Spaces:
Running
Running
File size: 12,925 Bytes
07f408f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import folder_paths
import json
import os
import numpy as np
import cv2
from PIL import ImageColor
from einops import rearrange
import torch
import itertools
from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses
"""
Format of POSE_KEYPOINT (AP10K keypoints):
[{
"version": "ap10k",
"animals": [
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
...
],
"canvas_height": 512,
"canvas_width": 768
},...]
Format of POSE_KEYPOINT (OpenPose keypoints):
[{
"people": [
{
'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]]
"face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]],
"hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
"hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
}
],
"canvas_height": canvas_height,
"canvas_width": canvas_width,
},...]
"""
class SavePoseKpsAsJsonFile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"filename_prefix": ("STRING", {"default": "PoseKeypoint"})
}
}
RETURN_TYPES = ()
FUNCTION = "save_pose_kps"
OUTPUT_NODE = True
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
def save_pose_kps(self, pose_kps, filename_prefix):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = \
folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"])
file = f"{filename}_{counter:05}.json"
with open(os.path.join(full_output_folder, file), 'w') as f:
json.dump(pose_kps , f)
return {}
#COCO-Wholebody doesn't have eyebrows as it inherits 68 keypoints format
#Perhaps eyebrows can be estimated tho
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"]
LAPA_COLORS = dict(
skin="rgb(0, 153, 255)",
left_eye="rgb(0, 204, 153)",
right_eye="rgb(255, 153, 0)",
nose="rgb(255, 102, 255)",
upper_lip="rgb(102, 0, 51)",
inner_mouth="rgb(255, 204, 255)",
lower_lip="rgb(255, 0, 102)"
)
#One-based index
def kps_idxs(start, end):
step = -1 if start > end else 1
return list(range(start-1, end+1-1, step))
#Source: https://www.researchgate.net/profile/Fabrizio-Falchi/publication/338048224/figure/fig1/AS:837860722741255@1576772971540/68-facial-landmarks.jpg
FACIAL_PART_RANGES = dict(
skin=kps_idxs(1, 17) + kps_idxs(27, 18),
nose=kps_idxs(28, 36),
left_eye=kps_idxs(37, 42),
right_eye=kps_idxs(43, 48),
upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61),
lower_lip=kps_idxs(61, 68),
inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49)
)
def is_normalized(keypoints) -> bool:
point_normalized = [
0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1
for k in keypoints
if k is not None
]
if not point_normalized:
return False
return np.all(point_normalized)
class FacialPartColoringFromPoseKps:
@classmethod
def INPUT_TYPES(s):
input_types = {
"required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})}
}
for facial_part in FACIAL_PARTS:
input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False})
return input_types
RETURN_TYPES = ("IMAGE",)
FUNCTION = "colorize"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def colorize(self, pose_kps, mode, **facial_part_colors):
pose_frames = pose_kps
np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames]
np_frames = np.stack(np_frames, axis=0)
return (torch.from_numpy(np_frames).float() / 255.,)
def draw_kps(self, pose_frame, mode, **facial_part_colors):
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
canvas = np.zeros((height, width, 3), dtype=np.uint8)
for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS):
n = len(person["face_keypoints_2d"]) // 3
facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2]
if is_normalized(facial_kps):
facial_kps *= (width, height)
facial_kps = facial_kps.astype(np.int32)
part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3]
part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :]
if mode == "point":
for pt in part_contours:
cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1)
else:
cv2.fillPoly(canvas, pts=[part_contours], color=part_color)
return canvas
# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/keypoints_pose_18.png
BODY_PART_INDEXES = {
"Head": (16, 14, 0, 15, 17),
"Neck": (0, 1),
"Shoulder": (2, 5),
"Torso": (2, 5, 8, 11),
"RArm": (2, 3),
"RForearm": (3, 4),
"LArm": (5, 6),
"LForearm": (6, 7),
"RThigh": (8, 9),
"RLeg": (9, 10),
"LThigh": (11, 12),
"LLeg": (12, 13)
}
BODY_PART_DEFAULT_W_H = {
"Head": "256, 256",
"Neck": "100, 100",
"Shoulder": '',
"Torso": "350, 450",
"RArm": "128, 256",
"RForearm": "128, 256",
"LArm": "128, 256",
"LForearm": "128, 256",
"RThigh": "128, 256",
"RLeg": "128, 256",
"LThigh": "128, 256",
"LLeg": "128, 256"
}
class SinglePersonProcess:
@classmethod
def sort_and_get_max_people(s, pose_kps):
for idx in range(len(pose_kps)):
pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0])
return pose_kps, max(len(frame["people"]) for frame in pose_kps)
def __init__(self, pose_kps, person_idx=0) -> None:
self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]
self.poses = [
self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"])
if person_idx < len(pose_frame["people"])
else None
for pose_frame in pose_kps
]
def normalize(self, pose_kps_2d):
n = len(pose_kps_2d) // 3
pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3)
pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 #Safe large value
pose_kps_2d = pose_kps_2d[:, :2]
if is_normalized(pose_kps_2d):
pose_kps_2d *= (self.width, self.height)
return pose_kps_2d
def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)):
width, height = bbox_size
xyxy_bboxes = {}
for idx, pose in enumerate(self.poses):
if pose is None:
xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4
continue
pts = pose[BODY_PART_INDEXES[part_name], :]
#top_left = np.min(pts[:,0]), np.min(pts[:,1])
#bottom_right = np.max(pts[:,0]), np.max(pts[:,1])
#pad_width = np.maximum(width - (bottom_right[0]-top_left[0]), 0) / 2
#pad_height = np.maximum(height - (bottom_right[1]-top_left[1]), 0) / 2
#xyxy_bboxes.append((
# top_left[0] - pad_width, top_left[1] - pad_height,
# bottom_right[0] + pad_width, bottom_right[1] + pad_height,
#))
x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1])
xyxy_bboxes[idx] = (
x_mid - width/2, y_mid - height/2,
x_mid + width/2, y_mid + height/2
)
return xyxy_bboxes
class UpperBodyTrackingFromPoseKps:
PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"id_include": ("STRING", {"default": '', "multiline": False}),
**{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES}
}
}
RETURN_TYPES = ("TRACKING", "STRING")
RETURN_NAMES = ("tracking", "prompt")
FUNCTION = "convert"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def convert(self, pose_kps, id_include, **parts_width_height):
parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()}
enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())]
tracked = {part_name: {} for part_name in enabled_part_names}
id_include = id_include.strip()
id_include = list(map(int, id_include.split(','))) if len(id_include) else []
prompt_string = ''
pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps)
for person_idx in range(max_people):
if len(id_include) and person_idx not in id_include:
continue
processor = SinglePersonProcess(pose_kps, person_idx)
for part_name in enabled_part_names:
bbox_size = tuple(map(int, parts_width_height[part_name].split(',')))
part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size)
id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()}
tracked[part_name][person_idx] = id_coordinates
for class_name, class_data in tracked.items():
for class_id in class_data.keys():
class_id_str = str(class_id)
# Use the incoming prompt for each class name and ID
_class_name = class_name.replace('L', '').replace('R', '').lower()
prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n'
return (tracked, prompt_string)
def numpy2torch(np_image: np.ndarray) -> torch.Tensor:
""" [H, W, C] => [B=1, H, W, C]"""
return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0)
class RenderPeopleKps:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"kps": ("POSE_KEYPOINT",),
"render_body": ("BOOLEAN", {"default": True}),
"render_hand": ("BOOLEAN", {"default": True}),
"render_face": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]:
if isinstance(kps, list):
kps = kps[0]
poses, _, height, width = decode_json_as_poses(kps)
np_image = draw_poses(
poses,
height,
width,
render_body,
render_hand,
render_face,
)
return (numpy2torch(np_image),)
class RenderAnimalKps:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"kps": ("POSE_KEYPOINT",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def render(self, kps) -> tuple[np.ndarray]:
if isinstance(kps, list):
kps = kps[0]
_, poses, height, width = decode_json_as_poses(kps)
np_image = draw_animalposes(poses, height, width)
return (numpy2torch(np_image),)
NODE_CLASS_MAPPINGS = {
"SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile,
"FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps,
"UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps,
"RenderPeopleKps": RenderPeopleKps,
"RenderAnimalKps": RenderAnimalKps,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SavePoseKpsAsJsonFile": "Save Pose Keypoints",
"FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS",
"UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)",
"RenderPeopleKps": "Render Pose JSON (Human)",
"RenderAnimalKps": "Render Pose JSON (Animal)",
}
|