject(self, x_noisy, t, cond, batched_number):
754
+ self.batched_number = batched_number
755
+ self.batch_size = len(t)
756
+ # prepare timestep and everything related
757
+ self.prepare_current_timestep(t=t, batched_number=batched_number)
758
+ # if should not perform any actions for the controlnet, exit without doing any work
759
+ if self.strength == 0.0 or self._current_timestep_keyframe.strength == 0.0:
760
+ return self.default_control_actions(x_noisy, t, cond, batched_number)
761
+ # otherwise, perform normal function
762
+ return self.get_control_advanced(x_noisy, t, cond, batched_number)
763
+
764
+ def get_control_advanced(self, x_noisy, t, cond, batched_number):
765
+ return self.default_control_actions(x_noisy, t, cond, batched_number)
766
+
767
+ def default_control_actions(self, x_noisy, t, cond, batched_number):
768
+ control_prev = None
769
+ if self.previous_controlnet is not None:
770
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
771
+ return control_prev
772
+
773
+ def calc_weight(self, idx: int, x: Tensor, control: dict[str, list[Tensor]], key: str) -> Union[float, Tensor]:
774
+ if self.weights.weight_mask is not None:
775
+ # prepare weight mask
776
+ self.prepare_weight_mask_cond_hint(x, self.batched_number)
777
+ # adjust mask for current layer and return
778
+ return torch.pow(self.weight_mask_cond_hint, self.get_calc_pow(idx=idx, control=control, key=key))
779
+ return self.weights.get(idx=idx, control=control, key=key)
780
+
781
+ def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
782
+ if key == "middle":
783
+ return 0
784
+ else:
785
+ c_len = len(control[key])
786
+ real_idx = c_len-idx
787
+ if key == "input":
788
+ real_idx = c_len - real_idx + 1
789
+ return real_idx
790
+
791
+ def calc_latent_keyframe_mults(self, x: Tensor, batched_number: int) -> Tensor:
792
+ # apply strengths, and get batch indeces to null out
793
+ # AKA latents that should not be influenced by ControlNet
794
+ final_mults = [1.0] * x.shape[0]
795
+ if self.latent_keyframes:
796
+ latent_count = x.shape[0] // batched_number
797
+ indeces_to_null = set(range(latent_count))
798
+ mapped_indeces = None
799
+ # if expecting subdivision, will need to translate between subset and actual idx values
800
+ if self.sub_idxs:
801
+ mapped_indeces = {}
802
+ for i, actual in enumerate(self.sub_idxs):
803
+ mapped_indeces[actual] = i
804
+ for keyframe in self.latent_keyframes:
805
+ real_index = keyframe.batch_index
806
+ # if negative, count from end
807
+ if real_index < 0:
808
+ real_index += latent_count if self.sub_idxs is None else self.full_latent_length
809
+
810
+ # if not mapping indeces, what you see is what you get
811
+ if mapped_indeces is None:
812
+ if real_index in indeces_to_null:
813
+ indeces_to_null.remove(real_index)
814
+ # otherwise, see if batch_index is even included in this set of latents
815
+ else:
816
+ real_index = mapped_indeces.get(real_index, None)
817
+ if real_index is None:
818
+ continue
819
+ indeces_to_null.remove(real_index)
820
+
821
+ # if real_index is outside the bounds of latents, don't apply
822
+ if real_index >= latent_count or real_index < 0:
823
+ continue
824
+
825
+ # apply strength for each batched cond/uncond
826
+ for b in range(batched_number):
827
+ final_mults[(latent_count*b)+real_index] = keyframe.strength
828
+ # null them out by multiplying by null_latent_kf_strength
829
+ for batch_index in indeces_to_null:
830
+ # apply null for each batched cond/uncond
831
+ for b in range(batched_number):
832
+ final_mults[(latent_count*b)+batch_index] = self._current_timestep_keyframe.null_latent_kf_strength
833
+ # convert final_mults into tensor and match expected dimension count
834
+ final_tensor = torch.tensor(final_mults, dtype=x.dtype, device=x.device)
835
+ while len(final_tensor.shape) < len(x.shape):
836
+ final_tensor = final_tensor.unsqueeze(-1)
837
+ return final_tensor
838
+
839
+ def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape: tuple=None):
840
+ # handle weight's uncond_multiplier, if applicable
841
+ if self.weights.has_uncond_multiplier:
842
+ cond_or_uncond = self.batched_number.cond_or_uncond
843
+ actual_length = x.size(0) // batched_number
844
+ for idx, cond_type in enumerate(cond_or_uncond):
845
+ # if uncond, set to weight's uncond_multiplier
846
+ if cond_type == 1:
847
+ x[actual_length*idx:actual_length*(idx+1)] *= self.weights.uncond_multiplier
848
+ if self.weights.has_uncond_mask:
849
+ pass
850
+
851
+ if self.latent_keyframes is not None:
852
+ x[:] = x[:] * self.calc_latent_keyframe_mults(x=x, batched_number=batched_number)
853
+ # apply masks, resizing mask to required dims
854
+ if self.mask_cond_hint is not None:
855
+ masks = prepare_mask_batch(self.mask_cond_hint, x.shape, match_shape=True, flux_shape=flux_shape)
856
+ x[:] = x[:] * masks
857
+ if self.tk_mask_cond_hint is not None:
858
+ masks = prepare_mask_batch(self.tk_mask_cond_hint, x.shape, match_shape=True, flux_shape=flux_shape)
859
+ x[:] = x[:] * masks
860
+ # apply timestep keyframe strengths
861
+ if self._current_timestep_keyframe.strength != 1.0:
862
+ x[:] *= self._current_timestep_keyframe.strength
863
+
864
+ def control_merge_inject(self: 'AdvancedControlBase', control: dict[str, list[Tensor]], control_prev: dict, output_dtype):
865
+ out = {'input':[], 'middle':[], 'output': []}
866
+
867
+ for key in control:
868
+ control_output = control[key]
869
+ applied_to = set()
870
+ for i in range(len(control_output)):
871
+ x = control_output[i]
872
+ if x is not None:
873
+ if self.global_average_pooling:
874
+ x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
875
+
876
+ if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
877
+ applied_to.add(x)
878
+ self.apply_advanced_strengths_and_masks(x, self.batched_number)
879
+ x *= self.strength * self.calc_weight(i, x, control, key)
880
+
881
+ if output_dtype is not None and x.dtype != output_dtype:
882
+ x = x.to(output_dtype)
883
+
884
+ out[key].append(x)
885
+
886
+ if control_prev is not None:
887
+ for x in ['input', 'middle', 'output']:
888
+ o = out[x]
889
+ for i in range(len(control_prev[x])):
890
+ prev_val = control_prev[x][i]
891
+ if i >= len(o):
892
+ o.append(prev_val)
893
+ elif prev_val is not None:
894
+ if o[i] is None:
895
+ o[i] = prev_val
896
+ else:
897
+ if o[i].shape[0] < prev_val.shape[0]:
898
+ o[i] = prev_val + o[i]
899
+ else:
900
+ o[i] = prev_val + o[i] # TODO from base ComfyUI: change back to inplace add if shared tensors stop being an issue
901
+ return out
902
+
903
+ def prepare_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
904
+ self._prepare_mask("mask_cond_hint", self.mask_cond_hint_original, x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
905
+ self.prepare_tk_mask_cond_hint(x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
906
+
907
+ def prepare_tk_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
908
+ return self._prepare_mask("tk_mask_cond_hint", self._current_timestep_keyframe.mask_hint_orig, x_noisy, t, cond, batched_number, dtype, direct_attn=direct_attn)
909
+
910
+ def prepare_weight_mask_cond_hint(self, x_noisy: Tensor, batched_number, dtype=None):
911
+ return self._prepare_mask("weight_mask_cond_hint", self.weights.weight_mask, x_noisy, t=None, cond=None, batched_number=batched_number, dtype=dtype, direct_attn=True)
912
+
913
+ def _prepare_mask(self, attr_name, orig_mask: Tensor, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
914
+ # make mask appropriate dimensions, if present
915
+ if orig_mask is not None:
916
+ out_mask = getattr(self, attr_name)
917
+ multiplier = 1 if direct_attn else 8
918
+ if self.sub_idxs is not None or out_mask is None or x_noisy.shape[2] * multiplier != out_mask.shape[1] or x_noisy.shape[3] * multiplier != out_mask.shape[2]:
919
+ self._reset_attr(attr_name)
920
+ del out_mask
921
+ # TODO: perform upscale on only the sub_idxs masks at a time instead of all to conserve RAM
922
+ # resize mask and match batch count
923
+ out_mask = prepare_mask_batch(orig_mask, x_noisy.shape, multiplier=multiplier, match_shape=True)
924
+ actual_latent_length = x_noisy.shape[0] // batched_number
925
+ out_mask = extend_to_batch_size(out_mask, actual_latent_length if self.sub_idxs is None else self.full_latent_length)
926
+ if self.sub_idxs is not None:
927
+ out_mask = out_mask[self.sub_idxs]
928
+ # make cond_hint_mask length match x_noise
929
+ if x_noisy.shape[0] != out_mask.shape[0]:
930
+ out_mask = broadcast_image_to_extend(out_mask, x_noisy.shape[0], batched_number)
931
+ # default dtype to be same as x_noisy
932
+ if dtype is None:
933
+ dtype = x_noisy.dtype
934
+ setattr(self, attr_name, out_mask.to(dtype=dtype).to(x_noisy.device))
935
+ del out_mask
936
+
937
+ def _reset_attr(self, attr_name, new_value=None):
938
+ if hasattr(self, attr_name):
939
+ delattr(self, attr_name)
940
+ setattr(self, attr_name, new_value)
941
+
942
+ def cleanup_inject(self):
943
+ self.base.cleanup()
944
+ self.cleanup_advanced()
945
+
946
+ def cleanup_advanced(self):
947
+ self.sub_idxs = None
948
+ self.full_latent_length = 0
949
+ self.context_length = 0
950
+ self.t = None
951
+ self.prev_t = None
952
+ self.batched_number = None
953
+ self.batch_size = 0
954
+ self.weights = None
955
+ self.latent_keyframes = None
956
+ # timestep stuff
957
+ self._current_timestep_keyframe = None
958
+ self._current_timestep_index = -1
959
+ self._current_used_steps = 0
960
+ # clear mask hints
961
+ if self.mask_cond_hint is not None:
962
+ del self.mask_cond_hint
963
+ self.mask_cond_hint = None
964
+ if self.tk_mask_cond_hint_original is not None:
965
+ del self.tk_mask_cond_hint_original
966
+ self.tk_mask_cond_hint_original = None
967
+ if self.tk_mask_cond_hint is not None:
968
+ del self.tk_mask_cond_hint
969
+ self.tk_mask_cond_hint = None
970
+ if self.weight_mask_cond_hint is not None:
971
+ del self.weight_mask_cond_hint
972
+ self.weight_mask_cond_hint = None
973
+
974
+ def copy_to_advanced(self, copied: 'AdvancedControlBase'):
975
+ copied.mask_cond_hint_original = self.mask_cond_hint_original
976
+ copied.weights_override = self.weights_override
977
+ copied.latent_keyframe_override = self.latent_keyframe_override
978
+ copied.adv_vae = self.adv_vae
979
+ copied.require_vae = self.require_vae
980
+ copied.allow_condhint_latents = self.allow_condhint_latents
981
+ copied.disarmed = self.disarmed
ComfyUI-Advanced-ControlNet/pyproject.toml CHANGED
@@ -1,15 +1,15 @@
1
- [project]
2
- name = "comfyui-advanced-controlnet"
3
- description = "Nodes for scheduling ControlNet strength across timesteps and batched latents, as well as applying custom weights and attention masks."
4
- version = "1.3.0"
5
- license = { file = "LICENSE" }
6
- dependencies = []
7
-
8
- [project.urls]
9
- Repository = "https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet"
10
-
11
- # Used by Comfy Registry https://comfyregistry.org
12
- [tool.comfy]
13
- PublisherId = "kosinkadink"
14
- DisplayName = "ComfyUI-Advanced-ControlNet"
15
- Icon = ""
 
1
+ [project]
2
+ name = "comfyui-advanced-controlnet"
3
+ description = "Nodes for scheduling ControlNet strength across timesteps and batched latents, as well as applying custom weights and attention masks."
4
+ version = "1.3.0"
5
+ license = { file = "LICENSE" }
6
+ dependencies = []
7
+
8
+ [project.urls]
9
+ Repository = "https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet"
10
+
11
+ # Used by Comfy Registry https://comfyregistry.org
12
+ [tool.comfy]
13
+ PublisherId = "kosinkadink"
14
+ DisplayName = "ComfyUI-Advanced-ControlNet"
15
+ Icon = ""
ComfyUI-Advanced-ControlNet/web/js/autosize.js CHANGED
@@ -1,53 +1,53 @@
1
- import { app } from '../../../scripts/app.js'
2
-
3
- function addResizeHook(node, padding, useOldMin=false) {
4
- let origOnCreated = node.onNodeCreated
5
- node.onNodeCreated = function() {
6
- let r = origOnCreated?.apply(this, arguments)
7
- let size = this.computeSize();
8
- size[0] += padding || 0;
9
- if (useOldMin) {
10
- //equal to LiteGraph.NODE_WIDTH*1.5*1.5
11
- size[0] = Math.max(size[0], 315)
12
- }
13
- this.setSize(size);
14
- return r
15
- }
16
- }
17
-
18
- app.registerExtension({
19
- name: "AdvancedControlNet.autosize",
20
- async beforeRegisterNodeDef(nodeType, nodeData, app) {
21
- //since python_module is based off folder path,
22
- //it could be changed by users and should only be used as fallback
23
- if (nodeData?.name?.startsWith("ACN_")
24
- || nodeData.python_module == 'custom_nodes.ComfyUI-Advanced-ControlNet') {
25
- if (nodeData?.input?.hidden?.autosize) {
26
- addResizeHook(nodeType.prototype, nodeData.input.hidden.autosize[1]?.padding)
27
- } else if (!nodeData?.input?.optional?.autosize) {
28
- addResizeHook(nodeType.prototype, 0, true)
29
- }
30
- }
31
- },
32
- async getCustomWidgets() {
33
- return {
34
- ACNAUTOSIZE(node, inputName, inputData) {
35
- let w = {
36
- name : inputName,
37
- type : "ACN.AUTOSIZE",
38
- value : "",
39
- options : {"serialize": false},
40
- computeSize : function(width) {
41
- return [0, -4];
42
- }
43
- }
44
- if (!node.widgets) {
45
- node.widgets = []
46
- }
47
- node.widgets.push(w)
48
- addResizeHook(node, inputData[1].padding);
49
- return w;
50
- }
51
- }
52
- }
53
- });
 
1
+ import { app } from '../../../scripts/app.js'
2
+
3
+ function addResizeHook(node, padding, useOldMin=false) {
4
+ let origOnCreated = node.onNodeCreated
5
+ node.onNodeCreated = function() {
6
+ let r = origOnCreated?.apply(this, arguments)
7
+ let size = this.computeSize();
8
+ size[0] += padding || 0;
9
+ if (useOldMin) {
10
+ //equal to LiteGraph.NODE_WIDTH*1.5*1.5
11
+ size[0] = Math.max(size[0], 315)
12
+ }
13
+ this.setSize(size);
14
+ return r
15
+ }
16
+ }
17
+
18
+ app.registerExtension({
19
+ name: "AdvancedControlNet.autosize",
20
+ async beforeRegisterNodeDef(nodeType, nodeData, app) {
21
+ //since python_module is based off folder path,
22
+ //it could be changed by users and should only be used as fallback
23
+ if (nodeData?.name?.startsWith("ACN_")
24
+ || nodeData.python_module == 'custom_nodes.ComfyUI-Advanced-ControlNet') {
25
+ if (nodeData?.input?.hidden?.autosize) {
26
+ addResizeHook(nodeType.prototype, nodeData.input.hidden.autosize[1]?.padding)
27
+ } else if (!nodeData?.input?.optional?.autosize) {
28
+ addResizeHook(nodeType.prototype, 0, true)
29
+ }
30
+ }
31
+ },
32
+ async getCustomWidgets() {
33
+ return {
34
+ ACNAUTOSIZE(node, inputName, inputData) {
35
+ let w = {
36
+ name : inputName,
37
+ type : "ACN.AUTOSIZE",
38
+ value : "",
39
+ options : {"serialize": false},
40
+ computeSize : function(width) {
41
+ return [0, -4];
42
+ }
43
+ }
44
+ if (!node.widgets) {
45
+ node.widgets = []
46
+ }
47
+ node.widgets.push(w)
48
+ addResizeHook(node, inputData[1].padding);
49
+ return w;
50
+ }
51
+ }
52
+ }
53
+ });
ComfyUI-Advanced-ControlNet/web/js/documentation.js CHANGED
@@ -1,293 +1,293 @@
1
- import { app } from '../../../scripts/app.js'
2
-
3
- function chainCallback(object, property, callback) {
4
- if (object == undefined) {
5
- //This should not happen.
6
- console.error("Tried to add callback to non-existant object")
7
- return;
8
- }
9
- if (property in object && object[property]) {
10
- const callback_orig = object[property]
11
- object[property] = function () {
12
- const r = callback_orig.apply(this, arguments);
13
- callback.apply(this, arguments);
14
- return r
15
- };
16
- } else {
17
- object[property] = callback;
18
- }
19
- }
20
- var helpDOM;
21
- function initHelpDOM() {
22
- let parentDOM = document.createElement("div");
23
- document.body.appendChild(parentDOM)
24
- parentDOM.appendChild(helpDOM)
25
- helpDOM.className = "litegraph";
26
- let scrollbarStyle = document.createElement('style');
27
- scrollbarStyle.innerHTML = `
28
- <style id="scroll-properties">
29
- * {
30
- scrollbar-width: 6px;
31
- scrollbar-color: #0003 #0000;
32
- }
33
- ::-webkit-scrollbar {
34
- background: transparent;
35
- width: 6px;
36
- }
37
- ::-webkit-scrollbar-thumb {
38
- background: #0005;
39
- border-radius: 20px
40
- }
41
- ::-webkit-scrollbar-button {
42
- display: none;
43
- }
44
- .VHS_loopedvideo::-webkit-media-controls-mute-button {
45
- display:none;
46
- }
47
- .VHS_loopedvideo::-webkit-media-controls-fullscreen-button {
48
- display:none;
49
- }
50
- </style>
51
- `
52
- parentDOM.appendChild(scrollbarStyle)
53
- chainCallback(app.canvas, "onDrawForeground", function (ctx, visible_rect){
54
- let n = helpDOM.node
55
- if (!n || !n?.graph) {
56
- parentDOM.style['left'] = '-5000px'
57
- return
58
- }
59
- //draw : function(ctx, node, widgetWidth, widgetY, height) {
60
- //update widget position, even if off screen
61
- const transform = ctx.getTransform();
62
- const scale = app.canvas.ds.scale;//gets the litegraph zoom
63
- //calculate coordinates with account for browser zoom
64
- const bcr = app.canvas.canvas.getBoundingClientRect()
65
- const x = transform.e*scale/transform.a + bcr.x;
66
- const y = transform.f*scale/transform.a + bcr.y;
67
- //TODO: text reflows at low zoom. investigate alternatives
68
- Object.assign(parentDOM.style, {
69
- left: (x+(n.pos[0] + n.size[0]+15)*scale) + "px",
70
- top: (y+(n.pos[1]-LiteGraph.NODE_TITLE_HEIGHT)*scale) + "px",
71
- width: "400px",
72
- minHeight: "100px",
73
- maxHeight: "600px",
74
- overflowY: 'scroll',
75
- transformOrigin: '0 0',
76
- transform: 'scale(' + scale + ',' + scale +')',
77
- fontSize: '18px',
78
- backgroundColor: LiteGraph.NODE_DEFAULT_BGCOLOR,
79
- boxShadow: '0 0 10px black',
80
- borderRadius: '4px',
81
- padding: '3px',
82
- zIndex: 3,
83
- position: "absolute",
84
- display: 'inline',
85
- });
86
- });
87
- function setCollapse(el, doCollapse) {
88
- if (doCollapse) {
89
- el.children[0].children[0].innerHTML = '+'
90
- Object.assign(el.children[1].style, {
91
- color: '#CCC',
92
- overflowX: 'hidden',
93
- width: '0px',
94
- minWidth: 'calc(100% - 20px)',
95
- textOverflow: 'ellipsis',
96
- whiteSpace: 'nowrap',
97
- })
98
- for (let child of el.children[1].children) {
99
- if (child.style.display != 'none'){
100
- child.origDisplay = child.style.display
101
- }
102
- child.style.display = 'none'
103
- }
104
- } else {
105
- el.children[0].children[0].innerHTML = '-'
106
- Object.assign(el.children[1].style, {
107
- color: '',
108
- overflowX: '',
109
- width: '100%',
110
- minWidth: '',
111
- textOverflow: '',
112
- whiteSpace: '',
113
- })
114
- for (let child of el.children[1].children) {
115
- child.style.display = child.origDisplay
116
- }
117
- }
118
- }
119
- helpDOM.collapseOnClick = function() {
120
- let doCollapse = this.children[0].innerHTML == '-'
121
- setCollapse(this.parentElement, doCollapse)
122
- }
123
- helpDOM.selectHelp = function(name, value) {
124
- //attempt to navigate to name in help
125
- function collapseUnlessMatch(items,t) {
126
- var match = items.querySelector('[vhs_title="' + t + '"]')
127
- if (!match) {
128
- for (let i of items.children) {
129
- if (i.innerHTML.slice(0,t.length+5).includes(t)) {
130
- match = i
131
- break
132
- }
133
- }
134
- }
135
- if (!match) {
136
- return null
137
- }
138
- //For longer documentation items with fewer collapsable elements,
139
- //scroll to make sure the entirety of the selected item is visible
140
- //This has the unfortunate side effect of trying to scroll the main
141
- //window if the documentation windows is forcibly offscreen,
142
- //but it's easy to simply scroll the main window back and seems to
143
- //have no visual side effects
144
- match.scrollIntoView(false)
145
- window.scrollTo(0,0)
146
- for (let i of items.querySelectorAll('.VHS_collapse')) {
147
- if (i.contains(match)) {
148
- setCollapse(i, false)
149
- } else {
150
- setCollapse(i, true)
151
- }
152
- }
153
- return match
154
- }
155
- let target = collapseUnlessMatch(helpDOM, name)
156
- if (target && value) {
157
- collapseUnlessMatch(target, value)
158
- }
159
- }
160
-
161
- helpDOM.addHelp = function(node, nodeType, description) {
162
- if (!description) {
163
- return
164
- }
165
- //Pad computed size for the clickable question mark
166
- let originalComputeSize = node.computeSize
167
- node.computeSize = function() {
168
- let size = originalComputeSize.apply(this, arguments)
169
- if (!this.title) {
170
- return size
171
- }
172
- let title_width = this.title.length * 0.6 * LiteGraph.NODE_TEXT_SIZE
173
- size[0] = Math.max(size[0], title_width + LiteGraph.NODE_TITLE_HEIGHT)
174
- return size
175
- }
176
-
177
- node.description = description
178
- chainCallback(node, "onDrawForeground", function (ctx) {
179
- //draw question mark
180
- ctx.save()
181
- ctx.font = 'bold 20px Arial'
182
- ctx.fillText("?", this.size[0]-17, -8)
183
- ctx.restore()
184
- })
185
- chainCallback(node, "onMouseDown", function (e, pos, canvas) {
186
- //On click would be preferred, but this'll be good enough
187
- if (pos[1] < 0 && pos[0] + LiteGraph.NODE_TITLE_HEIGHT > this.size[0]) {
188
- //corner question mark clicked
189
- if (helpDOM.node == this) {
190
- helpDOM.node = undefined
191
- } else {
192
- helpDOM.node = this;
193
- helpDOM.innerHTML = this.description || "no help provided ".repeat(20)
194
- for (let e of helpDOM.querySelectorAll('.VHS_collapse')) {
195
- e.children[0].onclick = helpDOM.collapseOnClick
196
- e.children[0].style.cursor = 'pointer'
197
- }
198
- for (let e of helpDOM.querySelectorAll('.VHS_precollapse')) {
199
- setCollapse(e, true)
200
- }
201
- }
202
- return true
203
- }
204
- })
205
- let timeout = null
206
- chainCallback(node, "onMouseMove", function (e, pos, canvas) {
207
- if (timeout) {
208
- clearTimeout(timeout)
209
- timeout = null
210
- }
211
- if (helpDOM.node != this) {
212
- return
213
- }
214
- timeout = setTimeout(() => {
215
- let n = this
216
- if (pos[0] > 0 && pos[0] < n.size[0]
217
- && pos[1] > 0 && pos[1] < n.size[1]) {
218
- //TODO: provide help specific to element clicked
219
- let inputRows = Math.max(n.inputs.length, n.outputs.length)
220
- if (pos[1] < LiteGraph.NODE_SLOT_HEIGHT * inputRows) {
221
- let row = Math.floor((pos[1] - 7) / LiteGraph.NODE_SLOT_HEIGHT)
222
- if (pos[0] < n.size[0]/2) {
223
- if (row < n.inputs.length) {
224
- helpDOM.selectHelp(n.inputs[row].name)
225
- }
226
- } else {
227
- if (row < n.outputs.length) {
228
- helpDOM.selectHelp(n.outputs[row].name)
229
- }
230
- }
231
- } else {
232
- //probably widget, but widgets have variable height.
233
- let basey = LiteGraph.NODE_SLOT_HEIGHT * inputRows + 6
234
- for (let w of n.widgets) {
235
- if (w.y) {
236
- basey = w.y
237
- }
238
- let wheight = LiteGraph.NODE_WIDGET_HEIGHT+4
239
- if (w.computeSize) {
240
- wheight = w.computeSize(n.size[0])[1]
241
- }
242
- if (pos[1] < basey + wheight) {
243
- helpDOM.selectHelp(w.name, w.value)
244
- break
245
- }
246
- basey += wheight
247
- }
248
- }
249
- }
250
- }, 500)
251
- })
252
- chainCallback(node, "onMouseLeave", function (e, pos, canvas) {
253
- if (timeout) {
254
- clearTimeout(timeout)
255
- timeout = null
256
- }
257
- });
258
- }
259
- }
260
-
261
-
262
-
263
- app.registerExtension({
264
- name: "AdvancedControlNet.documentation",
265
- async init() {
266
- if (app.VHSHelp) {
267
- helpDOM = app.VHSHelp
268
- } else {
269
- helpDOM = document.createElement("div");
270
- initHelpDOM()
271
- app.VHSHelp = helpDOM
272
- }
273
- },
274
- async beforeRegisterNodeDef(nodeType, nodeData, app) {
275
- // NOTE: May need manual adjusting for the few non-namespaced nodes
276
- if(nodeData?.name?.startsWith("ACN_") && nodeData.description) {
277
- let description = nodeData.description
278
- let el = document.createElement("div")
279
- el.innerHTML = description
280
- if (!el.children.length) {
281
- //Is plaintext. Do minor convenience formatting
282
- let chunks = description.split('\n')
283
- nodeData.description = chunks[0]
284
- description = chunks.join('<br>')
285
- } else {
286
- nodeData.description = el.querySelector('#VHS_shortdesc')?.innerHTML || el.children[1]?.firstChild?.innerHTML
287
- }
288
- chainCallback(nodeType.prototype, "onNodeCreated", function () {
289
- helpDOM.addHelp(this, nodeType, description)
290
- })
291
- }
292
- },
293
- });
 
1
+ import { app } from '../../../scripts/app.js'
2
+
3
+ function chainCallback(object, property, callback) {
4
+ if (object == undefined) {
5
+ //This should not happen.
6
+ console.error("Tried to add callback to non-existant object")
7
+ return;
8
+ }
9
+ if (property in object && object[property]) {
10
+ const callback_orig = object[property]
11
+ object[property] = function () {
12
+ const r = callback_orig.apply(this, arguments);
13
+ callback.apply(this, arguments);
14
+ return r
15
+ };
16
+ } else {
17
+ object[property] = callback;
18
+ }
19
+ }
20
+ var helpDOM;
21
+ function initHelpDOM() {
22
+ let parentDOM = document.createElement("div");
23
+ document.body.appendChild(parentDOM)
24
+ parentDOM.appendChild(helpDOM)
25
+ helpDOM.className = "litegraph";
26
+ let scrollbarStyle = document.createElement('style');
27
+ scrollbarStyle.innerHTML = `
28
+ <style id="scroll-properties">
29
+ * {
30
+ scrollbar-width: 6px;
31
+ scrollbar-color: #0003 #0000;
32
+ }
33
+ ::-webkit-scrollbar {
34
+ background: transparent;
35
+ width: 6px;
36
+ }
37
+ ::-webkit-scrollbar-thumb {
38
+ background: #0005;
39
+ border-radius: 20px
40
+ }
41
+ ::-webkit-scrollbar-button {
42
+ display: none;
43
+ }
44
+ .VHS_loopedvideo::-webkit-media-controls-mute-button {
45
+ display:none;
46
+ }
47
+ .VHS_loopedvideo::-webkit-media-controls-fullscreen-button {
48
+ display:none;
49
+ }
50
+ </style>
51
+ `
52
+ parentDOM.appendChild(scrollbarStyle)
53
+ chainCallback(app.canvas, "onDrawForeground", function (ctx, visible_rect){
54
+ let n = helpDOM.node
55
+ if (!n || !n?.graph) {
56
+ parentDOM.style['left'] = '-5000px'
57
+ return
58
+ }
59
+ //draw : function(ctx, node, widgetWidth, widgetY, height) {
60
+ //update widget position, even if off screen
61
+ const transform = ctx.getTransform();
62
+ const scale = app.canvas.ds.scale;//gets the litegraph zoom
63
+ //calculate coordinates with account for browser zoom
64
+ const bcr = app.canvas.canvas.getBoundingClientRect()
65
+ const x = transform.e*scale/transform.a + bcr.x;
66
+ const y = transform.f*scale/transform.a + bcr.y;
67
+ //TODO: text reflows at low zoom. investigate alternatives
68
+ Object.assign(parentDOM.style, {
69
+ left: (x+(n.pos[0] + n.size[0]+15)*scale) + "px",
70
+ top: (y+(n.pos[1]-LiteGraph.NODE_TITLE_HEIGHT)*scale) + "px",
71
+ width: "400px",
72
+ minHeight: "100px",
73
+ maxHeight: "600px",
74
+ overflowY: 'scroll',
75
+ transformOrigin: '0 0',
76
+ transform: 'scale(' + scale + ',' + scale +')',
77
+ fontSize: '18px',
78
+ backgroundColor: LiteGraph.NODE_DEFAULT_BGCOLOR,
79
+ boxShadow: '0 0 10px black',
80
+ borderRadius: '4px',
81
+ padding: '3px',
82
+ zIndex: 3,
83
+ position: "absolute",
84
+ display: 'inline',
85
+ });
86
+ });
87
+ function setCollapse(el, doCollapse) {
88
+ if (doCollapse) {
89
+ el.children[0].children[0].innerHTML = '+'
90
+ Object.assign(el.children[1].style, {
91
+ color: '#CCC',
92
+ overflowX: 'hidden',
93
+ width: '0px',
94
+ minWidth: 'calc(100% - 20px)',
95
+ textOverflow: 'ellipsis',
96
+ whiteSpace: 'nowrap',
97
+ })
98
+ for (let child of el.children[1].children) {
99
+ if (child.style.display != 'none'){
100
+ child.origDisplay = child.style.display
101
+ }
102
+ child.style.display = 'none'
103
+ }
104
+ } else {
105
+ el.children[0].children[0].innerHTML = '-'
106
+ Object.assign(el.children[1].style, {
107
+ color: '',
108
+ overflowX: '',
109
+ width: '100%',
110
+ minWidth: '',
111
+ textOverflow: '',
112
+ whiteSpace: '',
113
+ })
114
+ for (let child of el.children[1].children) {
115
+ child.style.display = child.origDisplay
116
+ }
117
+ }
118
+ }
119
+ helpDOM.collapseOnClick = function() {
120
+ let doCollapse = this.children[0].innerHTML == '-'
121
+ setCollapse(this.parentElement, doCollapse)
122
+ }
123
+ helpDOM.selectHelp = function(name, value) {
124
+ //attempt to navigate to name in help
125
+ function collapseUnlessMatch(items,t) {
126
+ var match = items.querySelector('[vhs_title="' + t + '"]')
127
+ if (!match) {
128
+ for (let i of items.children) {
129
+ if (i.innerHTML.slice(0,t.length+5).includes(t)) {
130
+ match = i
131
+ break
132
+ }
133
+ }
134
+ }
135
+ if (!match) {
136
+ return null
137
+ }
138
+ //For longer documentation items with fewer collapsable elements,
139
+ //scroll to make sure the entirety of the selected item is visible
140
+ //This has the unfortunate side effect of trying to scroll the main
141
+ //window if the documentation windows is forcibly offscreen,
142
+ //but it's easy to simply scroll the main window back and seems to
143
+ //have no visual side effects
144
+ match.scrollIntoView(false)
145
+ window.scrollTo(0,0)
146
+ for (let i of items.querySelectorAll('.VHS_collapse')) {
147
+ if (i.contains(match)) {
148
+ setCollapse(i, false)
149
+ } else {
150
+ setCollapse(i, true)
151
+ }
152
+ }
153
+ return match
154
+ }
155
+ let target = collapseUnlessMatch(helpDOM, name)
156
+ if (target && value) {
157
+ collapseUnlessMatch(target, value)
158
+ }
159
+ }
160
+
161
+ helpDOM.addHelp = function(node, nodeType, description) {
162
+ if (!description) {
163
+ return
164
+ }
165
+ //Pad computed size for the clickable question mark
166
+ let originalComputeSize = node.computeSize
167
+ node.computeSize = function() {
168
+ let size = originalComputeSize.apply(this, arguments)
169
+ if (!this.title) {
170
+ return size
171
+ }
172
+ let title_width = this.title.length * 0.6 * LiteGraph.NODE_TEXT_SIZE
173
+ size[0] = Math.max(size[0], title_width + LiteGraph.NODE_TITLE_HEIGHT)
174
+ return size
175
+ }
176
+
177
+ node.description = description
178
+ chainCallback(node, "onDrawForeground", function (ctx) {
179
+ //draw question mark
180
+ ctx.save()
181
+ ctx.font = 'bold 20px Arial'
182
+ ctx.fillText("?", this.size[0]-17, -8)
183
+ ctx.restore()
184
+ })
185
+ chainCallback(node, "onMouseDown", function (e, pos, canvas) {
186
+ //On click would be preferred, but this'll be good enough
187
+ if (pos[1] < 0 && pos[0] + LiteGraph.NODE_TITLE_HEIGHT > this.size[0]) {
188
+ //corner question mark clicked
189
+ if (helpDOM.node == this) {
190
+ helpDOM.node = undefined
191
+ } else {
192
+ helpDOM.node = this;
193
+ helpDOM.innerHTML = this.description || "no help provided ".repeat(20)
194
+ for (let e of helpDOM.querySelectorAll('.VHS_collapse')) {
195
+ e.children[0].onclick = helpDOM.collapseOnClick
196
+ e.children[0].style.cursor = 'pointer'
197
+ }
198
+ for (let e of helpDOM.querySelectorAll('.VHS_precollapse')) {
199
+ setCollapse(e, true)
200
+ }
201
+ }
202
+ return true
203
+ }
204
+ })
205
+ let timeout = null
206
+ chainCallback(node, "onMouseMove", function (e, pos, canvas) {
207
+ if (timeout) {
208
+ clearTimeout(timeout)
209
+ timeout = null
210
+ }
211
+ if (helpDOM.node != this) {
212
+ return
213
+ }
214
+ timeout = setTimeout(() => {
215
+ let n = this
216
+ if (pos[0] > 0 && pos[0] < n.size[0]
217
+ && pos[1] > 0 && pos[1] < n.size[1]) {
218
+ //TODO: provide help specific to element clicked
219
+ let inputRows = Math.max(n.inputs.length, n.outputs.length)
220
+ if (pos[1] < LiteGraph.NODE_SLOT_HEIGHT * inputRows) {
221
+ let row = Math.floor((pos[1] - 7) / LiteGraph.NODE_SLOT_HEIGHT)
222
+ if (pos[0] < n.size[0]/2) {
223
+ if (row < n.inputs.length) {
224
+ helpDOM.selectHelp(n.inputs[row].name)
225
+ }
226
+ } else {
227
+ if (row < n.outputs.length) {
228
+ helpDOM.selectHelp(n.outputs[row].name)
229
+ }
230
+ }
231
+ } else {
232
+ //probably widget, but widgets have variable height.
233
+ let basey = LiteGraph.NODE_SLOT_HEIGHT * inputRows + 6
234
+ for (let w of n.widgets) {
235
+ if (w.y) {
236
+ basey = w.y
237
+ }
238
+ let wheight = LiteGraph.NODE_WIDGET_HEIGHT+4
239
+ if (w.computeSize) {
240
+ wheight = w.computeSize(n.size[0])[1]
241
+ }
242
+ if (pos[1] < basey + wheight) {
243
+ helpDOM.selectHelp(w.name, w.value)
244
+ break
245
+ }
246
+ basey += wheight
247
+ }
248
+ }
249
+ }
250
+ }, 500)
251
+ })
252
+ chainCallback(node, "onMouseLeave", function (e, pos, canvas) {
253
+ if (timeout) {
254
+ clearTimeout(timeout)
255
+ timeout = null
256
+ }
257
+ });
258
+ }
259
+ }
260
+
261
+
262
+
263
+ app.registerExtension({
264
+ name: "AdvancedControlNet.documentation",
265
+ async init() {
266
+ if (app.VHSHelp) {
267
+ helpDOM = app.VHSHelp
268
+ } else {
269
+ helpDOM = document.createElement("div");
270
+ initHelpDOM()
271
+ app.VHSHelp = helpDOM
272
+ }
273
+ },
274
+ async beforeRegisterNodeDef(nodeType, nodeData, app) {
275
+ // NOTE: May need manual adjusting for the few non-namespaced nodes
276
+ if(nodeData?.name?.startsWith("ACN_") && nodeData.description) {
277
+ let description = nodeData.description
278
+ let el = document.createElement("div")
279
+ el.innerHTML = description
280
+ if (!el.children.length) {
281
+ //Is plaintext. Do minor convenience formatting
282
+ let chunks = description.split('\n')
283
+ nodeData.description = chunks[0]
284
+ description = chunks.join('<br>')
285
+ } else {
286
+ nodeData.description = el.querySelector('#VHS_shortdesc')?.innerHTML || el.children[1]?.firstChild?.innerHTML
287
+ }
288
+ chainCallback(nodeType.prototype, "onNodeCreated", function () {
289
+ helpDOM.addHelp(this, nodeType, description)
290
+ })
291
+ }
292
+ },
293
+ });
ComfyUI-Manager/.cache/.cache_directory ADDED
File without changes
ComfyUI-Manager/.cache/1514988643_custom-node-list.json ADDED
The diff for this file is too large to render. See raw diff
 
ComfyUI-Manager/.cache/1742899825_extension-node-map.json ADDED
The diff for this file is too large to render. See raw diff
 
ComfyUI-Manager/.cache/2259715867_alter-list.json ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "items": [
3
+ {
4
+ "description": "This extension provides preprocessor nodes for using controlnet.",
5
+ "id": "https://github.com/Fannovel16/comfyui_controlnet_aux",
6
+ "tags": "controlnet"
7
+ },
8
+ {
9
+ "description": "This experimental nodes contains a 'Reference Only' node and a 'ModelSamplerTonemapNoiseTest' node corresponding to the 'Dynamic Threshold'.",
10
+ "id": "https://github.com/comfyanonymous/ComfyUI_experiments",
11
+ "tags": "Dynamic Thresholding, DT, CFG, controlnet, reference only"
12
+ },
13
+ {
14
+ "description": "To implement the feature of automatically detecting faces and enhancing details, various detection nodes and detailers provided by the Impact Pack can be applied. Similarly to Loopback Scaler, it also provides various custom workflows that can apply Ksampler while gradually scaling up.",
15
+ "id": "https://github.com/ltdrdata/ComfyUI-Impact-Pack",
16
+ "tags": "ddetailer, adetailer, ddsd, DD, loopback scaler, prompt, wildcard, dynamic prompt"
17
+ },
18
+ {
19
+ "description": "The Inspire Pack provides the functionality of Lora Block Weight, Variation Seed.",
20
+ "id": "https://github.com/ltdrdata/ComfyUI-Inspire-Pack",
21
+ "tags": "lora block weight, effective block analyzer, lbw, variation seed"
22
+ },
23
+ {
24
+ "description": "This extension provides a feature that generates segment masks on an image using a text prompt. When used in conjunction with Impact Pack, it enables applications such as DDSD.",
25
+ "id": "https://github.com/biegert/ComfyUI-CLIPSeg/raw/main/custom_nodes/clipseg.py",
26
+ "tags": "ddsd"
27
+ },
28
+ {
29
+ "description": "This extension is a less feature-rich and well-maintained alternative to Impact Pack, but it has fewer dependencies and may be easier to install on abnormal configurations. The author recommends trying Impact Pack first.",
30
+ "id": "https://github.com/BadCafeCode/masquerade-nodes-comfyui",
31
+ "tags": "ddetailer"
32
+ },
33
+ {
34
+ "description": "By using this extension, prompts like 'blue hair' can be prevented from interfering with other prompts by blocking the attribute 'blue' from being used in prompts other than 'hair'.",
35
+ "id": "https://github.com/BlenderNeko/ComfyUI_Cutoff",
36
+ "tags": "cutoff"
37
+ },
38
+ {
39
+ "description": "There are differences in the processing methods of prompts, such as weighting and scheduling, between A1111 and ComfyUI. With this extension, various settings can be used to implement prompt processing methods similar to A1111. As this feature is also integrated into ComfyUI Cutoff, please download the Cutoff extension if you plan to use it in conjunction with Cutoff.",
40
+ "id": "https://github.com/BlenderNeko/ComfyUI_ADV_CLIP_emb",
41
+ "tags": "prompt, weight"
42
+ },
43
+ {
44
+ "description": "There are differences in the processing methods of prompts, such as weighting and scheduling, between A1111 and ComfyUI. This extension helps to reproduce the same embedding as A1111.",
45
+ "id": "https://github.com/shiimizu/ComfyUI_smZNodes",
46
+ "tags": "prompt, weight"
47
+ },
48
+ {
49
+ "description": "The extension provides an unsampler that reverses the sampling process, allowing for a function similar to img2img alt to be implemented. Furthermore, ComfyUI uses CPU's Random instead of GPU's Random for better reproducibility compared to A1111. This extension provides the ability to use GPU's Random for Latent Noise. However, since GPU's Random may vary depending on the GPU model, reproducibility on different devices cannot be guaranteed.",
50
+ "id": "https://github.com/BlenderNeko/ComfyUI_Noise",
51
+ "tags": "img2img alt, random"
52
+ },
53
+ {
54
+ "description": "The extension provides seecoder feature.",
55
+ "id": "https://github.com/BlenderNeko/ComfyUI_SeeCoder",
56
+ "tags": "seecoder, prompt-free-diffusion"
57
+ },
58
+ {
59
+ "description": "This extension provides features such as a wildcard function that randomly selects prompts belonging to a category and the ability to directly load lora from prompts.",
60
+ "id": "https://github.com/lilly1987/ComfyUI_node_Lilly",
61
+ "tags": "prompt, wildcard"
62
+ },
63
+ {
64
+ "description": "ComfyUI already provides the ability to composite latents by default. However, this extension makes it more convenient to use by visualizing the composite area.",
65
+ "id": "https://github.com/Davemane42/ComfyUI_Dave_CustomNode",
66
+ "tags": "latent couple"
67
+ },
68
+ {
69
+ "description": "This tool provides a viewer node that allows for checking multiple outputs in a grid, similar to the X/Y Plot extension.",
70
+ "id": "https://github.com/LEv145/images-grid-comfy-plugin",
71
+ "tags": "X/Y Plot"
72
+ },
73
+ {
74
+ "description": "This extension generates clip text by taking an image as input and using the Deepbooru model.",
75
+ "id": "https://github.com/pythongosssss/ComfyUI-WD14-Tagger",
76
+ "tags": "deepbooru, clip interrogation"
77
+ },
78
+ {
79
+ "description": "This node takes two models, merges individual blocks together at various ratios, and automatically rates each merge, keeping the ratio with the highest score. ",
80
+ "id": "https://github.com/szhublox/ambw_comfyui",
81
+ "tags": "supermerger"
82
+ },
83
+ {
84
+ "description": "ComfyUI nodes for the Ultimate Stable Diffusion Upscale script by Coyote-A. Uses the same script used in the A1111 extension to hopefully replicate images generated using the A1111 webui.",
85
+ "id": "https://github.com/ssitu/ComfyUI_UltimateSDUpscale",
86
+ "tags": "upscaler, Ultimate SD Upscale"
87
+ },
88
+ {
89
+ "description": "A1111 provides KSampler that uses GPU-based random noise. This extension offers KSampler utilizing GPU-based random noise.",
90
+ "id": "https://github.com/dawangraoming/ComfyUI_ksampler_gpu/raw/main/ksampler_gpu.py",
91
+ "tags": "random, noise"
92
+ },
93
+ {
94
+ "description": "This extension provides nodes with the functionality of dynamic prompts.",
95
+ "id": "https://github.com/space-nuko/nui-suite",
96
+ "tags": "prompt, dynamic prompt"
97
+ },
98
+ {
99
+ "description": "This extension provides bunch of nodes including roop",
100
+ "id": "https://github.com/melMass/comfy_mtb",
101
+ "tags": "roop"
102
+ },
103
+ {
104
+ "description": "This extension provides nodes for the roop A1111 webui script.",
105
+ "id": "https://github.com/ssitu/ComfyUI_roop",
106
+ "tags": "roop"
107
+ },
108
+ {
109
+ "description": "This extension provides the ability to use prompts like \n\n**a [large::0.1] [cat|dog:0.05] [<lora:somelora:0.5:0.6>::0.5] [in a park:in space:0.4]**\n\n",
110
+ "id": "https://github.com/asagi4/comfyui-prompt-control",
111
+ "tags": "prompt, prompt editing"
112
+ },
113
+ {
114
+ "description": "This extension is a port of sd-dynamic-prompt to ComfyUI.",
115
+ "id": "https://github.com/adieyal/comfyui-dynamicprompts",
116
+ "tags": "prompt, dynamic prompt"
117
+ },
118
+ {
119
+ "description": "A Anime Background Remover node for comfyui, based on this hf space, works same as AGB extention in automatic1111.",
120
+ "id": "https://github.com/kwaroran/abg-comfyui",
121
+ "tags": "abg, background remover"
122
+ },
123
+ {
124
+ "description": "This is a ported version of ComfyUI for the sd-webui-roop-nsfw extension.",
125
+ "id": "https://github.com/Gourieff/comfyui-reactor-node",
126
+ "tags": "reactor, sd-webui-roop-nsfw"
127
+ },
128
+ {
129
+ "description": "This custom nodes provide a functionality similar to regional prompts, offering couple features at the attention level.",
130
+ "id": "https://github.com/laksjdjf/cgem156-ComfyUI",
131
+ "tags": "regional prompt, latent couple, prompt"
132
+ },
133
+ {
134
+ "description": "This custom nodes provide functionality that assists in animation creation, similar to deforum.",
135
+ "id": "https://github.com/FizzleDorf/ComfyUI_FizzNodes",
136
+ "tags": "deforum"
137
+ },
138
+ {
139
+ "description": "This custom nodes provide functionality that assists in animation creation, similar to deforum.",
140
+ "id": "https://github.com/seanlynch/comfyui-optical-flow",
141
+ "tags": "deforum, vid2vid"
142
+ },
143
+ {
144
+ "description": "Similar to sd-webui-fabric, this custom nodes provide the functionality of [a/FABRIC](https://github.com/sd-fabric/fabric).",
145
+ "id": "https://github.com/ssitu/ComfyUI_fabric",
146
+ "tags": "fabric"
147
+ },
148
+ {
149
+ "description": "Similar to text-generation-webui, this custom nodes provide the functionality of [a/exllama](https://github.com/turboderp/exllama).",
150
+ "id": "https://github.com/Zuellni/ComfyUI-ExLlama",
151
+ "tags": "ExLlama, prompt, language model"
152
+ },
153
+ {
154
+ "description": "ComfyUI node for generating seamless textures Replicates 'Tiling' option from A1111",
155
+ "id": "https://github.com/spinagon/ComfyUI-seamless-tiling",
156
+ "tags": "tiling"
157
+ },
158
+ {
159
+ "description": "This extension is a port of the [a/sd-webui-cd-tuner](https://github.com/hako-mikan/sd-webui-cd-tuner)(a.k.a. CD(color/Detail) Tuner )and [a/sd-webui-negpip](https://github.com/hako-mikan/sd-webui-negpip)(a.k.a. NegPiP) extensions of A1111 to ComfyUI.",
160
+ "id": "https://github.com/laksjdjf/cd-tuner_negpip-ComfyUI",
161
+ "tags": "cd-tuner, negpip"
162
+ },
163
+ {
164
+ "description": "This custom node is a port of the Dynamic Thresholding extension from A1111 to make it available for use in ComfyUI.",
165
+ "id": "https://github.com/mcmonkeyprojects/sd-dynamic-thresholding",
166
+ "tags": "DT, dynamic thresholding"
167
+ },
168
+ {
169
+ "description": "This extension provides custom nodes developed based on [a/LaMa](https://github.com/advimman/lama) and [a/Inpainting anything](https://github.com/geekyutao/Inpaint-Anything).",
170
+ "id": "https://github.com/hhhzzyang/Comfyui_Lama",
171
+ "tags": "lama, inpainting anything"
172
+ },
173
+ {
174
+ "description": "This extension provides custom nodes for [a/LaMa](https://github.com/advimman/lama) functionality.",
175
+ "id": "https://github.com/mlinmg/ComfyUI-LaMA-Preprocessor",
176
+ "tags": "lama"
177
+ },
178
+ {
179
+ "description": "This extension provides custom nodes for [a/SD Webui Diffusion Color Grading](https://github.com/Haoming02/sd-webui-diffusion-cg) functionality.",
180
+ "id": "https://github.com/Haoming02/comfyui-diffusion-cg",
181
+ "tags": "diffusion-cg"
182
+ },
183
+ {
184
+ "description": "This extension provides custom nodes for [a/sd-webui-cads](https://github.com/v0xie/sd-webui-cads) functionality.",
185
+ "id": "https://github.com/asagi4/ComfyUI-CADS",
186
+ "tags": "diffusion-cg"
187
+ },
188
+ {
189
+ "description": "This extension supports both A1111 and ComfyUI simultaneously.",
190
+ "id": "https://git.mmaker.moe/mmaker/sd-webui-color-enhance",
191
+ "tags": "color-enhance"
192
+ },
193
+ {
194
+ "description": "This extension provides custom nodes for [a/Mixture of Diffusers](https://github.com/albarji/mixture-of-diffusers) and [a/MultiDiffusion](https://github.com/omerbt/MultiDiffusion)",
195
+ "id": "https://github.com/shiimizu/ComfyUI-TiledDiffusion",
196
+ "tags": "multidiffusion"
197
+ },
198
+ {
199
+ "description": "This extension provides some alternative functionalities of the [a/sd-webui-bmab](https://github.com/portu-sim/sd-webui-bmab) extension.",
200
+ "id": "https://github.com/abyz22/image_control",
201
+ "tags": "BMAB"
202
+ },
203
+ {
204
+ "description": "This extension provides some alternative functionalities of the [a/stable-diffusion-webui-sonar](https://github.com/Kahsolt/stable-diffusion-webui-sonar) extension.",
205
+ "id": "https://github.com/blepping/ComfyUI-sonar",
206
+ "tags": "sonar"
207
+ },
208
+ {
209
+ "description": "a comfyui custom node for [a/Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git), you can Voice-Conversion in comfyui now!",
210
+ "id": "https://github.com/AIFSH/ComfyUI-RVC",
211
+ "tags": "sonar"
212
+ },
213
+ {
214
+ "description": "a comfyui custom node for [a/sd-webui-bmab](https://github.com/portu-sim/sd-webui-bmab)",
215
+ "id": "https://github.com/portu-sim/comfyui-bmab",
216
+ "tags": "bmab"
217
+ },
218
+ {
219
+ "description": "This extension is a port of [a/unprompted](https://github.com/ThereforeGames/unprompted)",
220
+ "id": "https://github.com/ThereforeGames/ComfyUI-Unprompted",
221
+ "tags": "unprompted"
222
+ }
223
+ ]
224
+ }
ComfyUI-Manager/.cache/4245046894_model-list.json ADDED
The diff for this file is too large to render. See raw diff