Spaces:
Running
Running
File size: 28,138 Bytes
07f408f 681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
"""
CoaT architecture.
Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399
Official CoaT code at: https://github.com/mlpc-ucsd/CoaT
Modified from custom_timm/models/vision_transformer.py
"""
from copy import deepcopy
from functools import partial
from typing import Tuple, List, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .layers import _assert
__all__ = [
"coat_tiny",
"coat_mini",
"coat_lite_tiny",
"coat_lite_mini",
"coat_lite_small"
]
def _cfg_coat(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed1.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'coat_tiny': _cfg_coat(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_tiny-473c2a20.pth'
),
'coat_mini': _cfg_coat(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_mini-2c6baf49.pth'
),
'coat_lite_tiny': _cfg_coat(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_tiny-461b07a7.pth'
),
'coat_lite_mini': _cfg_coat(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_mini-d7842000.pth'
),
'coat_lite_small': _cfg_coat(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_small-fea1d5a1.pth'
),
}
class ConvRelPosEnc(nn.Module):
""" Convolutional relative position encoding. """
def __init__(self, Ch, h, window):
"""
Initialization.
Ch: Channels per head.
h: Number of heads.
window: Window size(s) in convolutional relative positional encoding. It can have two forms:
1. An integer of window size, which assigns all attention heads with the same window s
size in ConvRelPosEnc.
2. A dict mapping window size to #attention head splits (
e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})
It will apply different window size to the attention head splits.
"""
super().__init__()
if isinstance(window, int):
# Set the same window size for all attention heads.
window = {window: h}
self.window = window
elif isinstance(window, dict):
self.window = window
else:
raise ValueError()
self.conv_list = nn.ModuleList()
self.head_splits = []
for cur_window, cur_head_split in window.items():
dilation = 1
# Determine padding size.
# Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338
padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2
cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch,
kernel_size=(cur_window, cur_window),
padding=(padding_size, padding_size),
dilation=(dilation, dilation),
groups=cur_head_split*Ch,
)
self.conv_list.append(cur_conv)
self.head_splits.append(cur_head_split)
self.channel_splits = [x*Ch for x in self.head_splits]
def forward(self, q, v, size: Tuple[int, int]):
B, h, N, Ch = q.shape
H, W = size
_assert(N == 1 + H * W, '')
# Convolutional relative position encoding.
q_img = q[:, :, 1:, :] # [B, h, H*W, Ch]
v_img = v[:, :, 1:, :] # [B, h, H*W, Ch]
v_img = v_img.transpose(-1, -2).reshape(B, h * Ch, H, W)
v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels
conv_v_img_list = []
for i, conv in enumerate(self.conv_list):
conv_v_img_list.append(conv(v_img_list[i]))
conv_v_img = torch.cat(conv_v_img_list, dim=1)
conv_v_img = conv_v_img.reshape(B, h, Ch, H * W).transpose(-1, -2)
EV_hat = q_img * conv_v_img
EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch].
return EV_hat
class FactorAttnConvRelPosEnc(nn.Module):
""" Factorized attention with convolutional relative position encoding class. """
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., shared_crpe=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used.
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# Shared convolutional relative position encoding.
self.crpe = shared_crpe
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
# Generate Q, K, V.
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # [B, h, N, Ch]
# Factorized attention.
k_softmax = k.softmax(dim=2)
factor_att = k_softmax.transpose(-1, -2) @ v
factor_att = q @ factor_att
# Convolutional relative position encoding.
crpe = self.crpe(q, v, size=size) # [B, h, N, Ch]
# Merge and reshape.
x = self.scale * factor_att + crpe
x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C]
# Output projection.
x = self.proj(x)
x = self.proj_drop(x)
return x
class ConvPosEnc(nn.Module):
""" Convolutional Position Encoding.
Note: This module is similar to the conditional position encoding in CPVT.
"""
def __init__(self, dim, k=3):
super(ConvPosEnc, self).__init__()
self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim)
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
H, W = size
_assert(N == 1 + H * W, '')
# Extract CLS token and image tokens.
cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C]
# Depthwise convolution.
feat = img_tokens.transpose(1, 2).view(B, C, H, W)
x = self.proj(feat) + feat
x = x.flatten(2).transpose(1, 2)
# Combine with CLS token.
x = torch.cat((cls_token, x), dim=1)
return x
class SerialBlock(nn.Module):
""" Serial block class.
Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None):
super().__init__()
# Conv-Attention.
self.cpe = shared_cpe
self.norm1 = norm_layer(dim)
self.factoratt_crpe = FactorAttnConvRelPosEnc(
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpe)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# MLP.
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, size: Tuple[int, int]):
# Conv-Attention.
x = self.cpe(x, size)
cur = self.norm1(x)
cur = self.factoratt_crpe(cur, size)
x = x + self.drop_path(cur)
# MLP.
cur = self.norm2(x)
cur = self.mlp(cur)
x = x + self.drop_path(cur)
return x
class ParallelBlock(nn.Module):
""" Parallel block class. """
def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_crpes=None):
super().__init__()
# Conv-Attention.
self.norm12 = norm_layer(dims[1])
self.norm13 = norm_layer(dims[2])
self.norm14 = norm_layer(dims[3])
self.factoratt_crpe2 = FactorAttnConvRelPosEnc(
dims[1], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
shared_crpe=shared_crpes[1]
)
self.factoratt_crpe3 = FactorAttnConvRelPosEnc(
dims[2], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
shared_crpe=shared_crpes[2]
)
self.factoratt_crpe4 = FactorAttnConvRelPosEnc(
dims[3], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
shared_crpe=shared_crpes[3]
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# MLP.
self.norm22 = norm_layer(dims[1])
self.norm23 = norm_layer(dims[2])
self.norm24 = norm_layer(dims[3])
# In parallel block, we assume dimensions are the same and share the linear transformation.
assert dims[1] == dims[2] == dims[3]
assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]
mlp_hidden_dim = int(dims[1] * mlp_ratios[1])
self.mlp2 = self.mlp3 = self.mlp4 = Mlp(
in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def upsample(self, x, factor: float, size: Tuple[int, int]):
""" Feature map up-sampling. """
return self.interpolate(x, scale_factor=factor, size=size)
def downsample(self, x, factor: float, size: Tuple[int, int]):
""" Feature map down-sampling. """
return self.interpolate(x, scale_factor=1.0/factor, size=size)
def interpolate(self, x, scale_factor: float, size: Tuple[int, int]):
""" Feature map interpolation. """
B, N, C = x.shape
H, W = size
_assert(N == 1 + H * W, '')
cls_token = x[:, :1, :]
img_tokens = x[:, 1:, :]
img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W)
img_tokens = F.interpolate(
img_tokens, scale_factor=scale_factor, recompute_scale_factor=False, mode='bilinear', align_corners=False)
img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2)
out = torch.cat((cls_token, img_tokens), dim=1)
return out
def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]):
_, S2, S3, S4 = sizes
cur2 = self.norm12(x2)
cur3 = self.norm13(x3)
cur4 = self.norm14(x4)
cur2 = self.factoratt_crpe2(cur2, size=S2)
cur3 = self.factoratt_crpe3(cur3, size=S3)
cur4 = self.factoratt_crpe4(cur4, size=S4)
upsample3_2 = self.upsample(cur3, factor=2., size=S3)
upsample4_3 = self.upsample(cur4, factor=2., size=S4)
upsample4_2 = self.upsample(cur4, factor=4., size=S4)
downsample2_3 = self.downsample(cur2, factor=2., size=S2)
downsample3_4 = self.downsample(cur3, factor=2., size=S3)
downsample2_4 = self.downsample(cur2, factor=4., size=S2)
cur2 = cur2 + upsample3_2 + upsample4_2
cur3 = cur3 + upsample4_3 + downsample2_3
cur4 = cur4 + downsample3_4 + downsample2_4
x2 = x2 + self.drop_path(cur2)
x3 = x3 + self.drop_path(cur3)
x4 = x4 + self.drop_path(cur4)
# MLP.
cur2 = self.norm22(x2)
cur3 = self.norm23(x3)
cur4 = self.norm24(x4)
cur2 = self.mlp2(cur2)
cur3 = self.mlp3(cur3)
cur4 = self.mlp4(cur4)
x2 = x2 + self.drop_path(cur2)
x3 = x3 + self.drop_path(cur3)
x4 = x4 + self.drop_path(cur4)
return x1, x2, x3, x4
class CoaT(nn.Module):
""" CoaT class. """
def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=(0, 0, 0, 0),
serial_depths=(0, 0, 0, 0), parallel_depth=0, num_heads=0, mlp_ratios=(0, 0, 0, 0), qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
return_interm_layers=False, out_features=None, crpe_window=None, global_pool='token'):
super().__init__()
assert global_pool in ('token', 'avg')
crpe_window = crpe_window or {3: 2, 5: 3, 7: 3}
self.return_interm_layers = return_interm_layers
self.out_features = out_features
self.embed_dims = embed_dims
self.num_features = embed_dims[-1]
self.num_classes = num_classes
self.global_pool = global_pool
# Patch embeddings.
img_size = to_2tuple(img_size)
self.patch_embed1 = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dims[0], norm_layer=nn.LayerNorm)
self.patch_embed2 = PatchEmbed(
img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1], norm_layer=nn.LayerNorm)
self.patch_embed3 = PatchEmbed(
img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2], norm_layer=nn.LayerNorm)
self.patch_embed4 = PatchEmbed(
img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3], norm_layer=nn.LayerNorm)
# Class tokens.
self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0]))
self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1]))
self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2]))
self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3]))
# Convolutional position encodings.
self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3)
self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3)
self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3)
self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3)
# Convolutional relative position encodings.
self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window)
self.crpe2 = ConvRelPosEnc(Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window)
self.crpe3 = ConvRelPosEnc(Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window)
self.crpe4 = ConvRelPosEnc(Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window)
# Disable stochastic depth.
dpr = drop_path_rate
assert dpr == 0.0
# Serial blocks 1.
self.serial_blocks1 = nn.ModuleList([
SerialBlock(
dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer,
shared_cpe=self.cpe1, shared_crpe=self.crpe1
)
for _ in range(serial_depths[0])]
)
# Serial blocks 2.
self.serial_blocks2 = nn.ModuleList([
SerialBlock(
dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer,
shared_cpe=self.cpe2, shared_crpe=self.crpe2
)
for _ in range(serial_depths[1])]
)
# Serial blocks 3.
self.serial_blocks3 = nn.ModuleList([
SerialBlock(
dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer,
shared_cpe=self.cpe3, shared_crpe=self.crpe3
)
for _ in range(serial_depths[2])]
)
# Serial blocks 4.
self.serial_blocks4 = nn.ModuleList([
SerialBlock(
dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer,
shared_cpe=self.cpe4, shared_crpe=self.crpe4
)
for _ in range(serial_depths[3])]
)
# Parallel blocks.
self.parallel_depth = parallel_depth
if self.parallel_depth > 0:
self.parallel_blocks = nn.ModuleList([
ParallelBlock(
dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer,
shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4)
)
for _ in range(parallel_depth)]
)
else:
self.parallel_blocks = None
# Classification head(s).
if not self.return_interm_layers:
if self.parallel_blocks is not None:
self.norm2 = norm_layer(embed_dims[1])
self.norm3 = norm_layer(embed_dims[2])
else:
self.norm2 = self.norm3 = None
self.norm4 = norm_layer(embed_dims[3])
if self.parallel_depth > 0:
# CoaT series: Aggregate features of last three scales for classification.
assert embed_dims[1] == embed_dims[2] == embed_dims[3]
self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
else:
# CoaT-Lite series: Use feature of last scale for classification.
self.aggregate = None
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# Initialize weights.
trunc_normal_(self.cls_token1, std=.02)
trunc_normal_(self.cls_token2, std=.02)
trunc_normal_(self.cls_token3, std=.02)
trunc_normal_(self.cls_token4, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem1=r'^cls_token1|patch_embed1|crpe1|cpe1',
serial_blocks1=r'^serial_blocks1\.(\d+)',
stem2=r'^cls_token2|patch_embed2|crpe2|cpe2',
serial_blocks2=r'^serial_blocks2\.(\d+)',
stem3=r'^cls_token3|patch_embed3|crpe3|cpe3',
serial_blocks3=r'^serial_blocks3\.(\d+)',
stem4=r'^cls_token4|patch_embed4|crpe4|cpe4',
serial_blocks4=r'^serial_blocks4\.(\d+)',
parallel_blocks=[ # FIXME (partially?) overlap parallel w/ serial blocks??
(r'^parallel_blocks\.(\d+)', None),
(r'^norm|aggregate', (99999,)),
]
)
return matcher
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('token', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x0):
B = x0.shape[0]
# Serial blocks 1.
x1 = self.patch_embed1(x0)
H1, W1 = self.patch_embed1.grid_size
x1 = insert_cls(x1, self.cls_token1)
for blk in self.serial_blocks1:
x1 = blk(x1, size=(H1, W1))
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 2.
x2 = self.patch_embed2(x1_nocls)
H2, W2 = self.patch_embed2.grid_size
x2 = insert_cls(x2, self.cls_token2)
for blk in self.serial_blocks2:
x2 = blk(x2, size=(H2, W2))
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 3.
x3 = self.patch_embed3(x2_nocls)
H3, W3 = self.patch_embed3.grid_size
x3 = insert_cls(x3, self.cls_token3)
for blk in self.serial_blocks3:
x3 = blk(x3, size=(H3, W3))
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 4.
x4 = self.patch_embed4(x3_nocls)
H4, W4 = self.patch_embed4.grid_size
x4 = insert_cls(x4, self.cls_token4)
for blk in self.serial_blocks4:
x4 = blk(x4, size=(H4, W4))
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
# Only serial blocks: Early return.
if self.parallel_blocks is None:
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
feat_out = {}
if 'x1_nocls' in self.out_features:
feat_out['x1_nocls'] = x1_nocls
if 'x2_nocls' in self.out_features:
feat_out['x2_nocls'] = x2_nocls
if 'x3_nocls' in self.out_features:
feat_out['x3_nocls'] = x3_nocls
if 'x4_nocls' in self.out_features:
feat_out['x4_nocls'] = x4_nocls
return feat_out
else:
# Return features for classification.
x4 = self.norm4(x4)
return x4
# Parallel blocks.
for blk in self.parallel_blocks:
x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4))
x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)])
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
feat_out = {}
if 'x1_nocls' in self.out_features:
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x1_nocls'] = x1_nocls
if 'x2_nocls' in self.out_features:
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x2_nocls'] = x2_nocls
if 'x3_nocls' in self.out_features:
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x3_nocls'] = x3_nocls
if 'x4_nocls' in self.out_features:
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x4_nocls'] = x4_nocls
return feat_out
else:
x2 = self.norm2(x2)
x3 = self.norm3(x3)
x4 = self.norm4(x4)
return [x2, x3, x4]
def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False):
if isinstance(x_feat, list):
assert self.aggregate is not None
if self.global_pool == 'avg':
x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) # [B, 3, C]
else:
x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) # [B, 3, C]
x = self.aggregate(x).squeeze(dim=1) # Shape: [B, C]
else:
x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0]
return x if pre_logits else self.head(x)
def forward(self, x) -> torch.Tensor:
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features (for down-stream tasks).
return self.forward_features(x)
else:
# Return features for classification.
x_feat = self.forward_features(x)
x = self.forward_head(x_feat)
return x
def insert_cls(x, cls_token):
""" Insert CLS token. """
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
return x
def remove_cls(x):
""" Remove CLS token. """
return x[:, 1:, :]
def checkpoint_filter_fn(state_dict, model):
out_dict = {}
for k, v in state_dict.items():
# original model had unused norm layers, removing them requires filtering pretrained checkpoints
if k.startswith('norm1') or \
(model.norm2 is None and k.startswith('norm2')) or \
(model.norm3 is None and k.startswith('norm3')):
continue
out_dict[k] = v
return out_dict
def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
CoaT, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def coat_tiny(pretrained=False, **kwargs):
model_cfg = dict(
patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6,
num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
model = _create_coat('coat_tiny', pretrained=pretrained, **model_cfg)
return model
@register_model
def coat_mini(pretrained=False, **kwargs):
model_cfg = dict(
patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6,
num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
model = _create_coat('coat_mini', pretrained=pretrained, **model_cfg)
return model
@register_model
def coat_lite_tiny(pretrained=False, **kwargs):
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0,
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
model = _create_coat('coat_lite_tiny', pretrained=pretrained, **model_cfg)
return model
@register_model
def coat_lite_mini(pretrained=False, **kwargs):
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], parallel_depth=0,
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
model = _create_coat('coat_lite_mini', pretrained=pretrained, **model_cfg)
return model
@register_model
def coat_lite_small(pretrained=False, **kwargs):
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0,
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
model = _create_coat('coat_lite_small', pretrained=pretrained, **model_cfg)
return model |