Spaces:
Runtime error
Runtime error
Trent
commited on
Commit
•
5cd1ac6
1
Parent(s):
31f3439
Asymmetric QA
Browse files- app.py +38 -3
- backend/config.py +2 -4
- backend/inference.py +3 -2
- backend/utils.py +3 -4
app.py
CHANGED
@@ -2,12 +2,12 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
|
4 |
from backend import inference
|
5 |
-
from backend.config import MODELS_ID
|
6 |
|
7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
8 |
|
9 |
st.sidebar.title('Tasks')
|
10 |
-
menu = st.sidebar.radio("", options=["Sentence Similarity", "Search", "Clustering"], index=0)
|
11 |
|
12 |
st.markdown('''
|
13 |
|
@@ -42,7 +42,7 @@ if menu == "Sentence Similarity":
|
|
42 |
inputs.append(input)
|
43 |
|
44 |
if st.button('Tell me the similarity.'):
|
45 |
-
results = {model: inference.text_similarity(anchor, inputs, model) for model in select_models}
|
46 |
df_results = {model: results[model] for model in results}
|
47 |
|
48 |
index = [f"{idx}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
|
@@ -54,6 +54,41 @@ if menu == "Sentence Similarity":
|
|
54 |
st.write(df_total)
|
55 |
st.write('Visualize the results of each model:')
|
56 |
st.line_chart(df_total)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
elif menu == "Search":
|
58 |
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
59 |
|
|
|
2 |
import pandas as pd
|
3 |
|
4 |
from backend import inference
|
5 |
+
from backend.config import MODELS_ID, QA_MODELS_ID
|
6 |
|
7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
8 |
|
9 |
st.sidebar.title('Tasks')
|
10 |
+
menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search", "Clustering"], index=0)
|
11 |
|
12 |
st.markdown('''
|
13 |
|
|
|
42 |
inputs.append(input)
|
43 |
|
44 |
if st.button('Tell me the similarity.'):
|
45 |
+
results = {model: inference.text_similarity(anchor, inputs, model, MODELS_ID) for model in select_models}
|
46 |
df_results = {model: results[model] for model in results}
|
47 |
|
48 |
index = [f"{idx}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
|
|
|
54 |
st.write(df_total)
|
55 |
st.write('Visualize the results of each model:')
|
56 |
st.line_chart(df_total)
|
57 |
+
elif menu == "Asymmetric QA":
|
58 |
+
select_models = st.multiselect("Choose models", options=list(QA_MODELS_ID), default=list(QA_MODELS_ID)[0])
|
59 |
+
|
60 |
+
anchor = st.text_input(
|
61 |
+
'Please enter here the query you want to compare with given answers:',
|
62 |
+
value="How many close friends do you have?"
|
63 |
+
)
|
64 |
+
|
65 |
+
n_texts = st.number_input(
|
66 |
+
f'''How many answers you want to compare with: '{anchor}'?''',
|
67 |
+
value=3,
|
68 |
+
min_value=2)
|
69 |
+
|
70 |
+
inputs = []
|
71 |
+
|
72 |
+
defaults = ["I have 10.", "How many children do you have?", "I have 3 brothers."]
|
73 |
+
for i in range(int(n_texts)):
|
74 |
+
input = st.text_input(f'Answer {i + 1}:', value=defaults[i] if i < len(defaults) else "")
|
75 |
+
|
76 |
+
inputs.append(input)
|
77 |
+
|
78 |
+
if st.button('Tell me Answer likeliness.'):
|
79 |
+
results = {model: inference.text_similarity(anchor, inputs, model, QA_MODELS_ID) for model in select_models}
|
80 |
+
df_results = {model: results[model] for model in results}
|
81 |
+
|
82 |
+
index = [f"{idx}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
|
83 |
+
df_total = pd.DataFrame(index=index)
|
84 |
+
for key, value in df_results.items():
|
85 |
+
df_total[key] = list(value['score'].values)
|
86 |
+
|
87 |
+
st.write('Here are the results for selected models:')
|
88 |
+
st.write(df_total)
|
89 |
+
st.write('Visualize the results of each model:')
|
90 |
+
st.line_chart(df_total)
|
91 |
+
|
92 |
elif menu == "Search":
|
93 |
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])
|
94 |
|
backend/config.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
MODELS_ID = dict(distilroberta = 'flax-sentence-embeddings/st-codesearch-distilroberta-base',
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
3 |
-
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
4 |
-
mpnet_asymmetric_qa = ['flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q',
|
5 |
-
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A'],
|
6 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
7 |
|
8 |
QA_MODELS_ID = dict(
|
9 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
10 |
mpnet_asymmetric_qa = ['flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q',
|
11 |
-
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A']
|
|
|
12 |
)
|
|
|
1 |
MODELS_ID = dict(distilroberta = 'flax-sentence-embeddings/st-codesearch-distilroberta-base',
|
2 |
mpnet = 'flax-sentence-embeddings/all_datasets_v3_mpnet-base',
|
|
|
|
|
|
|
3 |
minilm_l6 = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L6')
|
4 |
|
5 |
QA_MODELS_ID = dict(
|
6 |
mpnet_qa = 'flax-sentence-embeddings/mpnet_stackexchange_v1',
|
7 |
mpnet_asymmetric_qa = ['flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q',
|
8 |
+
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A'],
|
9 |
+
distilbert_qa = 'flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot'
|
10 |
)
|
backend/inference.py
CHANGED
@@ -4,6 +4,7 @@ import jax.numpy as jnp
|
|
4 |
from typing import List, Union
|
5 |
|
6 |
# Defining cosine similarity using flax.
|
|
|
7 |
from backend.utils import load_model
|
8 |
|
9 |
|
@@ -12,9 +13,9 @@ def cos_sim(a, b):
|
|
12 |
|
13 |
|
14 |
# We get similarity between embeddings.
|
15 |
-
def text_similarity(anchor: str, inputs: List[str], model_name: str):
|
16 |
print(model_name)
|
17 |
-
model = load_model(model_name)
|
18 |
|
19 |
# Creating embeddings
|
20 |
if hasattr(model, 'encode'):
|
|
|
4 |
from typing import List, Union
|
5 |
|
6 |
# Defining cosine similarity using flax.
|
7 |
+
from backend.config import MODELS_ID
|
8 |
from backend.utils import load_model
|
9 |
|
10 |
|
|
|
13 |
|
14 |
|
15 |
# We get similarity between embeddings.
|
16 |
+
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict):
|
17 |
print(model_name)
|
18 |
+
model = load_model(model_name, model_dict)
|
19 |
|
20 |
# Creating embeddings
|
21 |
if hasattr(model, 'encode'):
|
backend/utils.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
-
from .config import MODELS_ID
|
4 |
|
5 |
|
6 |
@st.cache(allow_output_mutation=True)
|
7 |
-
def load_model(model_name):
|
8 |
-
assert model_name in
|
9 |
# Lazy downloading
|
10 |
-
model_ids =
|
11 |
if type(model_ids) == str:
|
12 |
output = SentenceTransformer(model_ids)
|
13 |
elif hasattr(model_ids, '__iter__'):
|
|
|
1 |
import streamlit as st
|
2 |
from sentence_transformers import SentenceTransformer
|
|
|
3 |
|
4 |
|
5 |
@st.cache(allow_output_mutation=True)
|
6 |
+
def load_model(model_name, model_dict):
|
7 |
+
assert model_name in model_dict.keys()
|
8 |
# Lazy downloading
|
9 |
+
model_ids = model_dict[model_name]
|
10 |
if type(model_ids) == str:
|
11 |
output = SentenceTransformer(model_ids)
|
12 |
elif hasattr(model_ids, '__iter__'):
|