Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 4,416 Bytes
			
			| 75c3a89 883e41e 75c3a89 6ae27e8 75c3a89 6ae27e8 75c3a89 6ae27e8 75c3a89 31f3439 75c3a89 6ae27e8 75c3a89 58706b9 a41bdbc 6ae27e8 a41bdbc 6ae27e8 5cd1ac6 31f3439 5cd1ac6 6ae27e8 31f3439 fa5d8a4 31f3439 fa5d8a4 6ae27e8 fa5d8a4 a41bdbc 6ae27e8 fa5d8a4 75c3a89 73ee9f2 75c3a89 883e41e 73ee9f2 883e41e | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | import gzip
import json
from collections import Counter
import pandas as pd
import numpy as np
import jax.numpy as jnp
import tqdm
from sentence_transformers import util
from typing import List, Union
import torch
from backend.utils import load_model, filter_questions, load_embeddings
from sklearn.manifold import TSNE
def cos_sim(a, b):
    return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b))
# We get similarity between embeddings.
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict):
    print(model_name)
    model = load_model(model_name, model_dict)
    # Creating embeddings
    if hasattr(model, 'encode'):
        anchor_emb = model.encode(anchor)[None, :]
        inputs_emb = model.encode(inputs)
    else:
        assert len(model) == 2
        anchor_emb = model[0].encode(anchor)[None, :]
        inputs_emb = model[1].encode(inputs)
    # Obtaining similarity
    similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))
    # Returning a Pandas' dataframe
    d = {'inputs': inputs,
         'score': [round(similarity[i], 3) for i in range(len(similarity))]}
    df = pd.DataFrame(d, columns=['inputs', 'score'])
    return df
# Search
def text_search(anchor: str, n_answers: int, model_name: str, model_dict: dict):
    # Proceeding with model
    print(model_name)
    assert model_name == "distilbert_qa"
    model = load_model(model_name, model_dict)
    # Creating embeddings
    query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
    print("loading embeddings")
    corpus_emb = load_embeddings()
    # Getting hits
    hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
    filtered_posts = filter_questions("python")
    print(f"{len(filtered_posts)} posts found with tag: python")
    hits_titles = []
    hits_scores = []
    urls = []
    for hit in hits:
        post = filtered_posts[hit['corpus_id']]
        hits_titles.append(post['title'])
        hits_scores.append("{:.3f}".format(hit['score']))
        urls.append(f"https://stackoverflow.com/q/{post['id']}")
    return hits_titles, hits_scores, urls
def text_cluster(anchor: str, n_answers: int, model_name: str, model_dict: dict):
    # Proceeding with model
    print(model_name)
    assert model_name == "distilbert_qa"
    model = load_model(model_name, model_dict)
    # Creating embeddings
    query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
    print("loading embeddings")
    corpus_emb = load_embeddings()
    # Getting hits
    hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
    filtered_posts = filter_questions("python")
    hits_dict = [filtered_posts[hit['corpus_id']] for hit in hits]
    hits_dict.append(dict(id = '1', title = anchor, tags = ['']))
    hits_emb = torch.stack([corpus_emb[hit['corpus_id']] for hit in hits])
    hits_emb = torch.cat((hits_emb, query_emb))
    # Dimensionality reduction with t-SNE
    tsne = TSNE(n_components=3, verbose=1, perplexity=15, n_iter=1000)
    tsne_results = tsne.fit_transform(hits_emb.cpu())
    df = pd.DataFrame(hits_dict)
    tags = list(df['tags'])
    counter = Counter(tags[0])
    for i in tags[1:]:
        counter.update(i)
    df_tags = pd.DataFrame(counter.most_common(), columns=['Tag', 'Mentions'])
    most_common_tags = list(df_tags['Tag'])[1:5]
    labels = []
    for tags_list in list(df['tags']):
        for common_tag in most_common_tags:
            if common_tag in tags_list:
                labels.append(common_tag)
                break
            elif common_tag != most_common_tags[-1]:
                continue
            else:
                labels.append('others')
    df['title'] = [post['title'] for post in hits_dict]
    df['labels'] = labels
    df['tsne_x'] = tsne_results[:, 0]
    df['tsne_y'] = tsne_results[:, 1]
    df['tsne_z'] = tsne_results[:, 2]
    df['size'] = [2 for i in range(len(df))]
    # Making the query bigger than the rest of the observations
    df['size'][len(df) - 1] = 10
    df['labels'][len(df) - 1] = 'QUERY'
    import plotly.express as px
    fig = px.scatter_3d(df, x='tsne_x', y='tsne_y', z='tsne_z', color='labels', size='size',
                        color_discrete_sequence=px.colors.qualitative.D3, hover_data=[df.title])
    return fig
 | 
