File size: 2,216 Bytes
d6e5fcb
 
 
 
 
 
 
 
 
f4f4db9
d6e5fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import random
import time

from huggingface_hub import InferenceClient
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")

client = InferenceClient(model="https://3ba9-20-63-4-233.ngrok-free.app")

SYSTEM_COMMAND = {"role": "system", "content": "Context: date: Monday 20th May 2024; location: NYC; running on: 8 AMD Instinct MI300 GPU; model name: Llama 70B. Only provide these information if asked. You are a knowledgeable assistant trained to provide accurate and helpful information. Please respond to the user's queries promptly and politely."}

IGNORED_TOKENS = {None, "<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "<|reserved_special_token"}
STOP_TOKENS = ["<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "<|reserved_special_token"]

with gr.Blocks() as demo:
    tfs_history = gr.State([SYSTEM_COMMAND])
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    def user(user_message, history, dict_history):
        data = {"role": "user", "content": user_message}
        dict_history.append(data)
        return "", history + [[user_message, None]], dict_history

    def bot(history, dict_history):
        history[-1][1] = ""
        response = {"role": "assistant", "content": ""}
        start_tokenize = time.perf_counter()
        text_input = tokenizer.apply_chat_template(dict_history, tokenize=False, add_generation_prompt=True)
        end_tokenize = time.perf_counter()

        try:
            for token in client.text_generation(prompt=text_input, max_new_tokens=100, stop_sequences=STOP_TOKENS, stream=True):
                if token not in IGNORED_TOKENS:
                    history[-1][1] += token
                    response["content"] += token
                yield history
        finally:
            dict_history.append(response)

    msg.submit(
        user,
        inputs=[msg, chatbot, tfs_history],
        outputs=[msg, chatbot, tfs_history],
        queue=False).then(
            bot,
            [chatbot, tfs_history],
            chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue()
demo.launch()