File size: 701 Bytes
2893724
 
 
 
 
 
f1a6f2c
 
2893724
 
 
43277af
f1a6f2c
2893724
f1a6f2c
 
 
 
 
 
 
2893724
f1a6f2c
 
 
 
 
 
 
 
2893724
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import streamlit as st
import single
import corpus
from PIL import Image

PAGES = {
    "Instance Explanation": single,
    "Dataset Explanation": corpus,
}

logo = Image.open("static/logo.png")
st.sidebar.image(logo)
st.sidebar.title("*ferret* showcase")

st.sidebar.markdown(
    """
    Welcome to the *ferret* showcase!
    
    You will find two main functionalities.
    """
)
page = st.sidebar.radio("", list(PAGES.keys()))

st.sidebar.markdown(
    """
    In the single-*instance* page, you can evaluate our built-in explainers on your favourite model.
    Choosing *dataset* mode, you will evaluate explainers on state-of-the-art datasets from our Dataset API.
    """
)

PAGES[page].body()