File size: 4,416 Bytes
75c3a89
 
883e41e
75c3a89
6ae27e8
75c3a89
6ae27e8
75c3a89
6ae27e8
75c3a89
31f3439
75c3a89
6ae27e8
75c3a89
58706b9
a41bdbc
6ae27e8
a41bdbc
6ae27e8
 
 
5cd1ac6
31f3439
5cd1ac6
6ae27e8
 
31f3439
 
fa5d8a4
31f3439
 
 
fa5d8a4
6ae27e8
 
 
 
 
fa5d8a4
a41bdbc
6ae27e8
 
fa5d8a4
75c3a89
 
 
 
 
 
73ee9f2
75c3a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883e41e
 
 
 
 
73ee9f2
883e41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gzip
import json
from collections import Counter

import pandas as pd
import numpy as np
import jax.numpy as jnp
import tqdm

from sentence_transformers import util
from typing import List, Union
import torch

from backend.utils import load_model, filter_questions, load_embeddings
from sklearn.manifold import TSNE

def cos_sim(a, b):
    return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b))


# We get similarity between embeddings.
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict):
    print(model_name)
    model = load_model(model_name, model_dict)

    # Creating embeddings
    if hasattr(model, 'encode'):
        anchor_emb = model.encode(anchor)[None, :]
        inputs_emb = model.encode(inputs)
    else:
        assert len(model) == 2
        anchor_emb = model[0].encode(anchor)[None, :]
        inputs_emb = model[1].encode(inputs)

    # Obtaining similarity
    similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))

    # Returning a Pandas' dataframe
    d = {'inputs': inputs,
         'score': [round(similarity[i], 3) for i in range(len(similarity))]}
    df = pd.DataFrame(d, columns=['inputs', 'score'])

    return df


# Search
def text_search(anchor: str, n_answers: int, model_name: str, model_dict: dict):
    # Proceeding with model
    print(model_name)
    assert model_name == "distilbert_qa"
    model = load_model(model_name, model_dict)

    # Creating embeddings
    query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]

    print("loading embeddings")
    corpus_emb = load_embeddings()

    # Getting hits
    hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]

    filtered_posts = filter_questions("python")
    print(f"{len(filtered_posts)} posts found with tag: python")

    hits_titles = []
    hits_scores = []
    urls = []
    for hit in hits:
        post = filtered_posts[hit['corpus_id']]
        hits_titles.append(post['title'])
        hits_scores.append("{:.3f}".format(hit['score']))
        urls.append(f"https://stackoverflow.com/q/{post['id']}")

    return hits_titles, hits_scores, urls


def text_cluster(anchor: str, n_answers: int, model_name: str, model_dict: dict):
    # Proceeding with model
    print(model_name)
    assert model_name == "distilbert_qa"
    model = load_model(model_name, model_dict)

    # Creating embeddings
    query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]

    print("loading embeddings")
    corpus_emb = load_embeddings()

    # Getting hits
    hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]

    filtered_posts = filter_questions("python")

    hits_dict = [filtered_posts[hit['corpus_id']] for hit in hits]
    hits_dict.append(dict(id = '1', title = anchor, tags = ['']))

    hits_emb = torch.stack([corpus_emb[hit['corpus_id']] for hit in hits])
    hits_emb = torch.cat((hits_emb, query_emb))

    # Dimensionality reduction with t-SNE
    tsne = TSNE(n_components=3, verbose=1, perplexity=15, n_iter=1000)
    tsne_results = tsne.fit_transform(hits_emb.cpu())
    df = pd.DataFrame(hits_dict)
    tags = list(df['tags'])

    counter = Counter(tags[0])
    for i in tags[1:]:
        counter.update(i)

    df_tags = pd.DataFrame(counter.most_common(), columns=['Tag', 'Mentions'])
    most_common_tags = list(df_tags['Tag'])[1:5]

    labels = []

    for tags_list in list(df['tags']):
        for common_tag in most_common_tags:
            if common_tag in tags_list:
                labels.append(common_tag)
                break
            elif common_tag != most_common_tags[-1]:
                continue
            else:
                labels.append('others')

    df['title'] = [post['title'] for post in hits_dict]
    df['labels'] = labels
    df['tsne_x'] = tsne_results[:, 0]
    df['tsne_y'] = tsne_results[:, 1]
    df['tsne_z'] = tsne_results[:, 2]

    df['size'] = [2 for i in range(len(df))]

    # Making the query bigger than the rest of the observations
    df['size'][len(df) - 1] = 10
    df['labels'][len(df) - 1] = 'QUERY'
    import plotly.express as px

    fig = px.scatter_3d(df, x='tsne_x', y='tsne_y', z='tsne_z', color='labels', size='size',
                        color_discrete_sequence=px.colors.qualitative.D3, hover_data=[df.title])
    return fig